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Abstract 
 

We argue that evolution will tend to erode vengefulness as a preference trait, due to the costs 

associated with its exercise. We identify two problems: threshold and mimicry. The first asks 

how vengeance can evolve from low values where it has a negative fitness gradient. The second 

asks why cheap imitators do not evolve who look like highly vengeful types but do not bear the 

costs of actually wreaking vengeance. We discuss how these problems may be overcome in 

small group interactions where encounters with outsiders are also important. We analyze the role 

of within-group social norms in overcoming these evolutionary problems. 
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1. The Evolutionary Puzzle of Vengefulness 

Vengefulness is a powerful human motive: when some culprit harms you or your loved 

ones, you may choose to incur a substantial personal cost to harm him in return. There can be 

major economic and social consequences, positive and negative.  A taste for vengeance, the 

desire to ”get even,” is so much a part of daily life (and the evening news) that it is easy to miss 

the evolutionary puzzle. We shall argue that indulging your taste for vengeance in general 

reduces your material payoff or fitness. Absent countervailing forces, the meek (less vengeful 

people) should have inherited the earth long ago, because they had higher fitness. Why then does 

vengeance persist? 

Figure 1 elucidates the fundamental social dilemma in terms of net material benefit (x > 

0) or cost (x < 0) to “Self” and benefit or cost (y >0 or <0) to counterparties, denoted “Other”. 

Economists think most often about the mutual gains quadrant I, where actions simultaneously 

benefit Self and Other. Such symbiotic actions increase social efficiency.1  

Social dilemmas arise from the fact that evolution directly supports behavior that benefits 

Self, i.e., outcomes x > 0 in quadrants IV (or I) but not x < 0 in II (or III), while in contrast, 

efficiency requires outcomes above the diagonal [x +  y = 0]. Social creatures (such as humans) 

thrive on cooperation, by which we mean devices that support outcomes in II+ and discourage 

outcomes in IV-. Such devices somehow internalize Other’s costs and benefits. 

Quadrant IV is the well-studied opportunistic region, where Self benefits at Other’s 

expense; the biological terms are parasitism and predation. The flip side is the altruism quadrant 

II, where Self bears a personal cost in order to benefit Other. Quadrant III is anomalous. In fact, 

Cipolla (1976) refers to behavior producing outcomes in Quadrant III as “stupidity.” Behavior 

producing such outcomes harms both Self and Other, contrary to efficiency as well as self-

interest. How can it persist? We shall argue that the threat of visits to quadrant III (wreaking 

vengeance) helps discipline opportunistic behavior and helps encourage efficient altruism. But 

first we should point out that there are several devices. 

                                                 
1 For simplicity we neglect here possible effects on third parties such as customers of a cartel. Extensions of the 
present diagram could replace “other” by “average of everyone else affected” or could look explicitly at all affected 
types. 
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2. Genetics or Repeated Interactions as Explanations 

Biologists emphasize the device of genetic relatedness. If Other is related to Self to 

degree r>0, then a positive fraction other’s payoffs are internalized via “inclusive fitness” 

(Hamilton, 1964) and evolution favors outcomes above the line [x +  ry = 0]. For example, the 

unusual genetics of insect order hymenoptera lead to r=3/4 between sisters, so it is no surprise 

that most social insects (including ants and bees) belong to this order and that the workers are 

sisters. For humans and most other species, r is only ½ for full siblings and for parent and child, 

is 1/8 for first cousins, and goes to zero exponentially for more distant relations. On average r is 

rather small in human interactions, as in the steep dashed line in Figure 1, since we typically 

have only a few children but work and live in groups with dozens of individuals. Clearly non-

genetic devices are needed to support human social behavior. 

Economists emphasize devices based on repeated interaction, as in the “folk theorem” 

(Fudenberg and Maskin, 1986; Sethi and Somanathan, 2003). Suppose that Other returns the 

benefit (“positive reciprocity”) with probability and delay summarized in discount factor δ ∈ [0, 

1). Then that fraction of other’s payoffs are internalized (Trivers, 1971) and evolution favors 

behavior producing outcomes above the line [x +  δy = 0].2 This device can support a large 

portion of socially efficient behavior when δ is close to 1, i.e., when interactions between two 

individuals are symmetric, predictable and frequent. But humans specialize in exploiting once-

off opportunities with a variety of different partners, and here δ is small, as in the same steep 

dashed line. Other devices are needed to explain such behavior. 

A variation on the repeated interaction scenario is one where cooperative acts are 

credibly communicated to others, who are then more likely to be cooperative in interactions with 

the first individual. This version is referred to as “indirect reciprocity” (e.g., Fehr and Henrich, 

2003), and has been discussed or modeled by Alexander (1987) and Nowak and Sigmund 

(1997), for example. 

 

                                                 
2 Another way to think about it is that with positive reciprocity (or genetic relatedness) one takes a weighted average 
of the first outcome (in II+ or IV+) and the reciprocal outcome (reflected through the 45 degree line, as self and 
other are interchanged, so now in IV+ or II+). This gives an outcome in the mutual gains quadrant I if the weight δ 
(or r) on the reciprocal outcome is sufficiently large. 
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3. Other Regarding Preferences and Indirect Evolution  

Here we will emphasize devices based on other-regarding preferences. For example, 

suppose Self gets a utility increment of ry. Hence Self partially internalizes the material 

externality, and undertakes behavior that is above the line [x +  ry = 0]. Friendly preferences, r 

∈ [0, 1], thus can explain the same range of behavior as genetic relatedness and repeated 

interaction.3 However, by itself the friendly preference device is evolutionarily unstable: those 

with lower positive r will tend to make more personally advantageous choices, gain higher 

material payoff (or fitness), and displace the more friendly types. Friendly preferences therefore 

require the support of other devices.  

Vengeful preferences rescue friendly preferences.4 Self’s material incentive to reduce r 

disappears when others base their values of r on Self’s previous behavior and employ r < 0 if 

Self is insufficiently friendly. Such visits to quadrant III will reduce the fitness of less friendly 

behavior and thus boost friendly behavior. But visits to quadrant III are also costly to the 

avenger, so less vengeful preferences seem fitter. What then supports vengeful preferences: who 

guards the guardians? This is the central question in the present paper. 

In answering this question, our analysis must pass the following theoretical test: people 

with the hypothesized preferences receive at least as much material payoff (or evolutionary 

fitness) as people with alternative preferences. Otherwise, the hypothesized preferences would 

disappear over time, or would never appear in the first place. In a seminal piece, G¨uth and 

Yaari, (1992) described this test as indirect evolution, because evolution operates on preference 

parameters that determine behavior rather than operating directly on behavior. Precursors of this 

idea include Becker (1976) and Rubin and Paul (1979), but it is subsequently to Guth and 

Yaari’s work that the literature has exploded, including papers such as Huck and Oechssler 

(1999), Dekel, Ely and Yilankaya (1998), Ely and Yilankaya (2001), Kockesen, Ok and Sethi 

                                                 
3 Indeed, in principle we could have r>1 and explain inefficient altruistic behavior. The golden rule (“love thy 
neighbor as thyself”) value r=1 seems to be a practical upper bound, however, since no evolutionary devices that we 
know of will tend to push it higher. 
4 Vengeful and friendly preferences are both examples of what is often termed “strong reciprocity”. Other authors 
have tackled the issue of their evolutionary viability, and provided various answers. Henrich and Boyd (2001) use 
the assumption of small amounts of conformist transmission. Gintis (2000) focuses on group extinction threats. In 
his model, strong reciprocity is favored in between-group selection, since it increases group survival chances. Still 
other approaches are possible, e.g., Bowles and Gintis (2001) and Sethi and Somanathan (2001). 
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(2000), Possajennikov (2002a, 2002b), and Samuelson and Swinkels (2001). Many of these 

papers focus on positive reciprocity rather than negative reciprocity, or vengeance. 

 

4. Modeling Other Regarding Preferences  

Two main approaches can be distinguished in the recent literature. The distributional 

preferences approach is exemplified in the Fehr and Schmidt (1999) inequality aversion model, 

the Bolton and Ockenfels (1999) mean preferring model, and the Charness and Rabin (1999) 

social maximin model. These models begin with a standard selfish utility function and add 

additional terms capturing self’s response to how own payoff compares to other’s payoffs. In 

Fehr-Schmidt, for example, my utility decreases (increases) linearly in your payoff when it is 

above (below) my own payoff.  

The other main approach is to model reciprocal preferences directly. Building on the 

Geanakoplos, Pearce and Stacchetti (1989) model of psychological games, Rabin (1993) 

constructs a model of reciprocation for two player normal form games, extended by Dufwenberg 

and Kirchsteiger (1998) and Falk and Fischbacher (1998) to somewhat more general settings. 

The basic idea is that my preferences regarding your payoff depends on my beliefs about your 

intentions, e.g., if I believe you tried to increase my payoff then I want to increase yours. Such 

models are intractable except in the simplest settings. Levine (1998) improves tractability by 

replacing beliefs about others’ intentions by estimates of others’ type.  

We favor a further simplification. Model reciprocal preferences as state dependent: my 

attitude towards your payoffs depends on my state of mind, e.g., friendly or vengeful, and your 

behavior systematically alters my state of mind. This state-dependent other-regarding approach 

is consistent with Sobel (2000) and is hinted at in some other papers including Charness and 

Rabin. The approach is quite flexible and tractable, but in general requires a psychological 

theory of how states of mind change. Fortunately a very simple rule will suffice for present 
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purposes: you become vengeful towards those who betray your trust, and otherwise have 

standard selfish preferences.5 

Empirical evidence is now accumulating that compares the various approaches.  Cox and 

Friedman (2002), for example, review about two dozen recent papers. Some authors of the 

distributional models find evidence favoring their models, but all other authors find evidence 

mainly favoring state-dependent or reciprocal models. Our own reading of the evidence 

convinces us to focus on state dependent preferences, while noting that distributional preferences 

and state dependent preferences can coexist (see footnote 5).  

To formalize these ideas, the first step is to model the underlying social dilemma 

explicitly. In the next section, we provide a particularly stark example, based on a betrayal of 

trust. Specific numbers are used for payoffs, but this can be generalized straightforwardly. 

 

5. Modeling the Underlying Social Dilemma 

Many variants of prisoner’s dilemma and public goods games are reasonable choices. For 

expository purposes we prefer a simple extensive form version of the prisoner’s dilemma. It is a 

convenient vehicle to demonstrate that given a vengeance motive, cooperative behavior is no 

longer dominated and can become part of a Nash equilibrium even when there is no repeat 

interaction.  

Panel A of Figure 2 presents the underlying game, with payoffs graphed in Figure 1. 

Player 1 (Self) can opt out (N) and ensure zero payoffs to both players. Alternatively Self can 

trust (T) player 2 (Other) to cooperate (C), giving both a unit payoff and a social gain of 2. 

However, Other’s payoff is maximized by defecting (D), increasing his payoff to 2 but reducing 

Self’s payoff to –1 and the social gain to 1. The basic game has a unique Nash equilibrium found 

by backward induction (or iterated dominance): Self chooses N because Other would choose D if 

given the opportunity, and social gains are zero. 

To this underlying game we add a punishment technology and a punishment motive as 

shown in Panel B. Self now has the last move and can inflict harm (payoff loss) h on Other at 

                                                 
5 It is also possible to incorporate distributional concerns into this state-dependent preferences approach. Thus, my 
vengeful state may be triggered by being treated unfairly, where unfairness is based on some expectations or norms 
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personal cost ch. The marginal cost parameter c captures the technological opportunities for 

punishing others.  

Self’s punishment motive is given by state-dependent preferences.6  If Other chooses D 

then Self receives a utility bonus of v ln h (but no fitness bonus) from Other’s harm h.  In other 

states utility is equal to own payoff. The motivational parameter v is subject to evolutionary 

forces and is intended to capture an individual’s temperament, e.g., his susceptibility to anger. 

See R. Frank (1988) for an extended discussion of such traits. The functional forms for 

punishment technology and motivation are convenient (we will see shortly that v parameterizes 

the incurred cost) but are not necessary for the main results. The results require only that the 

chosen harm and incurred cost are increasing in v and have adequate range. 

Using the notation ID to indicate the event “Other chooses D,” we write Self’s utility 

function in terms of own payoff x and the reduction h in other’s payoff as U = x + v ID ln h. 

When facing a “culprit” (ID =1), Self chooses h to maximize U = -1 - ch + v ln h.  The unique 

solution of the first order condition is h*=v/c and the incurred cost is indeed ch*=v. For the 

moment assume that Other correctly anticipates this choice. Then we obtain the reduced game in 

Panel C. For selfish preferences (v = 0) it coincides with the original version in Panel A with 

unique Nash equilibrium (N, D) yielding the inefficient outcome (0, 0). For v >c, however, the 

transformed game has a unique Nash equilibrium (T, C) yielding the efficient outcome (1, 1).7 

The threat of vengeance rationalizes Other’s cooperation and Self’s trust. 

 

                                                                                                                                                             
that I possess. In our formulation of the social dilemma, developed in the next section, the betrayal of trust is 
modeled more starkly than “just” unfairness. 
6 Other’s utility function here is simply own payoff. If we were focusing on friendliness instead of vengeance, we 
might write Other’s utility function with a positive component for Self’s payoff when Self chooses T. This would 
also lead to an efficient Nash equilibrium if the relevant coefficient r exceeds 0.5. 
7 One can also model the situation corresponding to a simultaneous move game. In that case, the game is symmetric, 
and D is a dominant strategy for each player in the absence of vengeance. With vengefulness, however, for v >c, the 
transformed game no longer has D as a dominant strategy. When population fraction s plays C, the expected fitness 
of C is W(C)=1s - (1+v)(1-s) and the expected fitness of D is W(D)=(2 -v/c)s. The two expressions are equal at s* = 
(1+1/v)/(1+1/c). For s<s* the expected utility is higher for D and we can expect cooperation to disappear as play 
converges to the inefficient (fitness 0) all-D equilibrium, as in the basic game.  But for s>s* the expected utility is 
higher for C and we can expect vengeance to drive out defection, resulting in the Pareto efficient all-C equilibrium. 
Thus for v >c we have a coordination game with two locally stable pure Nash equilibria and an unstable mixed 
Nash equilibrium at s*<1. The analysis of the evolution of vengeance is very similar for the simultaneous game 
model and the extensive form version described in the body of this paper. 
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6. Evolution of Vengeful Preferences: Threshold and Mimicry Problems 

Consider evolution of the vengeance parameter v in an unstructured population. Assume 

for simplicity that the marginal punishment cost c is constant. Again for simplicity (and perhaps 

realism) assume that, given the current distribution of v within the population, behavior adjusts 

rapidly towards Nash equilibrium but that there is at least a little bit of behavioral noise. Noise is 

present because equilibrium is not quite reached or just because the world is uncertain. For 

example, Self may intend to choose N but may twist and ankle and find himself depending on 

Other’s cooperative behavior, and Other may intend to choose C but oversleeps or gets tied up in 

traffic. Such considerations can be summarized in a behavioral noise amplitude e ≥ 0. Also, 

Other may imperfectly observe Self’s true vengeance level v; say that the observational noise 

amplitude is a ≥ 0.   

The task before us is to compute Self’s (expected) fitness W(v; a, e) for each value of v at 

the relevant short run equilibrium given the observational and behavioral noise. The function W 

defines a fitness landscape in which evolution pushes the evolving trait v uphill (Wright, 1949; 

Eshel, 1983; Kaufman, 1993). We seek long run evolutionary equilibrium where fitness is 

maximal throughout the population distribution. 

First consider the case a = e =  0, where v is perfectly observed and behavior is noiseless. 

Recall from the previous section that in this case the short run equilibrium (N, D) with payoff 

W=0 prevails for v<c, and  (T, C) with W=1 prevails for v<c. Thus W(v; 0, 0) is the unit step 

function at v=c. We can show (Friedman and Singh, 2003) that with a little behavioral noise 

(small e > 0) the step function slopes down, and with a little observational noise (small a > 0) the 

sharp corners are rounded off, as in Figure 3. As indicated, evolution pushes v downward 

towards 0 in the subpopulation initially below a level near c-a, and pushes v in the rest of the 

subpopulation to a level near c+a.  

Thus evolution in this case could lead to two types of individuals. One type is just 

sufficiently vengeful to deter inefficient defection and has fitness W ≈ 1 - 2e. The other type, 

recognizably different, is completely unvengeful and therefore unable to support cooperation. It 

has fitness W ≈  - e. The unvengeful type can’t coexist in evolutionary equilibrium with the more 

vengeful type because (with small positive e) it has much lower fitness and therefore tends to die 

out. But there is a serious problem with the more vengeful type: how could it evolve from low 
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values given the negative fitness gradient? We refer to this as the threshold problem, and will 

outline a solution in the next section.  

Putting aside the threshold problem for the moment, the analysis also assumes that Other 

can observe Self’s type quite accurately. But evolutionary forces affect observability, creating 

what we shall call the Viceroy problem. Butterflies and insect-eating birds play an instructive 

variant on the vengeance game. A butterfly can hide from birds (analogous to N) or fly about 

freely (T), and the bird can prey on it (D) or let it alone (C). Monarch butterflies (Danaus 

plexippus) feed on toxic milkweed and so are very unpalatable (v > c). Their striking Halloween 

markings make them easy for birds to avoid as in the efficient deterrence equilibrium (T, C). 

However, in Santa Cruz and many other areas where Monarchs are common, an unrelated 

species called the Viceroy (Limenitis archippus) has evolved markings that are (from the bird’s 

viewpoint) virtually indistinguishable from the Monarch, a situation that biologists call Batesian 

mimicry. The Viceroys free ride on the Monarch’s high v reputation and are even fitter because 

they do not bear the dietary cost. 

Note that we have not described evolutionary equilibrium in the butterfly-bird game. 

Although evolution favors population growth of Viceroys when scarce, it does not favor either 

species once the Viceroys become common. At that point it is worthwhile for hungry birds to 

sample the butterflies and spit out the unpalatable. An interior equilibrium with both Viceroys 

and Monarchs is possible if Monarchs can survive being spit out. If Monarchs can’t survive the 

experience, then two other evolutionary equilibria seem plausible: one where the Monarchs 

migrate ahead of Viceroys so the latter remains relatively scarce, and a second (called Mullerian 

mimicry) where Viceroys also evolve unpalatability. The field evidence for all three equilibria 

seems inconclusive (cites). 

The Viceroy problem surely arises in the vengeance game. An individual with actual v=0 

who could convincingly mimic v>c would gain a fitness increment of approximately (1+v)e over 

the object of his mimicry, and an increment of approximately 1-e over his candid clone. Such 

increments are irresistible, evolutionarily speaking, so the assumption of near observability 

(small a) cannot be maintained in evolutionary equilibrium, unless some mechanism to control 

this phenomenon is available. We discuss possibilities for overcoming Viceroy and threshold 

problems in the next section. 
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7. The Role of Group Interactions 

We do not know any way to overcome both the threshold problem and the Viceroy 

problem within the context of unstructured interactions in a large population. Potentially, group 

interactions can help. Sober and Wilson (1998) argue that group selection can favor prosocial 

traits, but Richerson and Boyd (1998) point out that genetic group selection in humans is 

implausible due to relatively rapid cross-group gene flow rates. Henrich and Boyd (2001) argue 

that the negative gradient aspect of the threshold problem can be overcome within groups if more 

popular behavior tends to be imitated.8 They then argue, as we will below with a different 

approach, that groups that achieve better internal cooperation will displace other groups. But 

group interactions provide other modeling opportunities that we will now lay out, for 

overcoming the threshold problem. 

The basic theory of repeated games shows how repeat interaction within a small group 

improves the adaptive value of sub-threshold v. Suppose Other expects that he and Self will 

switch roles from time to time, and that he can expect Self to reciprocate his current choice (C or 

D) into the indefinite future. Summarizing in the probability and delay of reciprocation in the 

discount parameter δ, Other compares an immediate payoff of 2-v/c and 0 continuation value if 

he chooses D, to immediate payoff 1 and continuation value δ +  δ2 +  δ3 +  … = δ/(1-δ) if he 

chooses C. Simple calculations reveal that it is advantageous to choose C if δ > ½ in the v=0 

case, and if δ > (c-v)/(2c-v) in case of positive v. The last expression decreases towards 0 as v 

increases towards c. Thus small increments of v < c increase the range of Others who will find it 

in their interest to play C. This boosts Self’s fitness and (depending on the distribution of δ 

within the group) can more than offset the increment’s fitness cost (of order –e, as seen earlier.)  

                                                 
8 The issue in Henrich and Boyd is the same as here, why people would bear the personal cost to punish defectors. 
The paper notes the game theory device of higher order punishments, e.g., third order is punishing those who don’t 
punish defectors. The modeling goal is to stabilize punishments at finite order, and the key insight is that under 
reasonable conditions the need (hence cost) for higher order punishment decreases exponentially as the order 
increases. If conformist transmission has a positive constant impact, then even if it is rather small it can reverse the 
negative payoff gradient at some sufficiently high order of punishment, and hence stabilize lower orders of 
punishment and cooperation. This does seem to be a possible solution, but its appeal to an economist is reduced by 
two considerations. First, if conformist transmission is modeled explicitly, it might be difficult to make it 
independent of the order. For example, if third order punishments are relevant, an imitator would only rarely 
observe the difference between his own third order behavior and that of the majority. The transmission rate 
parameter alpha thus might also decline exponentially in the punishment order and may never reverse the negative 
payoff gradient. Second, economists tend to think that actual payoffs trump conformity when they point in opposite 
directions. (Psychologists and other social scientists are unlikely to share this prejudice.) 
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 Repeat interaction can also reduce the marginal cost of punishing culprits within the 

group. One does not have to retaliate immediately and directly as assumed in Panels B and C of 

Figure 2. Instead, one can tell other group members about the culprit, and they can choose other 

partners for mutually productive activities at little or no cost to anyone except the culprit. If so, 

the effective value of c is quite small within the group. (Later we will describe another group 

punishment technology with even lower cost.) Thus within the group, the threshold is lower and 

moderate positive values of v have positive incremental fitness, and the threshold problem is 

solved.  

At first it seems that similar considerations also solve the Viceroy problem. Given lots of 

repeat interaction and communication among group members, and a small amount of behavioral 

noise, a player’s true v would soon be revealed to his group. Mimicry is not viable in this setting, 

but reputations are. Thus there are devices for overcoming first order cooperation and second 

order enforcement problems within the group. 

Hence, the real problems arise from players’ interactions outside the group. Assume, as 

might be reasonable, that a typical individual does not have significant repeat interaction with 

any particular person outside the group, but the interactions with all people outside the group 

collectively do have a significant effect on her fitness.9 Assume also that individuals can fairly 

reliably assess any individual’s group affiliation and know the reputation of the group. Then we 

have a free rider problem with respect to group reputation. Each individual would benefit from 

using low v in interactions outside the group but the group’s reputation and hence its members’ 

fitness would suffer. The group must somehow regulate its members’ behavior or things will 

                                                 
9 Across-group encounters are also frequent, but a given individual will encounter a specific non-group member 
only very sporadically. An individual in such encounters cannot reliably signal her true v because outward signs can 
be mimicked at low cost, but neither (due to the large numbers of sporadic personal encounters) can she easily 
establish a reputation for her true v. A specific assumption that would capture these considerations is that the 
perceived vengeance parameter of one’s opponent ve is equal to the true value v in encounters within the group, but 
in encounters outside the group ve = λ v  + (1-λ)E v  + ε, an idiosyncratic error plus the weighted average of the 
partner’s group average v  and overall population average E v , with the weight λ on the group average an 
increasing function of group size. The idea is that ve is a Bayesian posterior, with sample information on any 
individual overwhelming priors for internal matches and sample information on the relevant group being important 
for external matches. Implicit in this formulation is a theory of group size. Very large groups would violate the 
assumptions that everyone knows everyone well and monitors the all-C equilibrium, so there are diseconomies of 
scale. At the margin, these diseconomies should balance the economies arising from the dependence of λ on group 
size. We shall not attempt to develop such a theory here, but simply will assume the existence of moderate size 
groups.  
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unravel. We hypothesize that groups themselves possess traits that evolve to solve such 

problems. 

Note that social groups, unlike butterflies, use conscious mechanisms to control mimicry. 

Gangs may have secret handshakes and other codes of communication, but these are relevant 

only for identifying membership of the group. In Indian villages, one aspect of enforcing caste 

distinctions involves codes of dress and bodily decoration, so that lower castes cannot mimic 

upper castes, in general interactions, including with third parties. In that case, the higher caste is 

protecting its group reputation. In large anonymous settings such as towns and cities, these codes 

are harder, if not impossible, to enforce, and mimicry is more common, with lower castes 

redefining their identities to be able to claim higher caste status. 

In general, we may identify three different possible responses to the Viceroy problem. 

The first, and the one most familiar to economists, would be the use of costly signaling. In the 

standard signaling model, one type (say, High) has a lower cost of signaling than another type 

(say, Low), and in a separating equilibrium, the Low type chooses not to mimic the High type. 

For example, “toughness” may be signaled by acquiring tattoos, which would be too painful for 

those who are not “tough”. Depending on the parameters of the situation, however, there may 

also be pooling equilibria, where the two types cannot be distinguished. In the kinds of situations 

we are interested in (across-group interactions where group reputations matter), signaling might 

be enforced by the group, when group benefits to signaling exceed individual benefits. As noted, 

certain kinds of dress codes and bodily decorations may be enforced within groups. 

A second possible response to the Viceroy problem is evasion, so that mimicry is avoided 

by physical separation. This is plausible in the context of migratory butterflies, but it is not clear 

how relevant it might be for human groups. One might also conceive of evasion and pursuit 

taking place in the space of characteristics, with the mimicked species or group evolving new 

traits as the old ones lose their distinctiveness. This would be akin to a dynamic signaling model, 

where multiple signals are possible: as the signaling characteristics of the Viceroy evolve toward 

those of the Monarch, the Monarch may evolve new distinguishing markers. Note once more that 

in the nonhuman species case, the evolution is necessarily through genetic mutation and 

selection, whereas in the case of human groups, conscious choices are involved, in choosing 

signal levels – evolution in this latter case would be cultural, and could be the result of learning. 
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The third and final possibility in responses to the Viceroy problem is that of group 

enforcement. Here we mean enforcement across groups, rather than within groups, which we 

discussed in the context of the signaling model. Thus high-caste groups may be willing to incur 

costs of punishing low-caste groups that try to mimic them in encounters with third parties. The 

benefits are protection of reputation, and fitness gains associated with that protection. Note that 

this enforcement also requires overcoming free-rider problems within the group, but, as we have 

discussed, within-group interactions that are frequent allow repeated game mechanisms to come 

into play. 

 

8. Group Traits and Individual Fitness 

In earlier writings on the subject (Friedman and Singh, 1999, 2001) we have used the 

word meme, but to some readers that suggests an individual trait transmitted via imitation. A 

group trait is a characteristic of the group rather than an individual characteristic. Perhaps the 

sort of group trait most discussed in recent literature is a convention or norm: a Nash equilibrium 

of a coordination game in which it is in each member’s interest to play a certain way given that 

the other group members are doing so, e.g., observe Sabbath on Saturday. But this is 

unnecessarily restrictive. Majority rule and primogeniture (or school mascots such as aggies or 

banana slugs) are group traits that need not be modeled as Nash equilibria of individual behavior. 

Likewise for group traits such as use of a particular flag design, or language, or (closer to home) 

peer review protocols or the use of special jargon. Group traits are often discussed in the context 

of corporate culture and organizational routines (Nelson and Winter, 1982), and recent 

experiments by Weber and Camerer (2003) empirically bear out the existence of some facets of 

organizational culture that are created by organization members, but survive changes in 

individual membership of organizations.10 

The relevant group traits for the present discussion are prescriptions on how individuals 

should behave in social dilemmas. Such prescriptions, when widely shared by group members, 

                                                 
10In these experiments, the relevant dimension of organizational culture is a specialized homemade language 
developed by organization members to complete a task efficiently. This kind of group trait is not relevant for 
encounters with outsiders, but only for within-group interactions. Corporate dress codes would matter for outsiders, 
but are copied very easily. However, it is easy to think of being “hard-nosed” as a corporate trait that might be 
valuable in dealings with outsiders, difficult to imitate, and enforced by internal norms of status.   
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are group traits that are logically distinct from, but that co-evolve with, the individual traits that 

determine actual behavior. For example, the group trait might be the shared belief that the 

appropriate level of the vengeance parameter is 3 and (as we will see in Section 10) that group 

trait might be in evolutionary equilibrium with actual behavior governed by the individual trait 

with a somewhat lower value, say, v = 2.  

One can imagine several different mechanisms by which group traits affect the fitness of 

an individual’s traits. Perhaps the mechanism most familiar to game theorists is higher order 

punishment strategies: deviations of actual behavior from prescriptions are punished, as are 

failures to punish, failures to punish non-punishers, etc., ad infinitum. We prefer to emphasize a 

different mechanism, mediated by status (e.g., Catanzaro, 1992; Nisbett and Cohen, 1996). The 

mechanism has two parts: (a) the group’s traits and the individual’s behavior affect status, and 

(b) status affects fitness.  

To elaborate on (a), we recognize that status may depend on individual traits of all sorts, 

including age, sex, birth order and parental status. In all societies we know about, it also depends 

on contribution to local public goods. Local public goods include access to resources such as 

water supplies, sites for shelter and foraging, and military capabilities. Also included are 

intangibles such as the group’s reputation among other groups, and its internal cohesiveness. 

(cites)  Adherence to the group’s prescribed level of vengefulness vn contributes to that group’s 

internal cohesiveness and external reputation. Thus it is reasonable to postulate that, other things 

equal, an individual will have higher status when his behavior reflects v closer to vn. Such 

behavior upholds the group’s identity; see Akerlof and Kranton (2000). 

Part (b) is straightforward. The group allocates many rival resources; depending on the 

context, these might include marriage partners, home sites, access to fishing holes and plots of 

land. Status is a device for selecting among the numerous coordination equilibria: the higher 

status individuals get the first choice on available home sites etc. (cites) The model below uses a 

single parameter t to combine the sensitivity of fitness to status with the sensitivity of status to 

behavior. 

 

9. Evolution of Group Traits 

Several authors recently have discussed the evolution of individual traits whose fitness 
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depends on their prevalence in the group (e.g., Sober and Wilson, 1998) and other authors have 

discussed the evolution of conventions (cites), but our question is a bit different. Unlike 

individual traits such as v, group traits cannot differ across individuals within a group: everyone 

knows how he is supposed to behave in that group and knows the likely consequences of a 

deviation. Individuals of various sorts may enter or leave a group, and the group may grow or 

shrink, but these changes have no direct impact on group traits. Rather, over time a particular 

group’s trait may drift or occasionally change abruptly as the members’ common understanding 

reacts to experience. 

A detailed micro-dynamic evolutionary model of a group trait would have to consider the 

joint time path of the traits across groups and the group sizes. Such detail seems awkward and 

unnecessary. We need to know which group traits will displace others, but it does not much 

matter whether the displacement occurs through changes in group size or the numbers of groups. 

It seems sufficient to use aggregate dynamics that track the population shares for each group 

trait. 

In specifying even aggregate dynamics one must consider a variety of transmission 

mechanisms for group traits including imitation, proselytization, migration and conquest, as well 

as fertility and mortality. It is possible for horizontal transmission to increase the share of a 

group trait that reduces fitness (e.g., encouraging tobacco consumption), but we do not believe 

that such considerations play a central role for the group traits of present interest. For simplicity 

we will just hypothesize that the population shares respond positively to the average fitness of its 

members relative to the overall population average. In the evolutionary games literature for 

discrete traits, this is usually referred to as monotone dynamics, of which the leading example is 

replicator dynamics (Weibull, 1995). In the much smaller literature on continuous traits, the 

relevant dynamics are gradient (e.g., Friedman and Yellin, 1997): the value of the continuous 

trait increases where the payoff gradient is positive and decreases where it is negative. 

Given the underlying social dilemma considered here, the relevant group traits are 

prescriptions for responding to culprits and cooperators,11 and for responding to deviations from 

the first level prescriptions. Prescriptions for all permutations and combinations could be 

cumbersome, but are mostly irrelevant for present purposes. Given devices discussed earlier that 
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ensure a high degree of cooperation within the group, the relevant group traits can be 

summarized in two parameters: the prescribed degree of vengefulness vn towards culprits outside 

the group, and the tolerance parameter t for dealing with deviations by group members from vn.  

Recall, from the previous section, that deviations x = v - vn of actual from prescribed 

behavior are dealt with by reducing status, which leads to an adverse redistribution of resources 

and reduced fitness for the deviator. We assume simply that the fitness reduction ρ(x) is smooth 

and convex  (i.e., the incremental fitness reduction increases with the magnitude of the 

deviation) and is minimized with value 0 at x = 0. The second order Taylor expansion 

approximation therefore can be written ρ(x; t) = x2/(2t), where deviations are treated less harshly 

the larger is the tolerance parameter t>0.  

 

10. Evolutionary Time Scales and Equilibrium 

A few remarks may be in order about fitness, monotone dynamics and time scales. The 

analysis becomes very simple if there is a hierarchy of time scales so only one sort of trait is 

evolving significantly in any time scale. One can assume that individual levels of v adjust rapidly 

within the genetically feasible range [0, vmax]; the idea is that people learn and accommodate 

themselves to the group’s meme within a short period, say weeks or months. For example, 

according to stories in the media, children raised in Belfast and Beirut brought to the US have no 

problem adapting with a few months to the US norm and then adapting back when they return. 

Group traits also adjust, but in the medium run of years to decades. The capacity for vengeful 

behavior vmax can be thought of as mainly genetic and thus it too can adjust in the long run, over 

several generations.  

The dynamics are trivial in this case because in each time scale only a single scalar 

variable is adjusting, the fitness functions are single peaked, and the direction of change is 

immediate from the definition of fitness. First, individual values of v converge to the level that 

maximizes individual fitness given vn and t. Then vn adjusts (for t fixed) to the level that 

maximizes the group average fitness given the error and noise rates and vmax ; the individual v’s 

trail along with the adjustments in vn. (To be a bit more sophisticated, one could let t adjust at the 

                                                                                                                                                             
11 In the case of the Viceroy problem, we can add prescriptions for dealing with mimicry by other groups as another 
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same time, or separately, and possibly also allow the error and noise rates to evolve.) Finally, if 

the values of v are constrained by vmax then it too evolves, with the other variables moving in its 

wake.  

Of course, time scales actually are not so hierarchical, and there may be nontrivial co-

evolution of individual v (social regulation of emotions), group traits, and emotional capacity. 

We conjecture that such co-evolution would not affect the relevant evolutionary equilibria nor 

alter their stability in the present case, although it certainly can in more general settings.   

We will now sketch how equilibrium norms of vengeance might evolve in our setting. 

We use the basic trust game with observational and behavioral errors, as discussed in Sections 5 

and 6 (see Figure 2),12 and we assume that Self and Other belong to different groups. We will 

assume a simple, two-point distribution of types for Self: they can either have vengeance 

parameter 0 or v > 0. This assumption was discussed in Section 6 (see Figure 3). We will assume 

that there is a Perfect Bayesian Equilibrium (PBE) that is separating. As shown in Friedman and 

Singh (2003b), this requires that the proportion of vengeful types of Self that are encountered by 

Other is neither too small nor too large. The intuition is that if there are too few vengeful types, 

then Other has an insufficient incentive to ever cooperate, whereas if there are too many 

vengeful types, either there is a pooling equilibrium with only trust and cooperation, or Other’s 

cooperation gets Self to always trust, but this would lead Other to defect sometimes, so that there 

is no (pure-strategy) equilibrium.13 

Focusing on the separating equilibrium, we can summarize the possible payoffs and 

probabilities in the following table. Note that the probability α combines two error possibilities: 

an accurate observation followed by a behavioral error, and an observation error followed by 

intended behavior. To the fitness payoffs in Table 1, we add the consequences of the social norm 

discussed in Section 8. In particular, if the individual vengeance parameter, v, deviates from the 

group norm, vn, then the individual suffers a fitness loss, through loss of status, given by ρ(x; t) = 

x2/(2t), where x = v - vn. Incorporating this additional term, then, using the payoffs and 

probabilities in Table 1, the vengeful Self’s expected fitness is given by  

                                                                                                                                                             
component of the relevant group traits. 
12 Thus, our assumptions here are an alternative to those discussed in footnote 9. 
13 Details of this logic, as well as the precise bounds on the proportion of vengeful types in the population, are in 
Friedman and Singh (2003b). 
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W(v; vn) = 0.e + 1.(1 – e)(1 – α) – (1 + v).(1 – e) α + ρ(v - vn). (1 – e) α  

  

Table 1: PBE Probabilities 

 Fitness Payoff Equilibrium Probability 

 Choice      Self, Other Strategies: (NT, DC) 

 

v > 0 
(N,  .)       

(T, C)       

(T, D)    

       0,     0 

       1,     1  

 -(1+v), 2-v/c 

e 

(1 – e)(1 – α) 

(1 – e)α 

 

v = 0 
(N,  .)   

(T, C)    

(T, D)      

       0,     0 

       1,     1 

      -1,     2 

1 - e 

eα 

e(1 – α) 

 
Notes:  
Other observes s = 1 with probability a in (0, ½) when v = 0, and observes s = 0 with probability a when v > 0.  
Other chooses his less preferred action with probability α = a(1 – e) + e(1 – a) = e + a – 2ae. 

 

Now dynamics in the current setting, which assumes hierarchical time scales, converge 

the individual’s vengeance parameter toward the value that maximizes individual expected 

fitness. A simple calculation yields the first order condition ρ′(v - vn) = 1. This, in turn, for the 

quadratic case reduces to the condition v = vn – t.14 We see that, in this equilibrium, groups will 

enjoin an exaggerated version of the optimal v, but the individually optimal v prevails. That 

optimum is the same as in Fig 3, since group reputations have only small observational error.  

Note the comparative statics: the punishment technology for out-group interactions is the 

relevant c, and the prevailing v tracks the optimum given that value of c. Thus the model implies 

that easier detection and punishment of culprits will lower people’s taste for the amount of 

                                                 
14 The identical first-order condition and individual equilibrium are derived in Friedman and Singh (1999, 2001). 
Our earlier results are derived for the simultaneous-move case that was described in footnote 7. There we also allow 
for somewhat more complex group interactions and perceptions, as well as including a more detailed discussion of 
reputation and status issues, and of relevant biological constraints on vengeance. In particular, in the simultaneous 
move game, there is symmetry, and either player can choose to defect. Nevertheless, the outcome in terms of the 
individual we focus on is similar, and is based on the marginal logic of trading off the cost of individual retaliation 
and the impact on status within the group. 
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punishment in long run equilibrium. Also, higher tolerance t in a group correlates with higher vn, 

although there is not really a causal relationship either way. 

In the analysis to this point, we can assume that everyone in Self’s group is identical, so 

that vn – t is also the group average vengeance parameter. Examining the dynamics of this group 

average proceeds as follows. In the case of group average fitness, status losses represented by the 

function ρ(x; t) are netted out for the group, so that average fitness is 

Wg( v ) = 0.e + 1.(1 – e)(1 – α) – (1 + v ).(1 – e) α . 

In our earlier work, we assumed that the probability of facing someone who would defect was 

described by an encounter function that was decreasing in v . In the current formulation, we 

adopt the argument of Friedman and Singh (2003b), that the probability of an observational error 

is negatively related to the level of the group average vengeance parameter, so that a = A( v ), 

with a negative first derivative.15  

 Now it is easy to derive the first-order condition for the group optimum, which is denoted 

vo. The condition is A′( vo)(2 + vo) + A( vo) = 0. If, for example, A(v) = 0.5exp (-v/b),16 then it is 

easy to see that the first order condition reduces to vo = b – 2.17 Alternative assumptions on A(v) 

are also possible, such as a Gaussian rather than exponential form: we used this alternative in 

Friedman and Singh (2003b) to derive a long run version of PBE (focusing in that case on 

populations in general, rather than interactions among members of small groups). In any case, in 

the medium run, quality of the individual and group optima will yield an expression for the 

vengeance norm for the group. In the case of our specific functions used, we have the result that 

vn = t + b – 2.18 

We have, in this section, provided some analytical details of a stylized model of the 

evolution of vengeful preferences that are supported by within-group social norms, but that 

operate in encounters with outsiders. To some extent this is a partial equilibrium, since we have 

                                                 
15 Note that this dependence did not come into play at the individual level, since we assume that observability is 
driven by group traits. The justification here is that more individuals from vengeful groups are more likely to be 
correctly perceived. 
16 Note that the factor 0.5 ensures that as vengefulness goes to 0, the observation becomes completely noisy, which 
is as it should be. 
17 In our earlier work, this expression was derived from an ‘encounter function’ that assumed that the probability of 
encounters with defecting players from other groups would be decreasing in the individual’s own-group vengeance 
parameter. We see that our alternative assumption, where the probability of correct observation is affected, has a 
similar implication, as one might expect. 
18 Note that we assume throughout our discussion that these expressions are valid interior solutions. 
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not worked out how the entire distribution of vengeance parameters over different groups might 

evolve. Note that various groups may differ in their environments and the frequency of their 

interactions with each other. For example, pastoral and agricultural groups may end up with 

different equilibrium levels of vengeance (Nisbett and Cohen, 1996, and references therein). 

 

11. Discussion 

 In this paper, we have discussed some of the issues that arise in considering the 

evolutionary viability of the trait of vengefulness. We have offered an explanation that is based 

on interactions among small groups. These interactions are not frequent enough to support the 

use of repeated game or related mechanisms for reciprocity. However, they are important enough 

in the aggregate to affect fitness. We have argued that small groups can enforce relatively 

costless norms of vengeance, and shown how individual adherence to these norms, while 

imperfect, can be strong enough in evolutionary equilibrium to sustain cooperative outcomes in 

inter-group encounters. We have discussed how the theoretical problem of evolving a small 

degree of vengeance, insufficient for the above equilibrium, can be overcome through its role in 

within-group encounters. 

Our analysis is not the only approach to the problem of explaining vengefulness. Several 

authors have encountered the viability problem in one form or another, and have found ways to 

finesse it. As noted earlier, Henrich and Boyd (2001) argue that the negative gradient aspect of 

the threshold problem can be overcome within groups if more popular behavior tends to be 

imitated, even when this conformity effect is very weak. As a result, groups with this property 

achieve better internal cooperation, and displace other groups. 

Rosenthal (1996) considers a limited form of vengeance in which a player can detect 

culprits and shun them after the first encounter. The payoffs of such players (called TBV for 

"trust but verify") are all reduced by verification costs.  Rosenthal begins with a basic stage 

game like ours and then modifies it by expressing payoffs as present values of the continuing 

relationship. The harm a TBV player inflicts on a culprit is the present value of payoffs the 

culprit foregoes after the initial temptation payoff. The punishment cost is the present value of 

verification less the present value of the avoided (sucker payoff) loss, which for relevant 

parameter values is negative. Thus punishment brings a net personal benefit and the all-C 
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strategy (corresponding to our v=0 player) does not weakly dominate the TBV strategy. 

Rosenthal finds several NE for his 3x3 symmetric game, and all-D need not be the only stable 

equilibrium. For certain parameter configurations, there is an interior NE that is stable under 

some (but not all) monotone dynamics. Unfortunately, no such stable equilibrium would exist 

under our maintained assumption that vengeance is costly and cannot reduce the sting of the 

sucker payoff.  

 Huck and Oechssler (1996) deal with the problem in a richer context than ours. In the 

"ultimatum game" they study, players interact in small groups and have two roles, each played 

half the time. In one role ("responder") they can pursue a costly vengeance strategy. Since there 

are only two possible offers, shading of punishments is not possible.  With finite populations (or 

infinite populations interacting in small groups), punishments may increase the individual’s 

relative fitness although it lowers absolute fitness. As the dynamics in their model are solely 

driven by relative fitness, the vengeful trait survives. However, there is no continuous evolvable 

trait in their model, which would be analogous to our vengeance parameter, v. 

The solution we have proposed to the viability problem is related to the two-level model 

for the evolution of cooperation as exposited in Sober and Wilson (1998) and S. Frank (1998). 

These authors note that, using a tautology known as the Price equation (G. R. Price, 1970)19, one 

can demonstrate the possibility that a socially beneficial but dominated strategy (call it C) might 

survive in evolutionary equilibrium when group interactions are important. The idea in their 

analysis is that groups with a high proportion of C players have higher average fitness and thus 

grow faster than groups with a smaller proportion, and this effect may more than offset C’s 

decline in relative prevalence within each particular group. The necessary conditions for C to 

survive (it can never eliminate D but may be able to coexist in equilibrium) are rather stringent. 

Besides the obvious condition that the group effect favoring C must be stronger than the 

individual effect favoring the dominant strategy D, it must also be the case that the groups 

dissolve and remix sufficiently often, and that the new groups have sufficiently variable 

proportions of C and D players. These special conditions may be met for some parasites, but 

seem quite implausible as a genetic explanation of human cooperation. Indeed, Sober and Wilson 

                                                 
19 The Price equation uses the definition of covariance to decompose the change in prevalence of a trait into two 
components, e.g., the direct effect from individual fitness and an indirect effect incorporating the spillovers within 
the group. 
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invoke memetic evolution and discuss the importance of cultural norms for rewarding 

cooperative behavior and punishing uncooperative behavior. They avoid the viability problem by 

assuming in essence that c is 0; see p151 for the most explicit discussion of this point.  

Bowles and Gintis (1998) consider the genetic evolution of vengeance in the context of a 

voluntary contribution game. They assume a direct tie between two discrete traits, a preference 

for punishing shirkers (analogous to our v) and a preference for helping a team of cooperators. 

Their argument is a version of two-level selection as in Sober and Wilson and again is rather 

delicate. In an essay on the rise of the nation state in the last millennium, Bowles (1998) uses a 

version of the same model that allows for cultural and genetic coevolution. 

Yet another way to avoid the viability problem is to assume that individuals with higher 

values of v encounter D play less frequently. R. Frank (1987) discusses this possibility 

informally and formally models the evolution of a visible altruistic (rather than vengeful) trait. It 

is not hard to show under some specifications of how the frequency of cooperators depends on v 

that there is a positive level of v that maximizes fitness. Indeed, if each individual’s v were 

observable, then those with higher v might encounter D-play less frequently (as in R. Frank’s 

1988 discussion) and thus maintain equal or higher fitness. This “greenbeard” solution20 ignores 

the evolutionary pressure for lower v individuals to mimic the visible signs of higher v, which we 

have discussed in the context of the Viceroy problem. 

We have offered a somewhat more complex resolution of the viability problem because 

we believe that the relation between v and the frequency of encountering cooperators arises 

mainly at the group level rather than at the individual level.  We have argued that within well-

functioning groups, D behavior is rare and dealing with it is not an important source of fitness 

differences. Presumably D behavior is more frequently encountered with partners outside one’s 

own group, and we believe that here group reputations are the key, not individual signals or 

individual reputations. We have also suggested how within-group mechanisms might control the 

Viceroy problem. 

                                                 
20 This term is due to Dawkins (1976), and is a used as a fanciful but striking example of identifiability.  A certain 
type of individual is identified by their green beards, and somehow no other type of individual is able to mimic 
them, even when it is strongly in their evolutionary interest. 
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Our approach has focused most directly on the problem of the evolution and persistence 

of vengefulness, and we believe that it provides some new insights. Nevertheless, our discussion 

has finessed many important questions. Here are two methodological questions that we have not 

addressed in this paper.  

• Other-regarding preferences may involve a host of contingencies besides whether Other 

belongs to Self’s own group and whether he is a culprit. What theoretical discipline, as well 

as empirical evidence, can keep such models sharp and tractable? Intuitively, the requisite 

preferences must aid fitness in a variety of situations, and the answer to this question may 

require identifying canonical games that best capture human experience. 

• Introducing a group structure on interactions and allowing groups a very low cost 

punishment strategy creates a huge set of possible evolutionary equilibria, larger even than in 

the “folk theorem.” What selection criteria can be brought to bear on the model to narrow 

down the set of equilibria?  In Friedman and Singh (2003a), we have introduced the concept 

of Evolutionary Perfect Bayesian Equilibrium, which may offer one approach to answering 

this question. 

Finally, we provide some broader perspective on our approach to modeling the arising 

and persistence of vengefulness. We have used the existence of well-functioning norms within 

small groups to support the long-run use of vengeful behavior in across-group interactions. The 

analogy we can offer is to a trellis or scaffolding, where either structure supports the growth or 

erection of something else. The difference between a trellis and scaffolding is that the latter is 

temporary, whereas the former is permanent. In that sense, group traits or norms in our model act 

as a trellis. Without them, the kind of behavior that we posit would erode, as, over time, 

individuals would find it beneficial to shade their vengefulness. Some aspects of within group 

interactions, however, have the characteristics of scaffolding – in particular, in overcoming the 

threshold problem because a small amount of vengefulness increases the range of discount 

factors for which cooperation works in repeated settings. Once the threshold is crossed, other 

factors sustain the level v > c.  Of course, the repeat interactions can still play a role in enforcing 

the norms that matter for sustaining vengefulness. We would like to suggest that this perspective, 

of one set of traits, whether cultural or biological, providing direct support for another trait to 

develop, is a useful idea in general discussions of coevolution. In particular, distinguishing 
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between trellises and scaffoldings can be helpful in understanding the relationship between 

present and past.  
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Figure 2: Fitness Payoffs  
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Figure 3: Fitness W as a Function of Vengefulness v 
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Note: For a = e = 0, the fitness function is a unit step function at v = c. Up to first order in behavioral noise 
amplitude e, the fitness function for a = 0 has slope –e on the first segment and –2e on the second segment. For 
signal noise amplitude a > 0, the fitness function is the convolution of the a=0 fitness function with the signal noise 
density function. It has a local maximum at v=0 and a global maximum near v=c+ a (solid dots) and a minimum 
near v=c- a (open circle).  
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