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1 Introduction

In the labor markets where agents seek employment, the contract dates sometimes shift far earlier

than the start of employment. This dynamic phenomenon, known as unraveling, causes ex-post

inefficiencies in market matching even though it may lead to an equilibrium. Contracts are made

before most of the needed information becomes available in markets in which unraveling is observed.

There are many real life examples of markets, where better qualiÞed agents choose to contract

earlier than less qualiÞed agents who wait to make contracts until the start of employment. Elite

colleges have both early and regular admission programs. Another example can be seen in pro-

sports draft selections in the USA.1 Post-season college football bowl selections and entry-level

labor markets for judges and for medical interns are examples of natural experiments involving

unraveling.

This study will focus on entry-level medical intern-hospital labor markets in Britain. It will

explore the nature of strategic behavior in these markets. Centralized institutions were established

to control the dates of contracts in these markets. The entry-level medical intern labor markets

in Britain are regional. We assume that almost every region is similar to the others in terms

of the preferences of agents and information structure. Therefore, the only difference between

these markets appears in the manner through which agents are appointed. British markets employ

different mechanisms to match interns and hospital consultants to each other. These markets

are not competitive. Wage negotiations do not exist. The markets are organized mostly in an

oligopolistic structure that gives all the power to the hospital consultants in the design of these

matching mechanisms. The jobs last only six months, so initial appointments are binding.

Kagel and Roth (KR) (2000) consider a study similar to the environment here. In that study,

they conduct a laboratory experiment on the mechanisms used in Britain. Unver (2000b) works

on an extended experiment. This study will be a complement to the KR (2000) and to the Unver

(2000b) studies, and will answer the questions regarding the success of matching mechanisms using

computational methods.

The basic properties of these labor markets are given in section 2. After proposing matching

games to explore unraveling in these markets in section 3, we will study game theoretic properties of

these matching games in section 4. Then in section 5, we will propose the use of an adaptive artiÞcial

agent model using a genetic algorithm (GA), to analyze the strategic behavior that employees and

employers follow to adjust to an equilibrium from different initial conditions. This model will be

used to analyze the genetic evolutionary strategic behavior of artiÞcial agents who can be viewed

as learning over time which strategies are best to adopt. In section 6, evolution experiments

are simulated to examine different properties of institutions that are used to control the dates of

1Roth and Xing (1994), Li and Rosen (1998) present several other examples.
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contracts. Robust features of evolution will be examined.

This essay allows us to explore an adaptive artiÞcial agent model, that can be used in combi-

nation with laboratory experimentation and even with Þeld applications. This model can be used

in equilibrium selection of a wide variety of equilibria of the matching game.

One interesting result will be the demonstration of how some theoretically unstable mechanisms,

namely linear programming (LP) mechanisms, may not lead to early contracts under the assumption

that agents learn in an evolutionary manner and initially randomize their rank-order lists. This

may help explain the Þeld success of LP mechanisms used in Britain.

1.1 A Brief Literature Survey on Two-Sided Matching

An experimental study by KR (2000) works on a similar environment to the one handled in this

study to analyze timing of transactions. They consider two mechanisms. The main result of the

experiment is that lower levels of early contracts are observed in a stable deferred acceptance (DA)

matching market than in an unstable priority matching market. More qualiÞed agents make early

contracts; less qualiÞed do not arrange early under the unstable priority mechanism. Both type of

agents do not make early contracts under the stable mechanism.

The Unver (2000b) study, an extension to the KR study, shows that a LP mechanism will not do

as well as a stable DA mechanism in terms of preventing harmful early contracts in the laboratory.

Agents do not game their preferences in an optimal way and the Þnitely repeated play of the games

in the experiment is not as long as the computational markets considered in this study. But, it

decreases the unraveling occurred in the decentralized markets.

The timing of transactions in an entry-level labor market framework has been studied by Roth

and Xing (1997) to investigate the turnaround time and bottlenecks in market clearing for clinical

psychologists.

Game theoretical properties of the two-sided matching mechanisms employed in Britain are

studied by Roth (1991b). Roth and Xing (1994), Li and Rosen (1998) and Sonmez (1999) study

the unraveling issue in a theoretical framework. Roth and Rothblum (1999) search advice to

participants in two-sided matching markets.

Entry-level labor markets have been studied in the two-sided matching framework (see Roth and

Sotomayor, 1990 for a theoretical background and motivation) through the marriage and assignment

models. The links between the theoretical framework of Gale and Shapley�s (1962) marriage model

and the applied frameworks observed in the Þeld (such as the entry-level labor markets for American

physicians, osteopaths, dentists, lawyers, sororities, judges, etc.) are established by Roth (1984),

Roth and Sotomayor (1990), Mongell and Roth (1991) and in the above mentioned studies. Roth

(1990) gives a survey about these markets.
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1.2 Coevolution in Games with Multiple Populations

However, all of these listed studies except KR�s (forthcoming) and Unver�s (2000b) investigate the

problem in a mainly static and cooperative framework. These do not exactly describe the reasons

why some unstable mechanisms (such as the London and Cambridge hospitals� selection process

for medical interns) are still in use.

Some other recent studies involving market transition behavior relax the �best response play�

hypothesis of game theory. In place of best response, these studies have adopted an evolutionary

dynamic to update the strategy choices. This dynamic is partly adapted from biological research.

Each agent selects strategies in a game theoretic setting in proportion to their relative ratio in the

population. Evolution continues over time in each repeated play of a game.

Admission markets are perfect settings for application of this hypothesis. Workers change every

year, but they have strong incentives to adapt the experience of the previous generation. Firms

are usually the permanent players. They learn from the previous year�s experience. Equilibrium

selection and the nature of the adjustment process can be examined thoroughly with different

evolution dynamics. We will use a GA for analysis in a computational framework.

Entry-level labor market games possess multiple equilibria which reßect different modes of

coordination of two different sides of agents (workers and Þrms). In matching games, enumeration

of the huge strategy space2 is quite difficult. Any analytical evolutionary concept with a Þxed

set of strategies seems limiting the complex nature of the games. As proposed by Fudenberg and

Levine (1998), GAs seem the best hope in exploration of the strategy spaces using artiÞcial agents.

Therefore, we will focus on GAs.

1.2.1 Description of a Genetic Algorithm

Basically, a GA is a computational tool that permits adaptive optimization or evolution over time,

using genetics-based operators and assumptions of biological evolution. In a game theoretic setting,

a GA is a technique that helps in the analysis of evolution dynamics and determines paths to a

social equilibrium concept or a social convention. GAs search strategy spaces on the trade-off

between exploration and exploitation of results achieved by difference equation and calculus-based

procedures.

By mutating, crossing over, and reproducing strategies, a �population� of existing strategies in

a game can be replaced to form new strategies as the offspring. An existing set of strategies of

agents is called a generation. The Þtness of the strategy measures the success of a strategy in a

generation after a tournament against all strategies in that generation. Using this measure, parent

strategies are selected to produce offspring, which makes up the next generation.
2For example, in a �mixed game� considered in this study there are 7× 7× 27 = 6272 meaningful Þrm strategies,

as programmed in the GA..
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GAs are used in the economics literature generally to Þnd evolution dynamics in macroeconomic

models, where social learning is a major concern. Overlapping generation models and general

equilibrium frameworks are two of the applications of evolution programming in economics. In

game theory, GAs can be applied to complicated games where the strategy sets are too large for

learning models such as the Roth and Erev (1995) model, the Camerer and Ho (1999) model or

stochastic Þctitious play. They can support laboratory experimentation via similarities between

evolution strategies and actual human strategies. As an example, Miller (1996) investigates the

evolved automata of a repeated prisoners� dilemma using a GA. As another example, Andreoni and

Miller (1995) use a genetic algorithm in auction market simulations to Þnd evidence to support the

behavior observed in laboratory experiments. Technical and some theoretical issues regarding the

application of a GA are addressed by Goldberg(1989), Holland (1992), Judd (1998) and Michalewicz

(1994).

The reproduction and crossover process of the GA can be interpreted as the transmission of

experience between generations of agents. Since the KR (2000) experiment treats also workers

as permanent players across generations and since we base our matching game design on this

experiment, we use the same genetics-based learning for both Þrms and workers. Agents of the

same type will use the same reproductive selection. We will also consider only symmetric strategies.

2 The Two-Sided Matching Markets in Britain

The reader can follow Roth (1991b) for a detailed discussion of the matching markets in Britain.

In summary, the matches for consultant and medical intern pairs were realized in a decentralized

manner at the beginning of the century in Britain. However, unraveling appeared in these markets.

Almost simultaneously, many regions adopted different centralized matching mechanisms to prevent

unraveling. A mechanism is a function from the set of preferences to the set of matchings. In

practice, computers process rank-order lists submitted by agents to produce a matching according

to the mechanism. .

In several of the areas, including Newcastle, Birmingham and Edinburgh (1967), the unraveling

problem could not be resolved although centralized but unstable �priority� matching mechanisms

were introduced. They were abandoned after Þeld trial. A mechanism is unstable if a preference

proÞle exists for which the produced matching is unstable. A matching is unstable if a Þrm and a

worker exist who prefer each other rather than their matches or an agent exists who prefers staying

unmatched rather than being matched to the partner assigned.

Several regions were successful in preventing the problem by introducing centralized mecha-

nisms. Roth (1991b) argues that stability determined the winners. Indeed, the successful Edin-

burgh�69 and Cardiff mechanisms were adaptations of stable mechanisms.
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But there are two unstable mechanisms still in use in the London and Cambridge regional

markets of Britain. These, called LP mechanisms, have not been subject to the unraveling problem.

Therefore, they deserve attention, because stability may not be a necessary condition for survival

of a centralized mechanism in the Þeld.

2.1 Description of Centralized Matching Mechanisms

2.1.1 Priority Matching Mechanisms

The mechanisms introduced in Newcastle, Birmingham, and Edinburgh (1967) give a priority rank

to each match, according to the preferences of agents, and matches are realized from the highest

to the lowest priority. Details of the algorithms are given by Roth (1991b).

The Birmingham and Newcastle mechanisms give a priority to a consultant-intern pair as fol-

lows: First note that in a (k, l) match, the consultant lists the student l�th, the student lists the

consultant k�th in the rank-order lists. The number of such a match is k × l. Smaller numbered
matches have higher priorities.

Priorities are �lexicographic� in consultants� preferences for the Edinburgh (1967) mechanism.

If k < l then a (x, k) match is favored before a (y, l) match for any value of x, y. If k = l and x < y

then a (x, l) match has a higher priority than a (y, k) match.

These mechanisms are unstable and have unraveled, so they were abandoned (see example 1 in

appendix A). (1, 1) matches are guaranteed to be realized by these priority mechanisms.

2.1.2 Linear Programming Matching Mechanisms

The mechanisms introduced in London and Cambridge solve an assignment problem to Þnd a

matching. Shah and Farrow (1976) and Roth (1991b) give details of the algorithms. After weights

are assigned to each possible pair with respect to the submitted rank-order lists, they are summed

up for potential pairs in each matching. The resulting weights are used in an integer programming

problem to Þnd a matching that maximizes these weights. For our purposes, the problem reduces

to the linear programming problem
maxxf,w

P
f,w

αf,wxf,w

s.t.
(i)
P
f

xf,w ≤ 1

(ii)
P
w
xf,w ≤ 1

(iii)0 ≤ xf,w ≤ 1 ∀ f and w

(1)

where αf,w is a weight. xf,w = 1 denotes a match between f and w, xf,w = 0 denotes no match

in the solution.

Different regions use different methods to determine these weights. In the London region,

weights are determined by summing up the Þrm�s weight for the worker and the worker�s weight
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for the Þrm in a pair. These individual weights are decreasing in rank of agent in the rank-order

list. In the Cambridge region, the weight for a pair is �lexicographic� in consultant�s preferences.3

Although they are unstable, these algorithms have survived and are still in use. One hypothesis to

account for their survival is that it is easy for the agents to adjust to the system by manipulating

their rank-order lists (see Shah and Farrow, 1976). (1, 1) matches may not be realized (see examples

1 and 2 in appendix A).

2.1.3 Deferred Acceptance Matching Mechanisms

The mechanisms introduced in the Edinburgh (1969) and Cardiff regions are adaptations of Gale

and Shapley�s (1962) stable mechanisms.

In modeling Edinburgh (1969 and later) and Cardiff markets, it will be assumed that these

markets use one-to-one DA mechanisms. The Edinburgh (1969) mechanism will be approximated

by the consultant proposing DA scheme, and the Cardiff mechanism will be approximated by the

intern proposing DA algorithm. The consultant proposing DA algorithm can be stated as follows for

future reference. Suppose Q is the rank-order list proÞle submitted, that is the vector of rank-order

lists submitted by each consultant and student.

At the Þrst step, each consultant, f , proposes to his most favored intern with respect to Q(f).

Each intern, w, holds only the best consultant�s proposal with respect to Q(w) if that is acceptable

to her; she refuses all others.

At any other step, each consultant, f , who does not have an offer held by an intern proposes to

the remaining most favored intern with respect to Q(f). Each intern, w, holds only the best offer

with respect to Q(w) among all the new proposals at this step and the offer held from the previous

step.

When no offers are rejected at a step, the algorithm terminates and tentative agreements are

realized as matches.

These are stable mechanisms, in the sense that the matching produced is stable with respect to

the submitted rank-order list proÞle. They have not unraveled and are still in use.

3For the London mechanism, we use the weights 36, 28, 21, 15, 10, 6 for choices 1, 2, 3, 4, 5, 6 and a negative weight
for an unlisted choice (as given in Shah and Farrow, 1976). A (1, 1) match has the weight 72. (1, 2) and (2, 1)
matches have the weight 64, and so forth. For the Cambridge mechanism, we use the weights 9 for (A,A), 8 for
(A,B), 7 for (A,C), 6 for (B,A), 5 for (B,B), 4 for (B,C), 3 for (C,A), 2 for (C,B) and 1 for (C,C) matches. We
assign, a negative weight for unacceptable matches ((U, x) or (x,U) where x can be A,B,C or U for unacceptable).
For the Cambridge mechanism, an artiÞcial agent�s rank-order list translates as Þrst listed choice A, second and third
B, fourth, Þfth and sixth C. We assume that agents can make one A, two B, three C choices.
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3 An Incomplete Information Model for Unraveling

We begin with an entry-level labor market model of n Þrms (set F ) and m workers (set W ).

In order to motivate the British experience, this study considers a market that clears at three

consecutive rounds. We will refer to consultants as Þrms and to interns as workers in our model.

(Some preliminaries about the cooperative two-sided matching theory are given in appendix A.)

The games considered are partially adopted from the KR (2000) laboratory experiment, because

this is the only work that studies human dynamics in unraveling markets. So, we can compare

our results with those of that study. We also adopt primary computational values from these

experimental games. First, we consider a decentralized matching game.

3.1 The �Decentralized� Matching Game

This game has three periods: In round −2, a Þrm has the option to make an offer to one worker

and a worker has the option to accept one offer. An accepted offer binds parties for an early match.

Round −1 is a replay of round −2 among the players who have not made a contract in round
−2. Similarly, round 0 consists of replay of round −1 among the players who have not made early
contracts yet. The rounds differ from each other in terms of the costs of contract. A match in

round −2 has the cost $2 , round −1 matches cost $1 and round 0 matches do not incur any costs.
Application of these costs is motivated by the decrease in planning ßexibility. Next, we consider

mixed games.

3.2 The �Mixed� Matching Games with Decentralized Early Offers

These games have also three periods: in each of the rounds −2 and −1 a Þrm has the option to

make an offer to one worker and a worker has the option to accept one offer. A contract is costly.

Round 0 is replaced by a centralized market. Agents submit rank-order lists, these are processed

by a centralized mechanism. We study two different early contract technologies. Through the Þrst

contract technology, we assume that early contracts are tentative. Agents only commit to list each

other in Þrst place in round 0 rank-order lists. They freely Þll the rest of rank-order lists. The

second contract technology studies the case in which these contracts are binding. Only agents who

do not make early contracts participate in the mechanism matching and they do not pay any costs.

The costs of early contracts are set to $2 in round −2, $1 in round −1. A cost is charged regardless
of whether the contract was successful or not.4 The Þrst two rounds are exactly the same in the

binding contract mixed games and in the decentralized game. In all the games, agents are not

informed about the early matches and about the early offers and acceptances/rejections.

4�Mixed matching games with early decentralized offers� will be referred as �mixed matching games� from now
on.
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These contract technologies are motivated by the British experience where agents have to par-

ticipate in the mechanism match. Since priority and DA mechanisms turn (1, 1) lists into a match

these two technologies coincide strategically.

In summary, we consider 10 different Bayesian games: a decentralized game, mixed games under

3 priority matching mechanisms, 2 DA markets, and tentative and binding contract treatments of

2 LP markets.

3.3 The Partially Correlated Preferences

The preferences of agents are determined by partially correlated rank-order lists. There are two

disjoint set of players, workers and Þrms. Each Þrm and worker is of one of the two types, �high

productivity� or �low productivity�. n/2 Þrms are high, n/2 Þrms are low productive types.

Similarly, m/2 workers are high and m/2 workers are low productive types. The types of agents

are common knowledge. We will only consider n = 6 and m = 6 in our learning simulations.

The utility of a Þrm f from a worker w can be given by

uf (w) = tw + θf,w (2)

with θf,w ∼ g, a density function.
Similarly for a worker w, the payoff from a Þrm f can be given by

uw(f) = tf + θw,f (3)

with θw,f ∼ g where the primary computational values are

tv=
½
5 if v is a low type agent
15 if v is a high type agent

for agent v (4)

and g = U(−1, 1), the uniform density with the support [−1, 1]. While tf and tw are common
knowledge, θw,f is private to w and θf,w is private to f . The net payoff of an agent in the market

is the utility she gets from being matched minus the early contract cost. The net payoff of being

unmatched is zero for an agent v, even if she made an unsuccessful early contract.

4 Strategic Behavior in the Stage Games

Suppose FH = {f1, . . . , fn/2} is the set of high Þrms and let FL = {fn/2+1, . . . , fn}be the set of low
Þrms. Similarly deÞne WH and WL. Let the set of high agents be H = FH ∪WH and the set of

low agents be L = FL ∪WL. Let P be the true preference proÞle of agents, the realization of the

partially correlated preference proÞle eP . Let P be the set of those proÞles where the preferences

are rational and admissible by the partially correlated preference distribution. P (v) is only known

by agent v, while the distribution of eP is common knowledge. A preference proÞle is rational if

it is transitive and complete. Admissible preferences always rank high agents strictly preferred to

low agents who are preferred to being unmatched. DeÞne U,U(v) and eU for the utility values and
the set U similarly. DeÞne the pure strategy of agents in the Bayesian games for each realization
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of utilities by a function s : U → Sc onto the set of complete information strategies from the set

of utility proÞles. Let productivity types be deÞned as T = {FH ,WH ,WL, FL}. Let S be the set
of pure strategies. Let strategies be deÞned in terms of rank-orders instead of identities of agents.

For example, a strategy might specify that a Þrm makes its Þrst offer to its highest ranked worker,

at period −1. A strategy s ∈ S is symmetric if it is employed by every agent in a type that is
sv(U(v), eU−v) = sv0(U(v

0), eU−v0) ∀ v, v0 ∈ T ∀ T ∈ T . We will say a worker w ∈ W and a Þrm

f ∈ F unravel if they arrange in rounds −2 or −1 in any of the games.
In examining stability under incomplete information, we will use ex-post stability and instability

(i.e., stability and instability of the outcome matching for all possible realizations of the preference

proÞles).

The next section considers some of the equilibrium properties of the 10 games considered in

this study.

4.1 The Equilibria

Here we will concentrate on symmetry, thus the outcomes will be simple lotteries over matchings

for symmetric strategies.

Lemma 1 Under the binding contract mixed Bayesian games with the priority and DA mecha-

nisms, symmetric strict equilibria exist, whose outcomes match all agents, involve no mismatches

between high and low types of agents, and involve no early contracts. (See appendix B for a sketch

of proof.)

There may or may not exist such equilibria for the LP mechanisms depending on the weighing

schemes. For the weights considered here, such equilibria do not exist:

Lemma 2 There does not exist any pure strategy symmetric equilibrium whose outcome matches

all agents, involves no mismatches between high and low agents, and involves no early contracts for

the mixed Bayesian game with the LP mechanisms under the binding contracts. (See appendix B

for sketch of proof.)

4.2 Incentive Compatibility of Mechanisms under Incomplete Information

It can be shown that the DA mechanisms are incentive-compatible for this information structure

and utility parameters (i.e., each agent has a truthful revelation in response to everybody else�s

truthful revelation of preferences.)5 However, the priority and LP mechanisms are not.

5Under complete information, no incentive compatible mechanism exists. See Roth and Sotomayor (1990).
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Lemma 3 The DA mechanisms are incentive-compatible under the proposed model. That is the

strategy s such that s(P ) = P for any P is an equilibrium in the direct revelation game. (See

appendix B for sketch of a proof.)

5 Genetic Evolution

In order to model a behavior that determines the adjustment paths of artiÞcial agents to an equi-

librium or a social convention, a genetic algorithm (GA) is used. This study will be interested in

the evolution of strategies and the dynamics of markets. The evolution and the adjustment process

will be the primary concern, not the steady-state evolution stage. The evolution of market behavior

will be examined after the adoption of new market organizations. For example, we examine the

change in behavior after decentralized markets are replaced by mixed markets.

The basic GA,6 which is run independently SN number of times to determine the average

behavior using Monte Carlo experimentation, is stated as pseudo-code in Þgure 1.

Figure 2 shows the representation of the strategies in the GA. Under this representation, each

string represents a valid strategy, although some parts of the string can be redundant.

The average simulated behavior is determined after SN = 30 runs of the basic algorithm.

The number of agents in each side are set as m = n = 6. The values of parameters and genetic

operators can be chosen freely, and do not affect the ordering of the results to be presented as

will be described later. The speed and magnitude of adjustment dynamics can be calibrated by

these parameters. For the simulations presented here, the following parameter values are chosen:

p = 0.90, the crossover probability, q = 0.05, the mutation probability. The number of generations

is determined as DG = 40 decentralized market game generations followed by 120 mixed game

generations, a total of G = 160 generations. The population of strategies is determined to be

4st = 28 (st = 7 for each type).7 The number of reproduced best strategies is set to be h = 1.8

6 Evolution Experiments for Random Initial Strategies

First, we present some of the terminology used to deÞne the properties of the experiments in the

graphs in appendix 3. The average total cost of unraveling is the total cost incurred by all players
6The genetic algorithm, all the matching mechanisms, and the games are coded in PASCAL and run on a IBM-

PC compatible machine. PASCAL implementations of �Numerical Recipes� routines by Press et. al (1996) are used
whenever needed.

7 Increasing the population size is very expensive in terms of CPU run-time. For example introducing a new
strategy to each type (i.e. increasing population size from 28 to 32) increases the CPU-time by 1.71 times (slightly
less then doubling the CPU run-time).

8The number of plays of a single strategy in the tournament of the genetic algorithm is therefore 73 = 343. The
Þtness of the strategy is the sum of the average payoffs the strategy earns for the three agents of a type in these 343
plays.
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Figure 1: The Genetic Algorithm

For i = 1 to SN ,simulation number
1 Randomly generate the initial population st of strategies for each type T =High

Þrms, high workers, low Þrms, low workers.
2 For g = 1 to G, number of generations
2.1 Generate a preference proÞle using the partially correlated preference dis-

tribution.
2.2 Conduct a tournament among each strategy of each type, treating them as

symmetric strategies.
2.2.1 If g ≤ DG, decentralized game generation, then use decentralized game

in the tournament.
2.2.2 Otherwise use one of the centralized games in the tournament
2.2.3 Fitness of a strategy is sum of payoffs strategy achieves in each play

2.3 For k = 1 to h, highest Þtness strategy number, reproduce the highest Þtness
strategies for each type.

2.4 For k = 1 to st − h, crossover the parents linearly for each type.
2.4.1 Randomly choose four parent candidates C1, C2, C3, C4 for each type

among the current generation.
2.4.2 The higher Þtness strategies of C1, C2 and C3, C4 become the two parents

P1, P2 for each type.
2.4.3 With probability p crossover the parents P1, P2, with probability 1− p

directly clone the parents as the offspring (Bernoulli density).
2.4.3.1 Randomly draw a crossover �joint� digit in the strategy string of

the size �length.�
2.4.3.2 Copy the digits 1,..,�joint� of P1 and �joint� + 1 ,. . . , �length�

digits of P2 to form the child O1.
2.4.3.3 Copy the digits 1,..,�joint� of P2 and �joint�+1,. . . ,�length� digits

of P2 to form the child O2.
2.5 Mutate each digit in the offspring strategies of each type with probability q

(Bernoulli density).
2.5.1 For mutation of offer/acceptances draw a digit from {1, 2}.
2.5.2 For mutation of rank-orders draw a digit from {1, 2, 3, . . . ,m} for a Þrm

strategy ({1, 2, 3, . . . , n} for a worker strategy).
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Figure 2: Representation of strategies as �integer� strings in the genetic algorithm for games with
two early offer rounds
THE DECENTRALIZED GAME �FIRM� STRATEGY STRING
o−2r−2 − o−1r−1 − o0r0
ot ∈ {1, 2}: 1 for offer, 2 for no offer in round t ∈ {−2,−1, 0}
rt ∈ {1, . . . ,m}:the rank-order of the worker to make an offer in round t ∈ {−2,−1, 0}
THE DECENTRALIZED GAME �WORKER� STRATEGY STRING
a−2r−2 − a−1r−1 − a0r0
at ∈ {1, 2}: 1 for accept, 2 for reject the best offer in round t ∈ {−2,−1, 0}
rt ∈ {1, . . . , n}: the threshold rank-order of the best Þrm whose offer is accepted in round t ∈
{−2,−1, 0}
ANY CENTRALIZED GAME �FIRM� STRATEGY STRING
o−2r−2 − o−1r−1 − r0,1r0,2 . . . r0,m
ot ∈ {1, 2}: 1 for offer, 2 for no offer in round t ∈ {−2,−1}
rt ∈ {1, . . . ,m}: the rank-order of the worker the Þrm makes an offer to in round t ∈ {−2,−1}
r0,1r0,2 . . . r0,m: length m rank-order list of the Þrm for round 0 (r0,k ∈ {1, . . . ,m})
ANY CENTRALIZED GAME �WORKER� STRATEGY STRING
a−2r−2 − a−1r−1 − r0,1r0,2 . . . r0,n
at ∈ {1, 2}: 1 for accept, 2 for reject the best offer in round t ∈ {−2,−1}
rt ∈ {1, . . . , n}: the threshold rank-order of the best Þrm whose offer is accepted in round t ∈
{−2,−1}
r0,1r0,2 . . . r0,n: length n rank-order list of the worker for round 0 (r0,k ∈ {1, . . . , n})
The space of rank-order lists consider all possible misrepresentations and truncations of the pref-
erences.
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Figure 3: Evolution with Random Initial Strategies and with Rank-Order List Updating
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by making early contracts in rounds −2 and −1 in one generation of a simulation. Firm offer rates

in a round are determined for both types. In that round, the ratio of Þrms making an offer for a

contract to currently unmatched Þrms of the type is considered. The low worker acceptance rate

is the ratio of low workers accepting a best offer to the current number of unmatched low workers

who receive at least one offer in that round. The high worker acceptance rate is differentiated from

the low worker acceptance rate, since low Þrms almost always offer early contracts to high workers

and almost always workers reject the offers. Therefore, the high worker acceptance rate is deÞned

as the ratio of high workers who accept an offer from a high Þrm to the high unmatched workers

who receive at least one offer from a high Þrm. The average number of early contracts is the total

number of contracts in the society done in rounds −2 and −1 respectively. Basically, costs, the
number of early contracts, and offer/acceptance rates will be indicators of the evolution dynamics.

6.1 Results

The basic model is considered with 30 independent runs of the basic GA, each of 160 generations

(40 decentralized +120 decentralized/mixed market games).9 The basic payoffs are employed as

$15 for (average) high, $5 for (average) low, $0 for unmatched. The costs for early contracts are

imposed as $2 for round −2, $1 for round −1, $0 for round 0 contracts. As described before, these
values are adopted from the KR (2000) laboratory experiment. We study the experiments involving

decentralized markets, mixed games with the priority, DA and LP matching mechanisms under the

tentative and binding contracts. We study these experiments from random initial strategies. In the

Þrst mixed game generation, the rank-order lists are generated randomly and then are updated in

the following generations. We permit a random rank-order list to start from an arbitrary Þrm (or

work) rank-order, and to be terminated by any truncation. The evolution paths look qualitatively

like the KR (2000) experiment for the priority and DA markets. The dynamic comparisons between

the acceptance and offer rates, and costs qualitatively hold for both GA and laboratory evolution.

Figures 3-6 summarize the results outlined in this section.

6.1.1 The Decentralized Matching Game

In the decentralized treatment, it is observed that the total cost of unraveling increases after initial

generations (as seen in Þgure 3a). As seen in Þgures 3b and c, high agents are observed to make

more early contracts than low agents after experience accumulation. This is because high agents

have higher opportunity costs to avoid mismatches. Round −1 matches are higher in number than
round −2 matches as seen in Þgures 4b and c.

9After the end of decentralized markets, the schemata that represent actions in rounds −2 and −1 are communi-
cated to the Þrst generation of centralized game as schemata for actions in rounds −2 and −1. In round 0, the initial
rank-order lists are randomly determined by discrete uniform density.
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Figure 4: Evolution with Random Initial Strategies and with Rank-Order List Updating
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Figure 5: Evolution with Random Initial Strategies and with Rank-Order List Updating

6.1.2 The Mixed Matching Games

Introduction of the centralized mechanisms makes unraveling costs fall dramatically as seen in

Þgure 3a. This is caused by low agents who literally stop making early matches (see Þgure 3c).

Under the stable DA mechanisms and the LP markets, unraveling costs approach zero in the

long run (see Þgure 3a). With random initial conditions, the priority markets perform most poorly

under evolution in terms of costs. The major difference between the DA, LP, and priority markets

appears in the acceptance ratio of high workers in round −1 (see Þgure 6b). In the DA and LP

markets, almost all high workers reject high Þrm offers in round −1. However the priority market
high workers continue accepting a substantial ratio of high Þrm offers in round −1.

The LP markets are also differentiated among themselves. The Cambridge mechanism leads to

more early contracts than the London mechanism. However in general, when the contracts are bind-

ing, agents adapt to the mechanism and do not circumvent it. The costs and acceptance/offer rates

fall further, when we consider the tentative contract technology. The binding contract treatment

produces a comparable number of ex-post market matching blocking pairs with the DA mecha-

nisms. However priority matching markets produce a much higher number of ex-post blocking

pairs. The tentative contract treatment of the LP markets produces the lowest numbers (see table
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1). The tentative contract technology, by itself, presents an evolutionary evidence for the reasons

unstable LP mechanisms are still in use and stopped unraveling.

6.1.3 Strategy Evolution

Each treatment�s strategy evolution converges to different sets. The Þtness of a strategy shows

the rate of increase of the population of a speciÞc schema. A �schema� is a speciÞc portion of the

strategy code. For example, Þrst and third digits in the Þrm strategy representation are the early

offer schema. In the experiments, the offer/acceptance schemata in the strategies are different.

A priority market high workers still tend to accept offers from the high Þrms in round −1. (In
Newcastle, the percentage of such schema is 27.85% in generations 121− 160.) In the DA and LP
markets, schema involving no acceptances in rounds −2 and −1 are in the highest ratio. (For
example the Edinburgh�69 market involves such schema 59.77% of the population in generations

121 − 160, for the London market under tentative contracts 56.23%.) We do not observe a clear
convergence in the rank-order submission schemata of the mechanisms. However the length of the

rank-order lists are shortest under the LP markets and longest under the DA market for the high

agents.

6.1.4 Efficiency of Mechanisms

We consider the total payoff to maximum payoff ratio for a measure of over all efficiency. According

to this measure, the LP market agents reach 97.4% of total payoff under the tentative contract

treatment, 96.5% under the binding contract treatment. The DA market agents reach 96.3%, the

priority market agents reach 92.5%, in the decentralized markets agents obtain 73.5%.

6.2 Summary for Randomly Chosen Initial Strategies

We use a regression model to Þnd the differences between evolution processes of the �average

total cost of unraveling� under 10 different markets/institutions with our random initial condition

experiments. One of the models is presented below. Note that we Þnd a strong autoregressive

process for the error terms. Therefore, we make a 2-step feasible GLS estimation by Þrst estimating

φ and then estimating regression coefficients. We present the average total cost of unraveling as:

ci,g = βi +
αi
g−g0 + γuv(vH) + εi,g

εi,g = φεi,g−1 + ηi,g
for i denoting one of the 10 market treatments. ηi,g

i.i.d.∼ N(0,σ2) and g, generations, change

from 41 to 160 (i.e., the era after the artiÞcial agents gain experience in the decentralized market)
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Table 1: Statistics from Experiments with Rank-Order List Updating and with Random Initial
Conditions
MARKET GAME Pairs in

the Market
Matching
That Block
The True
Revelation
Matching (of
6 maximum)

Pairs That
Block The
Market
Matching
(of 36)

Early Con-
tracts

Percentage
of Success-
ful Early
Contracts

Generation: 40
Decentralized - 8.0610

(3.1913)
2.7837
(1.0036)

100 %

Generation: 80
Newcastle P 0.2178

(0.3527)
5.4081
(1.8168)

1.1692
(0.8672)

100 %

Birmingham P 0.2095
(0.3351)

4.9544
(1.8795)

1.0256
(0.9102)

100 %

Edinburgh�67 P 0.2093
(0.3025)

4.9539
(1.5916)

1.2249
(0.8503)

100 %

Edinburgh�69 DA 0 (0) 4.3600
(1.3421)

0.8673
(0.8615)

100 %

Cardiff DA 0 (0) 4.5583
(1.2682)

0.9164
(0.7449)

100 %

London LP (tent. ) 1.0807
(0.6979)

3.5488
(1.9867)

0.3194
(0.5583)

66.1958 %

CambridgeLP(tent. ) 1.7471
(0.8128)

4.3245
(2.3195)

0.5033
(0.7578)

88.1968 %

London LP (bind. ) 1.0208
(0.7196)

4.0567
(1.6164)

0.7825
(0.9474)

100 %

CambridgeLP(bind. ) 1.6111
(0.6950)

4.5576
(1.9314)

0.9970
(0.9084)

100 %

Decentralized - 9.4629
(3.6740)

2.5701
(0.9153)

100 %

Generation:120
Newcastle P 0.2616

(0.4215)
4.5145
(1.5217)

1.2321
(1.0514)

100 %

Birmingham P 0.2273
(0.3426)

5.1746
(2.0009)

0.6598
(0.8558)

100 %

Edinburgh�67 P 0.4586
(0.3953)

5.6615
(1.9637)

1.0139
(0.7481)

100 %

Edinburgh�69 DA 0 (0) 3.9886
(1.6239)

0.3152
(0.5932)

100 %

Cardiff DA 0 (0) 3.6978
(1.4764)

(0.3663
0.5912)

100 %

London LP (tent. ) 1.3150
(0.8121)

2.4404
(1.5322)

0.1274
(0.1763)

59.2133 %

CambridgeLP(tent. ) 1.7794
(0.5869)

3.6264
(1.9608)

0.3220
(0.4980)

89.4701 %

London LP (bind. ) 1.3370
(0.6228)

3.0680
(2.0191)

0.2140
(0.4239)

100 %

CambridgeLP(bind. ) 1.6839
(0.6329)

4.3344
(2.1775)

0.3858
(0.5514)

100 %

Decentralized - 8.7771
(4.3224)

2.4868
(0.7253)

100 %

Generation:160
Newcastle P 0.1871

(0.3196)
4.6220
(1.3655)

0.7313
(0.8245)

100 %

Birmingham P 0.2147
(0.3667)

5.0770
(2.1852)

0.6737
(0.9153)

100 %

Edinburgh�67 P 0.4294
(0.4066)

4.7671
(2.1735)

0.7384
(0.8005)

100 %

Edinburgh�69 DA 0 (0) 3.7240
(1.8856)

0.1628
(0.1977)

100 %

Cardiff DA 0 (0) 3.6538
(1.5186)

0.2796
(0.4586)

100 %

London LP (tent. ) 0.9041
(0 7526)

2.2565
(1 5883)

0.1351
(0 2236)

73.2991 %
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Figure 6: Evolution with Random Initial Strategies and with Rank-Order List Updating

so that g0 = 40, uv(vH) is the average payoff from a high agent ($15 in original, $10 in subsequent

experiments), αi the speed parameter for decrease in cost, βi the constant dummy coefficient denote

the market speciÞc coefficients for 10 of the markets/institutions with their relevant subscripts i.10

Table 2 presents to feasible GLS estimates of coefficients. Table 3 presents some simple hypotheses

testing results. We use market speciÞc variables to capture the individual effects of each of the

mechanisms after pooling all data to estimate γ. We change the average payoff from the high

type agents in some of the simulations. This captures the payoff effects. This is particularly

important because the KR (2000) study includes different sessions when high type agent payoffs

are on average $10 and $15. On average their Þndings conjecture a direct relationship between the

cost of unraveling and average payoff from the high types. We try to characterize those effects in

our regression equation and in our GA model. To capture the indirect relationship between cost

and generations after g0 = 40, we use 1
g−g0 as one of the regressors.

11

The payoff coefficient (γ) is found positive and signiÞcant. Therefore, we Þnd the same payoff

10The subscripts are NE for the Newcastle priority, BI for the Birmingham priority, ED067 for the Edinburgh�67
priority, ED069 for the Edinburgh�69 DA, CR for the Cardiff DA, LO for the London LP and CM for the Cambridge
LP mechanisms. We use DC to denote the decentralized markets.
11We also run different linear regressions using different regressors such as log generation. Those usually give similar

results with those found below in presence of AR(1) process.
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Table 2: 2-Step Feasible GLS Coefficients
GLS Coefficients Estimate Standard Error t statistic p value
∧
γ 0.0553 0.0119 4.6550 0.0000
Speed Coefficient Estimates
aNE priority 4.5417 0.2733 16.6190 0.0000
aBI priority 5.0818 0.2360 21.5284 0.0000
aED067 priority 4.9885 0.2359 21.1465 0.0000
aED069 DA 5.7941 0.2359 24.5613 0.0000
aCR DA 5.7859 0.2359 24.5268 0.0000
aLO−tent. LP 5.6910 0.2359 24.1243 0.0000
aCM−tent. LP 6.2455 0.2359 26.4747 0.0000
aLO−bind. LP 5.8518 0.2359 24.8063 0.0000
aCM−bind. LP 5.6796 0.2363 24.0373 0.0000
aDC decentralized 1.8476 0.2359 7.8321 0.0000
Constant Dummy Coefficient Estimates
bNE priority 2.0030 0.1990 10.0676 0.0000
bBI priority 1.8949 0.1942 9.7557 0.0000
bED067 priority 2.0997 0.1940 10.8228 0.0000
bED069 DA 1.0146 0.1940 5.2295 0.0000
bCR DA 1.1203 0.1940 5.7745 0.0000
bLO−tent. LP −0.0206 0.1940 −0.1064 0.9152
bCM−tent. LP 0.4336 0.1937 2.2385 0.0253
bLO−bind. LP 0.7292 0.1940 3.7587 0.0002
bCM−bind. LP 0.9752 0.1911 5.1034 0.0000
bDC decentralized 5.5505 0.1940 28.6092 0.0000

coefficient of determination: 0.7389
∧
φ = 0.8366 Wald stat= 5548.5 p = 0.0000
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Table 3: Hypotheses Testing for Feasible GLS Estimation
H0 statistics degrees

of free-
dom

decision for 5%

Coef. of payoff from high
agents >0:

t = 4.6550
p = 0.0000

2386 not rejected

Speed of priority mechanisms
equal to each other:

f = 1.2064
p = 0.2095

2, 2386 not rejected

Speed of d.a. mechanisms
equal to each other:

f_stat=0.0006
p = 0.9809

1, 2386 not rejected

Speed of l.p. mechanism tent.
tech. dummies equal to each
other:

f = 2.7552
p = 0.0971

1, 2386 not rejected

Speed of l.p. mechanism bind.
tech. dummies equal to each
other:

f = 0.2654
p = 0.6065

1, 2386 not rejected

Speed of dummies of l.p. tent.
tech. and bind. tech. are
equal:

f = 1.8241
p = 0.1406

2, 2386 not rejected

Speed of l.p. bind. tech. and
d.a. mech. same:

f = 0.0922
p = 0.9644

3, 2386 rejected

Speed of priority and d.a.
mech. same:

f = 4.7398
p = 0.0008

4, 2386 rejected

Speed of priority and l.p. bind.
tech. dummies same:

f = 4.5921
p = 0.0011

4, 2386 rejected

Speed of all centralized mech-
anism dummies equal under
bind. tech.:

f = 4.1905
p = 0.0003

6, 2386 rejected
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Table 4: Hypotheses Testing for Aysmptotic Values of Cost
H0 statistics degrees

of free-
dom

decision for 5%

Asymp. cost of priority mech-
anisms equal to each other:

f = 0.6762
p = 0.5087

2, 2386 not rejected

Asymp. cost of d.a. mecha-
nisms equal to each other:

f = 0.3846
p = 0.5352

1, 2386 not rejected

Cost of l.p. mechanism tent.
games equal to each other:

f = 6.8482
p = 0.0089

1, 2386 rejected

Cost of l.p. mechanism bind.
games equal to each other:

f = 1.8941
p = 0.1689

1, 2386 not rejected

Cost of l.p. tent. tech. and
bind. tech. are equal:

f = 18.2170
p = 0.0000

2, 2386 rejected

Cost of l.p. bind. tech. and
d.a. mech. same:

f = 1.7488
p = 0.1549

3, 2386 not rejected

Cost of priority and d.a. mech.
same:

f = 17.0391
p = 0.0000

4, 2386 rejected

Cost of priority and l.p. bind.
tech. same:

f = 25.3097
p = 0.0000

4, 2386 rejected

Cost of all centralized mecha-
nisms equal under bind. tech.:

f = 20.6003
p = 0.0000

6, 2386 rejected

effect that KR found in their laboratory experiments. The average cost of unraveling is affected by

the payoff from high types directly. Following table 3, the null hypotheses involving the equality

of speed of decrease in average cost within the priority mechanisms, within the LP mechanisms

under the tentative transactions, within LP mechanisms under the binding contract technology, and

within the DA mechanisms are not rejected. The slowest decrease is seen under the decentralized

market, followed by the priority matching markets. DA mechanism and LP mixed games with

binding transactions lead to comparable speeds of convergence, although DA mixed market speeds

seem faster. The fastest decrease is observed under the LP mixed markets with tentative transaction

game. The next test asks whether the speed of decrease is equal under two different institutional

restrictions in the LP markets: hypothesis is not rejected. Then, we determine whether the DA

and LP mechanisms under binding technology generate similar processes: the speed estimates are

not signiÞcantly different. We test whether speed coefficients of priority and DA markets are the

same: the null hypothesis is rejected. It is next tested whether speed coefficients of the priority

and the LP markets under the binding technology are the same: the null hypothesis is rejected.

Then, we test whether all the centralized mechanisms are have the same convergence speed under

the binding contract technology: the coefficients are not equal to each other. The next set of tests

are about the asymptotic values of costs under the mixed mechanisms. This asymptotic estimate
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is determined to be bci,g for g = 160. So we test whether ai
120 + bi =

aj
120 + bj for different markets

i and j. Following table 4, the binding early contracts produce similar results within the LP and

within the DA markets. The order of the asymptotic costs can be given as: decentralized markets

> priority mixed markets > LP mixed markets with binding transactions and DA mixed markets

> LP mixed markets with tentative transactions. One can follow table 3 and 4 for the statistic

values of the tests mentioned above.

We also make a sensitivity analysis for the GA evolution.12

7 Conclusions

This study considers the adjustment dynamics of agents to three types of two-sided matching

mechanisms that came into use in the Þeld in Britain after a decentralized matching era. Unraveling

is studied with speciÞc matching games with several rounds of clearance. We use a GA in the

evolutionary programming framework. Static game theoretic analyses fail to explain the Þeld

success of a class of theoretically unstable mechanisms. Analytical evolutionary analyses seem
12Sensitivity Analysis: Same experiments are run for different parameter values under the ceteris paribus assump-

tion:
Genetic Operator Changes:
Increase in the mutation rate: The uniform mutation rate for each digit of the strategy strings is increased from
Decrease in the crossover rate: The uniform crossover rate is decreased from
Change in the reproduction operator: We adopt biased-roulette-wheel selection instead of Þrst-past-the-post. Ac-

cording to selected bias, we observe slower convergence and higher costs.
Change in the crossover operator: Instead of linear crossover, we consider circular version. The convergence results

occur slightly faster; we observe lower costs.
Change in the initial conditions: Suppose that instead of random rank-order list generation in round 0, we consider

truthful revelation (straightforward) of rank-order lists in the centralized games. In the short run, the LP markets
unravel �most� under both communication technologies. The priority markets unravel earlier than the DA markets
do but not as much as the LP markets do. In the long run we return to our prior Þndings: the LP markets under the
tentative arrangement technology unravels least, which are followed by the DA and LP markets under the binding
arrangement technology. Finally, priority markets unravel most in the long run. (See Þgure 7.)
Change in Strategy Form: When we assume agents only decide for offer and acceptances but do not make deci-

sions on rank-order lists instead always submit full truthful lists, we observe that DA mechanism is most successful
algorithm. Priority and LP tentative, LP binding treatments have less success in preventing early contracts. Next
section�s simulations consider these kinds of strategies.
Changes in Model Parameters:
We consider two changes in the model parameters.
The Þrst one is increase in the range of the random parameter in the payoff: The random parameter θf,w for

Þrm f for each w and θw,f for the worker w for each f (described in section 3) are drawn from U(−2.5, 2.5) instead
of U(−1, 1) independently and identically. The average cost of unraveling is observed to increase for the unstable
markets slightly and decrease for the stable markets slightly. Under the binding arrangement technology, deferred
acceptance markets lead to comparable levels of unraveling with the linear programming markets. Both lead to lower
number of early arrangements than the priority markets.
The second is a change in the average payoff from the high type agents: Average payoff from the high, tv when

v is a high agent is then set to $10 and $100 respectively instead of $15. When it was set to $10, the total cost of
unraveling on average fell for all the markets, and when it was set to $100, the total cost of unraveling on average
increased for all the markets over tv = 15 (for v is high) levels. The major difference was the rate of acceptances
done by the high workers in round −1. The rates were highest for tv = 100 (for v is high) and lowest for tv = 10 (for
v is high). Also high Þrms make more offers in round −1 for tv = 100 (for v is high).
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Figure 7: Evolution with Random Initial Strategies for the Decentralized Game, Truthful Initial
Rank-Order Lists for the Mixed Games, and with Rank-Order List Updating
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limited to examine the complex matching games for equilibrium selection. The main contribution

of this paper is a dynamic analysis of unraveling using GAs.

The GA serves as an evolution environment to study learning under incomplete private infor-

mation. The learning occurs through communication and transmission of experience. Following

KR�s (forthcoming) experimental design, we assume that both Þrms and workers are permanent

players.

In summary, decentralized market evolution leads to unraveling for both better and less qualiÞed

agents. Less qualiÞed agents do not unravel once mixed mechanisms are introduced. We Þnd

asymptotic evolution paths with low levels of unraveling for highly unstable LP markets. These

are also successful in the Þeld in Britain. We Þnd also qualitative evidence for plausibility of an

evolution process in KR�s (forthcoming) experiment. The unstable priority matching mechanisms

that failed in the Þeld and laboratory also perform most poorly in the evolution environment in

terms of costs.

The difference between the priority and LP mechanisms arises from the intrinsic optimization

procedure used in the LP mechanisms. For agents, manipulation of rank order lists occur under the

mixed games.13 The difference in the evolution stage indicates that early offers and acceptances

are in higher percentages under the priority mechanisms than they are under the LP mechanisms.

When we consider different initial conditions, the stability results hold only asymptotically. For

example, if inexperienced agents submit truthful rank-order lists as they would in the laboratory,

�LP markets unravel the most� in the short run.

In the literature, the unraveling issue has mostly been considered in a static framework. However

Þeld results show that, unstable mechanisms that are not susceptible to unraveling do exist. It seems

necessary to consider models of adaptive behavior to illuminate the dynamics observed in the Þeld

when new market institutions are introduced. Computational tools of modern game theory present

such opportunities.

Appendix A. Preliminaries about the Marriage Model (Section 3)

Marriage model is used to analyze the unraveling problem in entry-level labor markets. The

models in the literature are based mostly on works of Roth, Sotomayor, Gale and Shapley. Here, this

general framework will be presented brießy. The set of players N = F ∪W (such that F ∩W = φ)

consists of the set of Þrms F = {f1, f2, ..., fn} and the set of workers W = {w1, w2, ..., wm} where
each Þrm can hire one worker, while one worker can work for one Þrm. The preferences of each

worker w ∈W over Þrms and herself are denoted by P (w), an ordered list of elements in {w}∪ F .
13We ran several artiÞcial agent simulations for the Unver (2000a and b) studies in which agents always submit

truthful lists. We do not permit gaming of preference lists in these simulations. Under this implementation, the
LP mechanisms are not as successful as the DA mechanisms are. They perform poorest with the priority matching
mechanisms. Therefore manipulation of rank-order lists seems as an important factor in success of LP mechanisms.
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Similarly the preferences of each Þrm f ∈ F over workers and itself, P (f) is an ordered list of

elements of {f} ∪W . All preferences are assumed to be rational (i.e., complete and transitive).
Let �≥P (v)� denote �weak preference� relation and �>P (v)� denote �strict preference� relation with
respect to the preference list P (v), the component of the preference proÞle P for the agent v. A

worker w is acceptable given P (f) to Þrm f if w ≥P (f) f . Similarly a Þrm f is acceptable given

P (w) to worker w if f ≥P (w) w. Let P = (P (f1), . . . , P (fn), P (w1), . . . , P (wm)). Now suppose P
is the set of rational and admissible preference proÞles on N so that P ∈ P.

We can now deÞne a one-to-one matching.

DeÞnition 4 A one-to-one matching µ in the market is a function deÞned on the set of players.

Formally µ : N → N . µ satisÞes ∀w ∈W and ∀f ∈ F :
(i) µ(w) = f if and only if w = µ(f),

(ii) µ(w) = w, if µ(w) /∈ F , and
(iii) µ(f) = f , if µ(f) /∈W .

Workers (Þrms) have preferences over matchings identical to their preferences over Þrms (work-

ers) and themselves. A matching µ is said to be individually rational given P (v) if ∀ v ∈ N

µ(v) ≥P (v) v. A matching µ is stable given P , if it is individually rational given P and if there

exist no f ∈ F and w ∈W such that µ(w) 6= f , w >P (f) µ(f) and f >P (w) µ(w).LetM be the set

of matchings deÞned on N .

There exists at least one stable matching for any set of players and rational strict preference

proÞles.14 A matching mechanism , is deÞned by a function π : P →M. A mechanism is stable

within P if there exists no P ∈ P such that π[P ] is unstable. A mechanism is individually rational

within P if π[P ] is individually rational for all P ∈ P. Unless otherwise denoted, let π denote also
the matching π[P ] under the true preferences P . A matching problem is denoted by a set of Þrms,

a set of workers, a preference proÞle and a mechanism such as (F,W,P,π).

Suppose that preferences of agents over individuals are strict. Therefore, suppose that P is

further restricted in this sense. There exists a unique stable matching µW which is weakly preferred

to any other stable matching by all workers in W , at least one of the weak preferences is strict.

Moreover there exists a unique stable matching µF which is weakly preferred to any other stable

matching by all Þrms in F , at least one of the weak preferences is strict. µF is known to be

the Þrm optimal stable matching. µW is known to be the worker optimal stable matching.15 Firm

proposing DA algorithm determines µF given the rank-order listsQ, worker proposing DA algorithm

determines µW given the rank-order lists Q. The other mechanisms are described in section 2. Let

P (v, k) denote the kth ranked agent in the preference of v ∈ N,P (v). A match between Þrm f ,

and worker w is a (k, l) match given the rank-order list proÞle Q if Q(f, l) = w and Q(w, k) = f .
14Theorem proven by Gale and Shapley (1962)
15A result by Gale and Shapley (1962)
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One simple example can show that the Birmingham priority, µBI , the London LP, µLO, mech-

anisms are unstable. Reader can verify for other priority and LP mechanisms.

Example 5 If P (f1) = (w1, w2, w3), P (f2) = (w2, w1, w3), P (f3) = (w2), P (w1) = (f3, f2, f1),

P (w2) = (f3), P (w3) = (f2, f1) then µBI(f1) = µLO(f1) = w1, µBI(f2) = µLO(f2) = w3, µBI(f3) =

µLO(f3) = w2. For the London LP mechanism, this creates the weight 57 for (1, 3)+57 for (3, 1)+72

for (1, 1) = 186 as maximum. The only stable matching is µ(f1) = w3, µ(f2) = w1, µ(f3) = w2.

It creates the weight 49 for (3, 2) + 56 for (2, 2) + 72 for (1, 1) = 177. Note that w1 >P (f2) w3 and

f2 >P (w1) f1

Also (1, 1) matches might not be realized under the London LP mechanism. It can also be

veriÞed for the Cambridge LP mechanism.

Example 6 If P (f1) = (w3, w2, w1), P (f2) = (w2, w1, w3), P (f3) = (w2, w1, w3), P (w1) = (f3, f2, f1),

P (w2) = (f3, f2, f1), P (w3) = (f2).Then the highest weighted matching µ that realizes f3, w2 (1, 1)

match is µ(f1) = w1, µ(f2) = w3 and µ(f3) = w2 brings the weight 42 for (3, 3), 57 for (3, 1), 72

for (1, 1) a total of 171. However the following matching ν brings the weight 177 as maximum

ν(f1) = w2, ν(f2) = w3, ν(f3) = w1 with 56 for (2, 2), 57 for (1, 3), 64 for (2, 1) matches.

By the revelation principle, we can focus on the matching mechanisms under rank-order list

submission games. Stability of a mechanism appears as a cooperative, complete information issue.

A matching is stable if and only if it is in the core of the mechanism rank-order list submission

game. Theory also implies that there exist no incentive-compatible mechanisms under complete

information.

Appendix B. Proofs (Section 4)

Sketch of Proof of Lemma 1: Consider the strategy s which tells Þrms, not to make any

offers in rounds −2 and −1; which tells workers, not to accept any offers in rounds −2 and −1; and
which tells a high type Þrm (worker) to rank only 3 high type workers (Þrms) in its (her) rank-order

list, a low type Þrm (worker) to list all 6 workers (Þrms) in (her) rank-order list in accordance with

its (her) true preferences in round 0. Denote this proÞle with Q. Now s leaves no one unmatched,

causes no mismatches and does not involve any early contracts.

Now, we need to show that s is an equilibrium.

(i) This strategy gives the same outcome with the truthful revelation equilibrium of the direct

revelation game. A similar proof to the proof of lemma 3 can show that Q is an equilibrium of the

round 0 subgame. Since nobody else makes early contracts, one�s deviation in round −2 or −1 will
not change her payoff. So, s is an equilibrium for the DA mixed game.
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(ii) We will give the proof only for the Newcastle priority mixed game. Consider the following

most proÞtable deviation from s: an agent v omits the last ranked agent in Q(v) from her rank-

order list, and all other nodes of this strategy coincide with those of s(v). Note that a deviation to

early offers or acceptances do not change the payoff of an agent given that no one else is making

early offers or accepting early offers.

Suppose a high worker w omits her third choice i.e. plays Q0(w) = (f1, f2) while Q(w) =

(f1, f2, f3).16 This will result no change for proÞles where she was matched to her top choice. It

can be shown that her expected payoff17 at s is

u = 637
972uw(f1) +

791
3888uw(f2) +

61
432uw(f3)

and her expected payoff at the strategy which only has a deviation from s in round 0 using

Q0(w) is
u0 = 637

972uw(f1) +
815
3888uw(f2) +

175
432uw(w)

u > u0 if and only if 183uw(f3) > 8uw(f2) since uw(w) = 0.
uw(f2)− uw(f3) < 2 and uw(f3) > 0 imply that the inequality holds in our model. Early offers

do not proÞt w, while everybody else is playing s−w.
The Newcastle mechanism does not treat Þrms and workers symmetrically. A (k, l) match is

favored before an (a, b) match if k× l = a× b and k < a. That is, workers� preferences are favored
over Þrms� in cases of ties in the product numbers between two matches.

Suppose a high Þrm f omits its third choice i.e. it plays Q0(f) = (w1, w2) when Q(f) =

(w1, w2, w3). This will result with also some changes for the proÞles where it was matched to its

top choice. It can be shown that its expected payoff at s is

u = 641
1296uf (w1) +

1247
3888uf (w2) +

359
1944uf (w3)

and her expected payoff at the strategy which deviates from s only in round 0 using Q0(f) is
u0 = 245

486uf (w1) +
1303
3888uf (w2) +

625
3888uf (f)

u > u0 if and only if 718uf (w3) > 37uf (w1) + 56uf (w2) since uf (f) = 0.
uf (w1)− uf (w3) < 2, uf (w2)− uf (w3) < 2 and uf (w3) > 0 imply that the inequality holds in

our model. Early offers do not proÞt f , while everybody else is playing s−f .
Similar statements can be stated for a low type worker and a low type Þrm deviations. We

have shown that s is an equilibrium of the Newcastle priority mixed game. Since the Birmingham

mechanism is dual to Newcastle�s, a proof changing roles of Þrms and workers will work. Reader

can verify the lemma for the Edinburgh�67 mechanism.

Sketch of Proof of Lemma 2: Consider any symmetric strategy proÞle s with non-empty

rank-order lists. In s in round 0, high Þrms (workers) should list all high workers (Þrms), and low

Þrms (workers) should list all low workers (Þrms) so that there are no mismatches and unmatched
16Let fi denote the i�th ranked Þrm in P (w) that is P (w, i)
17One can check all possible preference conÞgurations which occur with equal probability and Þnd the match of w

in each case to determine the expected payoff.
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agents. Moreover, high agents do not list low agents in round 0, since otherwise mismatches can

occur with positive probability or a low agent can have a more proÞtable deviation from s. Now

in round −2 or −1, no contracts can occur. Without loss of generality, consider the rank-order
lists of round 0 that consist of high (or low) Þrms ranking only high (or low) workers in order

with their true preferences, and high (or low) workers ranking only high (or low) Þrms in order

with their true preferences. This random preference proÞle eP 0can be represented for high Þrms byeP 0(f) = ( eP (f, 1), eP (f, 2), eP (f, 3)), high workers eP 0(w) = ( eP (w, 1), eP (w, 2), eP (w, 3)), low Þrms byeP 0(f) = ( eP (f, 4), eP (f, 5), eP (f, 6)), low workers by eP 0(w) = ( eP (w, 4), eP (w, 5), eP (w, 6)). Let P 0 be
the realization of this proÞle.

Let f be a high Þrm with P (f) = (w1, w2, w3, w4, w5, w6) only ranking his Þrst choice by

deviating from these proÞles where P 0(f) = (w1, w2, w3). Let this deviation be P 00(f) = (w1).

The weights are (actual weights used in London) 36, 28, 21, 15, 10, 6 for choices ranked 1 to 6.

Let P be a realization of preferences. Now the two matching problems are A = (F,W,P 0, µLO)
versus B = (F,W, (P 00(f), P 0−f ), µLO) using the London matching mechanism.

Consider any matching µ that leaves f unmatched i.e. µ(f) = f and brings total weight �a� in

problem B. Let µ(f 0)=w1. Suppose µ(w) = w for the high worker w.

Consider the following matching ν with ν(f) = w1 this will bring at least (1, 3) match weight

36+21 = 57, and ν(f 0) = w this will bring at least (3, 3) match weight 21+21 = 42. But we might
have broken at best a (1, 1) match between w1 and f 0 with a loss of weight 36 + 36 = 72. Let ν

and µ match the same agents for the remaining of the market.

ν brings at least 27 points more weight than µ in problem B.

Therefore, in the outcome matching of problem B, f will never be unmatched and will be

matched to w1.

In problem A:

Pr{µLO[P 0(f), eP 0H−f ](f) <P (f) w1} > 0.
i.e. with positive probability f can be matched to its 2�nd or 3�rd choices.

Thus, outcome of B is preferable to A for f . Therefore, f has an incentive to truncate its

rank-order list under the symmetric strategy proÞle mentioned above.

Similarly, it can be stated that a high (or low) agent has incentive to deviate for any symmetric

strategy proÞle with no mismatches, no early contracts and no unmatched agents.

A symmetric strategy proÞle cannot constitute an equilibrium with no-early contracts no mis-

matches and non-empty rank-order list submission.

A similar proof can be stated for the Cambridge mechanism.

Sketch of Proof of Lemma 3: Consider the Þrm proposing DA mechanism, µF . The lemma

can be proven in 3 steps. Let P be the preference proÞle of agents.

(i) By theorem 4.7 of Roth and Sotomayor (1990), it is dominant for Þrms to reveal their
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preferences truthfully.

(ii) Consider workers. By corollary 5 by Roth and Rothblum (1999), it is stochastically dom-

inant for worker w to reveal P (w) or truncations of P (w) in response to P−w. First suppose that
w is a high type worker. Let P (w) = (f1, f2, f3, f4, f5, f6). Now the potentially most proÞtable

deviation is a truncation as P 0(w) = (f1, f2)
The expected payoff of w under the strategy proÞle P can be given as

u = 35
72uw(f1) +

67
216uw(f2) +

11
54uw(f3).

The expected payoff of w under the strategy proÞle (P 0(w), P−w) is
u0 = 233

432uw(f1) +
157
432uw(f2) +

7
72uw(w).

u > u0 if and only if 88uw(f3) > 23uw(f1) + 23uw(f2) since uw(w) = 0.
Now uw(f1) − uw(f3) < 2, uw(f2) − uw(f3) < 2, and uw(f3) > 0 imply that above inequality

holds. So w has the best response P (w) to P−w.
(iii) For a low type worker w, the most proÞtable deviation from P (w) = (f1, f2, f3, f4, f5, f6)18

is P 0(w) = (f1, f2, f3, f4, f5) in response to P−w. The expected payoff of w under strategy proÞle
P is

u = 35
72uw(f4) +

67
216uw(f5) +

11
54uw(f6).

The expected payoff of w under the strategy proÞle (P 0(w), P−w) is
u0 = 233

432uw(f4) +
157
432uw(f5) +

7
72uw(w).

u > u0 if and only if 88uw(f6) > 23uw(f4) + 23uw(f5) since uw(w) = 0.
Now uw(f4) − uw(f6) < 2, uw(f5) − uw(f6) < 2 and uw(f6) > 0 imply that above inequality

holds. So w has the best response P (w) to P−w.
We have shown that P is a strict equilibrium of the direct revelation game of µF .

Proof can be modiÞed by changing roles of Þrms and workers for the worker proposing DA

mechanism µW .
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