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1 Introduction

In this paper, we consider a simple model of borrowing and lending in the
presence of ex-ante and ex-post asymmetric information. We model the ex-
post asymmetric information problem as a costly state verification problem,
that is, a borrower freely observes the return of his risky investment while a
lender has to pay a monitoring cost (see Townsend (1979)). As for the ex-ante
asymmetric information, we suppose that a lender and a borrower have dif-
ferent and privately known opinions about the possible returns of the risky
investment. Differences in opinions might be explained by (un-modelled)
differences in private information or, more simply, differences in subjective
beliefs. Moreover, following, among others, Boyd and Smith (1993), we sup-
pose that a borrower offers an incentive-compatible menu of contracts to a
lender; hence, our problem turns out to be a screening problem together
with a costly monitoring problem. It is precisely the aim of the paper to
shed light on the interaction between the screening and the costly monitoring
problems for the structure of optimal contracts.

Since a general analysis of the contracting problem is extremely complex,
if not out of reach, this paper thus adopts specific assumptions, which give
rise to closed-form solutions. For instance, we restrict ourselves to a special
class of contracts, so-called secured simple debt contracts, and suppose that
the distribution of project return is uniform. As a consequence, we obtain
that, at the optimum, the borrower offers at most two contracts δ and δ.
In turn, this extreme case of bunching enables us to focus on two types
of optima: pooling and separating optima. We then analyze under which
conditions pooling or separating solutions prevail.

We notably show that the more costly the monitoring, the less discrim-
inating the optimal menu of contracts is. More precisely, there exists a
threshold γ∗ such that if the monitoring cost is above γ∗, the borrower offers
a unique contract while for lower monitoring costs, the borrower offers two
contracts. In particular, absent away the costly state verification problem
(i.e., a zero monitoring cost), the optimal menu of contracts always features
two contracts. We also show that, for monitoring costs lower than γ∗, there
exist opinions of the lender that should be offered the contract δ in a world
without adverse selection, and are offered the contract δ in a world with ad-
verse selection. However, for monitoring costs greater than γ∗, the borrower
offers the same contract whether there is adverse selection or not. Thus,
for high monitoring costs, the costly state verification effect dominates the
adverse selection effect.

In a related paper, Boyd and Smith (1993) also consider a model with
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adverse selection and costly state verification problems, and prove the opti-
mality of simple debt contracts. However, their model differs as they suppose
that the borrower (the principal) is privately informed of both his ability (his
type) to undertake a project and the realized return of the project. Hence,
their problem is essentially a signalling problem together with a costly mon-
itoring problem while our problem is a screening problem together with a
costly monitoring problem.

In section 2, we present the model. Section 3 solves for the optimal menu
of contracts and presents some comparative statics.

2 The model

We consider a two-period economy with a unique borrower and a unique
lender. The lender is endowed with a single unit of a good that might
be used for both investment and consumption while the borrower has no
initial endowment. They are assumed to be risk-neutral and to care only
about second period consumption. Moreover, the borrower has access to an
investment project requiring exactly one unit of the investment good to be
undertaken. The project returns ω in the second period with ω a realization
of the random variable ω̃. The opportunity cost is set to r.

Ex-post asymmetric information. The borrower freely observes the
project return ω in the second period while the lender has to pay an utility
cost of γ to perfectly monitor the realized return ω.

Ex-ante asymmetric information. The borrower and the lender
have different, privately known, opinions (subjective beliefs) about the likeli-
hood of exogenous factors, such as technology, consumers’ taste, etc., which
influence the project return. For instance, the lender might have (un-modelled)
private information about the returns of similar projects undertaken in the
past or might use his own model or method to assess the likelihood of these
exogenous factors. Similar considerations apply to the borrower. For sim-
plicity, we summarize these factors by a discrete random variable θ, which
takes values in {θ1, . . . , θN} and is not contractible. Moreover, it is common
knowledge that, for each realization θn of θ, the probability density gn of the
project return ω conditional on [θ = θn] is uniform on [θn − ε, θn + ε]. We
assume, furthermore, that θ1 < θ2 < . . . θn < . . . < θN (means are ordered),
that θ1 ≥ ε (the return is almost surely non-negative) and θN − θ1 < 2ε (the
intersection of the supports is non-empty).

We also define pn (resp. qn) as the probability of θn for the lender (resp.
the borrower), and p := (p1, . . . , pN−1) (resp. q) a point in ΣN−1 the simplex
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of dimension N−1. It follows that the lender and the borrower have different
opinions about the expected return of the project. The borrower believes
that the expected return to undertake the risky project is

∑N
n=1 qnθn while

the lender expected return is
∑N

n=1 pnθn. We also assume that the borrower
believes that the project expected return is greater than the opportunity cost.
Finally, since opinions are private knowledge, we suppose that the borrower
believes that the lender’s opinion (type) is drawn from a non-degenerate
probability measure with density ρ with respect to the Lebesgue measure on
ΣN−1.

Contracts. Following, among others, Boyd and Smith (1993), we assume
that the borrower offers a menu of contracts to the lender. Since our purpose
is to shed light on the interplay between the problems of ex-ante and ex-post
asymmetric information, we restrict ourselves to a simple class of contracts,
so-called secured simple debt contracts (SDC), which gives rise to closed-form
solutions.

Definition 1 A secured simple debt contract is a pair (ω,C) with C the col-
lateral, min(ω, ω) the contingent repayment and {ω : ω < ω} the monitoring
states.

In a secured SDC, the borrower offers a non-contingent payment (or col-
lateral) C to the lender, a repayment of ω in monitoring states {ω : ω < ω}
and a fixed payment ω in non-monitoring states. Note that if the lender is
offered an actual return of ω < ω, he commits to monitor the project and
pays the monitoring cost. Several additional remarks are in order. First, ob-
serve that a secured simple debt contract is truth-telling, i.e., the borrower
has no incentive to misreport the project return (see, for instance, Gale and
Hellwig (1985)). Second, it is clear that in non-monitoring states, the bor-
rower will repay a fixed amount to the lender. This observation holds true
in any costly state verification model. We also assume that the lender seizes
all the return realized in monitoring states. In a model without diversity of
opinions, Gale and Hellwig (1985) and Williamson (1986) have shown that it
is indeed optimal to seize all the return in non-monitoring states. However,
this result might not hold in more general models (see Carlier and Renou
(2005)). Third, the class of contracts we consider is richer than the standard
class of SDC (see for instance Gale and Hellwig (1985), Krasa and Villamil
(1992)) since the borrower can offer a secured part C to the lender, while
he is not allowed in the standard class of SDC. Finally, real-world counter-
parts of (secured) SDCs are (secured) corporate bonds, which are increasingly
used by corporations. Indeed, the corporate bond market is large and liquid,
which daily trading volume estimated at $23 billion. Issuance for 2002 was
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an estimated $594 billion ($58 in 1982), and the total market value in the
US at the end of 2002 was approximately $4.1 trillion (approximately, $0.5
trillion in 1982). 1 Moreover, note that most corporate bonds are debenture
bonds i.e., fixed-interest security issued by corporations in return for loan.
Debenture interest must be paid whether the corporation makes a profit or
not, and in the event of non-payment, debenture holders can force liquida-
tion. Finally, let us mention that secured corporate bonds are also frequently
called collateral trust bonds.

For the sake of tractability, we impose that ω ∈ [δ, δ] with2

[δ, δ] ⊂
⋂
n

[θn − ε, θn + ε].

Thus, in our simple model, the borrower wishes to discriminate among the
different types of a lender (screening) i.e., he does not want to remunerate too
much a lender who would have lend him the funds at a lower cost. However,
as will see later, the costly state verification problem renders more difficult
the discrimination.

3 The borrower’s program

The expected utility of a lender of type p, facing the contract (ω,C) (with
ω ∈ [δ, δ]) is

U(p, ω, C) =
N∑

n=1

pn

2ε

(∫ ω

θn−ε

(ω − γ) dω +

∫ θn+ε

ω

ωdω

)
+ C.

Denoting x · y the inner product of (x, y) ∈ (RN−1)2, we can rewrite U as

U(p, ω, C) = (α · p)ω + β · p + z(ω) + C, (1)

where we have set for n = 1, ..., N − 1:

αn :=
1

2ε
(θn − θN) , βn = P (αn), P (α) := α(γ + ε− θN − εα), (2)

z (ω) =
1

2ε

[
−1

2
ω2 + ω (θN + ε− γ)− 1

2
(θN − ε)2 + γ (θN − ε)

]
. (3)

Note that the αn’s are negative.

1Source: An investor’s guide to Corporate Bonds, The Bond Market Association,
www.bondmarket.com

2Note that ω ∈ [δ, δ] implies that θn − ε ≤ ω ≤ θn + ε for all θn. In turn, this implies
that, for any realization of θ, the surplus is nonincreasing in the monitoring cost. For
otherwise, we have the counter-intuitive result that the higher the monitoring cost, the
higher the surplus.
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3.1 Admissible contracts

We define the set of admissible menus of contracts as the set of maps p 7→
(ω(p), C(p)) that satisfy ω(p) ∈ [δ, δ] for all p ∈ ΣN−1, are incentive-compatible
(4) and individually rational (5), that is, for all types (p, p′):

U(p, ω(p), C(p)) ≥ U (p, ω (p′) , C (p′)) , (4)

U(p, ω(p), C(p)) ≥ r. (5)

Suppose that (ω(.), C(.)) is incentive-compatible, and, for every type p, define

V (p) := U(p, ω(p), C(p)) = (α · p)ω(p) + β · p + z(ω(p)) + C(p). (6)

the utility of a lender of type p associated to the contract (ω(p), C(p)). Using
(1) and (4), we obviously have

V (p) = sup {(α · p)ω(p′) + z(ω(p′)) + C(p′) : p′ ∈ ΣN−1}+ β · p. (7)

Since a supremum of affine functions is convex, V can be written as:

V (p) = f(α · p) + β · p, (8)

for some convex function f : [α1, 0] → R. Moreover, incentive-compatibility
together with (8) and the Envelope Theorem yield that for a.e. p ∈ ΣN−1:

∇V (p) = f ′(α · p)α + β = ω(p)α + β. (9)

Hence f ′(α · p) = ω(p) and, thus, ω(p) depends only on the reduced type
t := α · p. In words, the borrower discriminates different types of the lender
in a single (unidimensional) dimension, the reduced type t, which is perfectly
and positively correlated with the lender’s expectation about the project
return. Two types with the same expected return will be offered the same
contract. Slightly abusing notations, we write ω(t) = f ′(t) as a function of
the unidimensional parameter t. Using ω(t) = f ′(t), (6) and (8) also implies
that the collateral only depends on t through the formula3:

C(t) = f(t)− tf ′(t)− z(f ′(t)). (10)

3From (10), it is worth noting that, due to incentive compatibility, we cannot easily
impose an arbitrary value to C, say C = r. Indeed, in this case, on top of being convex,
f would have to solve the nonlinear differential equation f(t) − tf ′(t) − z(f ′(t)) = r. If
this nonlinear differential equation has no solution, then the set of incentive-compatible
contracts is simply empty, hence there is no optimal menu. Allowing for type-dependent
collateral adds more degrees of freedom to the borrower’s contract space such that we avoid
the above problem. This is an important departure from the standard CSV literature, in
which using collateral would eliminate monitoring.
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Conversely, it is standard to check that if f is convex, f ′ ∈ [δ, δ], f ′ = ω
and (10) holds (again with t := α · p), then the contract (ω(.), C(.)) is indeed
incentive-compatible (see Rochet (1987)).

As for the individual rationality, observe that the constraint (5) is equiv-
alent to f(α · p) + β · p ≥ r for every type p.

Lemma 1 Let f : [α1, 0] → R be a Lipschitz function such that f ′ ≥ δ, then

min
p∈ΣN−1

f (α · p) + β · p ≥ r

if and only if f (α1) ≥ r − β1.

Proof. Let us write the previous condition as:

f(x) + y ≥ r, for all (x, y) ∈ C, (11)

where C := {(α ·p, β ·p), p ∈ ΣN−1}. It is direct to check that C is the convex
hull of the points (0, 0) = (0, P (0)) and (αn, βn)n=1,··· ,N−1 = (αn, P (αn))n=1,··· ,N−1

where P is the concave quadratic function defined by (2). Defining for all
x ∈ [α1, 0]

Γ(x) := min{y : (x, y) ∈ C},
then condition (11) can be rewritten as:

f(x) + Γ(x) ≥ r for all x ∈ [α1, 0] (12)

We claim that Γ is linear, more precisely

Γ(x) =
P (α1)

α1

x for all x ∈ [α1, 0]

First, since (0, 0) and (α1, P (α1)) belong to C, which is convex, (x, P (α1)
α1

x) ∈ C
for all x ∈ [α1, 0] so that Γ(x) ≤ P (α1)

α1
x. Second, let us prove the converse

inequality i.e. y ≥ P (α1)
α1

x for all (x, y) ∈ C. Since it is a linear inequality it is
enough to check it at the vertices of C, for (x, y) = (0, 0) or (x, y) = (α1, β1)
there is nothing to check, for the vertices (αn, P (αn)) the desired inequality
follows from the concavity of P and the fact that αn ∈ [α1, 0].

Using (2) and since α1 < 0, we have:

P (α1)

α1

= γ + ε− θN − εα1 ≥ γ + ε− θN .

But since f ′ ≥ δ ≥ θN − ε, we obtain that f + Γ is nondecreasing, hence
achieves its minimum at α = α1. It thus follows that the condition f +Γ ≥ r
is equivalent to f(α1) + Γ(α1) ≥ r, and since Γ(α1) = P (α1) = β1 the proof
is achieved.
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3.2 Optimal contracts

Within the class of admissible contracts, the borrower maximizes his expected
profit, which is given by:

Π =

∫
ΣN−1

[
N∑

n=1

qn

2ε

∫ θn+ε

ω(p)

(ω − ω(p))dω − C(p)

]
ρ(p)dp. (13)

Let us define the probability measure µ on [α1, 0] as the image of ρ(p)dp by
the linear form p 7→ α · p, that is, for every continuous function ϕ on [α1, 0]:∫ 0

α1

ϕ(t)dµ(t) =

∫
ΣN−1

ϕ(α · p)ρ(p)dp.

Using the reduced type t, f ′ = ω and (10), the borrower’s profit becomes

Π =

∫ 0

α1

[(
t +

1

2ε
(θN −

N∑
n=1

θnqn − γ)

)
f ′(t)− f(t)

]
dµ(t) + k, (14)

where k is a constant.4 At this point, it is worth pointing out that Π is linear
with respect to f ; once again this is very specific to the uniform assumption
(quadratic terms in f ′ vanish). This linearity will of course dramatically
simplify the structure of optimal contracts.

Let us assume, for simplicity, that µ has a density5 gµ and denote by Gµ

the cumulative function of µ. Integrating (14) by parts gives:

Π = −f(α1)+

∫ 0

α1

[
Gµ(t)− 1 +

(
t +

1

2ε
(θN −

N∑
n=1

θnqn − γ)

)
gµ(t)

]
f ′(t)dt+k.

Optimal contracts obviously are such that the participation constraint is
binding at the bottom : f(α1) = r − β1 (use Lemma 1 ) and taking u := f ′

as new unknown (hence u = f ′ = ω), the borrower’s program becomes:

max
u∈K

L(u) :=

∫ 0

α1

h(t)u(t)dt (15)

4

k :=
1
4ε

(
N∑

n=1

(θn + ε)2qn − (θN − ε)(θN − ε− 2γ)

)
.

5It can be shown that µ is absolutely continuous with respect to Lebesgue measure,
and that its density gµ is continuous if ρ is continuous. Moreover, it can be checked that
this density vanishes at endpoints gµ(0) = gµ(α1) = 0. Proofs of those facts are available
upon request from the authors.
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with

h(t) := Gµ(t)− 1 +

(
t +

1

2ε
(θN −

N∑
n=1

θnqn − γ)

)
gµ(t), (16)

and:
K :=

{
u : [α1, 0] → [δ, δ], u is nondecreasing

}
.

Since the borrower program (15) is a simple linear program, the maximum
is achieved in at least one extreme point of K. Moreover Krein-Millman’s
Theorem (see [6]) and weak compactness of K in Lp imply that the set
of solutions of (15) (which is a face of K) is the closed convex hull of
the set of extreme points which solve (15). Hence, we focus on solutions
in the set of extreme points of K. It is easy to check that those extreme
points are the nondecreasing functions taking values in {δ, δ} only. In other
words, the set of extreme points of K consists of the family of step functions
{δ1[α1,t) + δ1[t,0], t ∈ [α1, 0]}. As a first consequence, the borrower’s pro-

gram (15) admits at least one solution which only takes values δ and δ (put
differently, there always exists an optimal menu of contracts with at most
two contracts.) More interestingly, restricting the maximization to extreme
points of K, (15) simply amounts to maximize over [α1, 0], the function:

F (t) := δ

∫ t

α1

h (s) ds + δ

∫ 0

t

h (s) ds for all t ∈ [α1, 0], (17)

Denoting A the argmax of F over [α1, 0], we get that the set of solutions of
(15) is the closed convex hull (in the L1 topology, say) of {δ1[α1,t) +δ1[t,0], t ∈
A}. If A is not reduced to a singleton, say (t, t′) ∈ A2 with t < t′, then
both step functions δ1[α1,t) + δ1[t,0] and δ1[α1,t′) + δ1[t′,0] are solutions of (15),
and any convex combination of those step functions is also optimal. Taking
convex combinations amounts to adding an intermediate third value to the
function. In the case where a menu with three or more contracts yields
the same profit as a simpler menu, the borrower is more likely to offer the
simplest one (remember we abstract from writing costs). For simplicity, we
shall only discuss those simplest menus.

Finally, note that F is differentiable and:

F ′(t) = (δ − δ)

(
Gµ(t)− 1 +

(
t +

1

2ε
(θN −

N∑
n=1

θnqn − γ)

)
gµ(t)

)
. (18)

Hence, since gµ(0) = gµ(α1) = 0, Gµ(0) = 1 and Gµ(α1) = 0 we have
F ′(α1) = (δ − δ) > 0, and F ′(0) = 0. This proves indeed that α1 /∈ A, i.e.
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the constant function u ≡ δ is not a solution of (15). Note also that if the
condition

θN −
N∑

n=1

θnqn ≤ γ (19)

is satisfied, then F is increasing, hence A = {0} and the only optimal menu
of contracts is a single contract such that ω ≡ δ (pooling case).

Theorem 1

• The constant function u ≡ δ is not a solution of (15),

• If (19) is satisfied, then (15) admits as unique solution the constant
function u ≡ δ (pooling case).

• If, in addition, gµ is nonincreasing in a neighborhood of 06, and (19)
does not hold then u ≡ δ is not a solution of (15), hence every solution
of (15) takes at least two values (separating case).

Proof. Only the last statement has not been established yet. Assume:

θN −
N∑

n=1

θnqn > γ.

It is enough to prove that F does not achieve its maximum at 0. For α1 <
t < 0 compute

F ′(t)

(δ − δ)gµ(t)
=

(
1−Gµ(t)

gµ(t)
−

(
t +

1

2ε
(θN −

N∑
n=1

θnqn − γ)

))
Since

0 ≤ 1−Gµ(t)

gµ(t)
=

∫ 0

t
gµ

gµ(t)
,

our assumption implies that for t close to 0

0 ≤ 1−Gµ(t)

gµ(t)
≤ −t hence lim

t→0−

F ′(t)

(δ − δ)gµ(t)
< 0.

This implies that F ′(t)/gµ(t) < 0 for t close to 0 so that 0 /∈ A. This ends
the proof.

6It can be checked that these assumptions are satisfied if ρ is smooth and strictly
positive: proofs are available from the authors upon request.
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3.3 Comparative statics

Theorem 1 exhibits two types of solutions: solutions of the pooling type
and solutions of the separating type. In a pooling solution, the borrower
offers a unique contract to the lender while, in a separating solution, the
borrower offers two contracts. The monitoring cost γ as well as the relative
optimism/pessimism θN −

∑N
n=1 qnθn of the borrower determine the type of

solution (see condition (19)). For high monitoring costs and/or a relatively
pessimistic borrower, pooling solutions prevail, and the borrower offers the
contract δ; whereas for low monitoring costs and/or a relatively optimistic
borrower, separating solutions prevail, and the borrower offers two contracts
δ for reduced types t below t∗ with t∗ ∈ A and δ, otherwise. It is important to
note that this extreme case of bunching is rather specific to the assumptions
of our model. We think that a more general model (if such a more general
model can be solved) is likely to feature less bunching.

Note that if γ = 0 and q 6= 0, condition (19) is fulfilled. In words, if
there is no costly state verification problem, the borrower optimally offers
two contracts. More generally, for a fixed q, there exists a γ∗ > 0 such that
for all γ > γ∗, the optimal menu of contracts is the singleton menu δ while
for all γ < γ∗, the borrower offers two contracts δ and δ.

Before going further, consider the optimal contracts when the borrower
knows the type of the lender i.e., absent away the adverse selection problem.
Optimal contracts maximize the borrower expected profit (13) subject to the
participation constraint (5). It is easy to show7 that the optimal contract is
δ if t < τ and δ, otherwise, with

τ = − 1

2ε

(
θN −

N∑
n=1

θnqn − γ

)
.

Observe that if τ ≥ 0, the borrower offers the contract δ to the lender what-
ever his type. The condition τ ≥ 0 is equivalent to condition (19). In
particular, if (19) holds, the borrower offers a unique contract regardless of
the type of the lender while if (19) does not holds, the contract offered de-
pends on the type of the lender. From now on, we suppose that (19) does
not hold.

A maximum t∗ of F is a solution of

t∗ − 1−Gµ(t∗)

gµ(t∗)
= τ. (20)

7A proof is available upon request
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The left-hand side of (20) could be interpreted as the lender’s type that
takes into account the incentive compatibility constraints (equivalently, the
informational rents), that is the virtual type. Hence, condition (20) says that
the virtual type for which the borrower is indifferent between offering the low
or high contract is precisely τ , the type for which the borrower is indifferent
between offering the low or high contract, absent away the problem of adverse
selection. Note also that we necessarily have t∗ ≥ τ . Thus, there possibly
exists a range of types, which would be offered the contract δ in a world
without adverse selection but are offered δ in a world with adverse selection.

Finally, observe that F is strictly supermodular in the reduced type t and
the monitoring cost γ (use formula (18)), hence A, the set of maxima of F ,
is increasing in γ.

Our paper is thus a first step towards a systematic analysis of the impact
of ex-ante and ex-post asymmetric information for the structure of optimal
contracts. As it is already apparent from our analysis, this impact is not
trivial and interested. It certainly deserves further research.
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