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NEGOTIATING THE MEMBERSHIP1

ABSTRACT. In cooperative games in which the players are partitioned

into groups, we study the incentives of the members of a group to leave it and

become singletons. In this context, we model a non-cooperative mechanism

in which each player has to decide whether to stay in his group or to exit and

act as a singleton. We show that players, acting myopically, always reach a

Nash equilibrium.
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theory, Nash equilibrium

1. INTRODUCTION

Endogenous formation of coalitions has been widely studied in the game

theory literature. For example, Chatterjee et al. (1993) and Okada (1996)

study coalition formation models in which players can agree on payoff division

at the time they form a coalition.

1Latest version at: http://webs.uvigo.es/vidalpuga/.
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In these models, the coalitions are formed along with the final payoff of

their members. An alternative approach is to assume that the final payoff

is given by the coalition structure. For example, Hart and Kurz (1983) and

Bloch (1996) present models of endogenous formation of coalitions in two

stages: in the first stage, players decide the coalition structure. In the second

stage, the final payoff is given according to the chosen coalition structure. In

Hart and Kurz’s model, the final payoff is given by the Owen value (Owen

(1977)). A similar model is given by Aumann and Myerson (1988), where

players decide how to connect through a graph, and the final payoff is given

by the Myerson value (Myerson (1977)) depending on the particular graph.

On the other hand, there are many situations in which the coalition struc-

ture is given a priori. For example, consider the members of a Parliament.

Even though all have the same rights, they do not act independently, since

they belong to different political parties. Other examples include wage bar-

gaining between firms and labor unions, tariff bargaining between countries,

bargaining between the member states of a federated country, etc. Broadly

speaking, these coalitions negotiate among them as single agents. The fun-

damental feature is that the coalition structure is exogenously given by the

problem, which means that players do not choose which coalition they belong

to.

In this paper, we take an intermediate approach between the endogenous

and the exogenous coalition structure models. We assume that there exists a

prior coalition structure (exogenous), but players inside a priori union may

have the chance to free ride and act as singletons (endogenous). For example,

consider the parties with representation in the European Parliament. Some

of these parties may decide, prior to the discussion of an issue, to collude and

defend a common policy. By doing so, they join forces and act as a single

party.

Usually, this cooperation is useful because the colluded party is stronger

than the sum of the individual parties. It may happen, however, that this

cooperation is not beneficial, as the "joint-bargaining paradox" of Harsanyi
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(1977) shows. The paradox is that an individual can be worse off bargaining

as a member of a coalition than bargaining alone. Chae and Heidhues (2004,

p. 47) justify this paradox as follows: Treatening a group as a single bargainer

reduces multiple “rights to talk” to a single right and thereby benefits the

outsiders.

Supranational parties such like the EPP-ED1 or the Socialist Group usu-

ally do not act as single agents, because its members are not committed to

follow the same policies on the same issues. Instead, these supranational

associations provide a common working environment is which cooperation

agreements are easier to settle, but only if they are beneficial for everyone.

In this framework, we define a mechanism in two stages: in the first stage,

players simultaneously announce whether they stay or exit their coalition.

The decision to stay is interpreted as the agreement to act as a single player

in the second stage. The players who decide to leave their coalition act as

singletons. In the second stage, the final payoff is given by the Owen value.

In games with coalition structure, the Owen value is a relevant solution

concept. It has been supported axiomatically (Owen (1977), Hart and Hurz

(1983, 1984), Winter (1992), Calvo et al. (1996)) and also non-cooperatively

(Vidal-Puga and Bergantiños (2003)). Moreover, it has been successfully

applied to cost allocation problems (Vázquez-Brage et al. (1997)) and po-

litical situations (Carreras and Owen (1988, 1993), Ono and Muto (2001)).

Vidal-Puga (2005) also shows that the Owen value arises in equilibrium of

a non-cooperative game that models the bargaining among heterogeneous

groups.

Hence, it seems justifiable to assume that, once the coalition structure

is formed, the final payoff is given by the Owen value. Notice that this

assumption is also made by Hart and Kurz (1983).

In Sections 2 and 3 we present the notation and the model of coalition

formation. We are interested in finding the stability of the resulting coalition

structure. We focus on the incentives of each player to stay or leave his

group. These incentives are given by the difference between what they get
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by changing their strategies and what they get by not doing it. In Section 3,

we show that these differences are independent of the order in which players

move. As a consequence, there are no cycles. Players, acting myopically, can

reach a Nash equilibrium. In Section 4, we study a possible generalization of

the model.

2. PRELIMINARIES

We consider a coalitional game as a pair (N, v) with a finite set of players

N = {1, 2, ..., n} and a characteristic function v : 2N → R with v(∅) = 0.

Following usual practice, we often refer to “the game v” instead of “the

coalitional game (N, v)”.

Given two games v, w, let v + w define the game (v + w) (S) = v (S) +

w (S) for all S ⊂ N .

Given a scalar α and a game v, let αv define the game (αv) (S) = αv (S)

for all S ⊂ N .

Given a coalition T ⊂ N , we define the unanimity game (N, uT ) with

carrier T as the coalitional game given by

uT (S) =

(
1 if T ⊂ S

0 otherwise.

According to Harsanyi (1959), unanimity games form a basis for the space

of cooperative games, i.e.

v =
X
T⊂N

λT (v)uT

where the Harsanyi dividends λT (v) are given by

λT (v) =
X
S⊂T

(−1)|T |−|S| v (S)

for all T ⊂ N .
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A coalition structure over N is a partition P = {S1, ..., Sp} on the set of
players N . The quotient game of v over P is the coalitional game (P, v/P )

defined as follows:

(v/P )(B) =
X
Sq∈B

v(Sq)

for all B ⊂ P . Thus, v/P is the game played by the coalitions in P .

We denote the set of all games (N, v, P ) over N with coalition structure

as CTU(N).

A value is a functionΨ : CTU (N)→ RN that assigns to each cooperative

game with coalition structure (N, v, P ) a vector in RN , so that Ψi (N, v, P )

represents the payoff assigned to player i ∈ N . With a slight abuse of nota-

tion, we say that Ψi (N, v, P ) is the value of player i.

Let Π be the set of permutations of the elements of N . We say that

π ∈ Π is compatible with P if the members of the same coalition are together.

We denote the set of all permutations compatible with P asΠP ⊂ Π. Namely,

π ∈ ΠP if and only if it satisfies:

∀i, j ∈ Sq ∈ P, ∀k ∈ N π(i) < π(k) < π(j) =⇒ k ∈ Sq.

Given π ∈ Π, we define

Pr(i, π) := {j ∈ N : π(j) < π(i)}

as the set of predecessors of i with respect to π.

The Owen value (Owen (1977)) is defined as follows:

Φi(N, v, P ) =
1

|ΠP |
X
π∈ΠP

[v(Pr(i, π) ∪ {i})− v(Pr(i, π))] .

When the game is clear, we use Φ(P ) instead of the more cumbersome

Φ(N, v, P ).

We consider the Owen value as a solution of the game. A characterization

of the Owen value is given by Owen (1977) as follows. The Owen value is

the only function Φ : CTU(N)→ RN satisfying the following axioms:

1. Efficiency:
P

i∈N Φi(P ) = v(N) for each (N, v, P ) ∈ CTU(N).
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2. Symmetry in each union:

v(S ∪ {i}) = v(S ∪ {j}), ∀S ⊂ N\{i, j} =⇒ Φi(P ) = Φj(P )

for all i, j ∈ Sq ∈ P.

3. Symmetry in the quotient game:

(v/P )(B∪{Sq}) = (v/P )(B∪{Sr}), ∀B ⊂ P\{Sq, Sr} =⇒
X
i∈Sq

Φi(P ) =
X
i∈Sr

Φi(P )

for all Sq, Sr ∈ P .

4. Null player:

v(S ∪ {i}) = v(S),∀S ⊂ N\{i} =⇒ Φi(P ) = 0

for all i ∈ N .

5. Additivity:

Φ(N, v + w,P ) = Φ(N, v, P ) + Φ(N,w, P )

for all (N, v, P ), (N,w, P ) ∈ CTU(N).

Given a unanimity game uT with carrier T ⊂ N , Property 4 implies that

Φi (P ) = 0 for all i /∈ T .

3. THE MODEL

Let (N, v, P ) be a game with coalition structure. Fix Sq ∈ P . We consider

the following mechanism2 in two stages for players in Sq:

First stage Simultaneously, each player in Sq announces whether he wants

to stay or to exit the coalition. Given the announcements of each player,

a coalition structure is formed. The players who announced to exit act

as singletons.
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Second stage Each player receives his Owen value.

Thus, the set of strategies for each player is {s, e}, where ‘s’ means “to
stay” and ‘e’ means “to exit”. We work only with pure strategies. Let

γ (i) ∈ {s, e} be the strategy of player i. Let γ = (γ (i))i∈Sq be a strategy

profile. We denote the resulting coalition structure as Pγ, namely

Pγ :=
n
{i}i∈Sq :γ(i)=s

o
∪ {{i}}i∈Sq :γ(i)=e ∪ {Sr}r 6=q .

In particular, if γ (i) = s for all i ∈ Sq, we have Pγ = P .

The final payoff for the players is given by the Owen value under this

coalition structure Φ (Pγ).

Example 1 Let 3 P = {123|45|6} and Sq = {1, 2, 3}. Assume γ (1) =

γ (2) = s and γ (3) = e. Then, Pγ = {12|3|45|6}. Assume γ0 (1) = s

and γ0 (3) = γ0 (2) = e. Then, Pγ0 = {1|2|3|45|6}. Assume γ00 (1) = γ00 (2) =

γ00 (3) = e. Then, Pγ00 = {1|2|3|45|6}.

A strategy profile γ is a panic equilibrium if γ (i) = e for all i ∈ Sq. A

panic equilibrium is clearly a Nash equilibrium, because the coalition struc-

ture does not change by the individual deviation of a player.

Remark 2 Assume that players begin playing γ with γ (i) = s for some i,

and change their strategies myopically. This means that they sequentially

change their strategies only if the payoff in the new coalition structure is

larger for them. Then, it is straightforward to check that a panic equilibrium

cannot be reached following this myopic behavior.

Given a strategy profile γ, we say that Pγ derives from P , and it is

a derived coalition structure. We say that two strategy profiles γ and γ0

are adjacent through i ∈ Sq, and we write γ ∼i γ
0, if γ(j) = γ0(j) for all

j ∈ Sq\{i} and γ(i) 6= γ0(i). We then call player i the link between γ and γ0.

We say that γ and γ0 are adjacent, and we write γ ∼ γ0, if there exists a link

i ∈ Sq such that γ ∼i γ
0. Two derived coalition structures Pγ and Pγ0 are
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adjacent through i if their respective strategy profiles γ and γ0 are adjacent

through i. Also, Pγ and Pγ0 are adjacent if there exists a link i such that Pγ

and Pγ0 are adjacent through i. We denote these as Pγ ∼i Pγ0 and Pγ ∼ Pγ0,

respectively.

Example 3 Let P = {123}, P1 = {12|3}, and P2 = {1|2|3}. Then, P , P1
and P2 derive from P . Moreover, P and P1 are adjacent. Player 3 is the

link between P and P1. Similarly, P1 and P2 are adjacent, and they have two

possible links, player 1 or player 2. However, P and P2 are not adjacent.

Notice that two adjacent derived coalition structures may be equal, as

the next example shows.

Example 4 Let P = {12}, γ(1) = γ(2) = e, γ0(1) = e, γ0(2) = s. Then,

Pγ ∼ Pγ0 and Pγ = Pγ0 = {1|2}. However, γ 6= γ0.

A path over P is an ordered list of strategy profiles = = [γ0, γ1, ..., γm]

such that γl−1 ∼ γl for all l = 1, ...,m. We say that = has length m. If

γm = γ0, we say that = is a closed path. Let [i1, i2, ..., im] be the list of

links between the strategy profiles, i.e. γl−1 ∼il γl for all l = 1, ...,m. Let

[P0, P1, ..., Pm] be the list of coalition structures derived from =, i.e. Pl = Pγl

for all l = 0, 1, ...,m.

Definition 5 Given a value Ψ, we say that a closed path = = [γ0, γ1, ..., γm]
is a cycle for Ψ if Ψil (Pl−1) < Ψil (Pl) for all l = 1, 2, ...,m, where Pl = Pγl

is the coalition structure derived from γl and il is the link between γl−1 and

γl, for all l = 1, 2, ...,m.

Example 6 Let P = {123} and v ({1, 2, 3}) = 30. Let Ψ be a value such

that Ψ (P ) = (10, 10, 10). If the coalition structure is Pγ = {12|3}, the
players get Ψ (Pγ) = (4, 11, 15). If Pγ = {1|23}, they get Ψ (Pγ) = (11, 4, 15).

If Pγ = {13|2}, they get Ψ (Pγ) = (15, 4, 11). If Pγ = {1|2|3}, they get
Ψ (Pγ) = (10, 10, 10). Then, every coalition structure belongs to a cycle4.

Moreover, the only Nash equilibrium is the panic equilibrium (see Figure 1).
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γ = (s,s,s), Pγ = {123}
Φ(Pγ) = (10, 10, 10)

γ = (e,s,s), Pγ = {1|23}
Φ(Pγ) = (11, 4, 15)

γ = (s,s,e), Pγ = {12|3}
Φ(Pγ) = (4, 11, 15)

γ = (s,e,s), Pγ = {13|2}
Φ(Pγ) = (15, 4, 11)

γ = (e,e,s), Pγ = {1|2|3}
Φ(Pγ) = (10, 10, 10)

γ = (e,s,e), Pγ = {1|2|3}
Φ(Pγ) = (10, 10, 10)

γ = (s,e,e), Pγ = {1|2|3}
Φ(Pγ) = (10, 10, 10)

γ = (e,e,e), Pγ = {1|2|3}
Φ(Pγ) = (10, 10, 10)

1 32

1313
2

2 1

2

3

Figure 1: The arrows represent the adjacent strategy profiles. The number

next to each arrow indicates the link. Each arrow points to the strategy

profile that increases the payoff of the link. Notice that the panic equilibrium

(e, e, e) is not reachable by the arrows (see Remark 2).
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We study the existence of cycles for the Owen value. Hence, from now

on, when we say cycle, we mean cycle for Φ.

The existence of cycles indicates an instability in the mechanism, as the

next lemma shows:

Lemma 7 If the only Nash equilibrium is the panic equilibrium, then there

exists a cycle.

Proof. Assume the only Nash equilibrium is the panic equilibrium and there

are no cycles. Let γ0 be a strategy profile that is not the panic equilibrium.

Then, there exists a player i1 ∈ Sq who benefits from changing his strategy

γ0(i1). Let γ1 be the adjacent strategy profile (i.e. γ0 ∼i1 γ1) and let P0
and P1 be their respective coalition structures (i.e. P0 = Pγ0 and P1 = Pγ1).

By Remark 2, γ1 is not the panic equilibrium. Moreover, Φi1(P0) < Φi1(P1).

Since γ1 is not a Nash equilibrium, there exists another player i2 ∈ Sq who

benefits from changing γ1(i2). Let γ2 be the adjacent strategy profile and let

P2 be its derived coalition structure. Then, γ2 is not the panic equilibrium,

and Φi2(P1) < Φi2(P2). We repeat the process with all the players who are

willing to change their strategies. Since there exist no cycles, we cannot come

back to a previous strategy profile. So, there should be a strategy profile γm
(which is not the panic equilibrium) in which no player can improve his payoff

by changing his strategy, i.e. γm is a Nash equilibrium. This contradiction

proves the result.

Definition 8 Given a path = = [γ0, γ1, ..., γm], the differential of = in v is

the number:

δ (=, v) :=
mX
l=1

[Φil(Pl)− Φil(Pl−1)] (1)

where Pl = Pγl is the coalition structure derived from γl, and il is the link

between γl−1 and γl, for all l = 1, 2, ...,m.

Notice that each term in (1) represents the amount by which a player il
improves his payoff when the strategy profile changes from γl−1 to γl, which

is the change that he is capable to do.
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γ0(i1) = γ0(i2) = s

γ3(i1) = s, γ3(i2) = e

γ1(i1) = e, γ1(i2) = s

γ2(i1) = e, γ2(i2) = e

i1

i2

i1

i2

Figure 2: T = [γ0, γ1, γ2, γ3, γ0] is a closed path of length 4.

Lemma 9 The differential δ (=, v) is additive on v, i.e.

δ (=, v + w) = δ (=, v) + δ (=, w)

for all = and all games v, w.

Proof. Immediate from the additivity of the Owen value.

Proposition 10 The differential of any closed path is 0.

Proof. Let = = [γ0, γ1, ..., γm] be a closed path with links [i1, ..., im]. Let

[P0, P1, ..., Pm] be their associated coalition structures. We proceed by induc-

tion on m. First, we note that m should be an even number, because each

link il should change his strategy γ(il) an even number of times, so that the

strategy profile goes back to its original position, i.e. γ0 = γm.

For m = 2, the result is trivial, because i1 = i2 and φi2(P1) − φi2(P0) =

− ¡φi1(P0)− φi1(P1)
¢
.

For m = 4, we have = = [γ0, γ1, γ2, γ3, γ4] and three cases: a) i1 = i2,

i3 = i4; b) i1 = i3, i2 = i4; and c) i1 = i4, i2 = i3. In cases a) and c), we have

two closed paths of length 2, so the differential is 0. We prove the result for

case b) (Figure 2). We can assume without loss of generality that in γ0 both

players play ‘s’.
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Assume we are in a unanimity game uT , and both players belong to the

carrier T . In particular, this implies |Sq ∩ T | ≥ 2. Let p0 be the number of
coalitions in P0 with nonempty intersection with T . Then, it is well-known

(Owen (1995, p. 307)) that the Owen values for i1 and i2 in P0 are

Φi1(P0) = Φi2(P0) =
1

p0|Sq ∩ T | .

Analogously, we have

Φi1(P1) =
1

p0 + 1
Φi2(P1) =

1

(p0 + 1) (|Sq ∩ T |− 1)
Φi1(P2) =

1

p0 + 2
Φi2(P2) =

1

p0 + 2

Φi1(P3) =
1

(p0 + 1) (|Sq ∩ T |− 1) Φi2(P3) =
1

p0 + 1
.

Thus, we have

δ (=, uT ) =
£
φi1(P1)− φi1(P0)

¤
+
£
φi2(P2)− φi2(P1)

¤
+
£
φi1(P3)− φi1(P2)

¤
+
£
φi2(P0)− φi2(P3)

¤
= 0.

When one of the players does not belong to the carrier (say, player i1),

then Φi1 (Pγ) = 0 for any γ and

Φi2 (P0) = Φi2 (P1) =
1

p0 |Sq ∩ T |
Φi2 (P2) = Φi2 (P3) =

1

p0 + 1

from where it is not difficult to check that δ (=, uT ) = 0.
For a general game v =

P
T⊂N λT (v)uT , we apply the additivity property

of the differential:

δ (=, v) =
X
T⊂N

λT (v) δ (=, uT ) = 0.

Assume now the result holds for closed paths with less than m strategy

profiles, m ≥ 6. We can assume without loss of generality that i1 changes
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γ0 γ1

γ2

γ3

γL−3

γL−2γL−1

γL = γ'L−1

γL+1

γm−1

i1

i2

i3

iL−2

iL−1

iL = i1

iL+1

i2

i3

iL−2
iL−1

im

γ'2

γ'L−3

γ'L−2

γ'3

i1

i1

i1

i1

Figure 3: Each node represents a strategy profile. Each arc represents a link

between two adjacent strategy profiles.

his strategy from γ0(i1) = s to γ1(i1) = e. Since = is a closed path, player
i1 should eventually change his strategy from e to s. Namely, there exists

L ∈ {2, ...,m} such that i1 = iL, γl (i1) = e for all l = 2, ..., L − 1, and
γL (i1) = s.

If L = 2, then γ2 = γ0.

If L > 2, we consider the strategy profile γ02 which arises from γ0 when

player i2 makes his change before i1, i.e. γ02(i) = γ0(i) for all i 6= i2, γ02(i2) =

γ2(i2). Now, it is not difficult to check that γ
0
2 is adjacent to both γ0 and

γ2. Player i2 is the link between γ0 and γ02. Player i1 is the link between γ2

and γ02. Let γ
0
3 be the strategy profile which arises from γ02 when player i3

changes his strategy, and so on. We repeat the process until we reach γ0L−1,

which equals γL (see Figure 3).

Formally, we define γ0l for l = 2, ..., L−1 as follows: γ0l (i) = γl (i) if i 6= i1

and γ0l (i1) = s. It is straightforward to check that γ0l ∼il+1 γ
0
l+1 and γ

0
l ∼i1 γl
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for all l. Moreover, γ0L−1 = γL.

We decompose the closed path = in two smaller ones

=0 =
(
[γ0, γ1, γ2] if L = 2£
γ0, γ1, ..., γL, γ

0
L−2, γ

0
L−1, ..., γ

0
2, γ0

¤
if L > 2

and

=00 =
( £

γ2, γ3, ..., γm−1, γ0
¤

if L = 2£
γ0, γ

0
2, γ

0
3, ..., γ

0
L−2, γL, γL+1, ..., γm−1, γ0

¤
if L > 2.

Notice that δ (=, v) = δ (=0, v) + δ (=00, v). Moreover, =00 has two less
strategy profiles than =. Hence, by the induction hypothesis δ (=00, v) = 0.
We show now that δ (=0, v) = 0. If L = 2, the result is trivial by induction

hypothesis. If L > 0, we take the closed paths =0 = [γ0, γ1, γ2, γ
0
2, γ0],

=1 = [γ02, γ2, γ3, γ
0
3, γ

0
2], and so on. In general, =l =

£
γ0l, γl, γl+1, γ

0
l+1, γ

0
l

¤
for all l = 2, 3, ..., L − 2. Since they are closed paths of length 4, we have
δ (=l, v) = 0 for all l = 1, ..., L− 2. Adding all these equations, we obtain:

δ (=0, v) =
L−2X
l=1

δ (=l, v) = 0.

Hence, δ (=, v) = δ (=0, v) + δ (=00, v) = 0.
An important consequence of Proposition 10 is that there are no cycles

for Φ.

Corollary 11 There are no cycles for Φ.

Proof. Assume there is a cycle =. Then, δ (=, v) is positive, which contra-
dicts Proposition 10.

As another consequence of Proposition 10, we have the following defini-

tion:

Definition 12 Given two strategy profiles γ,γ0, the differential of γ0 with

respect to γ is the differential of any path from γ to γ0.
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This differential is well-defined: Assume there are two paths from γ to γ0,

i.e. = = {γ, γ1, γ2, ..., γm = γ0} and =0 = {γ, γ01, γ02, ..., γ0m0 = γ0}. Then, the
closed path =00 = {γ, γ1, γ2, ..., γm, γ0m0−1, ..., γ

0
1, γ} has its differential 0 and

0 = δ (=00, v) = δ (=, v)− δ (=0, v) .

Thus, δ (=, v) = δ (=0, v).

Theorem 13 Players, acting myopically, always reach a Nash equilibrium.

Proof. We start from a strategy profile γ. Suppose that there exists a player

i ∈ Sq who benefits from changing his strategy γ(i). Let γ0 be the adjacent

strategy profile (i.e. γ ∼i γ
0) and let Pγ and Pγ0 be their respective coalition

structures. Then, φi(Pγ) < φi(Pγ0) and we deduce that the differential of

γ0 with respect to γ is positive. Suppose in the new strategy profile there

exists another player j ∈ N who benefits from changing his strategy γ0(j).

Let γ00 be the adjacent strategy profile and let Pγ00 be its respective coalition

structure. Then, φj(Pγ0) < φj(Pγ00) and the differential of γ00with respect

to γ is again positive. We repeat the process with all the players who are

willing to change their strategy. Since the differential is always positive,

we cannot come back to a previous strategy profile. So, there should be a

strategy profile γm in which no player can improve his payoff by changing his

strategy, i.e. γm is a Nash equilibrium.

Theorem 14 There exists a non-panic Nash equilibrium.

Proof. It is an immediate consequence of Lemma 7 and Corollary 11.

4. THE MECHANISM WITH ALL THE COALITIONS

In the previous section, it was assumed that only the players of a fixed

coalition Sq have the chance to exit the coalition. When a coalition negotiate

a common behavior among their members (i.e. decide which of them act as

15



a single player), it is natural to assume that the players do so independently

of the other coalitions.

However, one may wonder what happens when all the coalitions play

simultaneously. Thus, we study the following modification of the mechanism:

First stage Simultaneously, each player in N announces whether he wants

to stay or to exit his coalition. Given the announcements of each player,

a coalition structure is formed. The players who announced to exit act

as singletons.

Second stage Each player receives his Owen value.

Thus, the set of strategies for each player i is again γ (i) ∈ {s, e}. Let
γ = (γ (i))i∈N be a strategy profile. The derived coalition structure Pγ is

given by

Pγ :=
[
Sq∈P

n
{i}i∈Sq :γ(i)=s

o
∪ {{i}}γ(i)=e .

The definitions of a path, a closed path, a link, and the differential of a

closed path are analogous to those of Section 3. Let γ be a Nash equilibrium.

Then, γ is a panic equilibrium if there exists a coalition Sq ∈ P such that

γ (i) = e for all i ∈ Sq. Notice that, in this case, there are more than one

possible panic equilibrium.

Proposition 15 The differential of a closed path is not always zero.

Proof. Let N = {1, 2, 3, 4, 5} and consider the unanimity game (N,uN). Let

P = {123|45} and let γ0 = (s, s, s, s, s), γ1 = (e, s, s, s, s), γ2 = (e, s, s, e, s),
γ3 = (s, s, s, e, s), and γ4 = γ0. The associated coalition structures are

P0 = P , P1 = {1|23|45}, P2 = {1|23|4|5}, P3 = {123|4|5} and P4 = P ,
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respectively. Then, it is straightforward to check that:

Φ1 (P0) =
1

6
,Φ4 (P0) =

1

4

Φ1 (P1) =
1

3
,Φ4 (P1) =

1

6

Φ1 (P2) =
1

4
,Φ4 (P2) =

1

4

Φ1 (P3) =
1

9
,Φ4 (P3) =

1

3

Φ1 (P4) =
1

6
,Φ4 (P4) =

1

4

Let T = [γ0, γ1, γ2, γ3, γ4] be a closed path. Then, δ (T, v) =
1
36
6= 0.

As the differential is not zero, we wonder whether there exist non-panic

equilibria. The next example shows that there exist games whose unique

Nash equilibria are the panic equilibria.

Example 16 Let n = 6 and let v be given by the following table 5:

S v (S)

1, 2, 3, 4, 5, 6, 13, 14, 16, 23, 24, 34 0

46, 146 1

12, 25, 35, 123, 134, 234 3

15, 124, 125, 135, 235, 1234 4

26, 36, 45, 56, 126, 136, 145, 156, 236, 245, 246, 345, 346, 356, 456, 1246, 1346 5

1235, 1345, 2345, 2346 6

1236, 1245, 12345 8

1256, 1356, 1456, 2356, 12346, 12356 9

2456, 3456, 12456, 23456 10

N 13

This game in monotonic and superadditive 6. Moreover, all Nash equilib-

ria are panic equilibria. For six players, it is tedious to write all the possible

strategy profiles. In Figure 4, four of these strategy profiles (which form a

cycle) are represented.
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γ = (s,s,s,s,s,s), Pγ = {123|456}
Φ1(Pγ) = 1.92, Φ4(Pγ) = 1.58

γ = (s,s,s,e,s,s), Pγ = {123|4|56}
Φ1(Pγ) = 1.75, Φ4(Pγ) = 1.5

γ = (e,s,s,e,s,s), Pγ = {1|23|4|56}
Φ1(Pγ) = 1.42, Φ4(Pγ) = 1.75

γ = (e,s,s,s,s,s), Pγ = {1|23|456}
Φ1(Pγ) = 2.17, Φ4(Pγ) = 1.64

1

2 2

1

Figure 4: A cycle of length 4.
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NOTES

1 European People’s Party (Christian Democrats) and European De-

mocrats.
2 We use the term mechanism instead of non-cooperative game to avoid

confusion with cooperative games.
3 For simplicity, we write {123|45|6} instead of {{1, 2, 3} , {4, 5} , {6}},

and so on.
4 I thank María Montero for proposing this example.
5 We write 146 instead of {1, 4, 6}, and so on.
6 A game v is monotonic if v (S) ≤ v (T ) for all S ⊂ T , and superadditive

if v (S) + v (T ) ≤ v (S ∪ T ) for all S, T with S ∩ T = ∅.
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