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1. Introduction

The Choquet integral with respect to a capacity (or a non-additive

probability) has been extensively used in decision theory. Schmeidler

(1989) was the first to use it for calculating expected utility. Gilboa

(1987), Wakker (1989), and Sarin and Wakker (1992) contributed fur-

ther to this literature. Dow and Werlang (1992, 1994) applied the

Choquet integral to game theory and finance. Schmeidler (1986) and

Groes et. al. (1998) provided various characterizations of the Choquet

integral.

In this note we present a new integral with respect to capacities which

differs from the Choquet integral. This integral is then axiomatically

characterized in two ways.

Another prominent integral is the Sugeno (or fuzzy) integral (see,

Sugeno 1974). It is expressed in maximum-minimum terms and it

corresponds to the notion of the median rather than to that of the

average. The Sugeno integral, as opposed to the Choquet integral and

the one introduced here, does not coincide with the regular integral

when the capacity is additive.1

The key property of the new integral is concavity: the integral of the

sum of two functions is less than or equal to the sum of the integrals.

In the context of decision under uncertainty this property might be

interpreted as uncertainty aversion.

Three more axioms are needed to characterize the integral. The first

requires that if the capacity is additive, then the integral coincides with

the regular one. The second is a monotonicity axiom with respect to

capacities. It states that if the capacity v assigns to every subset a

value which is greater than or equal to that assigned by w, then the

integral of any non-negative function with respect to v is greater than

or equal to the integral taken with respect to w.

1For a futher discussion of this issue the reader is referred to Murofushi and
Sugeno (1991).
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The last axiom states that when integrating a function, say X, the

integral does not depend on the values that the capacity takes on the

subset where X vanishes. In other words, the integral of a function

depends only on the values that the capacity ascribes to its support

and its subsets.

The integral proposed here is a slight variation of the concavifica-

tion of a cooperative game that appeared first in Azrieli and Lehrer

(2004). In the last section we introduce an integral w.r.t. fuzzy ca-

pacities. Fuzzy capacities assign subjective expected values to some

random variables (e.g. portfolios). In particular, a fuzzy capacity may

assign subjective probabilities only to some events and to all. The new

integral aggregates all available information and enables one to calcu-

late an average value also when there is a partial information and the

capacity does not provide the likelihood of every possible event.

The integral w.r.t fuzzy capacities is inspired by Azrieli and Lehrer

(2005) who used extensively the operational technique and employed

it to investigate cooperative population games.

It turns out that there is a strong relation between the minimum over

additive capacities and the new integral. This phenomenon is demon-

strated in Section 8. A full equivalence between the representation of

an order over random variables as a minimum over additive capacities2

and a representation by the integral w.r.t. fuzzy capacities is shown in

Section 9.

2. The new integral

A capacity is a function v that assigns a non-negative real number

to every subset of a finite set N and satisfies v(∅) = 0. The capacity

v is said to be defined over N . A capacity P is additive if for any two

disjoint subsets S, T ⊆ N , P (S) + P (T ) = P (S ∪ T ).

Let |N | = n and let v be a capacity defined over it.

2See Gilboa and Schmeidler (1989) for the case of probability distributions.
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Definition 1. (i) The concavification of v, denoted cavv, is defined as

the minimum of all concave and homogeneous functions f : IRn
+ → IR

such that3 f(1lR) ≥ v(R) for every R ⊆ N .

(ii) For any non-negative X ∈ IRn
+, define∫ cav

Xdv = cavv(X).

Remark 1. Since the minimum of a family of concave and homoge-

neous functions over IRn
+ is concave and homogeneous, so is

∫ cav
Xdv,

as a function of X.

Let v and w be two capacities. We say that v ≥ w if v(S) ≥ w(S)

for every S ⊆ N .

Lemma 1. (i) For every X ∈ IRN
+ ,∫ cav

Xdv = max
{ ∑

R⊆N

αRv(R);
∑
R⊆N

αR1lR = X, αR ≥ 0
}

.(1)

(ii)

∫ cav

Xdv = min
P is additive and P≥v

∫ cav

XdP.

The proof of (i) is similar to that of Lemma 1 in Azrieli and Lehrer

(2004) and the proof of (ii) is standard; therefore both are omitted.

Zhang et. al. (2002) discussed expressions similar to that in the

right hand side of eq. (1) with a further restriction that all the sets

are required to be mutually disjoint. With this restriction the integral

becomes analogous to Riemann integral.

Example 1: Let N = {1, 2, 3}, v(N) = 1, v(12) = v(13) = 3
4
, v(23) =

1 and v(i) = 0 for every i ∈ N . A function over N is a 3-dimensional

vector. Consider X = (1, 1, 1). As (1, 1, 1) = 1
2
(1, 1, 0) + 1

2
(1, 0, 1) +

1
2
(0, 1, 1),

∫ cav
Xdv = 1

2
· 3
4
+ 1

2
· 3
4
+ 1

2
= 5

4
. Notice that

∫ cav
Xdv > v(N).

Now consider X ′ = (0, 6
5
, 6

5
).

∫ cav
X ′dv = 6

5
.

31lR is the indicator of R: 1lR = (1l1R, ..., 1lnR), where 1liR equals 1 if i ∈ R and 0,
otherwise.
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3. Characterization

In this section we characterize the new integral. In what follows∫
Xdv should be thought of as a function from pairs (X, v) to the

reals. The goal is to find a set of plausible properties of such a function

that characterizes it uniquely as the new integral.

The first property (including its title) is adopted from Groes et. al.

(1998).

Accordance for Additive Measures - (AAM): if v is additive then∫
Xdv is a regular integral.

The next axiom is the paramount property of the new integral.

Concavity - (CAV): For any v, X , Y and β ∈ (0, 1),

∫
βX + (1−

β)Y dv ≥ β

∫
Xdv + (1− β)

∫
Y dv.

The following property is also shared by the Choquet integral.

Homogeneity - (HO): For any v, X and β ≥ 0,

∫
βXdv = β

∫
Xdv.

The next axiom states that if v ≥ w, then the integral w.r.t. to v is

greater than or equal to that w.r.t. w. Moreover, if v 6≥ w then there

is an indicator function whose integral w.r.t. w is greater than that

w.r.t. v.

Strong monotonicity w.r.t. capacity - (SM): v ≥ w if and only

if

∫
1lSdv ≥

∫
1lSdw for every S ⊆ N .

Let S be a subset of N . The sub-capacity vS is a capacity defined

over S: vS(T ) = v(T ) for every T ⊆ S. The next axiom requires that

the integral of an indicator function with respect to v is equal to the

integral with respect to sub-capacity restricted to S. It suggests that

the integral of a function depends on the values that v takes on the

subset of N where the function is not vanishing.

The following axiom equates two integrals: one w.r.t. v over the

domain N , and another w.r.t. vS over a restricted domain, S.
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Independent of irrelevant events - (IIE): For every S,

∫
1lSdv =∫

1lSdvS.

Proposition 1. (First Characterization) The integral

∫
Xdv satis-

fies (AAM), (CAV), (HO), (SM), and (IIE) if and only if

∫
Xdv =∫ cav

Xdv for every non-negative X.

Proof. The fact that
∫

Xdv satisfies (AAM), (CAV), (HO), (SM), and

(IIE) is easy to check. As for the inverse direction, (SM) 4 implies that

for every additive capacity P that satisfies P ≥ v,
∫

1lSdP ≥
∫

1lSdv.

Lemma 1 (ii) implies that
∫

Xdv, as a function of X, is smaller than

or equal to
∫ cav

Xdv (recall Definition 1). By (CAV) and (HO),
∫

Xdv

is concave and homogeneous. It remains to show that
∫

1lSdv ≥ v(S)

for every S ⊆ N .

We proceed by induction on the size of S. For S such that |S| = 1,

let P (T ) = v(T ) if T = S and P (∅) = 0, otherwise. Thus, v ≥ P and

by (SM),
∫

1lSdv ≥
∫

1lSdP = v(S). Assume that
∫

1lSdv ≥ v(S) for

every S ⊆ N with |S| < ` and we prove it for S of size `.

If v(S) ≤
∫ cav

1lSdv, then
∫ cav

1lSdv =
∑k

i=1 αi

∫ cav
1lRi

dv, where Ri is

a proper subset of S and
∫ cav

1lRi
dv = v(Ri) for every i = 1, ..., k. Thus,∫ cav

1lRi
dv =

∑k
i=1 αiv(Ri). By the induction hypothesis,

∫
1lRi

dv ≥
v(Ri) for every i = 1, ..., k. And by (CAV),

∫
1lSdv ≥

∑k
i=1 αiv(Ri) =∫ cav

1lSdv ≥ v(S), as desired.

We can therefore assume that v(S) =
∫ cav

1lSdv and it is strictly

greater than any combination of the type
∑k

i=1 αi

∫ cav
1lRi

dv, where Ri

is a proper subset of S and αi ≥ 0. The function
∫ cav

Xdv restricted

to IRS
+ (i.e., IRn

+ restricted to the coordinates of S) is concave. Fur-

thermore, the point (1lS,
∫ cav

1lSdv) lies on an extreme ray of the graph

of
∫ cav

Xdv. The separation theorem ensures that there is an additive

capacity P over S such that P (S) = v(S) and P (T ) > v(T ) for every

4In fact, at this point the ‘only if’ direction of (SM) suffices.
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proper subset T of S. Let ε > 0 and consider the additive capacity

P ε defined by P ε(j) = max(0, P (j) − ε) for every j ∈ S. When ε is

sufficiently small, P ε(S) < v(S) and P ε(T ) > v(T ) for every proper

subset T of S. Equivalently, Pε(S) < vS(S) and P ε(T ) > vS(T ) for

every proper subset T of S.

We obtained that P ε 6≥ vS. By5 (SM), there is T ⊆ S such that∫
1lT dvS >

∫
1lT dP ε ≥ P (T ) − |T |ε. I claim that T = S. Indeed, if

T is a proper subset of S, then P ε
T > vT . This implies by (SM) that∫

1lT dP ε
T ≥

∫
1lT dvT =

∫
1lT dvS (the last inequality is by (IIE)), which

is a contradiction. I conclude that
∫

1lSdv =
∫

1lSdvS >
∫

1lSdP ε ≥
P (S) − |S|ε. Since ε is arbitrary,

∫
1lSdv ≥ P (S) = v(S), as desired

and the proof is complete.

The following axiom is a relaxation of (SM).

Monotonicity w.r.t. capacity - (M): If v ≥ w, then

∫
1lSdv ≥∫

1lSdw for every S.

Weak Indicator property - (WIP): For every S,

∫
1lSdv ≥ v(S).

Schmeidler (1986) and Groes et. al. (1998) employ a strong version of

(WIP), called the indicator property, which states that

∫
1lSdv = v(S).

The first part of the proof of Proposition 1 uses (AAM), (CAV),

(HO), and only (M). The second part is devoted to show what (WIP)

explicitly assumes. One therefore obtains,

Proposition 2. (Second Characterization) The integral

∫
Xdv sat-

isfies (AAM), (CAV), (HO), (M), and (WIP) if and only if
∫

Xdv =∫ cav
Xdv for every non-negative X.

4. The new integral and Choquet integral

Let v be a capacity defined over N . The Choquet integral of X

w.r.t v, denoted
∫ C

Xdv, is defined by
∑n

i=1(Xσ(i) − Xσ(i−1))v(Ri),

5At this point the ‘if’ part of (SM) is being used.
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where σ is a permutation over N that satisfies Xσ(1) ≤ ... ≤ Xσ(n) and

Ri = {σ(i), ..., σ(n)} (X(σ(0)) = 0, by convention).

Note that,

X =
∑

αi1lR(i),(2)

where αi = Xσ(i) − Xσ(i−1). Thus, X is a positive linear combination

of indicator functions. Note that the sum in eq. (2) is of the kind

allowed in eq. (1). This means that, for the calculation of the Choquet

integral, X is expressed as a linear combination of indicator functions of

a particular kind. In contrast, in the new integral all such combinations

are allowed, and like in the definition of the Lebesgue integral (see

next section), the one that achieves the maximum of the respective

summation is chosen.

This implies, in particular, that always
∫ C

Xdv ≤
∫ cav

Xdv. Propo-

sition 4 of Azrieli and Lehrer (2004) implies that
∫ C

Xdv =
∫ cav

Xdv

for every X if and only if v is convex (i.e., v(S) + v(T ) ≤ v(S ∪ T ) +

v(S ∩ T ) for every S, T ⊆ N).

Example 1 continued: Let X and X ′ be the functions considered in

Example 1.
∫ C

Xdv = 1 and
∫ C

X ′dv = 6
5
. Thus,

∫ C
X ′dv = 6

5
> 1 =∫ C

Xdv, while
∫ cav

X ′dv = 6
5

< 5
4

=
∫ cav

Xdv. Therefore, if the two

types of integrals were to indicate which of the two random variables,

X and X ′, is better, they would induce different preferences.

5. The new integral as an extension of Lebesgue integral

A function f is simple if it can be written as f =
k∑

i=1

αi1lRi
, where

αi ∈ R. For a simple function, the integral of f with respect to a

measure µ is defined as
k∑

i=1

αi

∫
1lRi

dµ =
k∑

i=1

αiµ(Ri). And for a non-

negative function f it is defined as∫
f dµ := sup

{∫
h dµ; h is simple and h ≤ f

}
.
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Lemma 1 (i) implies that the definition of
∫ cav

Xdv is similar to this

definition.

6. Properties

Properties of the new integral that are not mentioned explicitly in

the axioms are listed in this section. In what follows X and X ′ are

non-negative functions over N , or equivalently, points in IRn
+.

(1)
∫ cav

Xdv is continuous in both, X and v.

(2) Monotonicity w.r.t. functions: if X ≥ X ′, then
∫ cav

Xdv ≥∫ cav
X ′dv.

(3) Proposition 1 of Azrieli and Lehrer (2004) implies that for every

S ⊆ N ,
∫ cav

1lSdv ≥ v(S). If
∫ cav

1lSdv > v(S), then there are

scalars αi > 0 and Ri ⊆ N , i = 1, ..., k , such that
∫ cav

1lSdv =∑k
i=1 αiv(Ri) and

∫ cav
1lRi

dv = v(Ri), i = 1, ..., k.

(4) Proposition 1 of Azrieli and Lehrer (2004) implies that for any

R ⊆ N , the core6 of the sub-capacity vR is not empty if and

only if
∫ cav

1lRdv = v(R). Thus,
∫ cav

1lRdv = v(R) for every

R ⊆ N if and only if the capacity is totally balanced (i.e., the

core of each of its sub-capacities is not empty).

(5) Let S ⊆ N . Define the capacity vS as follows: vS(R) =

v(R) if R 6= S and vS(S) =
∫ cav

1lSdv. Then,
∫ cav

Xdv =∫ cav
XdvS. Thus, increasing the value of the capacity from

v(S) to
∫ cav

1lSdv would not change the integral.

(6) Let v be a capacity. Define the capacity w as follows: w(S) =∫ cav
1lSdv for every S ⊆ N . w is the totally balanced cover of

v. Then,
∫ cav

Xdv =
∫ cav

Xdw for every non-negative X.

(7)
∫ cav

Xdv is piecewise linear in X. That is, the set IRn
+ can

be divided into finitely many closed cones F1, ..., F` such that∫ cav
Xdv is linear in each one: for every X, X ′ ∈ Fi,

∫ cav
X +

X ′dv =
∫ cav

Xdv +
∫ cav

X ′dv.

6The core of v consists of all additive capacities P such that P ≥ v and P (N) =
v(N).
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(8) Therefore,
∫ cav

Xdv is locally additive: Every X is included in

an open cone, say UX , such that for every X ′ ∈ UX ,
∫ cav

X +

X ′dv =
∫ cav

Xdv +
∫ cav

X ′dv.

7. First order stochastic dominance and concavity

Let (v, N) be a capacity, and X, X ′ be two non-negative functions

over N . We say that X ′ (first order) stochastically dominates X w.r.t.

v, denoted X ′ �v X, if for every number t, v(X ′ ≥ t) ≥ v(X ≥ t).

The Choquet integral is monotonic w.r.t. stochastic dominance.

That is, if X ′ �v X, then
∫ C

X ′dv ≥
∫ C

Xdv. In Example 1 X ′ �v X

and nevertheless,
∫ cav

X ′dv <
∫ cav

Xdv. Thus,
∫ cav

is not monotonic

w.r.t. stochastic dominance. The question arises whether there is a

reasonable integral which is monotonic w.r.t. stochastic dominance

and concave (i.e., satisfies (CAV)) at the same time. The following ex-

ample shows that there is no homogeneous (non-trivial) integral which

possesses these two properties.

Example 2: Let N = {1, 2, 3}, v(S) = 1 if |S| ≥ 2 and oth-

erwise, v(S) = 0. If |S| = 2, then 1lS �v 1lN , and if
∫

is mono-

tonic w.r.t. stochastic dominance, then
∫

1lSdv ≥
∫

1lNdv. How-

ever, 1lN =
∑

S; |S|=2
1
2
1lS, and if

∫
is concave and homogeneous, then∫

1lNdv ≥
∑

S; |S|=2
1
2

∫
1lSdv ≥ 3

2

∫
1lNdv. Therefore, in the presence of

homogeneity, monotonicity w.r.t. stochastic dominance and concavity

are not compatible, unless
∫

1lNdv ≤ 0. If, instead, v(S) = 1−ε (ε > 0)

for every S ⊆ N that contains two states, then v becomes monotonic

w.r.t. stochastic dominance.

The set N can be thought of as a state space and the function 2
3
1lN

can be thought of as a portfolio that ensures a payoff of 2
3

at any state.

However, 2
3
1lN can be decomposed as an average of three portfolios:

2
3
1lN =

∑
S; |S|=2

1
3
1lS. Thus, if each of the portfolios 1lS, |S| = 2 (i.e.,

a payoff of 1 is guaranteed if a state in S is realized) is selected with

probability 1
3
, then, on average, a payoff of 2

3
is guaranteed at any

state. The idea behind concavity is that the value of 2
3
1lN should be
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at least the average of the values of the portfolios forming it. That is,∫ cav 2

3
1lNdv ≥

∑
S; |S|=2

1

3

∫ cav

1lSdv.

8. Minimum over the core

The capacity v is exact (Schmeidler , 1972) if and only if for every

S ⊆ N , there is P in the core of v such that P (S) = v(S). It implies

that

∫ cav

1lSdv = min
P in the core of v

∫
1lSdP for every S ⊆ N . It turns out

that a stronger statement is true:

Proposition 3. v is exact if and only if∫ cav

Xdv = min
P in the core of v

∫
XdP

for every non-negative X.

Proof. The ‘if’ direction is immediate. Assume that v is exact and let

X be a non-negative function over N . Let k be the minimal integer

that satisfies X =
∑k

i=1 αi1lRi
, for αi ≥ 0 and Ri ⊆ N, i = 1, ...k; and∫ cav

Xdv =
k∑

i=1

αiv(Ri).(3)

Due to minimality, αi > 0, i = 1, ..., k .

Denote by [(1lRi
, v(Ri)), (1lN , v(N))] the interval connecting the points

(1lRi
, v(Ri)) and (1lN , v(N)) (both in Rn+1). Since v is exact, this in-

terval is on the graph of
∫ cav

Xdv (as a function of X). Let D =

conv ∪k
i=1 [(1lRi

, v(Ri)), (1lN, v(N))].

We claim that D is on the graph of
∫ cav

Xdv D. Otherwise, D is

not on the graph of
∫ cav

Xdv, which means that there is Y such that

Y can be written as a positive combination of 1lRi
, i = 1, ..., k and

∫ cav

Y dv >

k∑
i=1

βiv(Ri)(4)

for every βi ≥ 0, i = 1, ..., k that satisfy Y =
∑k

i=1 βi1lRi
.



A NEW INTEGRAL FOR CAPACITIES 11

Fix a representation of Y : Y =
∑k

i=1 βi1lRi
, βi ≥ 0, i = 1, ..., k.

For δ > 0 sufficiently small δβi < αi, i = 1, ..., k. Thus, X =∑k
i=1 αi1lRi

=
∑k

i=1(αi − δβi)1lRi
+ δβi1lRi

=
∑k

i=1(αi − δβi)1lRi
+ δY .

Homogeneity and monotonicity imply that
∫ cav

Xdv ≥
∑k

i=1(αi −
δβi)v(Ri)+δ

∫ cav
Y dv =

∑k
i=1 αiv(Ri)+δ

( ∫ cav
Y dv−

∑k
i=1 βiv(Ri)

)
=∫ cav

Xdv + δ
( ∫ cav

Y dv −
∑k

i=1 βiv(Ri)
)
. The last equality is due to

eq. (3). We therefore obtained,
∫ cav

Xdv ≥
∫ cav

Xdv + δ
( ∫ cav

Y dv −∑k
i=1 βiv(Ri)

)
>

∫ cav
Xdv, where the last inequality is due to eq. (4).

This is a contradiction and we therefore conclude that D is on the

graph of
∫ cav

Xdv.

Since D is convex, and by the separation theorem, there is an addi-

tive P such that P (Ri) =
∫ cav

1lRi
dv = v(Ri) (the latter equality is due

to exactness), i = 1, ..., k. In particular,
∫ cav

XdP =
∑k

i=1 αiP (Ri) =∑k
i=1 αiv(Ri). Thus, P is in the core of v, and

∫ cav

Xdv ≥ min
P in the core of v

∫
XdP .

The inverse inequality is implied by Lemma 1 (ii), and therefore, the

desired equality.

The analogous statement of Proposition 3 for the Choquet integral

is due to Schmeidler (1986). He showed that v is convex if and only if∫ C

Xdv = min
P in the core of v

∫
XdP

for every non-negative X.

9. An integral w.r.t. a fuzzy capacity

9.1. Fuzzy capacity. Let I = [0, 1]n be the unit square. For every

a ∈ I let |a| be the sum of its coordinates. Any subset of N can be

identified with its indicator, which is an extreme point of I. Thus, a

capacity is a function v that assigns to each extreme point of I a non-

negative number and v(0, ..., 0) = 0. The notion of capacity is extended

here as follows:

Definition 2. (1) The pair (v, A) is a fuzzy capacity if (1, ..., 1) ∈
A ⊆ I, v : A → R+ is continuous, and there is a positive K such that
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v(a) ≤ K|a| for every a ∈ A.

(2) (P, A) is an additive fuzzy capacity if there are non-negative con-

stants, p1, ..., pn, such that for every a = (a1, ..., an) ∈ A, P (a) =∑n
i=1 aipi.

While a capacity v assigns values (subjective probabilities) to events,

a fuzzy capacity assigns values (subjective expected value) to random

variables. The data-base of an agent might enable her to evaluate the

expected values of some random variables (e.g., portfolios) and not

of others. Furthermore, it might enable her to assess the probability

of some events, but not of all of them. The set of variables about

which the agent has firm assessments is represented by A. Note that

A might contain only points of the form 1lS, where S ⊆ N . In this

case v evaluates only the probability of events, and not necessarily all

of them.

The integral aggregates all available information, including individ-

ual assessments of the likelihood of events and expected values of vari-

ables, into a comprehensive picture. Upon observing the comprehensive

picture the agent might re-evaluate the likelihood of events or the ex-

pected values she assigns to random variables and change her mind.

We say that (x1, ..., xn) ≥ (y1, ..., yn) if xi ≥ yi, i = 1, ..., n. A

function f over IRn
+ is said to be monotonic if for every X, Y ∈ IRn

+,

X ≥ Y implies f(X) ≥ f(Y ).

Similar to the definition in Section 2 we define the concavification

of (v, A), denoted cavv, as the minimum of all concave, monotonic

and homogeneous functions f : IRn
+ → IR such that f(a) ≥ v(a) for

every a ∈ A. The minimum of all concave, monotonic and homoge-

neous functions is well defined and possesses the same properties. The

integral w.r.t. (v, A) is defined as∫ cav

Xdv = cavv(X)

for every non-negative X. Similarly to Lemma 1 one obtains,
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∫ cav

Xdv = max
{ k∑

i=1

αiv(ai)
}

,(5)

where the maximum is taken over all ai ∈ A, αi ≤ 0, i = 1, ..., k that

satisfy
∑k

i=1 αiai ≤ X. Denote by coneA the convex cone generated by

A. That is, coneA = {
∑

αiai; ai ∈ A and αi ≥ 0}. Note that in eq.

(5)
∑k

i=1 αiai is allowed to be less than or equal, and not necessarily

equal, to X as in Lemma 1. Inequality is allowed since coneA might

be a strict subset of IRn
+. Note also that if (P, A) is additive, then∫ cav

XdP = P (X) for every X ∈ coneA.

Example 3: Let N = {1, 2}. Thus, I = [0, 1] × [0, 1]. Define

the fuzzy capacity (v, A) as follows: A = {(1, 1), (1
2
, 1

3
)}, v(1, 1) = 1

and v(1
2
, 1

4
) = 1

3
. Consider X = (1, 3

4
). X = 1

2
(1, 1) + (1

2
, 1

4
) and

this representation of X attains the maximum of the right hand side

of eq. (5). Thus,
∫ cav

Xdv = 1
2
· 1 + 1

3
= 5

6
. Now let Y = (2, 3).

Y = (2, 3) ≥ 2(1, 1) and this attains the maximum of the right hand

side of eq. (5). Therefore,
∫ cav

Y dv = 2.

The core of (v, A) (see also7 Aubin (1979) and Azrieli and Lehrer

(2005)) consists of all the additive fuzzy capacities P such that P (1, ..., 1) =

v(1, ..., 1) and for every a ∈ A, P (a) ≥ v(a). The fuzzy capacity

(v, A) is exact if for every a ∈ A there is P in the core of v such that

P (a) = v(a).

9.2. Minimum over additive capacities and the integral. Let

P be a compact set of additive capacities. Denote the fuzzy capacity

(vP , I) as follows: vP(a) = minP∈P
∫ cav

adP = P (a) for every a ∈ I.

Remark 2. For any compact set of additive capacities, P, denote by

convP the convex hull of P. For any a ∈ A, the value vconvP(a) is

attained at an extreme point of convP, which is in P. Therefore, vP =

vconvP .

7Both referred to the special case where A = I.
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The following example illustrates the main idea demonstrated in this

section.

Example 4: Let N = {1, 2, 3} and consider the set P which consists

of the probability distributions P1 = (1
2
, 1

4
, 1

4
), P2 = (1

4
, 1

2
, 1

4
) and P3 =

(1
4
, 1

2
, 1

4
). Denote by w the capacity vP restricted to A = {1lS; S ⊆ N }.

Thus,8 w(N) = 1 and w(S) = |S|1
4

for |S| ≤ 2. In this case for every

non-negative X, minP∈P EP (X) =
∫ cav

Xdw.

Now consider P4 = ( 2
16

, 7
16

, 7
16

) and P ′ = {P1, P2, P3, P4}. Denote

by u the capacity vP ′ restricted to A. Thus, u(N) = 1, u(S) = 1
2

if |S| = 2, u(1) = 1
8
, and u(2) = u(3) = 1

4
. In order to show

that minP∈P ′ EP (X) 6=
∫ cav

Xdu for some non-negative X, consider

X = (3
5
, 2

5
, 0). On one hand, minP∈P ′ EP (X) = 1

4
and on the other,∫ cav

Xdu = 1
5
u(1, 0, 0) + 2

5
u(1, 1, 0) = 1

5
1
8

+ 2
5

1
2

= 9
40

< 1
4
. In other

words, in order to get equality between
∫ cav

XdvP ′ and minP∈P EP (X),

one cannot restrict oneself to A.

We enlarge A: let A′ = A ∪ {(3
5
, 2

5
, 0), (3

5
, 0, 2

5
)}. Define the fuzzy

capacity (w′, A′) as follows: it coincides with u on A, and w′(3
5
, 2

5
, 0) =

w′(3
5
, 0, 2

5
) = 1

4
. We obtained that for every non-negative X, minP∈P ′ EP (X) =∫ cav

Xdw′. For instance, let X = (3
5
, 1

5
, 1

5
). minP∈P ′ EP (X) = EP4(X) =

2
16

3
5

+ 7
16

1
5

+ 7
16

1
5

= 1
4

and
∫ cav

Xdw′ = 1
2
w′(3

5
, 2

5
, 0) + 1

2
w′(3

5
, 0, 2

5
) = 1

4
.

The information embedded in P ′ cannot be compressed into a ca-

pacity defined only over the extreme points of I (i.e., to subsets on N).

The values of w′ over the points (3
5
, 2

5
, 0) and (3

5
, 0, 2

5
) are necessary. On

the other hand, the values of w′ on A′ are sufficient to provide all the

information needed to obtain minP∈P EP (X) through the integral.

Lemma 2. If for any P, P ′ ∈ P, P (1, ..., 1) = P ′(1, ..., 1), then vP is

exact.

Gilboa and Schmeidler (1989) characterized those preference orders

over acts (which are translated to non-negative functions) that can be

represented by a minimum over a compact and convex set of probability

distributions. It turns out that the representations as a minimum over

8In this example we identify a subset of N with its indicator.
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additive capacities (not necessarily probability distributions) and as an

integral w.r.t. a fuzzy capacity are equivalent. Formally,

Proposition 4.

(1) Let P be a compact set of additive capacities. Then,

min
P∈P

P (X) =

∫ cav

XdvP

for every non-negative X. Furthermore, if P is either finite

or a polygon, then there is a fuzzy capacity (v, A) with A being

finite such that minP∈P P (X) =
∫ cav

Xdv.

(2) For every fuzzy capacity (v, A) there is a compact and convex set

of additive capacities (not necessarily probability distributions),

P, such that ∫ cav

Xdv = min
P∈P

P (X).

Moreover, if (v, A) is exact, then P (1, ..., 1) = P ′(1, ..., 1) for

every P, P ′ ∈ P.

The proof9 is rather standard and is therefore omitted.
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