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Abstract

This paper uses properties of the logistic quantal response equilibrium correspon-
dence to compute Nash equilibria in finite games. It is shown that branches of the cor-
respondence may be numerically traversed efficiently and securely. The method can be
implemented on a multicomputer, allowing for application to large games. The path
followed by the method has an interpretation analogous to Harsanyi and Selten’s
Tracing Proecdure. As an application, it is shown that the principal branch of any
quantal response equilibrium correspondence satisfying a monotonicity property con-

verges to the risk-dominant equilibrium in 2 x 2 games.

JEL Classifications: C72, C88
Keywords: noncooperative games, computation of Nash equilibrium, quantal

response, logit equilibrium.



1 Introduction

McKELVEY AND PALFREY [15] introduced the concept of a quantal response equilibrium
for finite n-person normal form games. This concept applies a quantal choice model, origi-
nated by LUCE [14], to interpret mixed strategy profiles as the observed distribution of
strategy choices when the players observe payoffs with a random additive shock, and
choose optimally according to those noisy payoffs. Subsequently, MCKELVEY AND PAL-

FREY [16] extended the quantal response concept to extensive form games.

The additive disturbances associated with players’ strategies may be drawn from any
joint distribution satisfying an admissibility condition. In the case where these distur-
bances are drawn independently from the extreme value distribution with precision
parameter A, the form of the rule determining quantal response equilibrium choice proba-
bilities is logistic. (See equation (1).) McKelvey and Palfrey refer to quantal response
equilibria with this distribution of disturbances as logit equilibria, and this specification is

widely used in analysis of subject behavior in laboratory games.

The set of logit equilibria can be viewed as a correspondence from A to the set of
mixed strategy profiles.! At A = 0, this correspondence contains only the centroid. As A
approaches infinity, the correspondence converges to a (possibly strict) subset of the Nash
equilibria of the game. Generically, the correspondence is structured such that there is a
unique branch starting at the centroid at A =0, and limiting to a unique Nash equilibrium

as A approaches infinity.

McKelvey and Palfrey observe that this last fact may be used as the basis for an algo-

rithm to compute a single Nash equilibrium of a game. They name this equilibrium the

1. Similar statements apply to the agent logit quantal response equilibria of MCKELVEY AND PAL-
FREY [16]. The exposition in the body of the paper focuses on quantal response equilibria in normal form

games. Appendix A shows how the methods can be applied equally to the agent specification.



logit solution. This proposed procedure makes use of the homotopy principle, as explained

by GOVINDAN AND WILSON [6]:

Given a system of equations whose zeroes one wants to compute, first
deform the system to one with a unique easily-computed solution, then
reverse the deformation to trace (a selection of) solutions of the associated
systems along the way to find a solution of the original system at the ter-

minus.

As McKelvey and Palfrey noted, the existing procedure most similar in flavor to the
tracing of logit equilibria is the Tracing Procedure of HARSANYI AND SELTEN [8].2 HER-
INGS AND VAN DEN ELZEN [9] present a homotopy-based implementation of the Tracing
Procedure, where the homotopy transforms the problem of playing a best reply to the ini-
tial beliefs to the problem of playing a best reply to opponents’ actual play to form an

equilibrium.

Homotopy approaches are common among algorithms for computing Nash equilibria.
The Global Newton Method of GOVINDAN AND WILSON [6] is an example; those authors
list the algorithms of LEMKE AND Howson [13], WILSON [19], and YAMAaMOTO [20],
among others, as special cases of their algorithm. These algorithms generally operate by
perturbing or restricting the game in such a way that the modified game may be easily
solved. Govindan and Wilson modify the payoffs sufficiently that the perturbed game has
a unique equilibrium, then trace back to the original game using implications of the struc-
ture theorem of KOHLBERG AND MERTENS [12]. Yamamoto computes a proper equilib-
rium, as defined in MYERSON [17], of a normal form game by tracing out a path of pro-

files which change as the set of permitted mixed strategies is changed from the centroid to

2. The Tracing Procedure will be capitalized to distinguish references to it from generic references to

tracing a branch of a correspondence.



the whole set.

GOVINDAN AND WILSON [7] note that approximation via quantal response equilibria
differs from these homotopy approaches for computing equilibria. This paper fulfills the
suggestion of McKelvey and Palfrey by presenting a homotopy approach to tracing
branches of the logit equilibrium correspondence. This method of computing a Nash equi-
librium has attractive properties for both theoretical and empirical applications. The tra-
jectory of a branch of the logit equilibrium correspondence is governed by a dynamic pro-
cess in A which is a homotopy between the replicator dynamics and best-response
dynamics. This interpretation parallels the description of the Tracing Procedure as a
homotopy between an initial prior and final, consistent beliefs. The outputs of interme-
diate steps of an algorithm to trace the branch are logit equilibria useful in analysis of
subject behavior in laboratory games; this algorithm, then, can be used as a component in
programs to efficiently estimate values of A from experimental data. The asymptotic
behavior of the logit equilibrium correspondence yields estimates of the speed with which
a path-following procedure will be able to give a good approximation to a Nash equilib-
rium Finally, the homotopy characterization gives a tool for understanding some of the
selection properties of quantal response equilibria in finite games.

This paper proceeds as follows. Section 2 introduces notation and summarizes the rele-
vant properties of the logit equilibrium correspondence for normal form games. Section 3
derives the matrices used by the homotopy in following a branch of the correspondence.
Section 4 gives a dynamic interpretation of a branch of the correspondence, and estimates
the speed with which tracing a branch will provide a good approximation to a Nash equi-
librium. Section 5 reports performance and timing results from an implementation of the
method in Gambit. Section 6 applies the homotopy characterization to show that the
principal branch of any quantal response equilibrium correspondence selects the risk-domi-
nant equilibrium in 2 x 2 games if a natural monotonicity condition is satisfied. Section 7

summarizes, with suggestions for further development.



2 Quantal response equilibria in normal form games

The notation follows that of MCKELVEY AND PALFREY [15]. Given a finite n-player
game in normal form with the set of players N = {1, ..., n}, let S; be the set of strategies
available to each player 1 € N, and let J; be the number of strategies in S;. A typical ele-
ment of S; is written s;;, for 1 < 7 <J;. The set of strategy profiles S is the Cartesian pro-
duct of the 5;, S = xj—; S;. Let J; be the number of strategies available to player ¢, and
define J = E?:l J;. The payoff function for player ¢ is u;: S — R.

A mixed strategy for player ¢ is a probability distribution over the set of i’s strategies;
the set of such distributions for player ¢ is denoted A;. The set of mixed strategy profiles
is A =x2;A;. A typical mixed strategy profile will be denoted by 7 € A, and the proba-
bility assigned to a strategy s;; of player ¢ is m;;. The payoff functions for the players are
extended over the set of mixed strategies in the usual expected value way.

Let (s;;, m—;) denote the mixed strategy profile where player ¢ plays strategy s;; with
probability one, while all other players play according to the mixed strategy m. Then,
define @: A — x¥; R” by

wij(m) = wi(sij, m-i).
Here, w;;(7) is the payoff to player 7 from playing his jth strategy, holding fixed his oppo-
nents’ mixed strategies.

In the quantal response framework, players observe a noisy evaluation of the strategy

values () of the form
dij(m) = wij(m) + €45,
where the ¢;; are random variables drawn according to some joint distribution. When the

¢;; are chosen independently from an extreme value distribution with parameter A, a

logistic quantal response equilibrium profile (called a logit equilibrium below) is given by

ex\ﬂij(w)

T i ai(n)
Ek:le

(1)

7T,']‘



Therefore, the set of logit equilibria can be viewed as a correspondence mapping A into a
set of mixed strategy profiles in A. McKelvey and Palfrey show the correspondence is
upper hemicontinuous, and has an odd number of members for almost all games and
almost all A, and its limit points as A — oo are Nash equilibria. Furthermore, it generically
has a unique branch connecting the centroid of A to a unique Nash equilibrium, and
generically connects up other limit Nash equilibrium points of the correspondence pair-

wise.

3 The homotopy approach

The computational problem is to trace out a branch of the logit equilibrium correspon-
dence as a path of mixed strategy profiles 7 along with corresponding values of the
parameter A. To do this, the logit equilibria are expressed as the zeroes of a system of
equations H(m, A) = 0. To account for the possibility that the branch is not monotonic in
A, the path of (7, A) pairs to be traced are parameterized by s; that is, the homotopy will
compute a parametric path (m(s), A(s)), where s is interpreted as the arclength along the
path.

Following GARCIA AND ZANGWILL [3], as presented in JUDD [11], the pair y(s) =
(m(s), A(s)), which has J + 1 components in total, satisfies the system of differential equa-

tions

dﬂ:(—ndc(m)\a—[{(m)_d

dS ay del’...7<]+1, (2)

where the vertical bars denote the determinant of a matrix, the notation A_; means the
matrix A with the dth column removed, and d indexes the components of y(s).3 The func-

tion C(m, A) is undetermined at this point, but is common across all components d.* In

3. This form of the solution path will be useful in the analysis which follows; practical details on the
numerical linear algebra involved in efficiently following the path can be found in ALLGOWER AND

GEORG [1].



other words, in tracing the parametric path, all that matters are the ratios %/% for
d=#d'. In keeping with the arclength interpretation of s, C(m, A) is chosen such that the
side condition

J+1 1/2
. ds
=1
is satisfied. Given this side condition, the sign of C is not determined. This sign deter-

mines the orientation along the branch of the correspondence. When the starting point is

£y

2S00, It is

A = 0 with 7 equal to the centroid, m;; = J%, the sign is chosen to ensure
straightforward to verify that the right-hand side of (2) is nonzero at this point.

The J equations comprising the system H(w, A) are indexed H;;(m, A), corresponding
to the jth strategy of player i. H,;(m, A) is obtained by rearranging the logit equilibrium

condition (1):

J;
HZ']‘(TF,)\)ZBAEU(W)—THJ‘Z Min(m) =, (3)
k=1

The partial derivatives of the equation H;;(m, A) corresponding to strategy j of player ¢

are divided into four cases.
Case 1 The derivative with respect to the corresponding probability, m;;,

OH;; e M is(m)
87?? - ’ (4)
ij

7T2'j

Case 2 A derivative with respect to the probability m;; of a strategy k75 of player 1,

8H¢j .

P 0. (5)

4. The probabilities m;; are assumed to be assigned to the components of y in increasing lexicographic
order; that is, player 1’s strategies are listed first, in ascending numerical order, followed by player 2’s,

and so on. The last ((J + 1)st) component of the vector corresponds to A.



Case 3 A derivative with respect to the probability m,, of a strategy m of player (=1,

(‘9H aij( Ju ; U aﬁ,’k(ﬂ')
amm )\Z |: aﬂ'lm (%Im ik (6)
Case 4 The derivative with respect to A,
J;
a 7 q . -
= [i7i(7) — wig() i (7)
k=1

In each case, since the homotopy is tracing points where H(mw, A) = 0, the definition of
logit equilibrium (1) has been applied in expressing (4) through (7) in the given forms.
Observe that the differential equations (2) describing the branch of the logit equilib-
rium correspondence involves the matrix VH only via determinants where individual
columns are removed. Therefore, if a row (VH);; is multiplied by a factor, all these deter-

minants are multiplied by the same factor. So, defining a new matrix G with rows
Gij(m, A) = e Dr (VH (7, M),

the homotopy equations (2) can be expressed as

d yq d Shs u; 108
%:(_1)C(W,/\)exp[)\zzuu ][UH

=1 ;=1

-1

)-dl- (8)

Since the function C'(m, A) is arbitrary, the new factors can be folded into a redefined coef-

ficient,

3

C'(m,A)=C(m, Xexp [/\ zl: _lj(w)] [H l le] ,

=1 ;=1 =1 j=

which produces a final version of the homotopy equation
—:(—1)dC’(7T,/\)|G(7T,/\)_d|Vd:1,...,]—}—1, (9)

To summarize, defining a J x (J + 1) matrix G, with rows indexed by the set of strategies

Ui, Si and columns indexed by [U?Zl SZ-] U{A}, the set of points y(s)=(m(s),A(s)) on a



branch of the logit equilibrium correspondence is characterized by the system of differen-

tial equations (9), where

Gy = IVieN, j=1,....J; (10)
Grijmn = 0Vie N, k#j (11)
5 [0 i(n)  Ou(r)
o — )\ 9y 1] - ik :
G 139 m ﬂ-]; [ aﬂ-lm aﬂ_lm Tik
VieN,j=1,.. Jil#i,m=1,..,.J, (12)
Ji
Gm‘]v\ = 7'['2']‘2 [mj‘(ﬁ)—mk(ﬂ')]ﬂ'ikViEN,jzl,...,Ji (13)
k=1

4 Qualitative characteristics of algorithm behavior

4.1 A dynamic interpretation of the principal branch

HARSANYI AND SELTEN [8] describe their Tracing Procedure as a model of expectation
formation and strategy choice where players form and adapt beliefs and tentative choices
over an interval of time. The correspondence consisting of paths followed by the Tracing
Procedure has a similar structure to the logit equilibrium correspondence. As an addi-
tional parallel, the branches of the logit equilibrium correspondence can be described in
dynamic terms.

Suppose the parameter A is interpreted as time, and consider the application of logit
equilibrium to a decision problem. Then, the logit equilibrium correspondence can be
interpreted in terms of the replicator dynamics (TAYLOR AND JONKER [18]). The repli-
cator dynamics evolves the proportion of a population playing a strategy s;; over time

according to the equation

T 1) [y (1) = Y min(t)in (1)

k=1

10



Theorem 1. In a decision problem, the logit equilibrium correspondence consists of a
single branch, which coincides with the the path taken by the replicator dynamics when

started at the centroid.

Proof. Begin by noting that

dmi;  dmig(s) (dA(s) -
dA ds ds

C'(m, \)|G—r,
C'(m, A)|G -

mis Yoy [ii(m) — @ aw(m))min
1 M)

with the last equality following because there are no cross-player terms Gy, r,,, in a deci-
sion problem. Therefore, the logit equilibrium path is the same as the path followed by
replicator dynamics when started at the centroid, with A playing the role of time. Unique-
ness follows since two strategies must be played with equal probability if they have the

same payoff. O

Now consider the case of a proper game with two or more players. Writing the ratio of

the probabilities that two strategies s;; and s;; are played in a logit equilibrium, it follows

that®
T i — 14
e exp [A(u;; — W) (14)
Jp _ _
d | m| _ _ o uij ik \ Omim
dA |:7T2k:| = exp [A(U’L] uzk)] X {uzj Ui + A ; nlz::l (aﬂ_lm aﬂ_lm> a)\ }

{#1 m=1

= T, - +AZ§: iy Ouix) Omim (15)
Tk I ok aﬂ'lm (%lm 8/\

5. For brevity, m;;(A) will be abbreviated m;;, and u;;(m(A)) will be abbreviated u;;. That is to say,

unless otherwise noted, these are evaluated along a branch of the correspondence.

11



Again interpreting A in the role of time, equation (15) expresses the dynamics implied by
increasing A as changing smoothly from the replicator dynamics to best-reply dynamics.
At A = 0, equation (15) reduces to the replicator dynamics. The expression in square
brackets captures the change in the payoff difference between strategies s;; and s;z, as
players other than i change their strategies. Increasing A, then, increases the speed with
which player ¢ reacts to changes in opponents’ play. As A goes to infinity, this amounts to
best-response dynamics.

The analog of the principal branch of the logit equilibrium correspondence in the
Tracing Procedure is the distinguished path. Following the distinguished path is inter-
preted as tracing out a chain of introspection among rational players facing strategic
uncertainty, which chain leads in the end to a Nash equilibrium. This corresponds to the
blending of what Harsanyi and Selten call first-order and second-order information avail-
able to the players. First-order information expresses players’ information about each
others’ likely choices, whereas second-order information pertains to each others’ reactions
to first-order information. At a Nash equilibrium, these must be consistent, and the
Tracing Procedure accomplishes this by gradually feeding second-order information into
the calculation.

An analogous structure can be seen in equation (15). Players’ first-order information is
captured by the difference in payoffs w;;(m) — @y(7), while second-order information is
expressed in the term within square brackets. As the path is traversed, players initially
update their play naively based upon their first-order information according to the repli-
cator dynamics; gradually, second-order information is fed into the adjustment process
through the increase in A.

This interpretation suffers from weaknesses similar to those in the interpretation of the
Tracing Procedure. Even in generic games, the principal branch may have turning points,
leading to intervals on which A is decreasing while following the principal branch in the

direction from the centroid at A = 0 to the limiting Nash equilibrium. A similar phe-

12



nomenon arises on the distinguished path of the Tracing Procedure, where segments
moving “backwards in time” exist even in generic games. Nongenerically, branch points
may occur in the logit equilibrium correspondence, just as they may in the Tracing Proce-
dure. Harsanyi and Selten introduce the logarithmic version of the Tracing Procedure to
remove this degeneracy. For the logit equilibrium correspondence, standard methods in

numerical path following are available to characterize and address these cases.

4.2 Asymptotic behavior and efficient tracing

Application of the logit equilibrium approach to the problem of computing a Nash equilib-
rium requires analysis of the rate at which logit equilibria converge to a Nash equilibrium.
This section outlines properties of this convergence as A grows large. The key results are
that the change in the logit equilibrium profile slows faster than A~!, and that an algo-
rithm to trace the path can take exponentially increasing steps in A while tracing the path

and still maintain an assurance of approximating the path with security.

Lemma 2. There exists some X\* < oo such that there are no turning points in the logit

equilibrium correspondence for A > X*.

Proof. At a turning point in a branch of the correspondence, |G_,| = 0. This determi-
nant is a nontrivial polynomial in J + 1 variables: A and the J probabilities in 7. So, there
are at most J + 1 candidate points (7, A) € A x [0, 00) which could be turning points (and
will be if they lie on one of the branches of the correspondence). Since the number of such

points is finite, there must be one with the largest A; denote that value A\*. O

In view of Lemma 2, all asymptotic results in this section consider only the region of

the branch being traced where A > A\*.

13



Lemma 3. Suppose that 7 is a limiting logit equilibrium such that w;r(7*) < w;(7*) for

some strategies s;; and s;, of player 1. Then, limy_ o Amip(A)=0.

Proof. Without loss of generality, suppose that nf; > 0. Then, by manipulation of the

identity (14),

Ty = e T
Wzrjz‘k — W;réke/\mk[ﬂm—ﬂik]
mipnm; = mipln mig 4+ AW — @)

Since m;; — 0 and m;; converges to a positive limit, the left-hand side goes to zero as A —
oo. Also since m;; — 0, myln mp = 0 as A — co. Therefore, Ami[u;; — @] = 0 as A — oo.
Since it is assumed that @;;(7*) — @x(7*) > 0, it must be that Am;, — 0 as A = oo, com-

pleting the proof. O

One way to express how close a profile 7 is to being a Nash equilibrium is to evaluate
the velocity of the replicator dynamics evaluated at 7. Lemma 4 shows that, along a

branch of the logit equilibrium correspondence, this velocity goes to zero linearly in A~

Lemma 4. Along any branch of the logit equilibrium correspondence,

Ji

)\Wijz (Ui — Wik]Tik

k=1

lim < 00.
A— 00

Proof. Taking the logarithm of the identity (14) produces

14



Therefore,

Ji Ji
Arig (i — Talmin = mig Y Al — @l mi
Ji
= WZ]Z mdn( : )
k=1 Tk
Ji
Tij lln T — Z i kln Wik] .
k=1
As XA — oo, the right-hand side converges to a finite limit. O

The next theorem provides the key result for the convergence behavior of logit equi-

libria.

Theorem 5. Along a branch of the logit equilibrium correspondence, lim)_, . /\CZF—A”:O.

Proof. Begin by noting that

dﬂ-ij -\ |G—7rij

PR .
TN

(16)

The matrices G_,,; and G_, differ in only one column. The matrix G_, contains the
column Gy, \, whereas the matrix G'_, contains a column with elements of the forms

Gwijﬂrij? Gﬂijﬂrilﬂ a'nd GTri]7

- Without loss of generality, the differing column can be
thought to have the same column index, since permuting the columns of a matrix at most
changes the sign of the determinant.

Additionally, note that multiplying the determinant of a matrix by A is equivalent to
the determinant of the matrix obtained by multiplying one column of the matrix. There-

fore, the factor A can be moved inside the matrix G_,,. by multiplying the column G, »

by A, with the goal of applying Lemma 4. Next, define

aﬂ'lm (%lm

J.
- ot ;; Ou %
gWiJJrlm(A) = Tij |: ! :| ik

k=1

15



and note that g,  r, (A) is bounded. Then, one can write Gr,; », (A) = Agr,, x,,.(A). Simi-
larly, define
J;

B (A) = ATy Z [tij — Wik)Tik;

k=1

then, AGr, A(A) = hr, (A). Lemma 4 shows this quantity converges to a finite limit as A —
0.
The determinants ‘G_M‘ and |G_,| can be written in the form
J*=1

=) au(MN

d=0

|G_7%

and
J*
Gox|=) ba( M)A
d=0

where the coefficients aq(A) and bg(A) are bounded, and where J* is the number of strate-
gies which are played with positive probability in the limiting equilibrium. To see this,
recall that the determinant can be expressed as a sum, the terms of which are the prod-
ucts of J elements, selected such that each row and each column is represented exactly
once. The products in the sum inside by(A) consist of products of elements G -, = pos-
sibly times the unitary diagonal elements. For such a product not to tend to zero, it must
be the product of elements such that 77; >0 (because of Lemma 3). Therefore, the highest
d for which by(A) does not go to zero is d = J*. For any such product in by(}), there is a
corresponding one in the sum in a4_1(A), for the corresponding selection of matrix entries,
wherein an element of the form G, r,,. is replaced with an element of the form h, (X).
Because of Lemma 4, one can fold the X inside A, (A) inside a4_1(A) and maintain that
aq—1(A) is bounded.

Since the denominator of the ratio in (16) is of higher order in A than the numerator,

and the coefficients ag(A) and by(A) are all bounded, the denominator dominates as A

16



tends to infinity, and the limit of the ratio is zero. O

Theorem 5 now permits a characterization of the speed with which a path-following
algorithm will traverse a branch of the logit equilibrium correspondence and converge to a
Nash equilibrium. Typically, the path defined by (9) is traversed by a two-step procedure
known as a predictor-corrector method. The predictor phase is a numerical integration
step, advancing from a logit equilibrium with parameter A to one with parameter A + A

using a first-order expansion of the form

mi(A+h) = m5(0) + A, (17)
While an implementation could simply treat (9) as a differential equation and use only
numerical integration methods like (17) to trace the path, this would ignore the informa-
tion that the differential equation (9) characterizes the solution of a set of equations.
Therefore, a corrector step is then performed, which uses the contractive properties of
Newton’s method for finding a zero of a system of equations for refining the accuracy of

the new point.

The choice of the steplength h is important in practical application. If A is small,
many steps are required to traverse the path; if A is too large, there is a risk of exceeding
the convergence radius of Newton’s method and diverging from the path. Strategies exist
for choosing h adaptively, based upon the convergence rate of Newton’s method in the
corrector step, which in turn depends on the accuracy of initial guess from the predictor
step. These strategies generally attempt to target a desired convergence rate, chosen as a
parameter by the user. Adaptive steplength choice is of particular importance for tracing
the logit equilibrium correspondence, as the parameter A is not bounded and so traversing
the path with a fixed choice of h would take prohibitively long to reach an acceptable
approximation of the limiting Nash equilibrium. The following result suggests that, as A

grows large, the optimal steplength is roughly proportional to A.

17



Theorem 6. Fiz a constant ¢ > 1. Then, the distance between mw(cA) and the value esti-

mated using the predictor strategy (17) with step h=cA limits to a constant as A — co.

Proof. Strategies which are strictly inferior in the limiting equilibrium are played with
exponentially decreasing probability as A — co. So, without loss of generality, consider a
branch of the correspondence which has a totally mixed Nash equilibrium as its limit.
Equation (15) expresses how the ratio of the probabilities of two strategies for player ¢
change as A changes, given how strategies for other players change with A. This is a first-
order linear differential equation for the ratio p = %, which has solution

p(A) =exp [A [%(W(t))—@k(ﬂ(t))]dH/ tf(t)dt],

* A*

where f(A) =37 _, EJl <8ﬂ” - 85*) M and where the branch is considered only for

m=1 \ 9mm OTim dx ?

A > A%, so that p(A) is meaningful. Therefore,
cA cA
o(eX) = p(A)  exp [ [ wteten - i+ | tf(t)dt] .
A A

Meanwhile, let the logit equilibrium estimated by predictor (17) at e¢A be denoted by
FeX) = p(A) + (e~ DA,

Therefore, the error in the estimate is given by
cA cA
p(eN) — p(eN) = pm{exp [ [ @y -aarondes [ tf(t)dt] - 1} YY)

The first integral in the exponential tends to a constant as A — oo, as

o | EEO) =T 0Dt = [ (6) = Talr(ed))] = 7 (1) ~ Tl ()]

1 1
= o p(ed) — 1l p(N),

18



which has a limit of zero. Similarly,

cA
T )t = eAf(eX) = AFON).
d\ |,
Theorem 5 implies that Af(A) — 0 as A — co. Therefore, the difference p(cA) — p(cA) tends

to a constant as A — oo. O

5 Implementation of the algorithm

Theorems 5 and 6 suggest that a method of tracing the logit equilibrium correspondence
will have good asymptotic properties in computing an approximate Nash equilibrium.
They leave unaddressed two issues, which could have a negative impact on the usefulness

of this method for computing Nash equilibrium:

1. The results are only asymptotic. There is no characterization of the total arclength
along the path that would need to be traversed in order to reach the region where
the asymptotic results apply. Further, this arclength could increase with the size of
the game J as, in particular, the potential total number of turning points in the

correspondence increases with J.

2. The actual computational cost in processor time may scale poorly in J, making the
method impractical even for moderate-sized games. In particular, tracing the path

involves linear algebra on J 4 1 matrices of size J x J.

The method has been implemented in Gambit,® beginning in version 0.97.0.1. The proce-
dure was evaluated on a sample of games with different numbers of players and strategies.
For each size of game, 1,000 games were generated at random, where each payoff entry is

drawn iid from the uniform distribution on [0, 1].

6. Gambit (http://econweb.tamu.edu/gambit) is an open source software project, founded by

Richard McKelvey, for computation in finite games.
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J;=2 J;=3 J;=4 J;=5 J; =10 J; =20
- 270 339 397 456 704 1136
© 7| (158,369)  (158,589)  (158,680)  (253,708)  (449,1137)  (749,3418)
304 384 467 552
n=3
(158,513)  (158,673)  (158,762)  (310,1053)
"4 302 429 545
| (158,634)  (158,804)  (245,1216)
333 483
n=>5
(158,642)  (158,991)

Table 1. Number of steps required to reach A=1,000,000. In each cell, the number on top is the median

number of steps over the sample of games; the range in parentheses reflects the minimum and maximum

numbers.

A=100  A=10? A=10°3 A=10* A=10°
37 107 189 219 243
n= 2, JZ =2
(37,39)  (60,157) (85,413) (103,451)  (133,476)
37 169 266 300 325
n=2,J;=3
(37,49)  (60,337) (85,541) (109,582)  (133,607)
37 242 387 428 454
n= 2, JZ =4
(37,55)  (60,423)  (173,761)  (208,953)  (232,981)
37 504 985 1077 1111
n=2,J;=20
(37,41)  (140,995)  (674,1591)  (700,1716)  (724,1743)
37 118 221 253 280
n = 3, JZ =2
(37,76)  (60,252) (85,435) (109,462)  (133,487)
37 121 218 254 279
n= 4, JZ =2
(37,62)  (60,304) (85,534) (109,655)  (133,683)
37 125 250 285 310
n = 5, JZ =2
(37,70)  (60,399) (85,586) (109,630)  (133,661)

Table 2. Number of steps required to reach A = 10*. In each cell, the number on top is the median

number of steps over the sample of games; the range in parentheses reflects the minimum and maximum

numbers.

Table 1 presents statistics on the number of steps of the homotopy procedure required

to reach A =1, 000, 000 on the principal branch. The number of steps required increases

modestly in the size of the game; typically, the principal branch does not become more
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complicated, in the sense of having more turning points, as the game size increases. The
worst-case step counts correspond, in general, to games where the principal branch does
have a turning point. The observation that the minimum number of steps is equal to 158
for several of the cells results from an implementation restriction on the rate at which the
steplength may be increased; for games requiring 158 steps from A =0 to A = 1, 000, 000,
the implementation increases the steplength by the maximum permitted each step.

Theorems 5 and 6 imply that as A grows, the algorithm should take larger and larger
steps in the A dimension as the branch asymptotes quickly towards the limiting equilib-
rium profile. Table 2 breaks down the progress of the procedure towards larger values of A
for selected classes of games. After approximately A = 10°, progress appears exponential; a
given number of steps advances A by an order of magnitude. For example, with n =2 and
J;=2, the median number of steps to A =10* is 30 greater than the median to A =103 the
median for A =10° is then only 24 steps greater than for A = 10*. The worst-case numbers
of steps show a similar pattern; these indicate that most of the segments containing
turning points and other features which impede computation are contained within the A €
[10,100] interval.

While the total number of steps in the tracing does not increase dramatically, the
computational cost of each step will increase. Total processor time, then, will be
increasing, even when the number of homotopy steps does not. Table 3 summarizes total
processing time, which accounts for all operations required to trace the branch.” Within
the classes of games under consideration, the running time scales well on typical games.
Once again, the worst-case times increase more rapidly; these again correspond to games
where the principal branch either has or almost has a turning point, requiring a shorter

step size and more steps to follow the branch securely.

7. These timings were generated on a Linux workstation with 1.7 GHz Xeon processors. The imple-
mentation in Gambit version 0.97.0.4 was used, compiled with gcc version 3.2.3, with optimization (-02)

and debugging symbols (-g).
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Ji=2 J;i=3 J;=4 Ji=5 J;i=10 J;i=20
n—9 0.05 0.08 0.13 0.19 1.03 12.85
7] (0.03,008)  (0.05,0.19)  (0.08,0.26)  (0.12,0.39)  (0.66,3.18)  (7.78,45.80)
0.08 0.20 0.47 1.03
n=23
(0.05,0.19)  (0.14,0.79)  (0.30,2.11)  (0.62,4.10)
ne 4 0.15 0.68 2.63
~ 7| (0.10,056)  (0.40,3.58)  (1.56,15.70)
0.32 2.93
n==>,
(0.22,1.60)  (1.81,20.50)

Table 3. Time (in seconds) required to reach A = 1, 000, 000. In each cell, the number on top is the
median time over the sample of games; the range in parentheses reflects the minimum and maximum

times.

6 Application: Selection of risk-dominant equilibria

Since the logit equilibrium correspondence generically has a branch connecting the cen-
troid at A =0 to a unique Nash equilibrium, McKelvey and Palfrey suggest using this lim-
iting equilibrium as a means of selecting from the set of Nash equilibria. Harsanyi and
Selten suggest that a desirable property for a solution concept is selection of a risk-domi-
nant equilibrium when one exists. In a 2 x 2 game with two strict equilibria, risk domi-
nance implies that the strategy played by a player in the risk-dominant equilibrium is a
best reply against the mixed strategy where his opponent plays both strategies with equal
probability. The next theorem shows that, if an intuitive monotonicity assumption holds,
the principal branch of any quantal response equilibrium correspondence selects the risk
dominant equilibrium in this class of games.

Let f;(#;, A\) be any quantal response function, assigning a probability to player ¢’s
strategy s;; as a function of the vector of payoffs u; = (17,]);];1 to all strategies of player 1,
and the parameter A. Assume that A is chosen such that increasing A corresponds to
increasing precision, or decreasing noise, and that A ranges from A to A, with A corre-

sponding to “infinite noise.”
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Theorem 7. Suppose a quantal response function f; satisfies the following:

1. The derivatives 5 and 9

s >v are all continuous;

2. 2 > 0 (monotonicity in payoff of the strategy), with equality only when A = A

Ou

(infinite noise);

3 L . .
3. %> % if W;; > W (decreasing noise);

4. The limit points of branches of the correspondence as A— X\ are Nash equilibria.

Then, the principal branch of the quantal response correspondence limits to the risk-domi-

nant equilibrium in 2 x 2 games with two strict Nash equilibria.

Proof. Suppose that the strict Nash equilibria are at (si1, s21) and (si2, s22), with the
former being risk-dominant, and let a?k denote the payoff to player ¢« when player 1 plays
s1; and player 2 plays sa. The quantal response probabilities are given by m;; = f;(@11, U2,
A). Since the probabilities for a player must sum to one, the correspondence can be

expressed as the solution to the pair of equations

Hi=m — fil@g, g, A) = 0

Hy=m91 — fi(tr, tize, A) = 0

The partial derivatives of interest for H; are

om _
87T11 B
OH of of
%i _ _{ aufl (ady —ady) + au;(a;l—aéz)}
0
= S (ah - abi+ o —aby)
oy _  0f
ox o\’
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Because (s11,521) and (12, s22) are strict Nash equilibria, the quantity
Cy= (ah — ag + asy — ab)

is positive. The expressions for the partial derivatives of H, are analogous.

Now, to implement the homotopy in (2), compute

oH, 0H;
dﬂ-ll o ( N 1) 87T21 8)\
dS - 8H2 aHQ
87T21 8)\
0 0 0
= -, 81{111 (U1, U1z, )\)a—]j\l(%h Uz, A) — a—Jj\l(Un, 12, ). (18)

At s = 0, this right hand side of (18) is strictly negative. Because (syy, s21) is risk-domi-

nant, it must be that @;; > @, when player 2 randomizes with equal probability between

his strategies. Therefore, by assumption on f;, % > 0. A similar calculation establishes

d;m <0 at s=0.
S

that

Next, consider the change in A along the path. This is calculated by

oH, 0H,
@ — (_1) Oy Omy
ds OH; 0H-
87T11 a7T21
oftr , . _ oft ,_ _
-1+ C1au11(u11,ul2,)\)] [028u21(u21’u22’)\) )

where Cy > 0 is the analogue from player 2’s perspective of ;. At s =0, this evaluates to

—1.
Since all three of d;ril, d;rf, and % are negative, to traverse the branch from A = A,
choose the negative orientation of the curve; therefore, at A = A, both m; and my; are

strictly increasing in increasing A, and so there exists some o > 0 such that (o) > %,
mar(o) > ;—, and A(o) > 0 after traversing an arclength of o on the branch. At such a point,

the expression on the right-hand side of (18) remains negative. Since the branch is being
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traversed in the negative orientation, this corresponds to a positive change in my; as the
branch is traversed in the direction of increasing A; the argument for my; continuing to
increase is parallel. Therefore, m; and m,; are increasing as the principal branch is tra-
versed in the direction away from the centroid at A = A. Since the expression in (18) is
strictly negative, the path cannot pass through a branch point in the correspondence,
since a branch point implies all the derivatives in (2) vanish.

Finally, the branch must converge to a Nash equilibrium as A — X. Since (S11, S21) 18

risk-dominant, the mixed-strategy equilibrium in the game must satisfy m; < % and w9y <
%. Therefore, the principal branch cannot be converging to the mixed-strategy equilib-

rium, and so must converge to the risk-dominant Nash equilibrium. O

The conditions of the preceding theorem are satisfied by the logistic specification. Any
function f; derived from a probability distribution that is admissible in the sense of McK-
elvey and Palfrey will satisfy condition (2) of the theorem. Condition (3) does not follow
directly even if f; is derived from an admissible distribution, though it is a reasonable
condition if A is interpreted as a precision parameter.

This result is related to the results in ANDERSON, GOEREE, AND HorT [2], who show
that logit equilibria maximize a stochastic potential function, and apply the result to min-
imum-effort coordination games. For the case of 2 x 2 games, however, the logit specifica-
tion is not needed to select the risk-dominant equilibrium. Rather, the selection of the

risk-dominant equilibrium is a natural consequence of quantal response ideas.

7 Conclusions

This paper has presented a technique for efficiently tracing a branch of the logit equilib-
rium correspondence, with application to the problem of computing a single Nash equilib-

rium. The path followed by a branch of the correspondence is interpreted in terms of the
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replicator dynamics and best response dynamics, analogous to the interpretation of the
Tracing Procedure as an adjustment between prior and final beliefs in an introspective
process.

The presentation in this paper focused primarily on the principal branch. Since generi-
cally the branches of the logit equilibrium correspondence other than the principal branch
connect pairs of Nash equilibria, a modification of the procedure outlined can be used to
compute another Nash equilibrium, given one is known. The technical problem that such
a homotopy needs to start at parameter A = co can be finessed by restating the homotopy
using parameter v = H_LA.S Thus, as A ranges from 0 to oo, v ranges from 0 to 1. At v =1,
the necessary starting point for such an attempt, the matrices involved in computing the
homotopy are singular. However, Theorem 5 indicates that the branch is well-approxi-
mated by an initial starting direction involving only changes in v. The author’s experience
is this is feasible in many games, so long as care is given to the choice of initial step size
so as to be sure that the matrices in (9) are suitably well-conditioned at the initial guess
for a logit equilibrium for v < 1.

The characterization of the logit equilibrium correspondence branches, as well as the
efficiency with which these branches can be traversed, suggests further investigation of
logit equilibrium properties. Logit equilibrium ideas have been applied with some success
in explaining deviations from Nash equilibrium predictions in laboratory games; see for
example GOEREE AND HOLT [4] and references, and GOEREE, HOLT, AND PALFREY [5].
Standard techinques in numerical path following permit identification of points on a path
where a given test function equals zero. These are generally used to detect branch or

turning points in a path (in the case of this procedure, by using |G_,| as the test func-

8. The parameterization of the quantal response correspondence by the “precision” parameter A has

been called the “West Coast” parameterization. The alternate specification of p = %, where p is a “noise”
parameter, has been called the “East Coast” version. This parameterization by v, then, is the “Texas” ver-

sion; after all, Texas needs its own version of everything.
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tion). For the purpose of maximum likelihood estimation, the technqiues can be applied
using the (directional) derivative of the likelihood function as the test function.

For many applications, joint estimates of A and additional game parameters are
desired. For example, Goeree, Holt, and Palfrey simultaneously estimate A and a risk-
aversion parameter. There is no immediate extension of the homotopy methods used here
to trace out the surfaces of logit equilibria determined by multiple parameters. However,
an adaptive search strategy in the dimensions of the additional parameters coupled by effi-
cient identification of the maximum-likelihood A for a given set of other parameters will
yield improved results over a simple grid search.

The implementation of path-following techniques relies heavily on linear algebra. As
such, it is possible to program the algorithm to exploit multicomputer environments,
including Beowulf clusters. Although the complexity of truly large games will overwhelm
even powerful systems, parallel implementations can still greatly extend the range of
games of interest which can be analyzed.

Theorem 7 suggests an extension of risk-dominance beyond 2 x 2 games using quantal
response ideas. The argument establishing Theorem 7 is based on monotonicity of the
principal branch of the logit equilibrium correspondence. Using the dynamical interpreta-
tion of Section 4, at the centroid, each player prefers to play his strategy from the risk-
dominant equilibrium; as A increases, the second-order information about the other
player’s behavior reinforces this. An equilibrium at the end of a principal branch which is
monotonic is then a natural candidate for being risk-dominant in an extended sense.

HoPKINS [10] points out that logit equilibria can be viewed as the stationary points of
a stochastic best-reply dynamics. The eigenvalues of the matrix GG_,, evaluated at a logit
equilibrium, give information about the stability of the logit equilibrium under these
dynamics; additionally, bifurcations in the graph of the correspondence indicate changes
in stability properties of the logit equilibria. The behavioral relevance of stability proper-

ties of logit equilibria, if any, remains uninvestigated.

27



Acknowledgments

A previous version of this paper was circulated and presented under the title “Computa-
tion of the Logistic Quantal Response Equilibrium Correspondence.” This work has bene-
fited from discussions with John Dickhaut, Richard McKelvey, Tom Palfrey, Rajiv Sarin,
John Van Huyck, and seminar participants at Caltech, Texas A&M, and at the Economic
Science Association meetings in Tucson AZ, November 2001. David Kisel provided helpful

assistance in preparing the final manuscript. All errors are the author’s.

Appendix A. Extensive games with perfect recall

McKELVEY AND PALFREY [16] develop an agent quantal response equilibrium concept for
extensive form games. Players choose their actions optimally at each information set,
given what actions are chosen at all other information sets (including potentially subse-
quent information sets belonging to the player), and the random noise added to payoffs.
The noise terms are taken to be independent across information sets of the same player.

In what follows, 8 denotes a behavior strategy profile, : and [ index players, 7 and m
index information sets, and ¢ and b denote actions. At each information set h;; of player 1,
he has available a set of actions denoted by A(h;;). Payoffs are now calculated conditional
upon reaching an information set; @;;,(/3) is defined as the expected payoff, conditional on
reaching the information set h;j, to player ¢ of playing action a € A(h;;), when 3 is played
elsewhere in the tree. Since for finite A the logit quantal response equilibria are on the
interior of the set of behavior strategy profiles, the probability of reaching the information
set is positive, and the conditional expectation is well-defined. McKelvey and Palfrey

define a behavior strategy f to be a logistic agent quantal response equilibrium if

eAai]a(ﬁ)

52](1_ E ekﬂi]a/(ﬁ).
a’€A(hqj)
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The elements of the Jacobian for the homotopy are

ana auz a’ «(B) aala(ﬁ) Aug
N\ ZLua T ) Atija — ) JA\P) Auija(B)
aﬁzmb = 2 aﬁlmb By

a’€ A(hij)

for all actions b such that b€ hy, for all pairs (I, m)#(z, j), and

Otja(B)

— Awy ot _ wija
OA = Piia Z Tijar( B)e 0o ) — 30 (B) Moo,

a'€A(hiy)

These are, up to a change in notation, equivalent to the expressions obtained for the
normal form case. The substitutions used in obtaining (9) can then be repeated analo-
gously in the extensive form case.

All that remains is to consider the computation of the quantity QgBL() If the exten-

sive form game has perfect recall, computation of this derivative can be done using com-
puter code likely already written for the game. Write N(h) to be the set of nodes
belonging to information set h. Let @;;q.(f) denote the payoff to playing action a at a
node n € h;;. Denote by P,(/3) the probability of reaching a node n given profile 3, and

Py(3) the probability of reaching an information set h. Then

ol 8) = P B)itijan( 6)

neN(h)

G BPUB) = 3 PulB)iiju(f)
neN(h)

Y. PB)@ai(8) = ), PalB)aln(B)
n€eN(h) n€N(h)

DAB) ) 4 py2imB) P () +

M ijaln(B)
a6lmb
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M ija(B) 3 5Pn(5)[—

- o Uijaln
aﬁlmb neN(h) a5lmb |

Pu(B) (B) — wja(B)] +

M ijan(B)
P.(B) :

When the game has perfect recall, probability of reaching a node n is the product of the

action probabilities along the path reaching the node:

P(B)=]] B

a<n

Therefore,

OPa(B) _
= 11 4

which is the same as the probability of reaching node n when b is played with probability
one, and all actions at other information sets are played as specified in 3. A similar obser-

ai]a|n(6)

vation applies to the quantity 2 R Therefore, the payoff derivatives needed to com-

pute the homotopy path can be computed without additional computer code.
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