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1 Introduction

The issue of updating non-additive probabilities (Schmeidler (1989)) has been

given extensive attention. Several theories have been proposed for the condi-

tional probability in the non-additive case (see Dempster (1967,1968), Shafer

(1976), Smets (1986), Gilboa (1989), Chateauneuf and Jaffray (1989), Fagin

and Halpern (1989), Halpern and Tuttle (1989), Jaffray (1990), Gilboa and

Schmeidler (1993), Denneberg (1994) and Sarin and Wakker (1998)). Most

suggest that the probability of an event B conditioned on an event A de-

pends not only on the probabilities of A,B and A ∩ B, as in the traditional

Bayes formula, but also on the probabilities of other events, such as A ∩ B

and (A ∩ B) ∪ A. Once the conditional probability given A is defined, say,

P (·|A), one may define the conditional expectation of a function X (e.g., a

state-of-nature-dependent payoff, derived from a certain action – an act in

the terminology of Savage (1954)), given the event A, by simply integrating

the restriction of X over A with respect to the conditional probability P (·|A).

This method of calculating the conditional expectation is conceptually

inconsistent for the following reason. While the conditional probability of B

with respect to A depends on the behavior of B outside of A, the conditional

expectation of X, given A, depends only on the behavior of X over A. Thus,

two functions may be significantly different on the complement of A, and yet,

as long as they coincide on A, their conditional expectations are equal.

A similar method of calculating the conditional expectation is to restrict

the probability and the function to the conditioned event and to consider only

the restricted items. More precisely, the conditional expectation is defined

as the Choquet integral (see Choquet (1953-1954)) of the restricted function

with respect to the normalized restricted probability. This method implies

that the derived conditional probability of an event B, given A, depends only

on the probability of A∩B and of A. It may also imply that the conditional

expectation of a function X on A is equal to its conditional expectation over

A and yet, both differ from the Choquet integral of X.
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In this paper, we present a geometric approach, inspired by the theory of

additive probabilities, which suggests a theory of conditional expectation that

does not pass through the conditional probabilities. Rather, the conditional

probability is a by-product.

The conditional expectation of a function X, given a field of events, say,

F , will be defined as the closest (in some formal sense) function, which

is F -measurable. This represents a conservative attitude: the conditional

expectation of a function X is another function that first, is compatible with

the information (modeled by a field of events) and second, is the closest to

the original one.

Here, in the case of non-additive probabilities, we adopt the same ap-

proach. There are several ways, though, to borrow this idea; all are equiva-

lent in the additive case. It turns out that only a few, and the one presented

in Section 6 among them, maintain the following two desirable properties:

(a) If X is F -measurable, then the expectation conditioned on F is X.

(b) The expectation of a function conditioned on the trivial field is equal to

its (Choquet) integral.

Some points are worth noticing. The conditional probability of an event

B with respect to (w.r.t.) another event A, is the expectation of 1lB (the

characteristic function of B) conditioned on the field generated by A (which

consists of φ, Ω, A and A). However, if the complement of A is split differently

(to more than just A), then the conditional expectation on A itself is typically

different. In other words, the conditional probability of B, given A, depends

on the partition of A. This observation calls for a re-examination of the

concept of probability in the non-additive case.

The original probability and the conditional one must be of the same

nature. In the case of additive probabilities no problem arises: the condi-

tionals do not depend on the entire partition of the space. The conditional

probability depends on the conditioned event only, and therefore it is a nu-
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meric probability, like the original one. In the non-additive case, by contrast,

the conditional probability depends on the whole partition and is not real-

valued. Rather, it is a function: the conditional probability of B, given the

partition P , is a P-measurable function. That is, the conditional probability

is typically vector-valued. The unconditional probability must, therefore, be

considered as a special case of the conditional probability, given the trivial

field, and hence, real-valued.

All of the above suggest that the probability must be defined as a vector

whose dimension depends on the partition under consideration.

In case the conditional expectation is not computed directly, but rather

through the conditional probability, an undesirable phenomenon occurs: the

conditional expectation of 1lB, given A, does not coincide with the probability

of B given A. When computed directly, as hereby proposed, this does not

happen. Moreover, due to continuity, if a function is close to 1lB, then its

conditional expectation, given A, is an approximation to the probability of

B, given A.

Under some existing updating schemes it may turn out that the condi-

tional probabilities of B, given A, and of B, given A, are both less than some

constant, and yet, the probability of B is greater than this constant. Under

the updating scheme proposed here this cannot occur. This feature extends

to the conditional expectation. The fact that the conditional expectation

of a function is uniformly greater than a certain constant implies that the

integral of this function is greater than the same constant. In particular, if,

given any event in the informational partition, an act is valued, say, 7, then

this act is unconditionally valued 7.

This approach is used to define Nash equilibrium with non-additive prob-

abilities. In a strategic context, Nash equilibrium involves two conditions.

First, the players play independently, and thus, their play induces indepen-

dent probabilities over the product of their action spaces. Second, each player

plays his or her best response, given his or her choice and given other players’
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actions.

In case the mixed actions of the players are non-additive, the first condi-

tion calls for a definition of independence of non-additive probabilities defined

on a product space. Using the geometric approach suggested here, this has a

natural solution: the mixed actions of the players are independent if there is a

measure over the set of all joint actions such that (i) the marginal probability

over every player’s actions coincides with the players’ mixed action; and (ii)

the players can induce nothing about other players’ actions from their own.

Only through conditional probability can players learn about others’ actions

from their own. Therefore, condition (ii) of independence can be conveyed

more formally as follows. There exists a probability over the product space

(typically, not the product probability) such that the probability of player

i playing an action in a set B coincides with the conditional probability of B,

given the partition induced by what player i knows (i.e., his or her actions).

Section 7 elaborates on this subject.

The second condition of Nash equilibrium refers to incentive compatibil-

ity. It states that each player plays his or her best response to other players’

actions. However, the payoff given to a player when he or she plays an action,

is nothing but the conditional payoff, with respect to the independent proba-

bility (over the product space), given that action. Therefore, both conditions

of Nash equilibrium require the concept of conditional expectation provided

here.

2 A Motivating Example

Browsers in a car dealership were asked to fill out a short questionnaire. The

information they had to provide was whether they had bought a new car

during the last three years (indicated as “frequent buyer”) or not (indicated

as “non-frequent buyer”), and the number of years they had spent in school.

Due to the limited patience of the average browser, the questionnaire was
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designed to elicit information in steps: First, whether she/he had purchased

a new car in the last three years, then whether the number of years in school

was between 0 and 12 or greater than 12, and finally to indicate the number

of school years in one of the following ranges: 0− 8, 9− 12, 13− 15 and 15+.

It turned out that 1000 customers filled out the form. Some, as ex-

pected, failed to provide all the information. Others skipped the second step

and indicated, for instance, that they had spent between 0 and 8 years in

school, without marking the ′0− 12′ category. Still other customers checked

two complementing categories, such as 13 − 15 and 15+. The less educated

browsers were the most impatient and frequently failed to hand in fully an-

swered forms. The number of checks in the various categories is given in the

following table.

Years in School

0− 12 12+

0− 8 9− 12 13− 15 15 +

frequent-buyers 200 300

10 100 200 100

non-frequent buyers 310 150

100 200 101 102

Number of checks in each category

Aside from the information provided by the table, it is known that the

total number of frequent buyers is 500, of non-frequent buyers is 490, of

the category “0-12” is 510, and of “12+” is 480. Finally, categories whose

intersection is not mentioned did not get any joint check.

Based on the above information one can derive a non-additive probability

as follows. The probability of a category is the relative frequency of the checks
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in this category. The same applies to an explicitly indicated intersection of

categories (e.g., non-frequent buyers who have less than or equal to 12 years

in school). Intersections that are not mentioned have zero probability. As

for the union of categories, the probability is the sum of the probabilities of

the categories that comprise the union. For instance, the probability of the

non-frequent buyers who have less than or equal to 12 years in school is 310
1000

,

the probability of the non-frequent buyers is 490
1000

and the probability of the

union of those non-frequent buyers who have less than or equal to 12 years in

school, and those who have more than 12 years in school is 310
1000

+ 480
1000

= 790
1000

.

This example is aimed at convincing the reader that the probability of

a “non-frequent buyer”, given the event “0-12”, depends on all the informa-

tion available. In particular, the conditional probability when the available

information is the partition “0-12” and “12+” differs from the conditional

probability when the available information is the partition “0-12”, “13-15”

and “15+”.

Denote the partition consisting of the events “0-12” and “12+” by F1

and the partition consisting of “0-12”, “13-15” and “15+” by F2. For the

sake of example, consider a new customer who filled out a questionnaire and

indicated that she/he has spent between 0 and 12 years in school. What

is the conditional probability that she/he has bought a new car in the last

three years?

Suppose that the information available is F1. Based on it, the size of

category “0-12” can be directly estimated as 510, which is the total number

of checks in the category “0-12” – an event in F1. Alternatively, one can

use the dual estimation (the complement of the complement), and obtain

1000 − 480 = 520 (since 480 is the total number of checks in the category

“12+”, which is also an event in F1). Notice that had the table reflected the

true situation, the two estimation methods would result in the same number.

Due to the distorted information the estimations are different. Dempster

(1967) and Shafer (1976) used the dual method, but there is no convincing
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reason to choose one over the other.

Now assume that the information available is wider, say, F2. There are

two additional numbers known: 301 – the number of checks in “13-15”,

and 202 – the number of checks in “15+”. Taking these numbers at face

value, using the dual estimation, one would estimate the size of “0-12” as

1000−301−202 = 497. Thus, the additional information results in a different

estimation.

The question arises as to whether one should ignore the previously known

figure of 450, or maybe the newly known numbers and if not, how should

one weigh all the figures together? Furthermore, if all the numbers in the

complement of “0-12” are considered why discriminate against the direct

estimation? The method introduced in the sequel takes into account all the

information available.

Hopefully, the reader is now curious enough to know how.

3 The Geometric Approach in the Additive

Case

For the sake of simplicity, let us assume that the underlying probability

space, Ω, is finite. Let P be an additive probability. We denote by D the

field containing all subsets of Ω. A generic subfield of D will be denoted by

F . If F is the trivial field (containing φ and Ω only) it will be denoted as T .

The field that consists of φ, Ω, A and the complement of A, A, is denoted by

FA.

Assume that X is a random variable and let F be a field. It turns out

that X can be written as X = Y + X⊥, where Y is F -measurable (i.e., Y is

constant on the atoms of F) and X⊥ satisfies

(1)

∫
ZX⊥dP = 0 for all F -measurable variables Z .

The conditional expectation E(X|F) is equal to Y . In other words, X =
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E(X|F)+X⊥. In the appropriate space E(X|F) is the closest F -measurable

function to X. More precisely, denote by M(F) the set of all F -measurable

variables. Then,

(2) E(X|F) = argminY ∈M(F)

∫
(X − Y )2dP .

In other words, Y is the closest, w.r.t. to the `2 norm variable in M(F),

to X. Stated differently, E(X|F) is the projection of X to the subspace (of

variables) M(F).

Example 1

Consider an additive probability P and an event B. Let 1lB be the charac-

teristic function of B. A T -measurable function is a constant, say, α. Now,∫
(1lB − α)2dP = (1 − α)2P (B) + α2P (B). The minimum of this expres-

sion is attained, by equating the derivative to zero, at α = P (B). Thus,

E(1lB|T ) = P (B). If instead, the field is FA for some event A, then an

FA-measurable function is α on A and β on A. Let Y be such a function.

Thus,
∫

(1lB − Y )2dP = α2P (A − B) + (1 − α)2P (A ∩ B) + (1 − β)2P (A ∩
B) + β2P (A − B). The minimum of this expression is at α = P (A∩B)

P (A)
and

β = P (A∩B)

P (A)
. These are exactly the conditional probabilities of B, given A,

and of B, given A, respectively.

4 The Non-Additive Case - Preliminary At-

tempts

This section provides the various considerations that might guide one before

defining conditional expectation. Let P be a monotonic non-additive prob-

ability. That is, P (∅) = 0, P (Ω) = 1 and if A ⊆ B, then P (A) ≤ P (B).

We now use the geometric approach presented in the previous section. This

approach can be interpreted in various ways. This section introduces some
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possible, however imperfect interpretations. The impatient reader is advised

to skip it and move directly to Section ??, where the definition proposed by

this paper is provided.

The right side of (2) can be written in various ways. Here is a sample:

(I) argminY ∈M(F)

∫
X2 + Y 2 − 2XY dP

(II) argminY ∈M(F)

∫
X2 + Y 2dP − 2

∫
XY dP

(III) argminY ∈M(F)

∫
Y 2 − 2

∫
XY dP

(IV ) argmaxY ∈M(F)

∫
2XY − Y 2dP

(V ) argmaxY ∈M(F)

∫
2XY − Y 2 −X2dP.

In the case where P is non-additive and the integral is understood as the

Choquet integral, no two of these methods are equivalent.

Whatever method is adopted, it seems natural to require that the condi-

tional expectation would satisfy the following two desirable properties:

(A1) E(X|F) = X if X is F −measurable.

(A2) E(X|T ) =

∫
XdP.

(A1) states that if X is already measurable with respect to the field F ,

the expectation of X, conditional on F , is X itself. (A2) states that with

respect to the trivial field, that is, when no information is available, then the

conditional expectation coincides with the Choquet integral of X.
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Example 2

Ω = {a, b}, P (a) = P (b) = 0, P (ab) = 1. X(a) = 1, X(b) = 10. Let

Y (a) = α and Y (b) = β. That is, Y is D-measurable. Then, adopting

method (III), one obtains, when α < β,
∫

Y 2 − 2
∫

XY = α2 − 2α. The

minimum, which is −1, is obtained when α = 1 and 1 < β. If, on the other

hand, β ≤ α then
∫

Y 2 − 2
∫

XY = β2 − 2 min(α, 10β). The minimum of

−100 is achieved when β = 10 and α = 100. Thus, the global minimum

is obtained when Y (a) = 100 and Y (b) = 10. The function at which the

minimum is obtained satisfies, in particular Y 6= X. This is not desirable,

since the field considered is D, the same field generated by X itself.

We now follow method (IV) and compute argmaxY ∈M(D)

∫
2XY −Y 2dP .

One can see that,

(2XY − Y 2)(ω) ≤ 2 ·X(ω)X(ω)−X2(ω) , ω = a, b .

Thus, argmaxY ∈M(D)

∫
2XY −Y 2dP = X. In other words, if method (IV) is

adopted, then the conditional expectation with respect to the field generated

by X is X itself.

In this example method (III) does not satisfy (A1) while method (IV)

does.

Example 3

Let Ω = {a, b}, P (a) = P (b) = 0.6, X(a) = 0, X(b) = 1. Thus,
∫

X = 0.6.

Adopting the method (I), if Y = α then
∫

(X−α)2dP = α2+[(1−α)2−α2]0.6

when α ≤ 1
2

and
∫

(X − α)2dP = (1− α)2 + [α2 − (1− α)2]0.6 when α ≥ 1
2
.

The minimum when α ≤ 1
2

is attained at α = 1
2

and when α ≥ 1
2

it is also

attained at α = 1
2
. The global minimum is therefore achieved by α = 1

2
.

Thus, argminY ∈M(T )

∫
X2 + Y 2− 2XY dP 6= ∫

XdP and(A2) is not satisfied

by method (I).
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It turns out that none of the methods described above satisfies both (A1)

and (A2).

Another desirable property of the conditional expectation is continuity.

When the conditional expectation is calculated by an additive probability,

induced by the original non-additive one, there is a lack of continuity. By

contrast, all reasonable methods inspired by the geometric approach imply

continuity. Since E(·|F) may be a set of solutions, the full formal meaning

of the following (A5) will be given in the next section. (The skip from (A1)

and (A2) to (A5) is for the sake of consistency with Section 6.)

(A5) E(·|F) is continuous.

It turns out that the conditional expectation, if defined by methods (I)

or (II), satisfies (A5).

Methods (I) and (II) also satisfy,

(A6) If c is a positive constant, then the conditional expectation of cX is c

times the conditional expectation of X.

However, due to the non-additivity of the underlying probability, these

methods do not satisfy,

(A7)− If c is a constant then the conditional expectation of c + X is c plus

the conditional expectation of X.

5 Updating Non-Additive Probabilities – An

Illustration

Any definition of the conditional expectation implies a definition of the con-

ditional probability of an event given any field. Consider two events B and

A. The conditional probability P (B|A) is the updating of the probability of

the event A when the information received is according to the field FA. That
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is, if ω ∈ A is realized then the information received is A. Otherwise, the

information is the complement of A. Formally, the conditional probability

P (B|A) is defined as the value of E(1lB|FA) on A.

In order to illustrate the main idea, we provide here the definition of the

conditional probability of an event B, given the field FA, induced by method

(IV ).

Let Y be equal to α on A and β on A. The integral is equal to

(3)

∫
2XY − Y 2dP = −β2 + (−α2 + β2)P (A ∪B) + 2αP (B)

+ (2β − β2 − 2α + α2)P (A ∩B),

when α ≤ β. It attains its maximum at the points

(4) α =
P (B)− P (A ∩B)

P (A ∪B)− P (A ∩B)
and β =

P (A ∩B)

1 + P (A ∩B)− P (A ∪B)
.

(4) is consistent with α ≤ β if and only if α ≤ P (B). If P (B) < α, then

the maximum of
∫

2XY − Y 2dP occurs when β ≤ α.

Similarly to the former case, when β ≤ α, the maximum of
∫

2XY −Y 2dP

is attained at

(5) α =
P (A ∩B)

1 + P (A ∩B)− P (A ∪B)
and β =

P (B)− P (A ∩B)

P (A ∪B)− P (A ∩B)
.

(5) is consistent with β ≤ α if and only if β ≤ P (B).

To summarize, there may be three types of maxima: (4), (5) or α = β =

P (B). Notice that (4) and (5) may both be consistent. In this case, the

solution is the maximal one.

Example 4

Let P (B) = 0.1, P (B ∩ A) = P (B ∩ A) = 0.05, P (B ∪ A) = P (B ∪ A) = 3
4
.

In this case E(1lB|FA) is either 1
14

on A and 1
6

on A or vice versa: 1
6

on A

and 1
14

on A. Thus, there are two solutions that differ from each other on a

set whose probability is 1.
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Let us compute
∫

1lB −E(X|FA)dP . It is equal to −1
6
· 1 +

(
1
6
− 1

14

)
3
4

+
(
1− 1

6
+ 1

14

)
1
10

+
(
1− 1

14
− 1 + 1

6
).05 = 0.

This example suggests the following:

Proposition 1 For every two events A and B one obtains
∫

1lB−E(1lB|FA)dP =

0.

Proof. Whether the solution is (4), (5) or α = β = P (B), a direct

computation proves the assertion.

6 The Conditional Expectation

6.1 The definition and examples

The conditional expectation of the function X, given a field F , is an F -

measurable function that satisfies some properties. We would like to define

the conditional expectation of X, given the field F , as argminY ∈M(F)

∫
X2 +

Y 2 − 2XY dP . The problem is that according to this method (A2) is not

always satisfied. The correction of this flaw is performed as follows.

Denote X(ω) = min
ω′∈F(ω)

X(ω′), where F(ω) is the atom of F containing ω.

Similarly denote X(ω) = max
ω′∈F(ω)

X(ω′). Let N (X,F) be the subset of those

Y ∈ M(F) which satisfy
∫

X − Y dP = 0 and X(ω) ≤ Y (ω) ≤ X(ω) for

every ω.

Lemma 1 N (X,F) is a non-empty compact set.

Proof. Consider a field F whose atoms are A1, . . . , Ak. Any Y ∈M(F)

is a vector (α1, . . . , αk) in IRk. That is, Y obtains the value αi on the atom Ai,

i = 1, ..., k. Thus,
∫

(X−Y )dP is a function of (α1, . . . , αk), say ϕ(α1, . . . , αk).

By the definition of the Choquet integral, IRk can be split into a finite number

of regions, where
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a. Each region has a non-empty interior; and

b. At each region, ϕ(α1, . . . , αk) is a summation of k polynomials of degree

1, one for each αi. That is,

ϕ(α1, . . . , αk) =
k∑

i=1

qi(αi) ,

where qi(αi) is a polynomial of degree 1. Thus, ϕ is piece-wise linear. More-

over, it is continuous and monotonic. In other words, if α and β are two

vectors in IRk and α is greater than or equal to β on every coordinate,

then ϕ(α) ≥ ϕ(β). Thus, N (X,F) is a closed and bounded set. Due to

monotonicity and the facts
∫

(X − X)dP ≥ 0 and
∫

(X − X)dP ≤ 0, we

conclude that N (X,F) is not empty and that there is Y ∈ N (X,F) such

that X(ω) ≤ Y (ω) ≤ X(ω) for every ω.

Definition 1 The conditional expectation of X with respect to F , denoted

E(X|F), is a random variable Y ∈ N (X,F) that minimizes
∫

(X − Y )2dP.

Formally,

E(X|F) ∈ argminY ∈N (X,F)

∫
(X − Y )2dP.

In words, we say that Y is a conditional expectation of X given F if it

is an F -measurable function which minimizes the integral of the difference

between X and Y squared, among the functions Y that have two properties:

(i) Y is bounded between the minimum and the maximum of X in each atom

of F ; and (ii) the integral of the difference between X and Y is equal to zero.

Remark 1 Typically there is no unique solution to the problem,

min
Y ∈N (X,F)

∫
(X − Y )2dP.

We say that Y is E(X|F) if Y solves this minimization problem.
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6.2 Updating non-additive probabilities

The conditional probability of B given A, P (B|A), is defined as the value

of E(1lB|FA) on A.

Example 5

Let A be an event containing B. E(1lB|FA) is α on A and 0 on A (since

1lB = 0 on A ). The equation
∫

1lB−E(1lB|FA)dP = 0 has only one solution,

α = P (B)

1−P (A∪B)+P (B)
, where 0/0 = 0. That is, N (X,F) contains only one

random variable. Thus,

P (B|A) =
P (B)

1− P (A ∪B) + P (B)
.

Note that P (B|A) depends also on the probability of the event A∪B. Note

also that if P is additive, P (B|A) = P (B)

1−P (A∪B)+P (B)
= P (B)

P (A)
.

Example 6

Let C = B ∪A, where B ⊆ A. The conditional expectation, E(1lB|FA), is α

on A and 1 on A. Moreover, α = P (B)

1−P (A∪B)+P (B)
.

6.3 Additional examples

Example 7

Let Ω = {a, b, c, d}. Consider the following non-additive probability: P (a, c, d) =
1
2
, P (Ω) = 1 and 0 otherwise. Suppose that X is 0 on b and d, X(a) = 9 and

X(c) = 1. The conditional expectation, E(X|F{a,b}), is α on {a, b} and β on

{c, d}. α and β must satisfy
∫

X − E(X|F{a,b}) = 0. Thus, ( when α ≥ β)

−α + 1
2
(α− β) = 0. It means that β = α = 0. For the sake of completeness

one should also check the case of α ≤ β. When doing so, one reaches the

same solution.
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Example 8

Consider the previous example with the change that the probability of any

set containing {a, c}, unless otherwise indicated, is 1
4
.

∫
X−E(X|F{a,b}) = 0

implies that when α ≥ β, α = 1
2
− β. As for minimality, when β ≤ 1

2
, as

required,
∫

(X − E(X|F{a,b}))2 = β2 + 1
4
((1 − β)2 − β2). The minimum is

therefore obtained when β = 1
4

and α = 1
4
. Thus, the conditional expectation

is a constant (and therefore necessarily coincides with the integral – see (A9)

ahead.)

Example 9

Consider the previous example with the following change: the probability of

any set containing {a}, unless otherwise indicated, is 1
8
. When α ≥ β,

∫
X−

E(X|F{a,b}) = −α + 1
2
(α− β) + 1

4
+ 1

8
(9−α− 1 + β) = 0. Thus, α = 2− 3

5
β.

Now, if β ≥ 1
2
, then

∫
(X−E(X|F{a,b}))2 = (1−β)2 + 1

8
((9−α)2− (1−β)2).

Subject to the constraint, α = 2− 3
5
β, the minimum is achieved when β = 1

2

and α = 1.7. However, if β ≤ 1
2
, then

∫
(X − E(X|F{a,b}))2 = β2 + 1

4
((1 −

β)2 − β2) + 1
8
((9 − α)2 − (1 − β)2). This expression attains its minimum

within the allowable range ( 0 ≤ β ≤ 1
2
) at β = 0 and α = 2. Out of the two

solutions the latter attains the global minimum. Therefore E(X|F{a,b}) is 2

on {a, b} and 0 on {c, d}.

6.4 The properties of the conditional expectation

We now list the properties of the conditional expectation as defined above.

Since E(X|F) is typically not a singleton, in what follows ”E(X|F)” should

be interpreted as ”there is a function in E(X|F)”.

(A1) If X is F -measurable, then E(X|F) coincides with X.

(A2) E(X|T ) =
∫

XdP .

(A3)
∫

(X − E(X|F))dP = 0.
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(A4) E(X − E(X|F)|F) = 0.

(A5) E(X|F) is continuous in X and in P . That is, for every X,P and

ε > 0 there is δ > 0 such that if |X −X ′| < δ and |P − P ′| < δ, then

|EP (X|F)− EP ′(X
′|F)| < ε.

(A6) If c is a non-negative constant, then E(cX|F) = cE(X|F).

(A7) If Z is F -measurable, then E(Z + X|F) = Z + E(X|F).

(A8) E(X|F) is, on every atom of F , between the minimum and the max-

imum of X.

(A9) If P is additive, then E(X|F) coincides with the additive conditional

expectation.

(A10) If F1 is finer than F2 (F2 ⊆ F1) and E(X|F1) is F2-measurable, then

E(X|F1) = E(X|F2).

Theorem 1 The conditional expectation always exists and satisfies (A1)-

(A10).

Proof. Similarly to ϕ in the proof of Lemma 1 one can define ψ(α1, . . . , αk)

as the value of
∫

(X − Y )2dP . Due to Lemma 1, N (X,F) is a non-empty

and compact set. Thus, the conditional expectation is the set of the points

in the non-empty set, N (X,F), at which the continuous function ψ attains

its minimum. Therefore, the existence of the conditional expectation is guar-

anteed.

(A1), (A2) and (A3) are assured because the solutions are in N (X,F).

By negation, assume that (A4) is incorrect. It means that 0 is not a solution

for E(X − E(X|F)|F). Thus, there is Z ∈ N (X − E(X|F),F) such that∫
(X −E(X|F)−Z)2dP is strictly smaller than

∫
(X −E(X|F))2dP . Since

E(X|F) is F -measurable, min
ω′∈F(ω)

(X − E(X|F))(ω′) ≤ Z(ω) ≤ max
ω′∈F(ω)

(X −
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E(X|F))(ω′) for every ω implies that min
ω′∈F(ω)

X(ω′) ≤ (Z + E(X|F))(ω) ≤
max

ω′∈F(ω)
X(ω′) for every ω. Therefore, Z + E(X|F) ∈ N (X,F). Hence,

E(X|F) does not solve the problem minY ∈N (X,F)

∫
(X − Y )2dP.

(A5) follows directly from the continuity of ψ and the fact that the

Choquet integral of a non-negative (non-positive) function is smaller (greater)

than or equal to zero.

(A6) holds because for every non-negative constant c,N (cX,F) = cN (X,F).

As for (A7), if Z is F -measurable, then N (Z + X,F) = Z +N (X,F).

(A8) is due to the definition.

To show (A9), consider an additive probability P . The E(X|F) solves

the problem minY ∈M(F)

∫
X2 + Y 2− 2XY dP . It turns out that the solution

is in N (X,F). Thus, minimizing over the set N (X,F) does not change the

solution. Therefore, the definition adopted here coincides with the regular

conditional expectation in the case of additive probabilities.

Since (A10) is obvious, the proof is complete.

Remark 2 a. In additive probabilities what characterizes E(X|F) is the

fact that for every A ∈ F
∫

A

E(X|F)dP =

∫

A

XdP.

(A4) is equivalent to this requirement.

b. (A7) applies also to a constant function Z.

c. (A3) and monotonicity of the Choquet integral imply that if E(X|F) ≥ c,

where c is a constant, then
∫

X ≥ c. Stated more generally, if Z is F-

measurable and E(X|F) ≥ Z, then
∫

X − Z ≥ 0. A similar assertion

obviously holds with the inverse inequality. When X is interpreted as

an act, it implies that if on every atom of the informational partition,

X is valued more than some constant, say, 7, then the global “worth”

of this act is at least 7.
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d. The lack of additivity must fully account for the entire lack of informa-

tion, as well as for ambiguity. Once these are captured, the use of the

non-additive probability, for the sake of updating for instance, must be

as of a probability function. In particular, whenever a certain act is

equivalent to, say, 7, regardless of the prevailing event, the act itself

ought to be equivalent to 7.

e. An immediate consequence of this is the following assertion. If E(X|F)

is a constant, then this constant is the Choquet integral of X. Of par-

ticular interest is the case where X = 1lB and F = FA. In this case

the assertion means that if P (B|A) = P (B|A), then both are equal to

P (B).

Other updating rules may result, for instance, in P (B|A) = P (B|A) =
1
3

and yet, P (B) = 1
2
. This phenomenon cannot happen if the con-

ditional probability is defined by the conditional expectation as hereby

suggested.

f. In my view, c. and d. are among the main reasons why one cannot

restrict attention only to the conditioned event. Rather, one should

treat the whole partition, including all its atoms, simultaneously.

g. (A9) can be conceived as an inverse time consistency. Suppose that con-

ditioning on a finer field results in a function which is measurable with

respect to a coarser-field. This means that the additional information

provided by the finer field is not valuable and the outcome is compatible

with the coarser information. In this case, conditioning directly on the

coarser field would result in the same function.
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7 Independence of Non-Additive Probabili-

ties and Nash Equilibrium

Extending the notion of independence to the context of non-additive proba-

bilities is an important issue. The main motivation for this extension is Nash

equilibrium.

Let Ai be the set of actions of player i, i = 1, ..., n and let ui : ×n
i=1Ai → IR

be player i’s utility function. Suppose that player i randomly chooses an

action in Ai with respect to a non-additive probability Pi. This probability

need not be the actual distribution according to which she randomly selects

her action. The probability Pi might be the distribution that guides her

choice as perceived by other players or by an outside observer.

The notion of Nash equilibrium assumes that players choose their action

independently.

7.1 Independence of non-additive probabilities

The knowledge of each player, beyond the description of the game, consists

solely of her action. Independence of Pi would therefore mean that the knowl-

edge of her own action does not change her belief regarding the probability

over other players’ actions. In terms of conditional probability it means that

probability over other players’ actions, conditional on any subset of player

i’s actions, coincides with the unconditional distribution.

Let A−i = ×j 6=iAi and let Fi be the partition of A whose atoms are

{a} × A−i, a ∈ Ai. The partition Fi represents the knowledge available to

player i.

Definition 2 A probability P over A realizes Pi, i = 1, ..., n, as independent

probabilities if

(a) for every i and every C ⊆ Ai, P (C × A−i) = Pi(C); and

(b) for every D ⊆ A−i, P (D × Ai|Fi) = P (D × Ai).
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In order for Pi, i = 1, ..., n, to be realized as independent probabilities,

there must be a probability P over the product space, A, that satisfies two

conditions. Condition (a) states that the marginal of P over Ai coincides

with Pi. Condition (b) states that knowing Fi, player i does not change

her belief about others’ actions. In other words, the conditional probability

knowing Fi, Pi(D|Fi), coincides with the original probability, Pi(D|T ).

Note that in the additive case, there is a unique probability that realizes

Pi, i = 1, ..., n, as independent probabilities. This is the product probability.

However, in the non-additive case, typically, the product probability will not

realize Pi, i = 1, ..., n as independent probabilities.

At this point I have no proof of the conjecture that for any probabili-

ties Pi, i = 1, ..., n, there is P over A that realizes them as independent.

Moreover, there is no guarantee that there is a unique probability that does

it.

The definition of independence of non-additive probabilities paves the

way to the definition of Nash equilibrium. The next subsection take this

direction one step (not more) further.

7.2 A remark on Nash equilibrium with non-additive
probabilities

Nash equilibrium requires, on top of incentive compatibility conditions that

players would choose their actions independently of each other. When playing

the mixed action Pi,3 player i’s payoff is E(ui|Fi), where the expectation

is taken with respect to a probability P that realized the (non-additive)

mixed actions Pi, i = 1, ..., n, as independent. Note that in case there are

multiple probabilities that realize Pi, i = 1, ..., n, as independent, there may

be multiple expected payoffs with the same set of mixed actions.

In equilibrium, E(ui|Fi) should be greater than or equal to the expected

payoff guaranteed by any specific action a ∈ Ai. However, given the action

a ∈ Ai, all other players still select their actions independently of each other.
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Thus, The payoff associated with action a ∈ Ai is the expectation of player i’s

payoff taken with respect to a probability that realizes (Pj)j 6=i as independent.

A precise definition of Nash equilibrium and a discussion of this notion

are beyond the scope of this paper and therefore will not be presented here.

8 Final Comments and Further Problems

8.1 The Choquet integral is not essential for the defi-
nition

We have defined the conditional expectation based on the traditional Cho-

quet integral. In fact, one can define the conditional expectation, over every

partition, based on the conditional expectation on the trivial partition. Once

the conditional expectation on the trivial field is defined, the general condi-

tional expectation can be defined as the measurable function (with respect

to the partition under consideration), which minimizes the distance (induced

by the conditional over the trivial field), to the original function. As long

as the conditional on the trivial field owns the necessary desirable proper-

ties, whether by the Choquet integral or otherwise, the general conditional

expectation will possess properties (A1)-(A10).

8.2 Vector-valued probabilities

We have seen that the conditional probability of an event B given A, depends

on the partition of the complement of A. In fact, the conditional probability

does not depend only on the conditioned event, but rather on the condi-

tioned partition. This suggests a re-evaluation of the concept of probability.

Instead of a numeric value attached to each event given another one, the

approach of defining the conditional probability as a conditional expectation

suggests that “generalized conditional probability” ought to associate to ev-

ery partition P and event B a P-measurable function. In other words, the

“generalized conditional probability” must be vector-valued. The tradi-
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tional numeric probability must be considered then as a special case: the

probability conditioned on the trivial field, T .

8.3 The value of information

Consider the value of information in the following additive case. A decision

maker is informed of the atom of a partition and selects an action. In or-

der to maximize his expected utility he chooses the action that entails the

highest expected utility conditional on the prevailing atom. The value of

information in this case is, thus, the incremental utility derived from know-

ing the partition. In other words, the value of a partition is the additional

utility, compared to knowing nothing, of knowing the atom containing the

realized state of nature, once it is realized. As was shown by Gilboa and

Lehrer (1991), in the additive case, this value can be expressed as an addi-

tive function over the atoms. This fact has been used to axiomatize the value

of information in the additive case.

Now that the conditional expectation is defined also for non-additive

probabilities, one may extend the discussion about the value of informa-

tion to the non-additive case. In such a case, the value of information is no

longer an additive function over the atoms. This makes the analysis more

challenging.

8.4 Comonotonicity and the conditional expectation

The following definition is due to Schmeidler (1989).

Definition 3 Let X and Y be two random variables. X and Y are comono-

tonic if for every ω1, ω2,∈ Ω, X(ω1) ≥ X(ω2) if and only if Y (ω1) ≥ Y (ω2).

Schmeidler (1989) stated an axiom that requires that if X and Y are comono-

tonic, then E(X + Y ) = E(X) + E(Y ). One may require that if X and Y

are comonotonic, then, E(X + Y |F) = E(X|F) + E(Y |F). The conditional

expectation defined above does not satisfy this property.
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8.5 An axiomatic approach

It would be interesting to find a set of appealing axioms that characterize

unconditional and conditional expectations with non-additive probabilities.
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