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Abstract

A large and growing literature on reputation in games builds on the insight that the
possibility of one or more players being other than fully rational can have significant
effects on equilibrium behavior. This literature leaves unexplained the presence of
behavioral players in the first place, and the particular forms of irrationality assumed.
In this paper we endogenize departures from rationality on the basis of an evolutionary
stability criterion, under the assumption that rational players incur a cost which reflects
the greater sophistication of their behavior. This cost may be arbitrarily small. Within
the context of a reputational model of bargaining, we show that evolutionary stability
necessitates the presence of behavioral players, and places significant restrictions on the
set of behavioral types that can coexist. It is consistent, however, with a broad variety
of outcomes ranging from immediate agreement to complete surplus dissipation. The
long run population share of behavioral types is greatest at states in which surplus

dissipation is either negligible or almost complete.
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1 Introduction

A large and growing literature has emerged from the seminal contributions of Kreps and
Wilson (1982) and Milgrom and Roberts (1982) on reputation formation in games. Equilib-
rium behavior in such models often accords more closely with the behavior of experimental
subjects and is more intuitively appealing than behavior under common knowledge of ratio-
nality. For instance, cooperation can occur in most periods of a finitely repeated prisoners’
dilemma (Kreps et al., 1982), entry can be deterred in early periods of the chain store game
(Kreps and Wilson, 1982, Milgrom and Roberts, 1982), and efficient outcomes can be ap-
proximately attained in centipede games (McElvey and Palfrey, 1992). These results depend
rather critically, however, on the nature of departures from rationality that are permitted
within the model. For instance Kreps et al. (1982) consider a ‘tit-for-tat’ player in the
iterated prisoners’ dilemma and McElvey and Palfrey (1992) allow for an altruistic type who
always plays ‘across’ in the centipede game. Alternative assumptions regarding the behavior
of non-rational types may result in very different outcomes. For example, in the context
of repeated games, Fudenberg and Maskin (1986) show that any feasible and individually
rational payoff profile can be supported in equilibrium, by a suitable choice of behavioral
type.

In this paper, we endogenize the nature and extent of departures from rationality on
the basis of a process of evolutionary selection. We do so by interpreting the probability
with which a player is of a particular type with the share of such types in a population
from which the players are randomly drawn. The composition of this population determines
the behavior of rational players and hence the expected payoffs of rational and behavioral
players of each type. When there are payoff differences across types, the differential exerts
evolutionary pressure on the population composition itself. Any long-run outcome of this
process of evolutionary competition must be such that all surviving types have equal payoffs.
Stable population states have the additional property that small perturbations do not result
in cumulative divergence from the state.

When rational types can costlessly and perfectly mimic any behavioral type, they must
obtain payoffs that are at least as great as the most profitable behavioral type. In general
the payoffs of rational players will exceed those of the most profitable behavioral type at any
nondegenerate population composition, in which case only rational players could survive in
the long run. On the other hand, when the successful imitation of behavioral types is not
perfectly costless, the long run population composition need not be degenerate. We allow for

the possibility that rational players incur a cost that behavioral types avoid, and interpret



this cost as arising from the greater flexibility, sophistication and information intensity of
their behavior. In this latter case one may explore the nature of the population composition
in evolutionary equilibrium. This is the central concern of the present paper.

Our analysis is conducted within the framework of a recent model of bargaining and
reputation. Abreu and Gul (2000) have developed a reputation based theory of bargaining
based on multiple behavioral types whom rational players may choose to imitate. Each
behavioral type demands a particular share of the surplus to be divided and is unwilling
to concede to any demand that is incompatible with this share. Equilibrium in this model
is unique (with respect to outcomes) and is generally characterized by inefficient delays.
The uniqueness of equilibrium is itself significant since any division of the surplus can be
consistent with equilibrium when all players are rational.

A first and basic result is that the absence of behavioral types is incompatible with evo-
lutionary stability. However small the cost of optimization that rational players incur, there
does not exist an evolutionarily stable state in which behavioral types are entirely absent,
whereas there do exist stable states in which rational types are not present. Furthermore,
the criterion of evolutionary stability places significant restrictions on the set of behavioral
types that can coexist. We show that if a behavioral type is present at an evolutionary
equilibrium, then the type which makes the complementary demand must also be present.
Thus an aggressive behavioral type (who demands more than half the surplus) must be coun-
terbalanced by a correspondingly conciliatory type at any stable state. This in turn implies
that it is impossible for all behavioral types to be aggressive.

Despite the fact that evolutionary stability significantly restricts the structure of popu-
lation states, we show that it places almost no restrictions on the degree to which inefficient
delays can occur. Stable states can be very close to efficient (with all behavioral types
demanding close to half the surplus, and almost all interactions resulting in immediate
agreement), or they may be very inefficient (with most behavioral types demanding almost
the entire surplus and almost all interactions resulting in perpetual disagreement). At such
extreme states rational players may be absent from the population even if the cost of opti-
mization is very small. In addition, there typically exist stable states with intermediate levels
of efficiency in which behavioral and rational players coexist. Hence evolutionary stability is
consistent with a broad variety of outcomes ranging from no delays to an almost complete
dissipation of the surplus, and with a significant presence or complete absence of rational
players.

One interpretation of behavioral types is that they correspond to individuals who adhere



to particular social conventions regardless of whether it is in their economic interest to do
so. Under this interpretation, our results suggest that different societies facing the same
objective conditions may end up not only with distinct conventions but also with significant
differences in the degree to which their conventions are breached. There is a systematic
and nonmonotonic relationship between the efficiency of the conventions that evolve and the
share of the population that adheres to them. Specifically, rational behavior will be rarest
in societies with conventions at either extreme of the efficiency scale, and most common in
societies with modestly inefficient conventions.

We emphasize that in our analysis an individual’s type is unobservable and can only be
deduced from her actions along the equilibrium path. As is well known, players who exhibit
observable departures from rationality can be successful under evolutionary competition
with rational players because they can commit to actions that involve ‘incredible’ threats
or promises (see, for instance, Banerjee and Weibull, 1995). There is no such possibility of
commitment under complete unobservability, and behavioral types cannot therefore survive
unless rationality comes at a cost. The evolutionary interaction of behavioral types with
more sophisticated players under unobservability has previously been examined by Conlisk
(1980), Dekel and Scotchmer (1992) and Stahl (1993). These papers differ in significant
respects from the present work, most notably in the absence of reputational effects that
induce rational players to imitate behavioral types. Guttman (1996) considers a reputational
model of the finitely repeated prisoners’ dilemma in which a ‘tit-for-tat’ type interacts with
rational players, and the optimization cost has a variable component which increases in the
length of the game. His work differs from ours in that his results entail optimization costs
which are sufficiently large; furthermore since he assumes only a single reputational type
the issue of what configurations of reputational types can survive and in what proportions,
simply does not arise.

The paper is organized as follows. Section 2 describes the equilibrium behavior of ratio-
nal players holding fixed the composition of the population from which players are drawn.
Section 3 traces the resulting payoff implications for rational and behavioral players of each
type, and introduces the criterion of evolutionary stability to be used in the remainder of
the paper. The fact that evolutionary stability necessitates the presence of behavioral types
is shown in Section 4, and additional restrictions on the set of behavioral types that can
co-exist are obtained. Section 5 contains a complete characterization of stable states in the
case of two behavioral types, and shows the range of demands, efficiency and rationality that

can be consistent with evolutionary stability. Section 6 concludes.



2 Bargaining and Reputation in Equilibrium

Consider the following simple bargaining interaction. A surplus normalized to equal one unit
is to be divided among two players. At time 0 the players simultaneously announce demands
a; and ;. If o + a; < 1, the demands are compatible and each player receives a share of
the unit surplus that is proportional to her demand. If not, then either player may concede
to the other’s demand at any time ¢ > 0 provided that neither player has already conceded.
As soon as a concession occurs the game ends and each player receives the discounted value
of their payoff at the time of concession. It is assumed that both players have the same rate
of time preference r. Payoffs are determined as follows: if a single player concedes at time ¢

r

to some demand «; then her opponent’s discounted payoff is ;e while her own payoff is

(1 — a;)e ™. If both players concede simultaneously at time ¢, the combined payoff is e~
and their individual payoffs are in proportion to their demands.

Players may be either rational or behavioral. At any point in time there is a finite set
of behavioral types denoted C' = {ay, ..., a, }. A behavioral player of type i always demands
a share «a; € C of the surplus, accepts any offer greater than or equal to this demand, and
(perpetually) rejects smaller offers. The probability that any given player is behavioral of
type i is denoted z; > 0, and zy = 1—Y ,_, 2z, > 01is the probability that the player is rational.
Note that these probabilities are the same for both players. We interpret the probabilities
as population shares of each type in a large population from which the two players are
randomly drawn, and refer to the vector z = (z1, ..., z,) as the population composition. This
is an element of the set Q" = {z € R"" | z; >0 and ! 2 < 1}. We shall refer to the
pair (C, z), which specifies the demands made by behavioral types as well as their shares in
the population as the population state.

A strategy for player 1 consists of a probability distribution ' on C and a set of cumu-
lative distributions F;(t) on Ry U {oc} for all pairs ,j such that a; 4+ a; > 1. Here Fjj(t)
is the probability of player 1 conceding to her opponent’s demand by time ¢, given that
the two players have chosen the incompatible demands «; and «; respectively. Similarly, a
strategy for player 2 is given by a probability distribution x? on C' and a set of cumulative
distributions F7(t) on Ry U {oo} for all pairs ¢,j such that a; + o; > 1. This describes
a symmetric version of the continuous time bargaining game examined by Abreu and Gul
(2000), who show that equilibrium is unique. Hence the equilibrium expected payoffs of all
(rational and behavioral) players are determined uniquely as a function of the (commonly
known) population composition z. Given the symmetry assumed here (which itself is a con-

sequence of assuming that the two players are randomly drawn from the same population),



we drop superscripts and let p, denote the probability with which «; is chosen by a rational
player in equilibrium. Similarly, F;;(¢) denotes the probability that a player demanding «;
concedes to her opponent’s incompatible demand o by time ¢.

Abreu and Gul (2000) establish that equilibrium in this game has the following structure.
The probability that a player is behavioral conditional on the fact that she chooses demand
a; is given by

Zj

pi = m
If the demands made by the two players are incompatible, then at most one player concedes
to the other’s demand with positive probability at time 0. That is, if o; +«; > 1 then either
¢ij = 0 or g;; = 0 (or both), where ¢;; = F;;(0) is the probability of immediate concession by
a player demanding o; to a player demanding «;. If concession does not occur at time zero,
a war of attrition results.! A player who has made demand «; and faces an opponent who
has made demand «;, concedes at a constant hazard rate \;;, where

r(1— )

N = aj —(1—a;)

(1)

If neither player concedes immediately to the other’s demand with positive probability (g;; =
¢;i = 0), then the probability that the player choosing «; is behavioral conditional on the
fact that she has not yet conceded increases over time and reaches 1 at time 7;;,where

- )
If T;; = T}; (the probability a player is behavioral reaches 1 simultaneously for both players)
then ¢;; = ¢ = 0 in equilibrium. If not, then one of the players concedes immediately
to the other’s demand with positive probability. This probability of immediate concession
must be precisely such as to cause the probability that each player is behavioral to reach 1
simultaneously for both players. This occurs at time Tg = min {7};,T};}. Hence, if T;; > T},
then ¢;; > 0 = ¢;; (the player demanding a; concedes immediately with positive probability
to the player demanding «;).

A number of results characterizing additional properties of equilibrium behavior in this
bargaining game are presented in the appendix, including the following: (i) if a particular
behavioral type is imitated by rational players then all behavioral types making more ag-

gressive demands are also imitated, and (ii) Any type which is incompatible with all types

'Rather than being assumed, this war of attrition structure is derived by Abreu and Gul as a property

of equilibrium in the the limit of a sequence of dicrete time bargaining games.
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(including itself) must be imitated by rational players and will never be immediately con-
ceded to with positive probability. An immediate corollary of the latter is that if all types are
aggressive (in the sense of demanding more than half the surplus), then all will be imitated
by rational players with probabilities that imply no immediate concessions in equilibrium.
These properties are implicit in the work of Abreu and Gul (2000) and, while tangential to

the present inquiry, are required in proving our main results on evolutionary stability.

3 Payofts

Since the population state (C, z) uniquely determines the equilibrium behavior of rational
players, it also uniquely determines their expected payoffs and those of behavioral types.
Since we wish to endogenize the determination of the population state, payoft functions need
to be defined in a manner that is general enough to encompass different states (and not just
different population compositions for a given state). Accordingly, let C denote the set of
finite subsets of (0,1) and let W = {0,Q!,Q? ...} denote the set of finite dimensional unit

simplexes. Define the set S as follows:
S={C,QeCxW|n=|C|}.

All possible population states are elements of S, and each element of S corresponds to a
population state. The payoffs of the different types present at a population state may be
defined by the functions m; : S — R, for ¢ = 0,1,...,n. Here my(C, z) denotes the expected
payoff to rational players at state (C, z) and, for i > 1, m;(C, z) denotes the expected payoff
to a behavioral player who demands «a; at population state (C, z).2

We shall allow for the possibility that rational players, on account of the greater sophis-
tication of their behavior, incur a cost € > 0 which is deducted from their payoffs from the
bargaining game. The explicit inclusion of such a cost reflects a rudimentary attempt to cor-
rect for the fact that models of unbounded rationality neglect an important scarce resource,
the computational capacity of the human mind (Simon, 1978). Our qualitative results do
not depend on the magnitude of this cost: in particular, € may be taken to be arbitrarily

small.

2Note that S includes the state in which C' and z are both empty (only the rational type is present in
the population). At this state equilibrium behavior is not uniquely determined and so the payoff functions
are not well defined. As shown below, this does not prevent us from investigating the stability of this state

since payoffs are well defined at all other states in any neighborhood of this state.



We wish to identify population states that are the long run outcome of a process of
evolutionary selection. We do this by employing the notion of an evolutionarily stable state
(Maynard Smith and Price, 1973). In order for a state to be stable in this sense, it must be
able to resist small perturbations in the population state. These perturbations may be of
two types: (i) changes in the population composition, holding fixed the set of demands C,
and (ii) changes in the set of demands itself.

A first step in establishing criteria for evolutionary stability is to identify, for a given set
of demands C, states that are stable with respect to small perturbations in the population
composition z. Given some set of demands C', consider any two population compositions z

and 2/, and define f(z,2’) as follows
f(z,2) = Zzﬂri(C’, 2.
i=1

This may be interpreted as the expected payoff to a player drawn from a population with
composition z when the opponent she faces is drawn from a population with composition
z" (with both populations having the same set of possible behavioral demands C). We say
that the population state (C*,2*) is stable with respect to perturbations in the population

composition if, for every 2z’ € Q™ with 2’ # z*, there exists some 7 > 0 such that

f5 (L =n) 2" +n2') > f(Z/, (1 =n) 2" +n2)

for all n € (0,7). The interpretation is that a population with composition z* will obtain a
greater expected payoff than one with any other composition 2z’ against a mixture of the two
in which the latter has sufficiently small weight. The main justification for the use of this
condition is that any population state z* which satisfies it is asymptotically stable under a
variety of evolutionary selection dynamics including the replicator dynamics. An alternative
version of the condition is that there exists some neighborhood N(z*) C Q™ of z* such that
for all z € N(z*) with z # z*, the following holds:

f(z5,2) > f(z,2). (3)

This requires that the “strategy” z* obtain a strictly greater payoff against all nearby strate-
gies z than these strategies get when matched against themselves. This latter version of the

condition will be used in the analysis below.?

3See Hofbauer and Sigmund (1988) for the equivalence of the two definitions, and the relationship between

this static notion of stability and dynamic models of evolutionary selection.



While the above criterion identifies population states that are stable with respect to
small perturbations in the population composition for a given set of behavioral demands C,
it does not address the question of whether such a state would be stable with respect to
perturbations in the set of demands itself. It is amply possible to find population states
that satisfy the condition when the set of possible demands C' is restricted, but which would

4 To address this problem,

be unstable in the presence of a richer set of behavioral types.
consider any population state (C*,z*) € S in which the number of behavioral types is n.
Let apq1 € (0,1) where a1 ¢ C* represent the demand of some ‘mutant’ behavioral type
and let C' = C* U {a,;1} denote the enlarged set of types. Let w = ((1 —n)z*,n) € Q"™ be
a state with weight n > 0 on the population share of the “mutant” type, and weight (1 — 7)
on the incumbent population z*. The payoffs to each type (including the mutant type) are
uniquely determined at any such population state w. We shall say that the state (C*, 2*) is
uninvadable if, for every o, 1 ¢ C*, there exists some 77 > 0 such that, for all n < 7 and all

ie{l,..,n}
i (Cyw) > mpp1 (Cw). (4)

In other words, a state (C*, z*) is uninvadable if all potential mutants earn a strictly lower
payoff than the incumbents when the population state is sufficiently close to (C*, z*).

Any state which is stable with respect to perturbations in the population composition and
is also uninvadable is said to be evolutionarily stable.” Any state which is not evolutionarily
stable is unstable. We turn next to the question of which population states are consistent

with evolutionary stability.

4 Evolutionary Stability

To build intuition for the results to be presented below, consider first a population in which
1
2
tion share 1 € (0,1). The population state is therefore (C, z) where C' = {z} and z = n. At

rational players coexist with a single behavioral type who demands x > 5 and has popula-

this state rational players choose x with probability 1 since a failure to do so would reveal

4For instance, if C' consists of a single demand a; > %, there always exists a state which is stable with
respect to perturbations in the population composition but which is no longer stable if the set of demands

is suitably enlarged. This example is discussed further below.
>The criterion of evolutionary stability is typically applied with some exogenously given finite set of

behaviors, in which case the uninvadability condition can be absorbed into the stability condition (3). We

separate the two in order to allow for types making any demand in the unit interval.



their rationality and force them to concede immediately to their opponents demand. Since
all players demand z, the demand conveys no information about a player’s type and poste-
rior probability that a player is behavioral immediately following the demand is simply 7.
There are no immediate concessions and a war of attrition follows. From (1) and (2), each
player concedes at a hazard rate A = r (1 — z) / (2z — 1) and the probability that a player is
behavioral conditional on this player not having conceded reaches 1 at time 7' = (—logn)/A.

The expected payoff to rational players from this bargaining interaction is 1 — x, since
immediate concession is in the support of the equilibrium strategy. Concession with proba-
bility 1 at time 7' (and not earlier) is also in the support of the equilibrium strategy, so this

must also yield an expected payoft of 1 — z. We therefore have
l—z=01-n)0+n(1-z)e ",

where 6 denotes the payoff that concession with probability 1 at time 7" yields when one’s
opponent is rational (and must therefore have conceded with probability 1 by the time T is
reached) and (1 — x) e is the payoff that concession with probability 1 at time T yields
when one’s opponent is behavioral (and therefore never concedes). Clearly, 6 is also the
payoff that a behavioral player would get when matched with a rational opponent. Hence

the expected payoff to behavioral types is

7T1(C, Z) = (1_77)9: (1_:5) (1_776_TT) ) (5)

The term (1 — z) ne™"" represents the difference between the payoffs of rational and behav-
ioral types from the bargaining interaction. This term can be interpreted as the ‘penalty’
that behavioral types pay because, unlike rational players, they fail to concede even when
their opponent is revealed to be behavioral. This penalty approaches 0 as the population
share of behavioral types vanishes: lim, o7 (C, z) = 1 —z. Since mo(C, z) = 1 —x — ¢, there
exists 7 > 0 such that myg < m; for all n < 5. Hence the behavioral type obtains a strictly
greater payoff than the rational type when the population share of the former is sufficiently
small. For any € > 0, the state in which only rational types are present can be invaded.
The reason why a population of rational players cannot expel a rare aggressive mutant
is the following. The behavioral strategy of never conceding is only costly when behavioral
types encounter each other. The fact that behavioral players fail to concede even when it
becomes certain that their opponent is behavioral is immaterial when they encounter rational
players since this point in time is never reached. As the population share of behavioral types

falls, it becomes increasingly unlikely that behavioral types encounter each other. In the
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limit, the payoffs of behavioral and rational player from the bargaining interaction converge,
so that even an arbitrarily small cost of rationality can give the former an advantage.

Since a population of rational players is unstable in the presence of a single aggressive
behavioral type, this raises the question of whether a population consisting of such a behav-
ioral type together with the rational type can itself be stable. It turns out that it cannot.
To see why, consider a population state (C, z) in which there are two behavioral types, both
of whom demand more than half the surplus. We may write C' = {a;, a2} and suppose,
without loss of generality, that ay > oy > % The population composition is z = (21, 22). At
an equilibrium, both types are imitated with positive probability and there are no immediate
concessions with positive probability in equilibrium.® Since immediate concession is in the
support of the a rational player’s equilibrium strategy regardless of her opponent’s demand,

the expected payoffs to rational types are

mo(C, 2) = (21 + 2opy) (1 — 1) + (22 + 20p5) (1 — a2) -

Let T;; denote the time at which a player demanding o; € C' is revealed to be behavioral when
her opponent has demanded a; € C. Since there are no immediate concessions, T;; = T};.

Using the same reasoning as was used to obtain (5), we obtain

m(C,2) = (214 2011) (1 — ar) (1 — pre™™) + (22 + 2opty) (1 — a2) (1 — poe™""2)
7T2(Ca Z) = (Zl + ZOMl) (1 - OZl) (1 - ple_rTm) + (22 + zo,u2) (1 — a2> (1 — pze—TTzz)

where p; is the posterior probability that player is behavioral at time 0 conditional on her
having demanded ;. From (1) and the fact that ay > «;, we have \y; < Ay; for each
j € {1,2}. This in turn implies from (2) that Tp; > T3, for each j € {1,2} and hence,
from the above equations, that mo(C, 2) > m1(C, 2). In other words, the more aggressive type
obtains a greater payoff than the less aggressive type at any population composition in which
both are present. This payoff advantage arises because, in the case of the more aggressive
type, the ‘penalty’ for not conceding when one’s opponent is revealed to be behavioral is
paid further into the future. Clearly no population state with a single aggressive behavioral
type can therefore be evolutionarily stable, since a type with a more aggressive demand can
invade.

The above argument can be generalized to show that no population in which the behav-
ioral types all demand more than half the surplus can be stable, because a type that is even
more aggressive can invade. Consider, however, a state in which not all types are aggres-

sive, and in which the most aggressive and the least aggressive types make complementary

6This follows from Lemma 2 in the Appendix.
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demands. In this case, if an even more aggressive ‘mutant’ were to enter the population, it
is not necessarily the case that the latter would earn a higher payoff than the incumbents.
The reason is that the payoff advantage identified above is counteracted by the fact that
there the mutant demand, unlike that of the incumbents, is incompatible with that of the
least aggressive type. This suggests that the behavioral types present at any evolutionarily

stable state must consist of complementary pairs. This is indeed the case.

Theorem 1 A population state (C*,z*) is evolutionarily stable only if, for each demand

a; € C* there ewists a complementary demand a; =1 — oy € C*.
Proof. See appendix.

An immediate consequence of Theorem 1 is that at any stable state, there must be at
least one behavioral type which demands at most half the surplus.

While evolutionary stability restricts the set of possible behavioral types that can coexist
in significant and interesting ways, it allows for a very broad range of outcomes with regard
to surplus dissipation and welfare. We show in the next section that states with an almost
complete dissipation of the surplus and no rational types present can also be stable, as can
states which have a significant presence of rational types and are more modestly inefficient.

We do this by characterizing the set of stable states that contain exactly two behavioral

types.

5 Two Behavioral Types

Consider a population with two complementary behavioral types, that is, C' = {a1, s}
where oy =z € (3,1) and ap = 1 — z. Suppose further that the population composition z is
such that z; 4+ 29 = 1, so no rational players are present. The payoffs to the two behavioral

types are, respectively,

T — IZ9

1
Ty = (1—m)(1—zz)+§zQ

At any state satisfying (3), equality of payoffs implies z5 = 2 — 2z and 2§ = 2z — 1. The
(common) payoff to each type is (2 —2z)z. Let s* = (C,z*) and observe that for any
s = (C,z), we have f(s*,s*) = f(s,s*) and

f(s*,8)— f(s,8) = (2] —21) x22 + (25 — 22) ((1 —z) (1 —2) + %zg> :

12



Since (2] — z1) = — (25 — 2z2) we have

P9 = fls8) = (5= ) (1= 0) (=) 4 322 — 2

= (227 z) ((1 — ) (1 ) +%zg —m)
1

= 5(2—2.’13—22)220

with strict equality holding when 2y # 2 — 2z = z5. Hence z* satisfies (3).
To see that z* is uninvadable, consider a population state w = ((1 — n)z*,n) in which a
behavioral ‘mutant’ type demanding a3 = ¥ is present with population share € (0,1), and

let C" = {a1, as, az}. Payoffs to the mutant are as follows:

(

0 ify>zx
3 (C,'LU) = 1 . 1
—&Hy 2+ 51 ifye(l—ux,5]
\ ﬁ)zl—%(l_gw)@—%%n ifye (0,1 —x)

In the first two cases m3 < xzo = mq for all n € (0,1). In the third case, if 7 is sufficiently

1—x
1—z+y

case, there exists 77 > 0 such that for all n < 7 the difference between 73 and max{m, 7o} is

small, 73 < xzy = 7. In the fourth case 73 < (1 —z) 2 + %ZQ + )77 = 9. In each
bounded away from 0. Since lim,_o (71 — 72) = 0, there exists 7 > 0 such that for all n < 7,
we have w3 < min{7, mo}. Hence z* is uninvadable by behavioral types.

To show that z* is uninvadable by the rational type, consider a population composition
z = (1 —n)z*, in which the population share of rational types is 7. It is possible to show
(see Lemma 4 in the appendix) that rational players will never imitate the less aggressive
behavioral type. The payoff to a rational player therefore satisfies

limm (C,2) = lim((1—2)(1—(1-n)z)+ 1 —n)zzy —¢)

n—0 n—0

= 1-2)1—-(2—-22)+x(2—22)—c¢
while lim,, o7 = lim, o7y = (2 — 22) 2. If
e>(1—x)(2x—1) (6)

there exists 77 > 0 such that rational players obtain lower payoffs that the two behavioral
types for all n < 7. Rational players therefore cannot invade. On the other hand, if (6) is

reversed, rational players can invade and z* will not be evolutionarily stable. Since z € (0, 1),
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inequality (6) is necessarily satisfied if £ > %. If, on the other hand, ¢ € (0, %), the range of

values for which (6) is violated comprises an interval:

(20, 20) = G + i (1= 389), 2 _ i\/u - 85))

Note that x; > % and z;, < 1 for all € € (0, %), and that the interval “shrinks” (z; rises and
xp, falls) as e rises. We have therefore proved that any rest point with two complementary
behavioral types demanding x € (%, 1) and 1—x respectively is evolutionarily stable provided
that z € (3,2) or « € (x,1).” In other words, if the aggressive type is sufficiently egalitarian
or sufficiently aggressive, a population consisting of two complementary behavioral types and

no rational types is evolutionarily stable. This is a special case of the following.

Theorem 2 For every x € (%, 1), there exists an evolutionarily stable state with exactly two
complementary behavioral types who demand x and 1 — x respectively. At any such state

rational types will be present if and only if x € (x;, xp,).
Proof. See appendix.

Theorem 2 states that any aggressive behavioral type may be present at an evolutionarily
stable state provided that its complementary type is also present. If the type makes a demand
that is sufficiently close to half the surplus, the corresponding state will resist invasion by
rational types. The same is true if the demand is sufficiently close to the entire surplus. The
existence of stable states without rational players occurs regardless of the magnitude of the
optimization cost, although the range of demands which can be found at such states depends

on this cost.

It is easily seen that the limit case of a population consisting only of a single behavioral type which
demands exactly half the surplus is also evolutionarily stable. The rational type cannot invade because,
in any population with rational players and the incumbent behavioral type, the former will imitate the
single behavioral type with certainty (since a failure to do so would result in the player being revealed to
be rational). Each type gets % in each interaction and with any € > 0 the rational type obtains a strictly
lower payoff than the incumbent. To see that other behavioral types cannot invade, consider some mutant
demanding as # % If ag > % the mutant obtains 0 in all interactions which is strictly less than the payoff
of the incumbent. If ag < % the mutant obtains strictly below % in all interactions while the incumbent
obtains at least % Hence the population is evolutionarily stable.
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Figure 1. Range of demands for which rational types survive

Figure 1 illustrates the manner in which the interval (z;, x},) changes with the optimiza-
tion cost €. At stable states in which the aggressive behavioral demand lies within the
upper and lower bounds, and only at such states, will rational types be present in the pop-
ulation. Higher values of ¢ correspond to a smaller range of demands for which rational
players can survive, but even for ¢ close to zero, there exists a range of demands for which
rational players do not survive. The special case of ¢ = 0.04 is depicted in Figure 2. Here
(x,2p) =~ (0.54,0.96). Corresponding to any aggressive demand within this range, there
exists a stable state at which behavioral and rational types coexist. Corresponding to any
aggressive demand outside this range, there exists a stable state at which only behavioral
types survive. The value of ¢ places an upper bound (but clearly no lower bound) on the

population share of rational players that is consistent with evolutionary stability.
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If one views behavioral types as individuals who adhere to social conventions even when
it is not in their economic interest to do so, one could interpret Theorem 2 as asserting the
existence of a range of stable but distinct societies which may be Pareto-ranked in their levels
of efficiency and welfare. The incidence of conventional (as opposed to rational) behavior
will be greatest in those societies with conventions that are either very efficient or very
inefficient. Societies that stabilize at moderately inefficient conventions will also be those in
which rational types are most prevalent, and hence also those in which conventions are most
likely to be breached.

6 Conclusions

The analysis in this paper may be seen as an attempt to explore the implications of evolution-
ary competition among different behaviors when rationality is costly and reputational effects
are important. In the bargaining environment examined here, we find that an endogenous
explanation for the presence of behavioral types does not require that the cost of rationality
be significant. No matter how small such costs happen to be, not only must behavioral
types be present at stable states, but there must exist stable states in which rational types

are absent. While evolutionary stability substantially restricts the range of behavioral types
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that can co-exist, it allows for the stability of any behavioral type provided that it’s comple-
mentary type is also present. A wide range of demands and delays are therefore consistent
with evolutionary equilibrium.

The basic methodology adopted here could, in principle, be applied to the endogenization
of behavior in any reputational model with behavioral types. To do so, however, requires a
reasonable specification of all possible behavioral types which could potentially survive the
process of evolutionary competition. One could then ask whether the particular departures
from rationality that have been assumed in the literature can be justified on evolutionary

grounds.
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Appendix

Prior to proving Theorems 1 and 2, we present the following results which characterize
equilibrium behavior in the bargaining game for a given population state (C, z). The first

two results are implicit in the work of Abreu and Gul (2000).

Lemma 1 If p; > 0 then p; > 0 for all a; > «.
Proof. Suppose j1; > 0 and p; = 0 for some a; > a;. Then a rational player who demands

a; with certainty and concedes to all demands time 7 > 0 will obtain at least

Z (zo,ukaj + Zk;e_TT (1 — Oék)) + Z (Z[)[Lk + Zk;)

ap>l—oy ap<l—aj Oé] + Qk
The maximum possible payoff that rational players imitating a; can obtain is

Q;
oy + o

Y (w2 (L—a))+ > (zom + 2)

ap>l—ay ap<l—oay

For 7 sufficiently small, the deviation is strictly profitable, contradicting the hypothesis that
p; = 0 in equilibrium. Hence p1; > 0. [ |

Lemma 2 Suppose o; € C and o; + oy > 1 for all ay, € C. Then p; > 0 and qx; = 0 for all
ap € C.

Proof. Suppose a; € C with o; + o > 1 for all ag, € C' and p, = 0. Consider a rational
player who switches to the following strategy: make demand a; with probability 1 and
concede with probability 1 at time 7 > 0. This player will obtain a payoff «; > % against all
rational opponents since she will be believed to be behavioral with certainty, and a payoff
of at least (1 — ay)e "™ against behavioral players. Since the expected payoff of rational
players against each other is at most %, and the expected payoff of rational players against
behavioral players of type k is at most (1 — ay), this deviation will be strictly profitable if 7
is sufficiently small. Hence p; = 0 is inconsistent with equilibrium and we must have p; > 0.

From (1) and (2), observe that

1 1

Ty > Ty, A p;wj <p, ™. (7)

Hence there must be at least one type j such that Tj, > Ty, for all other types k. Such a
player must be imitated by rational types (otherwise T}, = 0 < Tj; for any player k that
is imitated by rational types), and is never conceded to with positive probability at time 0.

Hence rational players imitating this type obtain an expected payoff of at most 1 —ay, against
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opponents who demand «j. A rational player making demand «; gets a payoff of at least
1 — oy against players demanding k. Since types ¢ and j are both imitated in equilibrium,
a rational player making demand «; must get exactly 1 — a4 against players demanding k.

This can only occur if gq; = 0 for all k. [ |

Lemma 3 For any oy, o € C, if qi; > q;i then qij > qi for all oy, € C.
Proof. Suppose ¢;; > ¢;i. Then T;; > T}; and from (7)

P <p ®)

Hence, for any oy € C either (i) g = 0 = qg; or (ii) g = 0 < g, or (iil) gr; > 0 and
qr; > 0. For the first two cases the result is immediate, so suppose g; > 0 and gg; > 0. Then

Ty = T]m < Ty; where

and

Zk
2 + 20pt, (1 — qii)

Dki =

Here pg; is the posterior probability with which a player is behavioral conditional on their
having demanded « and having failed to concede immediately to demand «;. Hence

1

( 2k ) ki _ pkik
ZE + 2oy, (1 - Qki) ’

or

1

( Zk} ) 1ok lfla'
= 19Z K
2k + 20, (1 — qri)

Similarly, since gx; > 0,

1

Zk 1—og 171aj
21, + 2ot (1 — qij)

From the previous two equations and (8), it follows that gx; > g [ |

Lemma 4 Suppose C' = {ay, ag, ag} with % <ap <agand as =1 — oy, and (21, 22, 23) =
(1 —mn)2*,n) where n > 0 and 2* € Q2. Then there exists 7 > 0 such that, for all n < 7,
fig = 0.
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Proof. Let a; = z and ay = y > z. First we show that lim, _,ou; = 0. Suppose,
by way of contradiction, that lim, ,opu; > 0. Then we would have lim, ,op3 = 0 and
lim,, 0 T3, = lim, o T52 = oco. This implies that there exists 7 > 0 such that for all n <7
we have g3; > 0 and ¢32 > 0. In this case the payoffs to rational players demanding x and

rational players demanding y are, respectively,

pr = (L—2)(21+ 2001) + 2 (22 + 2042) + p13 (23 + 20443) ,
ps = (1 =) (21 + 2011) + @ (22 + 20115) + (1 — y) (23 + 20113)

where p;3 > 1 —y and hence p; > p5. But this implies pu; = 0 for all n < 7, contradicting
lim,, o 3 > 0. Hence lim,,_, p13 = 0.
The payoffs to rational players demanding x and rational players demanding 1 — z are,

respectively,

pr = (L—2) (21 + 2041) + (22 + 2042) + p13 (23 + 20443) ,
1
py = (1— m) (21 + Z0M1) + B) (22 + 204) + P23 (23 + ZONJ3> .

Since lim, o p3 = 0, we have lim,,_,o (23 + 2ot3) = 0. Since lim, o (22 + 2opt5) > 25 > 0, and

x > %, there exists 7 > 0 such that for all n < 7,we have p; > p,. Hence for all n < 7,

,LLQZO. .

Lemma 5 Suppose C' = {a1, s, a3} with % < aj, s =1 —ap, and az € (az,a1), and
(21, 29, 23) = ((1 — n) z*,n) where n > 0 and 2* € Q2. Then g3 > 0.

Proof. Let a; =z and a3 = y € (1 — x,x). Lemma 2 implies that p; > 0. Following the
same reasoning as in Lemma 4, we can show that p, = 0 and lim,_,o pt5 = 0. The payoff to

rational players choosing x and y respectively are

pr = (1—x)(21+ 20) + 222 + P13 (23 + ZONJ3>

) 1
Ps = P31(21+ZOM1)+( >22+(23+20u3)m1n{1—y,—}

l—z+y 2

If ¢13 = 0 then p3; =1 — x and, since p;3 > 1 —y and y/ (1 — x +y) < z, we have p; > ps.
Hence ¢35 > 0. |

Proof of Theorem 1. Suppose that there exists a; € C such that a; =1 —a; ¢ C.
Since 1 — a; ¢ C' there exists a mutant demand «,,, > «; such that the set of demands in
C" = C U{a,,} that are compatible with «,, is the same as the set of demands in C’ that
are compatible with «;. Let S = {ay € C" | ay; + oy, < 1} denote this set. Consider the state
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z = ((1 —n) z*,n) where 7 is the population share of a mutant demanding «,,,. Consider first

the case 1, = 0. From Lemma 1, this implies that p, = 0. The payoffs to the two behavioral

types are
«
, . m
Tm (C ) Z) - E 2o Om + E (Zk + Zol‘l’k‘) Qo + aka
Oék§§S OékES
a.
/ . ) i
UY; (C ) Z) - § RO + E (Zk + ZOMk) a; + Oélc‘
ak¢S ap€S

Hence 7, > m; and the mutant can invade.
Consider next the case p,, > 0. The payoffs rational players demanding «,, and «; are

given, respectively, by

O,
P = D 2ot D (2t zarme (L= @) (1= ) + 3 (o 2opn) e
S argSs aR€S
Q;
Pi = Z 2oL dri O + Z (Zk -+ 2o (1 — qlm)) (1 — ak) + Z (Zk: + ZO,U/]C) P
¢S apdsS areS i k

Since p,, > 0 we must have p,, > p,. This, together with the above, implies that there exists
k such that g, < gr;. From Lemma 3, we therefore have gy, < q; for all £ € C. Define py;

as follows:

Zk
2+ 20pty, (1 — qii)

Dhi =

This is the probability that a player demanding «ay is behavioral conditional on her not
having conceded to demand «; at time 0. Since g, < qi; for all k, we have pr; < Prm.

Let T}y = — (log pri) /Aki denote the time at which such a player is first known to be
behavioral. The expected payoff to a rational player demanding «; when confronting a
player demanding « who does not immediately concede is 1 — . This is the same payoff
that would be obtained by a rational player conceding with probability 1 at time T}; (since

concession at this time is in the support of the equilibrium strategy). Hence

1— Q= M eik + L (1 _ ak:) e_TTki‘
2k + Zol 2k + 2ol

Here 6, is the expected payoff of a behavioral type ¢ who encounters a rational player

demanding k£ who does not immediately concede. Similarly
| g = (M) 6+ <L) (1~ ay) e "on,
2k + 2oy 2K+ 2ol
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From (1) and (2),

- agto;—1 apto;—1
—T]%i - le
€ = P

<Py = e,
where the inequality follows from the fact that «,, > «; and pg; < pr.,.. Hence 0, > 0 and
the mutant earns a greater expected payoff against all opponents with demands outside S.

Since the mutant also does strictly better against demands in S, the state z* is invadable. B

Proof of Theorem 2

That the result holds when = ¢ (x;, z;) has been proved in the text. Accordingly, suppose
that z € (z;,2;) and C = {ay, a2} where a; = = € (3,1) and ap = 1 — 2. As in Lemma
4, py = 0 (rational players will never imitate the less aggressive behavioral type) and the

payoffs to the three types are

o = (l—z)(1—29)+a2—¢

m o= (l-z)(l-z)+am—2znl-z)e "
1
Ty = (].—IE) (1—22)"‘522

where

2171)

eﬁ:<1f@)““ 9)

All payoffs must be equal at any state z* satisfying (3). Equality of ¢ and 7; implies

Zi(1l—x)e =g, (10)

where

NG =
—rT* 1
= . 11
) <1 - z) -

. 2e
Zo = .
2 o —1

Equality of my and 75 implies

(12)

We first show that this state satisfies the stability condition (3), and then that it is uninvad-
able.

Stability
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Let s* = (C,z*) and s = (C, 2) for some z € Q2. Since my(s*) = m1(s*) = ma(s*), we have
f(s*,8*) = f(s,8*) for all z € Q% Hence we need to show that f(s*,s) > f(s,s) for all
s # s*. Let A(z) = f(s*,s) — f(s,s). Then

AR = 3G —2)mils)

(2= 20) mo(8) + (2 — 2) ma(8) + (2 — 72) mals)
(

21+ 20 — 20 — 25) mo(s) + (2] — z1) m1(s) + (25 — 22) ma(s)

Hence

Az)=(z1+2z2—2—23) (1 —2) (1 — 22) + 29 — €)
+ (2 —2)(l—2)(1—2)+a2— 2 (L—2)e™)

+ (2 — ) ((1 C ) (1= 2) + %zz)

Simplifying yields A(z) = Ay(z) + Aq(z) where

Ai(z) = (1—x)(z] —21) (zfe_TT* — zle_rT) )
Aolz) = % (20 — 1) (5 — 2)°.

Clearly Ay(z) > 0 for all z such that z; # z3. To prove the result, we need to show that
Ai(z) > 0 for all z such that z; # 2].

Z*

Population Share 2

Population Share 1

Figure 3. Steps in the Proof of Theorem 2
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Consider the set of points K defined as follows

21
= k*
1—22 }

where k* = 27/ (1 — 23) = 27/ (2§ + 2§) < 1. This defines a straight line in z;—2 space. The

K:{z€Q2

line passes through z* and has slope 1/k* > 1 (see Figure 3). From (9) and (11), e =

e "7 at all such points. Hence for all z € K with z; # 2}, we have
A(z)=(1—2x) (2 —2) e >0.

Now consider any point z such that z; > 2] and zp > Z; where (21, 2;) € K. At any such
point 21/ (1 — 29) > 21/ (1 — Zp2) = 27/ (1 — 23). Hence e™" > ™7 and A;(z) > 0. An
analogous argument shows that for any point (21, 22) such that z; < 2z and 2z, < Z; where
(21, 22) € K, we also have A(z) > 0. Hence A;(z) > 0 for all z; # 2] when z lies within the
shaded regions depicted in Figure 3.

Now consider any z such that z; < z} and z > Z, where (21, Z3) € K, such as point z in
Figure 3. For any such point there exist points 2’ and 2" such that zq = 2, = z{, (2], 22) € K,

and z{ = 27 as shown in Figure 3. From (9) and the fact that 1 — zo = z; + 2, we have

Ai(z) = (1—2) (= — 21) <z;e-”’* . < & )(>> .

21+Zo

Since zp is constant at all points on the line connecting 2’ to 2", A;(z) decreases monotonically
as one moves along this line from 2’ to 2”. Since 2’ € K, we have A; (2') > 0 and since
2{ = zj, we have A; (2”) = 0. Hence A;(z) > 0 for all z satisfying z; < 2§ and 2o > Z,
where (z1, 23,1 — 21 — Z3) € K. An analogous argument establishes that A;(z) > 0 for all z
satisfying z; > 2§ and 22 < Zy where (z1, 22) € K. Hence A(z) > 0 for all z # 2*, proving
that z* satisfies (3).

Uninvadability
Consider a population composition z = ((1 —7) 2*,n) where the mutant population share is
n and the mutant demand is y ¢ C'. We consider three cases in turn.

Case 1: Suppose y € (0,1 — z). In this case both y and 1 — x are compatible with all
demands and the more aggressive demand 1 — x will yield a strictly greater payoff in all
interactions for all 7. Moreover, the difference w5 — 73 is bounded away from zero. Since
lim, o7 = lim, ,om = lim, 07y, there exists 7 such that m3 < min{mg,m, w2} for all

n <.
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Case 2: Suppose that y € (z,1). This is the case analyzed in Lemma 4. As shown
there, both aggressive types will be imitated by rational players, the passive type will not be
imitated when 7 is sufficiently small, and there are no immediate concessions to aggressive
demands. The expected payoff to a rational player choosing x and encountering demand z
is 1 — x. This must also be the payoff to a player who concedes with probability 1 at time
T11 = (—logpi1)/A11, since this action is in the support of the rational player’s strategy.

1l—12= <ﬂ) 911 + <L) (1 _ $) e*TTll
21 + 201 21 + 2ol

where 61, is the payoff to a behavioral type who demands x and confronts a rational type

Hence

also demanding x. Against an opponent demanding z, such a behavioral type therefore has

expected payoff

2oy 21 —rT
ty=———10p=1—-2)—| ———— | (1 —2)e ™"
H <Zl + ZOM) = ) (21 + Zo/h) ( )

Similarly, against an opponent demanding x, a behavioral type demanding y has expected

payoff
3= (1—x) — <—Zl ) (1—z)e s
z1 + 2ol
Hence
™ = (214 2019) (1—2)— 2 (1 —2) e ™ 4 g + 2x
T3y = (21 + 20/1,1) (1 — IE) — 21 (1 — .'13) eirTls + UED)
and
lim (m, —m3) = zz—2(1—2)e™ +2}(1—2)lime "
n—0 n—0
= (-1 + 27 (1 —2) lime "1
Tr — % 1 n—0

. € * . : 71‘T13> €
= gpop tal - lime > o

which is bounded away from zero. Since lim,,_,q 7o = lim, o7 = lim,,_,o T2, there exists 7
such that 73 < min{mg, 71, 7o} for all n < 7.
Case 3: Suppose y € (1 — x,z). This is the case examined in Lemma 5, from which we

know that ¢i3 > 0, py > 0 = i, and lim, o g = 0. Using (12),

limp, = (1—-2)1—-2)+zz5=1—2+2¢

n—0
}}12(1)03 = (1_Z2>(?JQ13+(1_5E)(1_Q13>>+<1—x+y) E
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where ¢f; = lim, ¢ ¢13.
Suppose that there exists 7) such that for all n < 7) we have pu; = 0 (the remaining case
is treated below). then ¢f3 = 25/ (1 — 23) and the payoff to the behavioral mutant satisfies

lim7s = lim pg — 27 (1 — z).
n—0 n—0

Since p15 = 0 we must have lim,,_,o p5 < lim,, g p; = 1 — x + 2¢. Hence the above implies

lir%ﬂggl—:c—{—%—z’f(l—m)

7’)*}

From (10) we have 27 (1 —z) = €™ > ¢ so lim, o7m3 < 1 — x + & = lim, o 7. Moreover,
since T is finite lim, .o (71 — 73) is bounded away from zero. Since lim,_,q 7o = lim, o m =
lim, o o, there exists 77 such that m3 < min{mg, 71,75} for all n < 7.

Finally consider the case in which pg3 > 0 for all n > 0. Let p; be the probability that
a player is behavioral conditional on the fact that she has chosen x and has not conceded
immediately to an opponent choosing y. Conditional on her opponent choosing x and not
conceding immediately, the expected payoff to a rational player choosing y is 1 — z. This
is the same as the payoff to a player who concedes with probability 1 at the time T when
the opponent is revealed to be behavioral, where T = (—log py)/A3. Let py and T* denote

lim,, o p1 and lim, T respectively. Hence
l—z=(1—-p)0s+p: (1 —x)e "™

where 63, is the payoff to a player who concedes with probability 1 at the time 7* conditional
on a match with a rational player. A behavioral player choosing y, conditional on her
opponent choosing x and not conceding immediately, therefore gets (1 —pj)f3; =1 —x —
pr(1—z)e™

choosing y are identical. The payoff to behavioral players therefore satisfies

. In all other circumstances the payoffs to behavioral and rational players

imy = lim g — (1~ 25) (1~ i) (1~ — 7 (1 ) ")
n—0 n—0

Since 3 > 0, we have lim,,_,g p3 = lim, o p; =1 — 2 + 2¢. Hence

limms=1—24+2—(1—23)(1—q3)pi(1—z)e T (13)

n—0

We claim that (1 — 23) (1 — ¢f3) 5 (1 — 2) ™" > &. To see this, recall from (10) that 2% (1—
z)e™"T = e. Hence it is sufficient to show that (i) e "7 > eT and (ii) (1 — 23) (1 — ¢&3) f >

z¥. First we prove that (i) holds. Recall that T* = (—logp%)/\3 and T = (—logpy)/A11.
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It is trivially the case that pj > p; (since behavioral types never concede) and y < =z
implies A;3 > Ayp from (1). Hence T* < T which proves (i). To prove (i), observe that

P = Zf/ (1 — 25 — C]13) . Hence

A e e B

1l — 25 —qis

The expression in parenthesis is increasing for all ¢f5 € (0, 2§) with a minimum value of 1.
Hence (ii) holds, which proves the claim that (1 — z3) (1 — ¢i5) 7} (1 —2)e ™" > e. Using
(13) together with this claim yields lim, o753 < 1 — 2 + ¢ = lim, ,om; for all ¢« = 0,1, 2.

Hence there exists 77 such that 73 < min{mg, 71,72} for all n < 7. [ |
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