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1 Introduction

In negotiations, the parties involved are often conglomerations of composite interests,
whose bargaining behaviour is determined by some collective decision mechanism. In this
paper we introduce a framework to study how such mechanisms (e.g. majority versus
unanimity voting) are related to bargaining outcomes.

For example, in the diplomatic negotiations leading Nato to take military action
against Yugoslavia in 1999, the alliance was often accused of taking an intransigent stance.
In particular, the perception was that the ‘hawks’ in the alliance (mainly the British and
American governments) were calling the shots despite the strong preference of a number
of other members for a more accommodating stance. When faced with this accusation,
Nato representatives invariably replied that Nato is an organisation based on unanim-
ity, and that any position taken through complete consensus by so many countries could
hardly be blamed for being extremist. This argument may sound convincing at first, and
as far as we know it has not been seriously challenged in the public debate: but does it
stand up to scrutiny? Motivated by such type of questions, and by the apparent lack of
a general framework to address them, we introduce a formal definition of a (bargaining)
alliance and analyse its behaviour.

For the moment, think of an alliance as a group of ‘similarly but not identically
motivated members’. We focus on the issue of how the mechanism of decision making
within the alliance affects the stance taken wvis @ vis opponents in negotiations. This issue
is clearly relevant for a very wide range of economic and political situations. Apart from
military alliances, other leading instances of alliances are trading blocks, trade unions,
political parties, public companies, business partnerships and families.

For our purposes, an alliance is a group of individual decision makers that:

1. share a common interest, yet also have heterogeneous preferences; and

2. must take a common stance in negotiations.

Our proposal is to model the two seemingly contradictory features in 1 as follows: we

assume that members of an alliance share the same preference ordering over the feasible



alternatives; yet, their preferences differ in ‘intensity’. This is formalised by assuming that
members have von Neumann-Morgenstern utility functions which, while not coinciding,
are all monotonic increasing when alternatives are listed in an appropriate order, which is
then the common preference ordering of the members. In thinking about this definition,
one may be helped by considering the shareholders of a company: presumably all of them
will agree that higher profits are better than lower ones; however, usually any two distinct
shareholders will differ in the evaluation of risky prospects of future profits.

As for 2, we consider several internal decision procedures by which a collective stance
is reached by the members of an alliance. We focus especially on the issue of procedures
based on unanimity versus procedures based on majority. This allows us to test the
seemingly common view that unanimity procedures should yield ‘less extreme’ negotiating
stances. Moreover, we show that, intriguingly, an alliance may greatly benefit from ‘rigid’
procedures which do not protect some of its members from expected (out of equilibrium)
losses during the course of bargaining. The reason for this is that such procedures render
credible certain threats concerning out of equilibrium behaviour.

Technically, the centerpiece of our analysis is Rubinstein’s Rubinstein (1982) model of
alternating offer bargaining, on which we graft the various collective decision procedures.
This essentially generates particular models of multiperson bargaining. In view of the
fact that such models are often known to exhibit a great multiplicity of equilibria, one
might initially be skeptical about the value of this enterprise. But it turns out that
focussing on alliances pays off by yielding sharp predictions and by generating, in most
cases (although not always), a unique equilibrium - without imposing stationarity as is
often done in multiperson models of bargaining.

In the next section we describe a model in which one single agent negotiates with an
alliance. In section 3 we consider a version of the model in which the objects bargained
over can be expressed as a real interval. The next section briefly explains the extension
to a case with a more general sets of alternatives. The concluding section states the
results for the case of bilateral bargaining between two alliances, and summarises the

main findings.



2 The basic model

In order to simplify the exposition we assume in the basic model that a single agent
negotiates with an alliance. In section 5 we will show that the results we obtain under

this simplification essentially carry over to the case of negotiations between two alliances.

2.1 Preferences

There are N +1 agents negotiating over alternatives s € S. Specific assumptions on .S will
be made in later sections. The breakdown event is denoted b. Each agent ¢ has preferences
over the set of lotteries on SU{b}, £ (S U {b}), which are representable by a von Neumann-
Morgenstern (henceforth vNM) utility function w; : £ (S U {b}) — R. Abusing notation,
we use the same symbol u; to represent preferences over riskless alternatives.

The agents ¢ = 2, ..., N + 1 form an alliance in the sense explained in the introduction.
Let A denote the set of these agents. So, given s,s" € S, u;(s) > u;(s") for some i € A
implies u;(s) > wu;(s’) for all j € A. Agent 1 has opposite preferences to A over riskless
alternatives, that is, given s,s" € S, u;(s) > u;(s") for some i € A implies uy(s) < uy(s').
For all i € {1} U A there exists s € A such that u;(s) > u;(b).

Note that we do not assume that, given a probability p, for all i € {1} U A, for all
s € S there exists s € S such that u;(s") = pu;(s) + (1 — p)u;(b). This means that, in
the bargaining game described below, for some player some alternatives may not have a
certainty equivalent in S. This way of proceeding seems appropriate in the absence of
an explicit discussion of the mechanism by which the ‘agenda’ S is arrived at. It may
well be the case, for example, that for some member of A the breakdown event is so
bad that the prospect of risking a breakdown with some positive probability or otherwise
getting some ‘poor’ alternative is worse than any alternative in S. It would certainly be
inappropriate to assume, as is commonly done in models of two-person bargaining with
risk (e.g. Binmore et al. (1986), Osborne and Rubinstein (1990), Myerson (1991), Binmore
et al. (1992), Muthoo (1999)), that w;(b) = mingeg u;(s) or u;(b) > mingegs u;(s), since this
would eliminate or limit an important source of heterogeneity between the members of

A, namely the extent to which breakdown is disliked. The possible lack of a feasible



certainty equivalent does not create any particular problem when S = [0, 1] but requires

some analysis in the general case.

2.2 Bargaining

In the bargaining process specified below, agents in A must make collective proposals to
agent 1. Similarly,agents in A will have to collectively either accept or reject proposals
by agent 1. We call the mechanism by which agents in A make such collective proposals,
acceptances or rejections an internal procedure, or simply a procedure. Once an internal
procedure P has been fixed, we use expressions such as ‘proposal by A’, ‘acceptance by
A’ and ‘rejection by A’ treating A as a single player.

Given any internal procedure P, negotiations between 1 and A proceed in an alternat-
ing offers fashion. That is, A, using the procedure P, proposes an alternative s € [0, 1],
which 1 can either accept or reject. In the former case, negotiations end with agreement
on s. Otherwise, negotiations continue with probability p; 1 makes a proposal s’ € [0, 1]
to A, who can accept or reject, using the procedure P. In the former case, negotiations
end with agreement on s’. Otherwise, negotiations continue with probability p, with
A making a proposal. Negotiations proceed in this way over an unbounded number of
rounds (numbered r = 0,1,2,...) until agreement is reached, with agent A proposing in
even rounds and 1 proposing in odd rounds. After a rejection by A or 1, with probability
1 —p € (0,1) negotiations break down irreversibly and the breakdown event occurs.

Given a procedure P, we denote by I'(P) the bargaining game in which procedure P

is used.

2.3 Internal Procedures

We consider several types of internal procedures and study their impact on the outcome

of negotiations. We illustrate below the types procedures analysed.



2.3.1 Unanimity procedures

Under unanimity procedures, the eventual proposal by A as well as the decision to reject
or accept a proposal by 1, are arrived at through non-cooperative negotiation games. Re-
garding A’s responses, given a proposal s by 1, each ¢ € A either accepts (Y) or rejects
(N), in an ordering to be specified later. If all i € A choose Y, then s is accepted, and
the game ends. Otherwise, the game moves, with probability ps € (0, 1), to the next
round, in which a proposal by A must be made in the following way. Each i € A proposes
an alternative s;. If, and only if, s; = s for all i € A for some s € S, s constitutes A’s
proposal. Failure to reach unanimity, both when accepting and when proposing, results
with probability 1 —p,4 € (0, 1) in irreversible breakdown of internal negotiations, in which
case the outcome is for simplicity identified with b. If internal negotiations continue (with
probability p4), each i € A makes a new proposal, and so on until unanimity is reached.
Regarding the order of moves, we consider two possibilities. In the simultaneous unanim-

PUNSIM 4]l i € A move simultaneously both when accepting and

1ty procedure, denoted
when proposing. Alternatively, fix a protocol o, namely a sequence (i);ca of agents in
A. In the sequential unanimity procedure with protocol o, denoted PUYN? all i € A move

sequentially according to the protocol o both when accepting and when proposing.

2.3.2 Majority procedures

Under majority procedures, the eventual proposal by A as well as the decision to reject
or accept a proposal by 1, are arrived at by playing the same non-cooperative negotia-
tion game illustrated for the majority procedures, but with the outcomes changed in the
obvious way, namely: if and only if the majority of i € A choose Y, is a proposal by 1
accepted; if and only if s; = s for the majority of i € A for some s € S, s constitutes A’s
proposal. The simultaneous majority procedure is denoted PMATSIM and the sequential

majority procedure with protocol o is denoted PMAJ7

2.3.3 Procedures with safeguard

As we shall see, for the procedures illustrated above there are equilibria where at some

nodes A must take an action which is worth to some 7 € A less than the worst feasible



alternative. This occurs in particular when a proposal by 1 is rejected. Especially in view
of the fact that any member of A bargaining on its own with 1 could always obtain an
immediate agreement by accepting the worst alternative, this feature could be thought to
be conducive to instability in the alliance. It is interesting therefore to consider procedures
built from a given procedure P~ by constraining it to yield each i € A at least mingcg u;(s)
at any node where A is accepting or rejecting an offer by 1: at those nodes, a rejection
cannot be made by A if it yields less than mingcg u;(s) to some i € A. For any procedure
PX . let P&, pp denote the ‘procedure with safeguard’ in which the acceptance rule of P¥

has been so constrained.

2.3.4 Remarks on the formal definition of a procedure

To avoid cumbersome notation, and since the meaning should be clear from the above
explanations, we have not defined a procedure rigorously. A procedure is formally a
complex object. We view it not merely as a set of ex-ante rules on ‘how to play the
game’: a procedure also restricts the actions that can be taken by members of A at an
equilibrium. That is, we consider a given equilibrium concept as a benchmark of the basic
rationality requirements on players, to which a procedure adds the further ‘institutional’
structure which we want to single out for analysis. For instance, in this perspective the

concept of strong equilibrium?

could be viewed as a procedure adopted to play a game
with Nash equilibrium as a benchmark.

To illustrate this point with more precision, an equilibrium notion E can be viewed
as defining the set E,(n) of all allowable deviations? at each node n from any specified
strategy profile o (e.g. in a subgame perfect equilibrium any agent ¢ can deviate at any
node if he improves; in a strong equilibrium any coalition can deviate if every agent in it
improves, and so on). An E—equilibrium is a strategy profile o such that E,(n) is empty

for all nodes n.

So, fix an equilibrium notion E. The game I'(P§,;;) has the same extensive form of

'Recall that a strong Nash equilibrium is a Nash equilibrium which is invulnerable to feasible joint
deviations by any subset of players, keeping the strategies of the other (non deviating) players fixed.

2Among the feasible ones.



[(P¥). We define the E—equilibria of the game I'(P2, ) as the set Ygs of strategies
profiles of T'(P¥) such that for all o € Xpg:

1. for all nodes n for which E,(n) is nonempty, it is the case that any deviation in

E,(n) would push some agent i € A below his safeguard level.

2. at any node n the action taken yields, given o, an expected payoffs above the

safeguard level for all players i € A.

Point 1 above justifies as equilibria situations in which agent ¢ € A is protected from
being driven below his safeguard level by profitable agreements to deviate among other
members of A (or by profitable individual deviations of other members of A).

Point 2 instead disallows as equilibria situations in which agent i € A is forced below
his safeguard payoff by the actions of the rest of A; it is i in effect that can force on the
other members a collective action by A that protects his safeguard level.

Note that > gg is not a refinement of X g, where X is the set of F—equilibria; and
depending on agents’ preferences Y p N Y g may be empty or not empty.

We have chosen to introduce the single term ‘procedure’ in this way because, although
it lumps together formally distinct objects such as rules of the game and equilibrium
notion, its interpretation seems to us close to that given to it in the natural language.
Clearly, this is just a matter of presentation, which does not affect the substance of any

of the results. r

2.4 Equilibrium notion

We now discuss the equilibrium concepts we use. The basic notion for procedures of the
sequential type (PUNe pMAJo pUle  PMATZ) is that of subgame perfect equilibrium
(s.p.e.). However, we also need to model a situation in which agents i € A act non-
cooperatively but, being members of an alliance, can openly negotiate and sign binding
agreements to coordinate their strategies if needed. With procedures of the simultaneous

UNSIM MAJSIM UNSIM MAJSIM
P ,P ,P

type ( sapi T, Podpp ™) we thus require the actions in the internal

negotiation games to be stable not only with respect to individual deviations of each



i € A but also with respect to joint deviations by groups of agents in A. That is, we
consider s.p.e. in which at no information set can a subset of agents A’ C A improve
the payoff of each agent in A’ by jointly changing their actions, given the equilibrium
continuation. We define a subgame perfect equilibrium with this property a jointly stable
subgame perfect equilibrium (j.s.s.p.e.). The requirement of joint stability merely serves
the function of excluding artificial equilibria which are created by the use of a simultaneous

move internal negotiation game?

. For example, without this restriction, there would be
(stationary) s.p.e. where A always proposes an alternative s such that u(s) > uy(s") for
all s € S even if the continuation payoff for player 1 by rejecting and counterproposing
is strictly less than pu, (s); this would happen as no i € A could individually deviate to

a better proposal.

3 Negotiating over a parameter

We will focus mainly on the case in which the space of alternatives is the unit interval, S =
[0,1]. This parameter could measure for instance the level of a tariff, or more abstractly
a ‘stance’ between two extremes. We will show later, in section 4, that this restriction of
the space of alternatives does not essentially alter the nature of the results. However, the
analysis carried out in this context allows one to use and extend the technique introduced
in Rubinstein (1982)* which proves to be quite illuminating, especially in the study of
procedures with safeguard of section 3.3.

For i € A, u; is increasing and concave on [0, 1], while u; is decreasing and concave
on [0,1]. For i € A, for all s € [0,1] let the ‘certainty equivalent’ functions® d; : [0,1] x
{0,1,...00} — [0, 1] be defined by :

s" € S such that u; (s'") = p"u; (s) + (1 — p") u; (d) if such an s’ exists
di(s,r) =

0 otherwise

3Hence we do not regard this requirement as sufficiently interesting to be part of a specific procedure.
4And simplified by Shaked and Sutton (1984).

S5This corresponds to the ‘present value’ functions in Osborne and Rubinstein (1990), p. 34.



Similarly,

s" € S such that u; (') = p™uy (s) + (1 — p") uy (d) if such an s exists
di(s,r) =

1 otherwise

To simplify notation we write throughout d;(s) instead of d;(s,1) for all i € {1} U A.

3.1 Unanimity

We consider first the game I’ (PUN SIM ) Let S4; (resp. su;) be the supremum (resp.
infimum) of the set of certainty equivalents® for player i € A of the j.s.s.p.e. outcomes
(alternative-round pairs) in subgames where A makes a proposal. Similarly, let 5y (resp.
s1) be the supremum (resp. infimum) of the set of certainty equivalents of j.s.s.p.e.
outcomes in subgames where agent 1 makes a proposal. Note that u; (Sa;) > w; (sy4,;) for
all i € A, whereas u; (31) < uj (s1). Let G denote subgames where A is the proposer

and let G' denote subgames where 1 is the proposer.

UNSIM : :
P ) has a unique 7.s.s.p.e.,

Theorem 1 In negotiations over a parameter, the game I’ (
which s stationary and with immediate agreement on the alternative s characterised as
follows. Let s} be the unique equilibrium alternative which would be agreed upon in a
two-person bargaining game between agent i alone and agent 1. Then s% is preferred by

all agents in A to all s}, or s% > sf for alli € A.

Proof: The values 54, s4;, 51 and. s;can be bounded by several inequalities. For
any proposal s by agent 1 such that s < d; (s,,) for some i € A, it is optimal, if feasible,
for this agent i to induce a subgame of type G*. With the procedure PUNSIM it ig
feasible for agent i to induce G4 by rejecting s. Thus the certainty equivalent of any
equilibrium outcome in subgames where agent 1 acts as proposer must not be smaller

than the certainty equivalent of s,; for each i € A:

s >di(sy) forallie A (1)

6As we show below, this set is not empty.

10



Conversely, any proposal s by agent 1 such that s > d; (54;) for each agent i € A must be
accepted in an equilibrium. This bounds from above the certainty equivalent for agent 1

of equilibrium outcomes when he proposes, as follows’:
5, < (S 4
S1 < max d; (5ai) (2)

Next, observe that in any s.p.e. agent 1 must accept any proposal s by A such that
s < dy(s;). So agents in A can Pareto improve (by avoiding delays in the internal
proposal game and by ensuring immediate acceptance by agent 1) on any set of actions

yielding any i € A less than u; (d; (s;))®. Thus:
Sp > di(sy) forallie A (3)

The next inequality simply follows from the fact that agent 1 in any s.p.e. must reject

any proposal s by A such that s > d; (51)
SAq S d1 (51) for all ¢ € A (4)

The above 3N +1 inequalities characterising a j.s.s.p.e. can now be considerably simplified.
Clearly s4; can be attained in a j.s.s.p.e. with immediate agreement (given d; (s, ), choose
the stationary j.s.s.p.e. in which all i € A always propose d; (s;)). Therefore, since all
1 € A agree on the ranking of alternatives in the current round, it must be that there
exists s4 € [0,1] such that, for all i € A, sy; = s4 . A similar reasoning establishes that
for all i € A it must be 54; = 54 for some 54 € [0, 1]. Then the following four inequalities

are implied:

s, > di(sy) forallic A (5)
51 < maxd; (Sa) (6)
sp =2 di(s) (7)
sS4 < di(31) (8)

"Recall that this corresponds to a lower bound on the expected utility agent 1 can get when a proposer.
80f course, there may be s.p.e. in which agents coordinate in PUNSTM on a proposal strictly lower

than d; (s;). See Remark 1 below.
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Since 5 can be written as

51 > maxd; (s)

inequalities 5-8 also characterise the stationary s.p.e. of a fictitious two player alternating
offers bargaining game, I''2, in which the players are agent 1 and a ‘representative’ agent
R whose utility function up is defined stepwise as follows. Let the function k : [0, 1] —

{2,..., N + 1} be defined by
k(s) = min {arg max d (s)}

Then

ug(s) = uks) for all s € [0, 1]

so that by definition R’s certainty equivalent function dy is given by

dr(s) = max d; (s)

That is, dg corresponds to the upper envelope of the d; functions (see example in figure
1). Although upg is typically not concave or even continuous, some crucial properties of
the d; are inherited by dg. Firstly, the continuity of the d; implies that dg is continuous.

Moreover, a straightforward extension of a standard result (see e.g. Osborne and
Rubinstein (1990) pp. 74-75) shows that concavity of the functions w; implies increasing
loss to delay of an additional round?: that is, ¢;(s) = s — d;(s) is an increasing function.
This implies immediately that ¢r(s) = s — dg(s) is also an increasing function. This
fact, by the analysis in Rubinstein (1982), guarantees existence and uniqueness of the
s.p.e. agreements of the fictitious game I'%, and hence of the original game I’ (PUN SI M).
Note for future reference that, as usual, these values are geometrically characterised by
the unique intersection (s%,s}) between the graphs of the functions d; and dg, that
dy (dg (s%)) = s% and that, in addition, d; (dgr(s)) < s for s > s%.

Finally, we can characterise the equilibrium of I''® in terms of pairwise bargaining
games between agent 1 and each agent i € A individually. All such bargaining games
have a unique s.p.e. (which is stationary). Denote by s! the equilibrium proposals by

agent i € A in the game with agent 1. These values again correspond to the (unique)

90sborne and Rubinstein (1990) show this for the case where u;(b) = u;(0).

12



Figure 1: Equilibrium in the T’ (PUNSIM) game (A ={2,3,4})

*

intersections of the graph of the function d; with that of each function d;, and d; (d; (s})) =
sf for all i € A.

The point of intersection between the graph of d; and the graph of dy is a point of
intersection between the graph of d; and the graph of some d;, i € A. Since the intersection
(2%, ") between the graph of d; and the graph of each d; is unique and has z* = s, it follows
that s7 = s} for some ¢ € A. Suppose now that there exists j € A for which s < sj.
Because the graph of d; intersects the graph of dg only once, it cannot be the case that
dr(sj) = d;(s}); hence from dg(s) > di(s) for all s € [0,1] we have dgr(s}) > d;(s]).
By the fact that d; is nondecreasing this implies d; (dR(s;“-)) > d; (dj(s;“)) But, since
d; (dj(sj-)) = s, this contradicts the fact that d; (dr(s)) < s for s > s%. We can conclude
that s% > sf for all i € A.

A stationary j.s.s.p.e. of T’ (PUNSIM)

can now be constructed in the obvious way. W
We see then that the unanimity procedure leads an alliance to adopt a negotiating

stance which coincides with that of the agent which is, in terms of the outcome achievable

13



in a hypothetical pairwise bargaining with agent 1, the ‘most aggressive’ in the alliance.

Furthermore, the solution is highly insensitive to the preferences of the less aggressive
members. Any change in such preferences which does not make one of the less aggressive
members the most aggressive will not have any impact on the equilibrium agreement.

Finally, note that while the less aggressive members clearly benefit from their mem-
bership in the alliance (in the sense that they obtain a higher payoff than they would in
individual bargaining), still within the game they may forced at some (out of equilibrium)
nodes by the most aggressive member to take actions which they consider suboptimal: in
particular, there will be out of equilibrium nodes in which the most aggressive member
forces a rejection of offers that seem perfectly acceptable to other members.

The fact that there is no equilibrium other than the one ‘most unfavourable’ to agent 1
is quite remarkable. For instance, one might have expected agent 1 to condition his actions
on the identity of rejectors to prevent such an outcome to obtain. Namely, following a
rejection by the most aggressive member of the alliance, agent 1 could threaten to make a
very unfavourable counteroffer (from the point of view of A). Our result shows that such

tactics can never be credible.

Remark 1 The requirement of joint stability has considerable bite. In its absence, many
other s.p.e. exist. For ezample, consider the following strategies: all i € A always propose
0 and accept any proposal by agent 1; agent 1 always proposes 0 and accepts only proposals
not greater than dy (0). These strategies constitute an s.p.e. of T (PUNSIM) because
although each individual member of A has the power to disrupt the proposal game within

A, this would only delay by one round the attainment of the same outcome.
We now turn to the procedures PYN7,

Theorem 2 In negotiations over a parameter, for any protocol o the game I’ (PUN”) has

a unique s.p.e. outcome, which coincides with the unique j.s.s.p.e. outcome of the game

T (fPUNSIM) _

Proof. Fix 0. We will show that the s.p.e. is characterised by inequalities 1-4,

and ensure uniqueness. That

which characterise the j.s.s.p.e. outcome of I' (PUN SIM )

14



1, 2 and 4 must hold at an s.p.e. is obvious. Consider now inequality 3, and suppose
by contradiction that instead s,; < d; (s1) for some!® i € A. However, if members in A
coordinated on an offer of s = d; (s,) — & > sy, for all i € A (with e > 0 sufficiently
small), this offer would surely be accepted by agent 1 since it is smaller (that is, better)
than the certainty equivalent of the any possible s.p.e. continuation. The corresponding
certainty equivalent to each agent i € A would be §' > sy;.

Take the first agent in the protocol not to offer s’, and index him by ;. His proposal
can only be optimal if, according to the equilibrium strategies, in the subgame that
follows o1’s out of equilibrium choice of s’ some other agent : € A would himself make
a proposal different from s’. Let oy be the first such an agent. In turn, this can only
be optimal for agent o if, according to the equilibrium strategies, in the subgame that
follows this agent’s (and all previous others’) out of equilibrium choice of s’, some other
agent i € A would make a proposal different from s’, and so on. This argument shows that
the existence a subgame perfect equilibrium in which agents in A do not coordinate on s’
implies the existence of an infinite sequence o1, 05 . . .of distinct agents i € A, contradicting
the finiteness of A. This contradiction concludes the proof. [ |

The above result shows two separate things, both interesting in their own respect:
the invariance of the s.p.e. outcome with respect to changes in the protocol, and its
coincidence with the j.s.s.p.e. outcome of I’ (PUN "). With any sequential procedure
subgame perfection is enough to guarantee that the requirement of joint stability is also
satisfied. We shall see presently that this feature is not peculiar to procedures based on

unanimity.

3.2 Majority

The analysis of majority procedures follows closely that of unanimity procedures, so it

is only sketched. Consider the game T (PMAJ SIM ) first. Let the function m : [0,1] —

{2,..., N + 1} be defined, for any s € [0, 1], as the lowest number for which:

N
For N even : #{i € Aldi(s) < dps)} = )

10Tn fact, if this holds for one i € A, it holds for all i € A.
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N+1
For N odd : #{i € Aldi(s) < dps} = T+

That is, m(s) is that agent j € A for which, given s € [0, 1], his d; function assumes the
median value in the set of values assumed at s by all d; (if there is more than one agent
with this property, we choose the one with the lowest index). By a reasoning analogous

to that of the previous subsection, the j.s.s.p.e.e is characterised by the following four

inequalities!!:
s g (s )
51 < dmsy) (34) (10)
sp > di(s) (11)
54 < di(3) (12)

The previous analysis can now be carried through with the function dy, : [0,1] — [0, 1]
defined by dy;(s) = dm(s) (which inherits from the d; exactly the same properties as dg)
in place of dp, yielding:

PMAJSIM) has a unique

Theorem 3 In negotiations over a parameter, the game F(
jJ.s.8.p.e., which is stationary and with immediate agreement on the alternative s% char-
acterised as follows. Let s be the unique equilibrium alternative which would be agreed
upon in a two-person bargaining game between agent i alone and agent 1. Then s7 is the

median of the set {s}}, 4.

The equilibrium can be visualised as the intersection of the d; function with the ‘me-
dian envelope’ of the d; functions, dy; (see example in figure 2). The majority procedure
leads an alliance to adopt a negotiating stance which coincides with that of the agent
which is median in terms of the outcome achieved in hypothetical pairwise bargaining
with 1.

For the game I" (PM AT ") by using arguments analogous to those in the proof of the-
orem 2 one can again establish the invariance of the s.p.e. outcome with respect to the

protocol and the implication of joint stability:

HNote that in order to write the inequalities corresponding to 1, the requirement of joint stability is

now needed.
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Figure 2: Equilibrium in the I’ (PMAJSIM) game (A ={2,3,4})

Theorem 4 In negotiations over a parameter, for any protocol o the game I’ (PMAJ”)
has a unique s.p.e. outcome, which coincides with the unique j.s.s.p.e. outcome of the

game T (fP]V[AJSIJVI) _

3.3 Procedures with Safeguard

It is by now clear that all the equilibria derived so far have the following feature: At out
of equilibrium nodes where A rejects a proposal s by 1 to counterpropose an alternative
s', it may happen that, for some i € A, pu;(s’) + (1 — p) u;(b) < w;(s). The procedures
considered essentially force this member ¢ to enter, at some nodes, a subgame which he
regards as worse than any possible alternative. The results derived so far change substan-
tially when safeguards to avoid this are introduced in the procedures. In particular, the
uniqueness of the equilibria which characterised the other cases is lost. More remarkably,
it turns out that safeguards can be harmful in the extreme to members of the alliance.

To illustrate the logic of the equilibrium in these cases we focus on I (Pg NSIM )
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The supremum and infimum of j.s.s.p.e. outcomes to all agents can be bounded as
follows. Suppose agent 1 made a proposal s less than d; (s ) for some i. Then by rejecting,
because of the safeguard requirement, this agent could induce a rejection by A only if
d;(s4) > 0for all j € A. Thus for s to be accepted, it must be no less than d; (s4) for all
agents in A if d; (s4) > 0 for all i € A, and it can be 0 otherwise. So we have

> . oy
S > I§1€aAXd2 (sq) if 1riré1£1ci2 (s) >0
and

s > 0if %%di(s)zo

By a similar reasoning we can establish the analogous upper bound on 5;. The bounds

on s, and 54 are as those derived for I' (PUN SIM )

Defining d¢ : [0,1] — [0, 1] as

maxd; (s) if mifrg d; (s) >0

i€A i€
d(s) =
0 if mind, (s) =0
€A

the bounds found above can therefore be written as

51 2 da(sa) (13)
51 < da(3a) (14)
sy > di(s) (15)
Sa < di(51) (16)
Consider now the set E of points (s, s") € [0,1] x [0, 1] satisfying
s = dg(s) (17)
s = dy(s) (18)

The set E is nonempty if and only if the function g : [0,1] — [0,1] given by g(s) =
dy (dg (s)) has a fixed point.

Lemma 5 There ezists s* € [0,1] such that g(s*) = s*
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Proof: The (possibly discontinuous) function ¢ is clearly non decreasing given the
definition of dg and the assumptions on the functions d;. It maps the complete lattice
([0,1],>) to itself. Therefore Tarsky’s fixed point theorem implies the result. O

Since as is well-known points in E define the j.s.s.p.e. of T (Pg fﬁéﬂl) which are

stationary, we have thus established the existence of an equilibrium. An example of this

type of equilibrium is depicted in figure 3.

Figure 3: Equilibria in the T (ng M ) game (A = {2,3,4})

To characterise the possible equilibrium configurations, consider the following four

exhaustive cases:

1. dg(s4) =0 =dg (54). Then system 13-16 yields s; =3; = 0 and s, =54 = d; (0).
So we have 0 = d¢ (d; (0)), and therefore the pair (d; (0),0) is also a fixed point
of system 17-18. We can conclude that, d; (0) is the unique j.s.s.p.e. outcome of

r (ngvﬁéM), and the j.s.s.p.e. is stationary.
2. da(sy) = H'IE%LXXdi (sq4) >0, dg(54) = mez}qxdi (54) > 0. System 13-16 reduces to
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system 5-8. From the proof of Theorem 1 we know that the function d; (mehx di>
€

has a unique fixed point, so that s, = 54 = s € (0,1] and s; = 5; = s} €

(0,1). Therefore s* is the unique j.s.s.p.e. outcome of T’ (ngVﬁEfM); the j.s.s.p.e. is

stationary and coincides with the j.s.s.p.e. of. T’ (PUNS[M).

3. dg(sy) = max d; (s4) >0, di (S4) = 0. This is not possible, since by the fact that

dg is non decreasing we have dg (S4) > dg (s4)-

4 dg (s4) = 0, dg (54) = maxd; (54) > 0. System 13-16 yields dy (m&xdi (@Q) >
54 > 84 > 0. Clearly if it was d; <r%aAX d; (EA)> > 54 there would exist s’ > 54 such
that d; <mehx d; (3’)) = ¢, so that s’ in round 0 would be a (stationary) j.s.s.p.e.

1€

outcome, in contradiction with the definition of 54. So it must be d; <r111€e}4x d; (3 A)) =
54. Thus from the proof of Theorem 1 we can deduce that in I (ng NS ) 54> 01n
round 0 coincides with the unique j.s.s.p.e. outcome of I' (PUN SIM) and is attained
in a stationary j.s.s.p.e. Consider now s,. From dg (s4) = 0 and dg (54) > 0 it
follows that s, < 54. Moreover max d; (s4) = 0, which implies s; = 0. It is then
trivial to show that there exists a stationary j.s.s.p.e. in which A always proposes

s, = dy(0) and 1 always proposes 0.

Similar arguments can be used for I' (Pé‘%‘ng M ) We can then summarise the analysis

as follows:

Theorem 6 Let P&, py be a procedure, with X € {MAJSIM,UNSIM}. In negotia-
tions over a parameter there exists a j.s.s.p.e. of the game I (P?AFE). The equilibrium
set can be of three types: either (1) a unique and stationary j.s.s.p.e. coinciding with the
j.s.s.p.e. of I' (PX); or (2) a unique and stationary equilibrium in which A always pro-
poses d1(0) and 1 always proposes 0; or (8) a set of j.s.s.p.e. whose outcomes are bounded
by the equilibrium outcomes of cases (1) and (2). In particular, any j.s.s.p.e. outcome of

r (Pé(AFE) 15 not greater, and can be strictly lower, than the j.s.s.p.e. outcome of I’ (PX).

We see then that, whatever the procedure, the introduction of safeguards for agents i €

A can have at best no effect and at worst a negative effect on the outcome of negotiations.
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Consider for instance the initial situation where negotiations between agent 1 and A

proceed according to I' (PUN SIM )

, where preferences of the members of the alliance are
such that they can be represented by the d; functions in the left panel of figure 4, so that

in equilibrium an agreement is reached immediately on some (s%, s7) € (0,1).

1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 / 0.2

0 02 04 s 06 08 1 0 02 04 s 06 08 1

Figure 4: The unique equilibrium in I (PUN SIM ) differs from the one in I" (Pg NOIM )

Consider instead the case where members of the alliance negotiate with agent 1 ac-
cording to I' (ng\;%M ) Now the equilibrium outcome is with immediate agreement on
s% = d; (0); furthermore, no other equilibrium outcome can be supported (see right panel
in figure 4). Under unanimity, a proposal of 0 by agent 1 is deterred in equilibrium by
the threat that the most aggressive agent will prefer to reject, take the risk of breakdown
and move on to the next round. This threat is credible since every member of the al-
liance enjoys the power to veto an agreement. On the other hand, when safeguards are
introduced, the veto power of each member of the alliance is limited by the requirement
to take into account the wishes of the less aggressive members (i.e. those with a zero
certainty equivalent). Then, the more aggressive members’ threat to reject a proposal of
0 by agent 1 may no longer be credible.

Depending on preferences, however, multiple equilibria can result, as for instance in

the example of figure 3. As long as a strictly positive certainty equivalent of s7 € (0,1) is
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defined for all members of the alliance, the safeguard requirement does not hold, so that

the threat to use one’s veto power is restored to its credibility.

Remark 2 [t is easy to show that in case (3) of Theorem 6 there is in fact a continuum
of equilibrium outcomes, supportable in the standard way by using as ‘punishments’ the
extreme stationary equilibria. In other words, all agreements s* € [dy (0),s%] can be
supported at an equilibrium with immediate agreement where, along the equilibrium path
agents in A propose s*, which is accepted. Deviations from the equilibrium are punished by
reverting to the (equilibrium) strateqy profile which supports the worst equilibrium outcome

for the deviator.

4 Negotiating over a general set of alternatives

In this section we show that the results of the previous sections to a large extent do not
depend on the choice of a real interval as the set of alternatives. Consider a generic set of
alternatives S. Each pairwise bargaining game between agent 1 and each agent 7 generates
a feasible set of utility pairs, B; C [u;,d;] X [, 4;], where @; (resp. ;) j € {1} U A is the
maximum (resp. minimum) feasible utility for player j. We assume as in standard models
that B; can be described as B; = {u = (u1,u;) |u > (uq (b) ,u; (b)), u; < ¢; (ug)}, where
foralli € A ¢; : [uy,w] — [u;,T;] is a continuous strictly decreasing and concave function.
However, as explained in section 2 we depart from those models by not assuming that
u; < u;(b) or u; = u;(b).

We consider for the sake of brevity only the procedure PUNSIM Tt ig straightforward

to extend all the other results of the previous sections to the case of a general set S.

has

Theorem 7 In negotiations over a general set of alternatives, the game T (PUNSIM)

a unique j.s.s.p.e., which is stationary and with immediate agreement, as described in

table 1.
Proof. Part of the statement of Theorem 1 in Manzini and Mariotti (2000) establishes:

Lemma 8 The bargaining problem B; has a unique s.p.e. equilibrium.
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For each such bargaining problem we can define the unique equilibrium payoff pair as

the solution, for some s},si € S, to the following system:

i (s1) = max {pu (s1) + (1= p) s (), 1.}
ur (54) = max {pus (51) + (1 = p) wr (8) 1}

Indeed, there may exist more than one alternatives s € S such that wu; (s) = w; (s}).

Since however all agents ¢ € A have the same preference ordering over alternatives,
we abuse notation and let s; be any alternative from the indifference set I; (s}) =
{s € S|u; (s) = u; (s})}. Similarly, for agent 1 we denote by s¢ any alternative from the
indifference set I; (s}) = {s € S|uy (s) = us1 (s})}-

For simplicity, without loss of generality, index equilibrium alternatives in increasing
order of preference for agents in A, so that sj,, > sj for all j = 2...N. Similarly, > ¢
for all j = 2,..., N. Then we can use the equilibrium payoffs of the N pairwise bargains
between agent 1 and each agent ¢ € A to construct a strategy profile which constitutes a

fPUNSI]V[

j.s.s.p.e. for the game over a general set of alternatives. This strategy profile,

which is stationary, is described in Table 1.

Agent 1:

e ol
proposes alternative sy,

accepts any alternative s < s ™! and rejects otherwise

Agent i € A:
proposes alternative s ™,

accepts any alternative s > s ™! and rejects otherwise

Note: s}v 41 and SJIV 1 are the equilibrium proposals by agent 1 and agent N 4+ 1, in a

pairwise bargaining respectively, in a pairwise bargain between them alone.

Table 1: Equilibrium strategies for Theorem 7

It easily checked that the strategies in Table 1 constitute an equilibrium. Just notice

that agent ¢ € A has no incentive to accept s; < sy, since at least agent N + 1 would
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PUNSIJV[

reject such an alternative, which under ensures that the alternative is rejected

by A.
We now show that the j.s.s.p.e. equilibrium just described is unique. To this end, we
first show that no other alternative can be supported in an equilibrium with immediate

agreement!2.

Lemma 9 There can be no subgame where agent 1 proposes an alternative s < sy,

which is accepted.

Proof. Suppose not, so that the supremum equilibrium payoff for agent 1 in subgames
G'is My > uy (s}v +1)7 and the corresponding infima for i € A are m;. Then we show
that members of the alliance would have a profitable deviation, that is, they could reject
and make a profitable counteroffer which would be accepted.

Since the equilibrium outcome considered is precisely the (unique) one that would
be established in a two-person bargain between agent 1 and agent N + 1, by standard

arguments it must be that

PUN+1 (Uf (le)) > mpy41

where uj : R — S is a function that selects one alternative from I; (s) C S such that
up (u™ (pMy)) = pM;.

Consequently, agent N + 1 will always reject a proposal yielding agent 1 more than
uq (s}v +1) unless in the internal procedure among agents in A a proposal is made yielding
agent 1 more than M;. But this is ruled out by the requirement that the equilibrium be
jointly stable. O

A similar argument can be used to establish:

Lemma 10 There can be no subgame where agents in A propose an alternative s > sV 1

which is accepted.

To conclude the proof, it is necessary to show that there can be no delayed agreement

equilibria. Such a proof is standard'® and thus omitted. |

12(Clearly, there will be other outcome-equivalent equilibria in which agents i < N + 1 in A accept
5 =i i, while N + 1 still rejects.
13See for instance Muthoo (1999).
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5 Concluding Remarks

Although for simplicity we have limited ourselves to analysing negotiations between an
alliance and a single opponent, it is possible, by using the same techniques, to extend
all results to the case of negotiations between two alliances. Let A = {1,..., N} and
B ={N+1,..,N + M} be two alliances with opposite preferences over alternatives in
S. Denote by I' (P4, Pp) the game between two alliances in which A uses the internal
procedure P4 and B uses the internal procedure Py, and where A is the first proposer.

Then a typical result would read as follows:

Theorem 11 In games T’ (PXNSIM,PgNSIM) and I’ (P%AJSIM,P%AJSIM) let s¥y, with
X = A B and i € {AUB}\X, be the unique equilibrium alternative which would
be agreed upon in a game between agent i alone and alliance X. Then: (1) The game
r (PXNSIM,P,%]NSIM) has a unique j.s.s.p.e., which is stationary and with immediate
agreement on an alternative s% g such that s% 5 is preferred by all agents in {AU B} \ X to
all stx. (2) The game T’ (P%AJSIM, ngAJSIM) has a unique j.s.s.p.e., which is stationary
and with immediate agreement on the alternative s% 5 which is the median of the set

{S;(X}’iEA'

Our model has highlighted several interesting features of ‘bilateral’ negotiations when
at least one of the sides is an alliance representing the non identical interests of a number

of individuals. Our main findings can be summarised as follows:

1. Unanimity rules are ‘better’ for an alliance than majority rules, in the sense that
the equilibrium outcome for an alliance under unanimity dominates the one under
majority, whatever the bargaining behaviour of the opponent. More specifically,
unanimity rules, lead the alliance to behave as if the ‘most agreesive’ member had

been delegated to bargain on its behalf.

2. In sequential procedures the protocol does not matter, in the sense that the optimal

actions arrived at are the same regardless of the protocol followed. Furthermore,

MErom Theorems 1 and 3.
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the s.p.e. outcome of sequential procedure coincides with the jointly stable s.p.e. of

simultaneous procedures.

3. ‘Weaker’ members benefit from the presence of ‘stronger members’ in an alliance,
in the sense that, for any procedure, acquiring a more aggressive member (one
which would obtain a better result in individual bargaining) does not worsen, and
possibly strictly improves, the equilibrium outcome for an alliance. However, weaker
members may be forced, in virtue of their being bound by the internal procedural

rules, to take actions they regard as suboptimal at out of equilibrium nodes.

4. Surprisingly, introducing safeguards for ‘weaker members’ in order to avoid the fea-
ture in 3 harms everybody (including the very weaker members to be protected)
and may ‘soften’ the negotiating tactics of the alliance to an extreme degree. The
bargaining strength of an alliance must be based on internal procedures being suf-
ficiently rigid to make credible threats of actions on the part of the alliance which

would harm some of its own members.

Clearly, the choice of a procedure for an alliance has many other facets which we have
not considered in the paper. A major example of these, often debated in practice!®, is
the extent to which the majority rule would yield more timely decisions. Analysing such

features is left for future research.

15For instance within the European Union.
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