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Abstract

A standard assumption in the economic approach to individual decision making

is that people have independent preferences, that is, they care only about their ab-

solute (material) payo¤s. We study equilibria of the classic common pool resource

extraction and public good games when some of the players have negatively interde-

pendent preferences (in the sense that they care not only about their absolute payo¤s

but also about their relative payo¤s) while the remainder have independent prefer-

ences. It is shown that at any equilibrium, those with interdependent preferences earn

strictly higher absolute payo¤s than do players with independent preferences. If the

population composition evolves in accordance with any payo¤ monotonic evolutionary

selection dynamics, then all players will have interdependent preferences in the long

run. Similar (but weaker) results obtain for some other economically important classes

of games in strategic form. The robustness of our …ndings with respect to other prefer-

ence formation mechanisms such as myopic and rational socialization is also discussed.
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1 Introduction

A standard assumption in the economic modeling of human behavior is that people have

independent preferences. Given a choice between two income distributions, they will prefer

that in which their own income is higher, regardless of their rank or relative standing in

the two distributions. Changes in the incomes of others, provided that their own material

circumstances remain unchanged, leave them neither better nor worse o¤, and they are

consequently unwilling to sacri…ce any portion of their own material well-being in order to

enhance or to diminish the well being of others.

The usual methodological defence of independent preferences is made on evolutionary

grounds: units which maximize their own material payo¤s will prosper and thrive, while those

that do not will be outperformed and driven to eventual extinction (Friedman, 1953). This

evolutionary argument is compelling in the context of perfectly competitive environments,

in which individual units are powerless to a¤ect the payo¤s of other units. However, in

strategic settings in which a …nite group of individuals interact, the evolutionary argument

is by no means self-evident. It is at least conceivable that in some strategic environments,

individuals who care about their relative payo¤s as well as their absolute (material) payo¤s

(that is, in the terminology of the present paper, agents with interdependent preferences)

will have an advantage over those who are concerned exclusively with their absolute payo¤s.

This advantage can then translate, somewhat paradoxically, into higher equilibrium absolute

payo¤s for those who are not absolute payo¤ maximizers. Our purpose in the present paper is

to identify environments of economic importance that give rise to this phenomenon. We …nd

that in a variety of commonly studied settings including common pool resource extraction

and public good games, absolute payo¤ maximizers earn strictly lower absolute payo¤s in

equilibrium than do players with interdependent preferences. We argue that this disparity

in equilibrium payo¤s has far-reaching implications for the theory of preference formation.

There are two quite distinct strands in the existing literature on endogenous preferences.

The evolutionary approach views preference formation as the unplanned outcome of genetic

and/or cultural transmission mechanisms. Transmission may be ‘vertical’, as when children

inherit their preferences directly from their parents, or ‘oblique’, as when they inherit their

preferences through the emulation and imitation of other individuals to whom they are

exposed (Cavalli-Sforza and Feldman, 1981, Boyd and Richerson, 1985).1 Alternatively,

the rational socialization approach to preference formation is based on the postulate that

altruistic and forward looking parents deliberately inculcate preferences in their children with

1This approach has been applied to explain the evolution of altruism among siblings (Bergstrom, 1995),
time preference (Rogers, 1994), risk-aversion (Rubin and Paul, 1979, Robson, 1996), systematic errors in
expectations (Waldman, 1994), and a variety of other tastes and behavioral traits (Hirshleifer, 1987, Frank,
1987, Hansson and Stuart, 1990, Güth and Yaari, 1992).
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a view to enhancing what they, as parents, perceive to be the children’s future well-being.

Along these lines, Rubin and Somanathan (1996) have recently considered the inculcation

of honesty, and Bisin and Verdier (1996a) the emergence of preferences for social status.

It is typically assumed in the evolutionary approach that the selection dynamics are (ab-

solute) payo¤ monotonic, i.e., higher material payo¤s to a heritable trait typically lead to

more rapid replication of that trait over time. Consequently, our …nding that in a variety of

strategic settings of economic importance, the material rewards to those with interdependent

preferences strictly exceed the rewards to those with independent preferences leads directly

to the implication that evolution will favor the emergence of interdependent preferences.

If the population is initially heterogeneous, our results imply that at least in environments

that are well represented by common property and public good games, any payo¤ monotonic

evolutionary selection dynamics will lead in the long run to a population that consists ex-

clusively of individuals with interdependent preferences. These results are obtained when

each member of the population interacts simultaneously with every other member, which is

the usual assumption in common property and public goods contexts. We also consider the

case in which members of the population interact on the basis of pairwise random matching

to play an arbitrary 2 £ 2 game. Somewhat milder results are obtained in this context,

with a heterogeneous population composition typically prevailing in the long run. Except in

relatively uninteresting cases where cooperative behavior is strictly dominant for all players,

in none of the strategic settings studied in this paper does the evolutionary approach entail

a monomorphic population composed only of agents with independent preferences.

When preferences are acquired as a result of deliberate socialization e¤orts by altruistic,

forward looking parents, the implications of the strategic advantage held by those with

interdependent preferences are less obvious. Even if it is true that at any given population

composition those with interdependent preferences obtain strictly higher material payo¤s,

it may not be in the interest of a forward-looking parent with independent preferences to

inculcate interdependent preferences in her child. The reason is that such an act would alter

the population composition and induce a di¤erent equilibrium in the subsequent generation,

and although the child at this equilibrium would do better than those with independent

preferences, this payo¤ may be less in absolute terms than that which could have been

earned had the child been inculcated with independent preferences. Intuitively, there are

e¢ciency losses associated with the inculcation of interdependent preferences, and if these

are su¢ciently large, such inculcation may lead to a decline in absolute payo¤s despite the

increase in relative standing in the society. In spite of this complication, we show that in

some common pool resource extraction and public good games, socialization by forward-

looking parents also leads in the long run to a uniform population in which all individuals

have interdependent preferences.
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The general problem of preference formation can, of course, be studied within the context

of any strategic environment. Our focus on the common pool resource extraction and public

good games is motivated by the fact that these environments have been a perennial feature

of human societies from the earliest times. Traditional societies even in the present day rely

heavily on commonly owned …sheries, grazing lands, and forest areas for their subsistence.

Similarly, throughout human history, a large number of essential activities have required

collective action of one kind or another, ranging from the hunting of large animals and

the construction of housing to the provision of irrigation, harvesting, and defence against

encroachment or attack by competing groups. If such environments favor the emergence

of interdependent preferences, then the standard assumption of independent preferences in

economic models should be made with considerably greater caution and circumspection.2

2 An Analytical Framework

Consider an overlapping generations economy in which each person lives for two periods,

and has some …nite (possibly zero) number of children in the second period of her life. Let

Nt denote the size of the adult population in period t. In the …rst period of their lives,

preferences are acquired in a manner that is left unspeci…ed for the moment. In the second

period of life, the adult members of the population interact with one another in a manner

that we represent by a symmetric strategic form game with complete information.3 Each

adult i selects an action xi from a given set of available actions A. The resulting action

pro…le x = (x1; x2; :::; xN ) then determines the absolute payo¤s ¼i(x) ¸ 0 obtained by each

adult. The adult population in any given generation consists of two distinct groups, which

are heterogeneous with respect to their preferences over payo¤ distributions. A number

kt 2 f1; 2; :::; Nt ¡ 1g of individuals are absolute payo¤ maximizers in the standard sense;

they are said to be independent agents. These individuals always prefer payo¤ distributions

in which their own material payo¤ is higher, and are left una¤ected by changes in the payo¤s

2The importance and plausibility of interdependent preferences has, of course, been noted in the liter-
ature (Duesenberry, 1949, Easterlin, 1974, Frank, 1987, and Cole, Mailath and Postlewaite, 1992), and is
supported by ample empirical and experimental evidence (see Tomes, 1986, Clark and Oswald, 1996, Saijo
and Nakamura, 1995, Levine, 1996, and references cited therein). It is also well known that the introduction
of interdependent preferences into economic models has non-trivial implications in that many conventional
results have been either overturned or signi…cantly modi…ed in the presence of such preferences (see, among
others, Boskin and Sheshinski, 1978, Oswald, 1983, Frank, 1984, Akerlof and Yellen, 1990, and Ito, Saijo
and Une, 1995). However, to the best of our knowledge, the existing literature falls short of providing an
analysis of the evolution of interdependent preferences.

3The symmetry postulate is very common in evolutionary approaches to economics and, as will become
apparent shortly, it is particularly reasonable in our context. The assumption of complete information is, on
the other hand, much more problematic, and will be relaxed in future work.
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of others. The remainder of the population consists of individuals who are concerned not

only with the value of their absolute payo¤ but also with their payo¤ relative to the average

payo¤ in the population. We say that these individuals have (negatively) interdependent

preferences which are represented by an objective function

pi(x) = F

µ
¼i(x);

¼i(x)

¹¼(x)

¶
; i 2 fkt + 1; :::; Ntg (1)

where F is an arbitrary strictly increasing function on R2 and ¹¼(x) is the mean payo¤ at

the outcome x in the population at large. (We refer to such individuals in the sequel simply

as interdependent.) This way of representing the (negatively) interdependent preferences

has recently been proposed and axiomatically characterized by Ok and Koçkesen (1997). In

particular, the preferences represented by (1) can be interpreted as a compromise between the

standard case where the individual is assumed to care only about her absolute payo¤ ¼i, and

the extreme case where she is concerned exclusively with her relative payo¤ in the game,

i.e., with ¼i=¹¼ (the latter case corresponds to Duesenberry’s relative income hypothesis.)

The analysis of the present paper is conducted in terms of an essentially arbitrary strictly

increasing F function. Thus the class of interdependent preferences we consider here is quite

rich, and incudes great many speci…cations used elsewhere.4

Given the formulation above, the actual strategic interactions of the individuals in period

t are modeled by the normal form game where the ith player’s action space is A and her

objective function is either ¼i (if i 2 f1; :::; ktg) or pi (if i 2 fkt + 1; :::;Ntg). Let us denote

a generic game of this sort by G(kt; Nt):5 An equilibrium of this game is an action pro…le

at which, given their preferences, no player has an incentive to deviate. Formally, at any

equilibrium action pro…le x̂ in period t;

¼i(x̂) ¸ ¼i(yi; x̂¡i) for all i 2 f1; :::; ktg (2)

and

pi(x̂) ¸ pi(yi; x̂¡i) for all i 2 fkt + 1; :::; Ntg (3)

for all yi 2 A; where x̂¡i represents the actions of all players other than player i at action

pro…le x̂.6 Given a game G(kt; Nt), let the set of Nash equilibrium action pro…les be de-

noted by NE(kt; Nt). The …rst question of interest is the following: are there economically
4One interesting special case of our speci…cation is the objective function pi = ¼i(¼i=¹¼)µ where µ ¸ 0

can be interpreted as the degree of interdependence; see Ok and Koçkesen (1997) for a detailed discussion
of individual preferences that can be represented by objective functions of form (1). Moreover, we note that
the entirety of our …ndings would remain intact under an even more general class of functional forms where
pi = Fi(¼i; ¼i=¹¼) with Fi not necessarily equal to Fj; i 6= j:

5Of course, even when kt; Nt and ¼is are speci…ed, the game is not completely determined due to its
parametric dependence on the function F: For simplicity, however, we do not use a notation that makes this
dependence explicit.

6As usual, (yi; x¡i) 2 RN stands for the vector (x1; :::; xi¡1; yi; xi+1; :::; xN ):
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important classes of games for which, at any population composition and size (kt; Nt), and

any equilibrium action pro…le x̂ 2 NE(kt; Nt), the absolute payo¤ to each player with inter-

dependent preferences exceeds the payo¤ to any player with independent preferences? We

shall give an a¢rmative answer to this question in Section 3 where we demonstrate that

two widely studied models, the common pool resource and public good games, yield this

inequality strictly under very general conditions. In other words, at any equilibrium of these

games, the worst performing player with interdependent preferences (who obviously does

not target the maximization of absolute payo¤s) obtains an absolute payo¤ that is strictly

higher than that of the best performing player with independent preferences.

This observation has interesting implications for the theory of preference formation. Con-

sider …rst the case in which preferences are acquired by children directly from their parents,

either by imitation and emulation within the home, or by genetic transmission. In this case

the population composition will evolve on the basis of di¤erences in the number of surviving

children across the two groups of individuals, which in turn are likely to depend on mate-

rial payo¤s in a systematic way. If the dynamics of the population composition are payo¤

monotonic, as is commonly assumed, the …nding that agents with interdependent preferences

obtain higher material payo¤s than do independent players in a variety of economic envi-

ronments will imply a long run population composition in which some, if not all, individuals

have interdependent preferences. These implications are derived and discussed in Section 4.

Alternatively, preference acquisition may be a result of conscious socialization e¤orts on

the part of parents. In this case, children may have preferences that di¤er from those of their

parents, if parents consider it best for the child to be inculcated with preferences other than

their own. Parents may socialize their children on the basis of the payo¤s received in the

current generation, or they may be forward-looking, taking full account of the e¤ects of their

own actions on the population composition in the subsequent generation. This speci…cation

may result in population dynamics that di¤er from those that obtain under evolution. The

implications of parental socialization are discussed in Section 5, where it is shown that at least

for some common pool resource and public goods environments, all parents will inculcate

interdependent preferences in their children.

We now turn to examining the nature of equilibria in a number of strategic environments

(of the sort described above) for a given population composition and size.
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3 Strategic Environments

3.1 Common Pool Resource Extraction

The following model of common pool resource extraction (Dasgupta and Heal, 1979) has been

in widespread use for some time. Consider a population consisting of N individuals, each of

whom has access to a common pool resource. Let xi ¸ 0 denote the extraction e¤ort chosen

by individual i, while X =
P
xi denotes the aggregate extraction e¤ort. Total product is

given by a di¤erentiable real function f such that f 0 > 0 and f 00 < 0: It is natural to assume

that f (0) = 0, so without extractive e¤ort there is no product. There is an opportunity cost

w ¸ 0 per unit of extractive e¤ort and each member of the population receives a share of

the total product that is proportional to her share of aggregate extractive e¤ort. The value,

to the individual, of a unit of the resulting product is given by a nonnegative function P; of

the total output, on R+ with P 0 · 0: The payo¤ to player i is thus given by

¼i(x) =
xi
X
P (f (X))f(X)¡ xiw = xi (R(X)¡ w) (4)

where R(X) = P (f (X))f(X)=X denotes the average value of the extraction e¤ort and

x 2 RN
+ is the vector of extraction e¤orts.7 To guarantee an interior solution, we shall assume

throughout that f is bounded from above (otherwise equilibrium extractive e¤ort would be

unbounded), and that P (0)f 0(0) > w (otherwise no extraction would occur in equilibrium).

As is well known, if all players are payo¤ maximizers with independent preferences, then the

equilibrium vector of extraction e¤ort is unique, interior, symmetric, and ine¢cient.

Rather than assuming that all agents who have access to the common pool resource are

concerned only with the maximization of their absolute payo¤s, we consider the following

scenario. Of the N members of the population, k 2 f1; :::;N ¡ 1g are standard payo¤

maximizers with independent preferences. The remainder have interdependent preferences,

and are concerned with their relative as well as absolute payo¤s. Speci…cally, a player

i 2 fk + 1; :::; Ng seeks to maximize a payo¤ function pi of the following form:

pi =

(
F (¼i; ¼i=¹¼); if ¼i 6= 0
F (0; 0) if ¼i = 0

(5)

7The above formulation, which closely follows Cornes, Mason and Sandler (1986), is general enough to
encompass a variety of institutional settings. For instance, if the output is for agents’ own use and a labor
market does not exist (as in pre-market societies) one would interpret w as the opportunity cost of the
extraction e¤ort in terms of other useful activities and P as the intrinsic value of the good for the individual.
If, on the other hand, the good is exchanged or sold in a market and a labor market exists (as in contemporary
societies), w can be interpreted as the foregone outside wage and P as the price of the product. In the latter
case, if the output market is perfectly competitive P is a constant function, whereas if it is imperfectly
competitive P represents a downward sloping inverse demand function.
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F : R2 ! R is any di¤erentiable function with F1; F2 > 0:8 Furthermore, we assume that F

satis…es the following natural boundary condition: for any z1; z2 2 R;

F (0; z1) > F (z; z2) whenever z < 0: (6)

That is, an agent with interdependent preferences becomes concerned with her relative payo¤

only when her absolute payo¤ is positive; indeed the relative payo¤ concept runs into obvious

di¢culties when the absolute payo¤s are negative (While (6) is quite reasonable, we will

require it to hold only in the present section.)

Henceforth, we shall refer to the strategic form game de…ned above as a common pool

resource game. An equilibrium of this game is an action pro…le x which satis…es, for any

y 2 R+, the conditions (2) and (3) (with k = kt and N = Nt): Our main question can

then be stated as follows. In a given equilibrium of a common pool resource game, which

of the two groups has a higher average absolute payo¤? The following result provides an

unambiguous answer to this question.9

Proposition 1 In any equilibrium of any common pool resource game, absolute payo¤ max-
imizing individuals obtain strictly lower absolute payo¤s than do individuals who have inter-
dependent preferences.

To illustrate the intuition behind this proposition, we plot in Figure 1 the reaction curves for

independent and interdependent players in a two player commons game with the independent

and interdependent payo¤ functions given by ¼i(x) = xi(1¡X) and pi = ¼2i=¹¼; respectively.10

If both of the players had independent preferences, the unique equilibrium of the game

(represented by point b in Figure 1) would be symmetric where both players choose the

action 0:33: However, player 2’s reaction curve when she has interdependent preferences

is everywhere above the one she would have, had she possessed independent preferences.

Consequently, she chooses a higher action and hence obtains a higher payo¤ than does the

…rst player at the new equilibrium (point a in Figure 1).

The main driving force behind this result appears to be the potential value of commitment

in strategic environments. In this particular case, the commitment by the interdependent

player arises out of her concern about the share of the aggregate payo¤ she obtains. Conse-

quently, she is willing to extract more of the common resource at every choice of extraction

level by the independent player (player 1), even if that means a reduction in the absolute

8We use the convention of setting pi(x) = F (0; 0) whenever ¼i(x) = 0 to avoid the di¢culty of evaluating
indeterminate form 0

0
:

9All proofs which do not appear in the main text are found in the appendix.
10We thus choose w = 1; F (t1; t2) = t1t2; and P (t) = 1 for all t1; t2; t ¸ 0; and f(X) = 2X ¡ X2 for

X 2 [0; 1] and f(X) = 1 for X ¸ 1: (The violation of the assumption that f 0 > 0 everywhere is readily
observed to be inconsequential.)
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Figure 1: A Two Player Common Pool Resource Game

payo¤s she would receive. The best response of player 1 who knows the behavioral disposi-

tion of the interdependent player leads us to an asymmetric equilibrium at which she chooses

a strictly lower extraction e¤ort than that of player 2. Given the structure of ¼i; this leads

to a higher level of absolute payo¤ for the interdependent player than for the independent

player.11

3.2 Private Provision of Public Goods

In this section, we examine interdependent preferences within the context of the private

provision of a public good (cf. Bergstrom, Blume and Varian, 1986, and Cornes and Sandler,

1996). This model is widely used in studying the infamous “free rider” problem, and is one

of the major workhorses in the …eld of public economics.

Consider an N-person economy in which there is one public good the quantity of which

is denoted by X; and one private good which is interpreted as a Hicksian composite good.

For the purposes of symmetry, we assume that each individual is endowed with an identical

level of private good denoted by ! > 0: The preferences of individuals are represented by

a twice di¤erentiable utility function U on R2
+ such that U1 > 0; U2 > 0; U11 · 0; and

11One possible extension of this analysis would be to examine the strategic advantage of interdependent
preferences in common pool resource games where individuals can engage in costly sanctions against other
players once extraction levels have been observed. Such sanctions are an important and prevalent feature of
common property institutions (Ostrom, Walker and Gardner, 1992, Sethi and Somanathan, 1996).
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U12 ¸ 0:12

Let X =
P
xi represent the sum of the individual contributions, where xi 2 [0; !] stands

for the contribution of individual i: It is commonplace to postulate that the quantity of

public good is de…ned as the sum of (voluntary) contributions of individuals which are paid

out of their endowments. However, this production technology is not su¢ciently general to

cover the wide variety of collective choice problems with which societies have historically

been confronted. For instance, as noted by a number of authors, if X stands for the protec-

tion of a military front, it seems more reasonable that the technology should be modelled

as X = minfx1; :::; xNg (the so-called weakest-link technology, cf. Hirshleifer, 1983).13 Since

we wish to incorporate here a su¢ciently general public good provision model that would

include examples like the provision of irrigation and national defence (which are all signi…-

cant collective action problems that may well have contributed to the shaping of individual

preferences through evolution), we consider a broader class of technologies than the usual

summation technology. Following Cornes (1993), therefore, we postulate that the public

good in question is produced by a quasi-concave CES production function of the form

X =

Ã
NX

i=1

x½i

!1=½

for some ½ · 1:

This speci…cation incorporates all public goods which can be produced by a technology that

falls between the weakest-link and the summation technologies (since lim½!¡1 (
P
x½i )

1=½ =

minfx1; :::; xNg).

If she contributes xi to the production of the public good, individual i would clearly be

left with an amount ci = ! ¡ xi of the private good. We may, therefore, write the absolute

payo¤ of person i as a function of the pro…le of the contributions as follows:

¼i(x) = U (! ¡ xi; (x½i +X¡i)
1=½) (7)

where x 2 [0; !]N and X¡i =
P

j 6=i x
½
j :

As in the previous subsection, we shall assume in what follows that only a certain number

k 2 f1; :::; N ¡ 1g of the individuals recognize ¼i as their objective function. The rest of the

12Since the present study is concerned with material payo¤s, we interpret U as a money metric utility
function in what follows. All of the assumed regularity conditions are standard (with the possible exception
of U12 ¸ 0). Among the examples of commonly used functional forms for U that satisfy these postulates
are U(c; X) = c®X¯; U(c;X) = cV (X) and U(c; X) = c® + V (X) where 0 < ® · 1; ¯ > 0; and V is a
di¤erentiable real function on R+ such that V 0 > 0:

13As noted by Cornes and Sandler (1996, p. 55), “the Allied defenses in 1940 were only as strong as
their weakest point, the Maginot line.” For other interesting collective action problems which necessitate
a di¤erent public good production technology than that which is usually assumed, we refer the reader to
Hirshleifer (1983), Cornes (1993), and Cornes and Sandler (1996).
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society targets the maximization of an objective function which is de…ned by (1) for some

di¤erentiable F such that F1; F2 > 0: (Clearly ¼i is de…ned by (7) for these people, and

¹¼ = 1
N

P
U (! ¡ xi; X):) In what follows, we shall refer to the resulting class of strategic

form games as public good games.

De…ning the notion of equilibrium again via (2) and (3), we now ask the same question

we asked in the previous section, this time for public good games. How do the absolute

payo¤s of the individuals, as de…ned by (7), compare in the equilibrium? The answer is

again unambiguous:
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Proposition 2 In any interior equilibrium of any public good game, absolute payo¤ max-

imizing individuals obtain strictly lower absolute payo¤s than do individuals with interde-

pendent preferences. In any boundary equilibrium of any public good game, all independent

agents obtain (weakly) lower payo¤s than all interdependent agents, and if limX!0 U2(!;X) >

U1(!; 0), then at least one independent agent obtains a strictly lower payo¤ than all interde-

pendent agents.

The intuition behind this result is similar to that discussed in the common pool resource

game. Here, a concern about one’s relative payo¤ shifts the reaction curve inward and

leads to a lower equilibrium contribution for the interdependent player as compared to the

contribution of the independent player. Although the mechanisms through which the in-

terdependent player obtains a higher payo¤ than does the independent player are di¤erent

in the two games, both are the result of the strategic advantage an interdependent player

derives from her particular behavioral disposition.

3.3 Other Strategic Environments

In Sections 3.1 and 3.2 we have considered games in which strategic interaction of the agents

takes place at the population-wide level: each member of the population interacts simul-

taneously with every other member and is thereby ‘playing the …eld.’ An alternative and

commonly used speci…cation is that of ‘pairwise contests,’ in which members of the popula-

tion are randomly matched in pairs to play a 2£ 2 game. As a prelude to the evolutionary

analysis of such environments, we provide an exhaustive analysis in this section of all sym-

metric 2£ 2 games in which one of the players has independent preferences while the other

has interdependent preferences.14

Take any symmetric 2 £ 2 game where the action space of both individuals is fH;Dg:
The (absolute) payo¤ bimatrix of such a game must necessarily be of the form portrayed in

Table 1.
Player 2

Player 1 H D

H (a; a) (b; c)

D (c; b) (d; d)

Table 1

14Güth and Yaari (1992), whose focus is on the evolution of reciprocity, conduct a similar analysis for a
particular class of 2 £ 2 games.
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Since the game at hand is a two-person game, the only non-degenerate case of interest is when

one of the agents, say player 1, is independent, and the other (i.e. player 2) is interdependent.

Consequently, by (1), the game that is actually played between the agents is the one reported

in Table 2, where F is any strictly increasing function. Once again, the question we ask is:

how do the absolute payo¤s of the players (reported in Table 1) fare given that they are in

fact playing the game depicted in Table 2?

Player 2
Player 1 H D

H (a; F (a; 1))

µ
b; F

µ
c;

2c

b+ c

¶¶

D

µ
c; F

µ
b;

2b

b+ c

¶¶
(d;F (d; 1))

Table 2

To address this question, we shall use the following well-known classi…cation of symmetric

2£ 2 games (Weibull, 1995, pp. 28–30).

Category I : (a < c and b < d) or (a > c and b > d)

Category II : a > c and b < d

Category III : a < c and b > d

These categories exhaust all generic examples of symmetric 2£ 2 games. For instance, the

Prisoner’s Dilemma, coordination games (e.g. Stag Hunt), and the Hawk-Dove game belong

to categories I, II and III, respectively. In what follows, by a game of type i; we mean a game

represented by the payo¤ bimatrix of Table 2 (for some strictly increasing F ), provided that

the corresponding game of the form given in Table 1 belongs to category i; i = I, II, III.

The set of all games of type I, II and III is quite rich, and contains games with remarkably

di¤erent inherent structures. Consequently, it is not surprising that one cannot obtain exact

analogues of Propositions 1 and 2 for the class of all such games. Nevertheless, it is possible

to show that interdependent agents still hold the upper hand against independent agents in

the majority of such games. Indeed, it turns out that in any game of type I, II or III, there

exists an equilibrium (de…ned by (2) and (3)) at which the interdependent player obtains at

least as much absolute payo¤ as the independent agent. Moreover, if there exists a unique

asymmetric equilibrium in any such game, then at that equilibrium the level of absolute

payo¤ of interdependent player 2 must strictly exceed that of player 1. More precisely, we

have the following:
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Proposition 3 (a) In any game of type I, either (D;D) (or (H;H)) is the unique equilib-

rium, or there exists another unique equilibrium at which the interdependent agent obtains

strictly higher absolute payo¤s than the independent agent.

(b) Any game of type II is degenerate in the sense that at any equilibrium of any such

game the absolute payo¤s of the interdependent and independent agent are the same.15

(c) In any game of type III, either (H;D) and (D;H) are both equilibrium outcomes, or

the equilibrium is unique and the interdependent agent obtains strictly higher absolute payo¤

than the independent agent in this equilibrium.

Proof To see part (a), take any game of type I in which a < c and b < d; and assume that

(D;D) is not an equilibrium of this game. Since b < d;we must thus have F (d; 1) < F
¡
b; 2b
b+c

¢

which implies that c < b since F is strictly increasing in both of its arguments. But given

that a < c < b; it is immediately observed that (D;H) is the only pure strategy Nash

equilibrium of the game at hand, and we have ¼2(D;H) = b > c = ¼1(D;H): (The case

where a > c and b > d is analyzed analogously.)

To see part (b), take any game of type II, and assume that (H;H) is not an equilibrium.

Since a > c in this case, we must then have 1 < 2c=(b + c): But then 1 > 2b=(b + c); and

hence (D;D) must be an equilibrium.

Finally, to prove part (c), take any game of type III, and assume that either (H;D) or

(D;H) is not an equilibrium. W.l.o.g., let us assume that (H;D) is not an equilibrium. But

then we readily obtain that 2c=(b + c) < 1 so that b > c: This, in turn, guarantees that

(D;H) is the unique equilibrium, and we are done. QED

The potential value of commitment once again appears to be the driving force behind

Proposition 3. This is particularly clear for Proposition 3c which covers the Hawk-Dove

game (in which a < c < d < b); if the di¤erence between absolute payo¤s to playing hawk

against dove and dove against hawk (i.e. between b and c in Table 1) is large enough, playing

H becomes a dominant strategy for the interdependent player so that she credibly commits

to hawkish behavior. The best that the independent player can do in response is then to

retreat to dove-like behavior.16

This completes our static analysis of the potential strategic advantages of interdependent

preferences. The implications of our results for the dynamics of the population composition

15Interestingly, if we consider the mixed strategy extension of games of type II, this category too ceases to
be degenerate. Indeed, one can show that if an interior mixed strategy Nash equilibrium of a game of type
II exists, at this equilibrium the expected absolute payo¤ of player 2 is strictly higher than that of player
1. Since we focus on pure strategies in this paper, we omit the proof of this assertion which is of course
available from the authors upon request.

16For a detailed discussion of the motivation for and properties of the Hawk-Dove game, see Maynard
Smith (1982).
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are explored in the sections to follow.

4 Preference Evolution

We consider in this section a model of preference evolution based on vertical transmission:

children inherit the preferences of their parents and the population composition evolves in

accordance with an absolute payo¤ monotonic evolutionary selection dynamic.

4.1 Playing the Field

First consider the case in which the preferences of children are identical to those of their

parents. This could occur either because preferences are transmitted genetically or, more

plausibly, through ‘vertical’ cultural transmission as children observe and emulate their par-

ents. Under this mechanism, it is assumed that any conscious e¤orts on the part of parents

to inculcate preferences in their children are motivated only by a desire to raise their children

to be like themselves, and not with a view to engineering their children’s preferences in order

to enhance their prospective well-being in the subsequent period.

The principal ingredient of analysis is the assumption that the number of surviving

children that each parent leaves behind is an increasing function of the material payo¤s that

they earn in their adult life. This is a common assumption in evolutionary models in general

(see, for instance, Rubin and Paul, 1979 and Robson, 1996). The argument is that greater

access to resources gives rise to a larger number of mates and a higher probability of survival

to maturity, thereby resulting in greater number of surviving children (Waldman, 1994, p.

489).17

We begin by assuming that, during any period t, the population composition and size

(kt; Nt) is historically determined, and a particular game G(kt; Nt) is played. Suppose that

the adult members of the population locate an equilibrium action pro…le x̂t 2 NE(kt; Nt)

and receive their corresponding payo¤s. Propositions 1 and 2 imply that for any common

property and public good games, regardless of which equilibrium is played, and regardless of

the population composition and size in period t, we have ¼j(x̂t) ¸ (>) ¼i(x̂t) for all (some)

i 2 f1; :::; ktg and all j 2 fkt + 1; :::; Ntg. That is, in such games, any individual with

17It is interesting to note that the classical theory of wages developed by Adam Smith, Malthus and Ricardo
was based on the postulate, considered self-evident only a century and a half ago, that increases in incomes
would, by lowering infant mortality rates, give rise to an increase in population growth and eventually in
labor supply: “poverty, though it does not prevent the generation, is extremely unfavorable to the rearing
of children. The tender plant is produced, but in so cold a soil, and so severe a climate, soon withers and
dies. It is not uncommon, I have been frequently told, in the Highlands of Scotland for a mother who has
borne twenty children not to have two alive.” (Smith, 1776, p. 88)
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interdependent preferences earns a greater material payo¤ than at least one independent

player, and no less than any of them. If the number of surviving children of each adult is

a strictly increasing function of material payo¤s, then the population composition in the

subsequent generation must satisfy the following recursive inequality:

kt+1
kt

<
Nt+1 ¡ kt+1
Nt ¡ kt

:

Let st = kt=Nt denote the population share in period t of those adults having independent

preferences. The above inequality then implies that

st+1
st

µ
Nt+1
Nt

¶
<
1¡ st+1
1¡ st

µ
Nt+1
Nt

¶

which in turn yields st+1 < st. Hence, as long as kt > 0, the population share of those

with independent preferences will decline monotonically. If, in addition, there is some upper

bound which the total population cannot exceed, then we can say more:

Proposition 4 Consider any common pool resource or public good game, and suppose that
there is an upper bound which the total population cannot exceed in any generation. For
any given initial population composition and size (k0; N0) such that k0 2 f0; :::; N0 ¡ 1g, any
(absolute) payo¤ monotonic dynamics with vertical transmission entails that the population

consists exclusively of interdependent agents after …nitely many generations.

The above result hinges on the assumption that the number of surviving o¤spring increases

with material well-being. It must be noted that this assumption appears less innocuous in

view of the demographic changes that have taken place over the past century. Signi…cant

improvements in public health and widespread immunizations have led to a decline in death

rates among the poor, while the spread of contraceptive practices among the more auent

has allowed their birth rates to fall. Nevertheless, it is unlikely that so short a period of time

would have signi…cantly altered the distribution of preferences in the population as it existed

prior to these demographic changes. Furthermore, as we shall see in Section 5.1, taking into

account the possibility of (myopic) parental socialization allows us to make a case for the

emergence and persistence of interdependent preferences that does not rely on di¤erential

rates of population growth.

4.2 Pairwise Contests

We now turn to the analysis of symmetric 2£2 games within the con…nes of (absolute) payo¤

monotonic dynamics with vertical cultural transmission. Since there are quite a number of

distinct games in this class, here we shall focus only on one particularly interesting subclass
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of symmetric 2£ 2 games, namely on games of Hawk-Dove type. The corresponding results

for other sorts of symmetric 2£ 2 games will only be mentioned brie‡y.

The evolutionary scenario that we describe in this subsection is that of “pairwise contests”

wherein we assume that population is …nite but large, and that each individual is randomly

matched with another member of this society in order to play a certain game. Three types

of possible pairings are possible: both players independent, both interdependent, and one

player of each type. Given the population composition and size (kt;Nt) in period t, the

probabilities of being matched with an independent or interdependent type are objectively

determined for each player. Furthermore, corresponding to each of the three types of pairings

is a set of equilibria; we assume that players are able to coordinate on one of these. The

manner in which players solve the equilibrium selection problem is not addressed, and the

results that we report do not depend on the choice of any particular equilibrium. Given

the choice of equilibria, the expected (absolute) payo¤ to each type of agent, and the mean

expected (absolute) payo¤ in the population at large are determined as functions of the

population composition st = kt=Nt. Let ¼indep(st) and ¼inter(st) denote the expected average

(absolute) payo¤ of independent and interdependent agents respectively. The dynamics of

the population composition may be represented by a di¤erence equation

st+1 = g (st) ; (8)

where g : [0; 1] ! [0; 1] is continuous, and g (st) = st if st 2 f0; 1g (a homogeneous population

remains homogeneous.) It is assumed, as before, that the dynamics are payo¤ monotonic,

so for st 2 (0; 1), we have

¼indep(st) R ¼inter(st) if and only if g (st) R st:

Finally, we make the unrestrictive assumption that if st 2 (0; 1), then g (st) 2 (0; 1). This

states simply that the population composition cannot jump in a single generation from an

interior to a boundary point, though of course it can converge asymptotically to one of the

boundaries. Note that in order for an interior state s 2 (0; 1) to be a rest point of the above

dynamics, the expected payo¤s of the two player types must be equal.

Given this evolutionary setting, we wish to study games of Hawk-Dove variety, that is,

those 2 £ 2 games represented in Table 1 with a < c < b < d. Recall that when both

players are independent, this game has two pure strategy equilibria f(H;D); (D;H)g. If

both of these pro…les remain equilibria when one (or both) of the players is interdependent,

there is nothing we can say about the long run population composition without addressing

explicitly the issue of equilibrium selection. Although it is unambiguously clear that, in

pairwise contests involving only independent or only interdependent agents, the average

payo¤ accruing to the players will be (b+c)=2, this is not the case in contests involving both

17



types of players due to the presence of multiple equilibria. Therefore, we are not able to rank

the average payo¤s obtained by independent and interdependent types in an unambiguous

way, and hence cannot derive de…nitive results regarding the long run population composition

in this case.

A more interesting case obtains if the interdependent behavior of an agent alters the set of

equilibria to the singleton f(D;H)g; which occurs if and only if F (a; 1) > F (c; 2c=(b+ c)) ;

that is, when player 2 is su¢ciently interdependent. In this case, H is a strictly domi-

nant strategy for interdependent players regardless of whether their opponent is indepen-

dent. Consequently, they reap the bene…ts of their aggressive nature in games they play

against independent players. Yet, when matched against another interdependent agent, an

interdependent player su¤ers, since (H;H) is then the unique equilibrium. As a result, no

monomorphic population of either kind can be stable. A large population that is composed

of only independent agents will be vulnerable to an invasion by a su¢ciently small number of

interdependent mutants, since the likelihood that two interdependent types will be matched

with each other is then negligible. Since a similar reasoning applies to a large population that

is composed of only interdependent agents, we must conclude that both types of individuals

must be present in a society with a stable population composition (if such a composition

exists at all).18 This intuition underlies the following proposition.

Proposition 5 Consider any game of the Hawk-Dove type and any strictly increasing F
with F (a; 1) > F (c; 2c=(b+ c)). Let the population size N be …nite (but large), and consider
the pairwise contests scenario along with an arbitrary (absolute) payo¤ monotonic dynamics
with vertical transmission. For any k0 2 f1; :::; N ¡ 1g; there exists some strictly positive

number µ such that, except for some …nite number of initial generations, the population
composition contains at least a share µ of each player type.

The above result states that convergence to the boundaries cannot occur under the dynamics

(8). It is amply possible, even for simple speci…cations such as the widely used replicator

dynamics, for stable limit cycles and more complex dynamics to occur in this model so the

population composition may not converge at all. What the result implies, however, is that

if convergence does occur, it will be to an interior state.

Propositions 4 and 5 draw markedly di¤erent pictures of the long run population compo-

sition of the society even though they both use vertical transmission mechanisms and payo¤

18This …nding is very much in the same spirit as that of Banerjee and Weibull (1995), who consider a
population consisting of three types: (irrational) hawks, (irrational) doves, and optimizers, with the latter
playing a best response against whichever opponent they meet. In this setting the only stable composition
is a mixture of hawks and optimizers. Our independent types are identical to Banerjee and Weibull’s
best responders, while the behavior of our interdependent types (if they are su¢ciently interdependent) is
indistinguishable from that of their (irrational) hawks.
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monotonic evolutionary dynamics, and even though the commitment of the interdependent

players always pays o¤ against independent agents in the games under consideration. It

appears therefore that the evolution of preferences is likely to yield di¤erent outcomes un-

der selection dynamics of the playing the …eld variety as compared with dynamics based on

pairwise contests. To reiterate, the main reason behind this di¤erence is that in pairwise

contests it is possible for two interdependent agents to be paired, which may thus result in

absolute payo¤ losses that do not a¤ect the independent players in the society. Therefore,

if the share of interdependent agents in the population increases su¢ciently, the frequency

with which this occurs rises, and thus the expected average payo¤ of the interdependent

types becomes smaller than that of the independent types. This possibility simply does not

exist in the playing the …eld framework, for, at least in common pool resources and public

good games, emergence of a polymorphic population composition always guarantees a higher

absolute payo¤ to all interdependent agents.19

5 Parental Socialization

In this section we consider two models of parental socialization: myopic and “rational”. In

the case of myopic socialization parents attempt to socialize their children on the basis of the

current payo¤ distribution, and children are either successfully socialized or simply inherit the

preferences of their parents. In the case of forward-looking (rational) socialization, parents

take full account of the e¤ects of their actions on the future population composition.

5.1 Myopic Socialization

In order to examine the e¤ects of myopic socialization, we proceed under the assumption

that each generation has the same population size N and that each adult has exactly one

child. As before, let NE(kt; N) denote the set of Nash equilibria corresponding to the popu-

lation composition and size at time t. Having observed the payo¤ distribution, adults must

decide whether to inculcate independent or interdependent preferences in their children. It

is assumed that parents are altruistic, but that they are able to judge di¤erent payo¤ dis-

tributions only in the light of their own preferences. (Bisin and Verdier, 1996b, refer to this

19In passing, we note how Proposition 5 would be altered, under the basic evolutionary scenario we
examined above, if we replaced the games of Hawk-Dove variety with other symmetric 2 £ 2 games. In
games of Category I, either any initial population composition is stable (as in Prisoner’s Dilemma), or
the population is composed of only independent agents (the latter case being observed only for relatively
uninteresting games where cooperative behavior is strictly dominant strategy for all players.) In Category
II type games, on the other hand, we again face the multiple equilibrium problem and thus are unable to
reach to unambiguous conclusions.
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as partial empathy.) A parent with independent preferences will therefore wish to inculcate

preferences in her child which yield the highest absolute payo¤. A parent with interdepen-

dent preferences, on the other hand, will wish to inculcate preferences in her child which

yield the highest value for the objective function de…ned by (1). Even if parents had static

expectations regarding the behavior of other parents, a forward looking parent who chooses

to instill preferences that di¤er from her own will expect to in‡uence the population com-

position and hence the set of equilibria that will emerge in the subsequent generation. This

complicates the decision problem faced by parents quite substantially, in a manner that is

brie‡y explored in Section 5.2. For the moment, however, suppose that parents ignore this

e¤ect of their actions, and myopically use the current payo¤ distribution to determine which

of the two preference types yields a higher value for their objective function. Propositions

1 and 2 imply that for any common property and public good games, regardless of which

equilibrium is played, and regardless of the population composition and size in period t, we

have ¼j(x̂t) ¸ (>) ¼i(x̂t) for all (some) i 2 f1; :::; ktg and all j 2 fkt+1; :::; Ng. Since inter-

dependent parents obtain greater absolute as well as relative payo¤s than do independent

parents, they will certainly choose to inculcate interdependent preferences in their children.

Independent parents, on the other hand, will choose to inculcate interdependent preferences

in their children, imploring them to “do as I say, not as I do!”

Of course, the parent’s socialization e¤orts may not be successful, in which case we assume

that the child simply inherits her parent’s preferences. Let us assume then that there is an

exogenously given probability, ¾; with which the socialization e¤ort is successful, and refer

to the resulting preference formation mechanism as myopic socialization with probability ¾:
The long run implications of this mechanism can be summarized as follows:

Proposition 6 Fix a population size N ¸ 2; and consider any common pool resource or

public good game. For any given initial number of independent players k0 2 f0; :::; N¡1g, any

myopic socialization mechanism with probability ¾ > 0 entails that the long run population
will be composed entirely of interdependent agents.

We note, however, that if the population initially consists exclusively of independent types,

it will continue to do so in each subsequent generation, for in that case there is no possi-

bility that an independent parent will have an interdependent child. However, if we add

to the model the possibility of errors, trembles, or mutation in the process of preference

adoption, then the resulting stationary distribution will have full support f0; :::Ng, and as

the mutation rate gets vanishingly small, the stationary distribution of the process converges

(with probability 1) to the homogeneous distribution which is again comprised of only the

interdependent agents.20

20For brevity, we omit the proof of this assertion which is available upon request. The issue at hand is
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Finally, we consider the games of the Hawk-Dove type in the light of the present myopic

socialization mechanism. Given Proposition 5, the following observation is not surprising:

Proposition 7 Consider any game of the Hawk-Dove type and any strictly increasing F

with F (a; 1) > F (c; 2c=(b+ c)) : Let the population size N be …nite (but large), and consider

the pairwise contests scenario along with any myopic socialization mechanism with probability

¾ > 0. For any k0 2 f1; :::; N ¡ 1g; the expected population share of independent agents in

the long run is strictly smaller than 1, that is, the long run population is polymorphic in

expectation.21

As expected, Propositions 6 and 7 yield di¤erent conjectures for the long run composition

of the society as determined by myopic socialization. Yet, it is striking that in each of

these results (and those of previous section) we …nd no evidence supporting the presence of

populations that are composed entirely of independent agents.

5.2 Rational Socialization

Finally, consider the case in which parents are forward looking and deliberately shape the

preferences of their children in order to increase what they perceive, in the light of their

own preferences, as the child’s well-being. In terms of the framework used here, a rational,

forward-looking parent with independent preferences will choose to inculcate interdependent

preferences in her child if it enhances the child’s absolute payo¤. Similarly, a parent with

interdependent preferences will choose to inculcate independent preferences in her child if,

by doing so, they can induce an action pro…le in the subsequent generation which yields her

child a higher value of the parent’s interdependent objective function.

Since parents are forward looking, the dynamics of the population composition will, in

general, depend on the expectations held by each parent regarding the behavior of other

parents. As before, assume that each parent has only one child, so that the population

is stationary at N . In period t there are kt 2 f1; :::; Ng independent individuals. Denote

by kei;t the expectations of parent i in period t regarding the number of other parents who

will socialize their children with independent preferences. In deciding whether to transmit

independent or interdependent preferences to her child, an independent parent i compares

the absolute payo¤ to an independent player in a society with kei;t + 1 independent players

with the absolute payo¤ to an interdependent player when there are kei;t independent players.

If the latter is higher, then the parent chooses to inculcate interdependent preferences in her

analogous to the double limit problem studied by Young (1993), Kandori, Mailath and Rob (1993), and
Vega-Redondo (1996).

21Of course, if the population is initially composed of only interdependent (independent) agents, so will it
be in every period.
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o¤spring. Similarly, an interdependent parent i compares the interdependent payo¤ to an

independent agent in a society with kei;t + 1 independent players with the interdependent

payo¤ to an interdependent agent in a society with kei;t independent agents. If the latter is

higher she chooses to inculcate interdependent preferences in her child.

If parents have static expectations regarding the behavior of other parents, then kei;t = kt
for all interdependent parents and kei;t = kt ¡ 1 for all independent parents. At any steady

state of the dynamics under static expectations, parents’ expectations will be self-ful…lling.

Static expectations will not, however, be self-ful…lling whenever the population composition is

changing from one period to the next. In this case one might wish to explore the properties of

trajectories along which parents have rational or self-ful…lling expectations at all times. With

rational expectations, the dynamics of the population composition may be indeterminate:

from any initial population composition there may exist multiple paths which satisfy the

parents’ optimality conditions and in which expectations are self-ful…lling. In the case to be

considered below, however, not only is the rational expectations path determinate, it yields

precisely the same trajectory as the hypothesis of static expectations.

When the population size N is large, dynamics under static expectations will be closely

approximated by the dynamics under myopic socialization. The only di¤erence between my-

opic socialization and forward-looking socialization with static expectations is that the latter

requires that parents take into account the possible changes in the population composition

induced by their own socialization e¤orts. Therefore, when the relative share of a single

parent is negligibly small in a population, these two notions of socialization coincide. In

particular, the results one would obtain in terms of myopic and rational socialization with

static expectations would be virtually identical for games of Hawk-Dove variety that are

played in pairwise contests in …nite but large populations. Similarly, Proposition 6 would

remain intact in the present framework if N is su¢ciently large.

If the in‡uence of a single parent on the population composition is not negligible, then it

is conceivable that the implications of rational socialization (with static or rational expecta-

tions) will be substantially di¤erent than those of myopic socialization. Due to the potential

e¢ciency losses induced by the inculcation of interdependent preferences, the absolute payo¤

of an independent individual can be larger than the absolute payo¤ she would have earned

had she acquired interdependent preferences instead, even though it remains true that for

a given population composition, interdependent agents earn greater payo¤s. Consequently,

in small populations, rational socialization may act against the evolutionary forces that fa-

vor the spread of interdependent preferences. We …nd, however, that rational socialization

need not always go against the evolutionary selection processes (such as vertical cultural

transmission) even in small societies. In fact, depending on the particular characteristics of

the strategic environment under consideration, it may well act just like a payo¤ monotonic
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Figure 2: Rational Socialization in the Commons Game

selection dynamics. We conclude the present study with a demonstration of this possibility.

Fix an arbitrary N , and consider the common pool resource game with w = 1, P (z) = 1

for all z ¸ 0, and

f (X) =

(
2X ¡X2; if 0 · X · 1

1; if X > 1

Therefore, the objective function of an independent agent is ¼i(x) = xi(1 ¡ X) for all

x 2 RN
+ ; and pi = ¼2i =¹¼ for all i 2 fk + 1; :::; Ng: It is easy to check that the equilibrium of

this game (for any k 2 f0; :::; Ng) is interior and intra-group symmetric (i.e., all independent

(and interdependent) agents choose the same level of extraction e¤ort in the equilibrium).

Unfortunately, the algebra involved in comparing the relevant payo¤s at arbitrary (k;N)

tuples turns out to be quite complicated. Consequently, we have chosen to simulate these

equilibrium payo¤s for a variety of N levels (including 2; 3; 10; 20; 50; 100). The simulation

results for the case N = 20 are typical and are plotted in Figure 3. The striking observation

is that an independent parent will choose to inculcate interdependent preferences in her child,

regardless of their expectations concerning the behavior of other parents.22 In particular,

22It is enough to analyze the decision making process of only the independent parents because that of
the interdependent parents is symmetrical, i.e., if an independent parent chooses to transmit interdependent
preferences so does an interdependent parent (since domination in absolute payo¤s implies domination in
interdependent payo¤s).
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this occurs under both static and self-ful…lling expectations. As in the case of vertical

cultural transmission, rational socialization too gives rise in this example to a monomorphic

population composed only of interdependent agents. From any initial composition, the

population will become completely interdependent in a single generation.23

6 Conclusions

The …ndings reported in this paper give some support to the hypothesis of interdependent

preferences on theoretical grounds. Our results do not allow us to conclude that interdepen-

dent preferences are the only possible outcome of evolutionary selection, nor do we claim

that independent preferences can never be sustained in evolutionary equilibrium. We do

feel justi…ed in concluding, however, that there are su¢cient theoretical grounds for con-

sidering the hypothesis of negatively interdependent preferences to be an important and

reasonable alternative to the more standard postulate of independent preferences at least in

some economic contexts.

There are a number of directions in which we believe the present research could be fruit-

fully extended. It will be interesting to know the extent to which our results generalize to

include additional, broader classes of games. In Koçkesen, Ok and Sethi (1997) we address

this question for classes of supermodular and submodular games, and provide conditions

under which players with interdependent preferences do no worse (and sometimes better)

than those with independent preferences. One might also investigate how our …ndings would

be modi…ed when the model is extended to include the presence of private information with

respect to the extent of one’s interdependence. Another possible direction for future re-

search pertains to the implications of our results for managerial behavior in oligopolistic

markets. The payo¤ structure in the common pool resource game resembles that in Cournot

oligopoly, and the conditions under which rational socialization predicts the inculcation of

interdependent preferences are likely to be related to those in which a pro…t seeking share-

holder (principal) will instruct the manager (agent) of her …rm to pursue objectives other

than the maximization of absolute pro…ts. This issue has already been explored for duopolis-

tic markets with linear demand by Fershtman and Judd (1987) but our …ndings suggest that

the phenomenon will arise much more generally. A third possible extension involves the

application of the present framework to study certain anomalies frequently observed in ex-

perimental games. It appears particularly well suited to explain behavior in ultimatum

bargaining games, in which a concern for relative standing would predict the rejection of

highly skewed o¤ers and entail fear of retaliation on the part of the …rst movers (cf. Bolton,

23The same result was obtained for a variety of public good games, including the case U(c;X) = cX, and
for several other examples of common pool resource games, details of which are available upon request.
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1991, Saijo and Nakamura, 1995, and Levine, 1996). Furthermore, the ultimatum bargain-

ing environment is one in which responders with interdependent preferences will earn higher

payo¤s than those with independent preferences, so that evolution operating in this environ-

ment is likely to select against the latter. These and other questions arising from the present

work are left for future research.
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Appendix

Proof of Proposition 1

Let x̂ 2 RN
+ be an equilibrium of an arbitrary common pool resource game. Strict concavity

of f , together with the assumption that f(0) = 0, implies that d
dX

³
f (X)
X

´
< 0 for all X ¸ 0:

Given that P 0 · 0; therefore, we have R0 < 0: From this observation, boundedness of f

(which implies that limX!1 f 0(X) = 0), and the hypothesis that R(0) = P (0)f 0(0) > w; it

follows that there exists a unique Xo > 0 such that R(Xo) Q w whenever X R Xo.

Suppose that X̂ =
P
x̂i ¸ Xo: Then, x̂i = 0 for all i 2 f1; :::; kg; for otherwise ¼i(x̂i ¡

²; x̂¡i) > ¼i(x̂i; x̂¡i) for any ² 2 (0; x̂i): We next claim that x̂j = 0 for all j 2 fk + 1; :::; Ng
as well. So, assume for contradiction that x̂j > 0 for some j 2 fk + 1; :::; Ng: If X̂ > Xo;

then ¼j(x̂) < 0 so that by (5) and (6),

pj(0; x̂¡j) = F (0; 0) > F

µ
¼j(x̂);

¼j(x̂)

¹¼(x̂)

¶
= pj(x̂);

contradicting that x̂ is a Nash equilibrium. On the other hand, if X̂ = Xo; then ¼j(x̂) = 0

and we have, by (5),

pj(x̂j ¡ "; x̂¡j) = F
µ
¼j(x̂j ¡ "; x̂¡j);

¼j(x̂j ¡ "; x̂¡j)
¹¼(x̂j ¡ "; x̂¡j)

¶
> F (0; 0) = pj(x̂)

for all " 2 (0; x̂j): (Here the strict inequality follows from the fact that F is strictly in-

creasing.) Therefore, x̂i = 0 must hold for all i 2 f1; :::;Ng whenever X̂ ¸ Xo; and this

contradicts Xo > 0: We thus conclude that X̂ < Xo holds and we have R(X̂) > w:

Now pick any i 2 f1; :::; kg and j 2 fk + 1; :::; Ng: Given that X̂ < Xo; it is easily seen

that x̂i > 0: Thus,
@¼i
@xi

= R(X̂)¡w + x̂iR0(X̂) = 0 (9)

and
@pj
@xj

=
@¼j
@xj

F1 +
1

¹¼

·
1¡ ¼jP

¼r

¸
@¼j
@xj

F2 ¡ 1

¹¼

µ
¼jP
¼r

¶ÃX

r 6=j

@¼r
@xj

!
F2 · 0

where all the derivatives are evaluated at x̂: It is easily veri…ed that
P

r 6=j @¼r=@xj < 0 and

¼j=
P
¼r · 1: Hence, since F1; F2 > 0, we must have @¼j(x̂)=@xj < 0, that is, R(X̂) ¡ w +

x̂jR
0(X̂) < 0: Combining this inequality with (9), we obtain

(x̂j ¡ x̂i)R0(X̂) < 0:

The proposition then follows from (4) and the fact that R0 < 0. QED
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Proof of Proposition 2

Let x̂ 2 [0; !]N be an equilibrium of an arbitrary public good game. Proposition 2 is an

immediate consequence of the following two claims.

Claim 1. If there exists a j0 2 fk + 1; :::; Ng such that x̂j0 > 0; then U(! ¡ x̂j; X̂) >

U(! ¡ x̂i; X̂) holds for all (i; j) 2 f1; :::; kg £ fk + 1; :::; Ng:
Proof of Claim 1. Note that by (7), we have

@¼i(x̂)

@xi
= ¡U1(! ¡ x̂i; X̂) + x̂½¡1i (x̂½i + X̂¡i)

(1=½)¡1U2(! ¡ x̂i; X̂)

where X̂ = (
P
x̂½i )

1=½: Now take an arbitrary i 2 f1; :::; kg; and assume that x̂i < !:

Therefore, @¼i(x̂)=@xi · 0 so that

¡U1(! ¡ x̂i; X̂) + x̂½¡1i (x̂½i + X̂¡i)
(1=½)¡1U2(! ¡ x̂i; X̂) · 0: (10)

(Clearly, strict inequality holds in (10) only if x̂i = 0.)

Next take any j 2 argmaxj02fk+1;:::;Ng x̂j0 ; and note that x̂j > 0 by hypothesis. Then

@¼j(x̂)=@xj ¸ 0; and hence

@¼j
@xj

F1 +
1

¹¼

·
1¡ ¼jP

¼r

¸
@¼j
@xj

F2 ¡ 1

¹¼

µ
¼jP
¼r

¶ÃX

r 6=j

@¼r
@xj

!
F2 ¸ 0: (11)

But for all r 6= j; given that ½ · 1 and U2 > 0;

@¼r
@xj

= x̂½¡1j (x̂½r + X̂¡r)
(1=½)¡1U2(! ¡ x̂i; X̂) > 0:

(Notice that x̂½r + X̂¡r > 0; for we have assumed above that x̂j > 0.) Therefore, (11) implies

that @pj=@xj > 0 so that we have

¡U1(! ¡ x̂j ; X̂) + x̂½¡1j (x̂½j + X̂¡j)
(1=½)¡1U2(! ¡ x̂j ; X̂) > 0

Combining this inequality with (10) and recalling that x̂½j + X̂¡j = x̂
½
i + X̂¡i, we …nd that

¡U1(! ¡ x̂j; X̂) + x̂½¡1j U2(! ¡ x̂j; X̂) > ¡U1(! ¡ x̂i; X̂) + x̂½¡1i U2(! ¡ x̂i; X̂): (12)

Now suppose that x̂j ¸ x̂i: Then U11 · 0 implies that U1(! ¡ x̂j; X̂) ¸ U1(! ¡ x̂i; X̂) so

that by (12)

x̂½¡1j U2(! ¡ x̂j; X̂) > x̂½¡1i U2(! ¡ x̂i; X̂):

But this is a contradiction, for since ½ · 1 and x̂j ¸ x̂i; we must have x̂½¡1j · x̂½¡1i ; and

since U12 ¸ 0; we must have U2(! ¡ x̂j ; X̂) · U2(! ¡ x̂i; X̂): Therefore, we may conclude

that x̂j < x̂i for all i 2 f1; :::; kg such that x̂i < !: But then by the choice of j; it follows
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that x̂j 0 < x̂i for all i 2 f1; :::; kg and all j0 2 fk + 1; :::;Ng: Claim 1 then follows from the

hypothesis that U1 > 0:

Claim 2. If x̂j = 0 for all j 2 fk + 1; :::; Ng; then U(! ¡ x̂j ; X̂) ¸ U (! ¡ x̂i; X̂) holds

for all (i; j) 2 f1; :::; kg £ fk + 1; :::; Ng and U(! ¡ x̂j; X̂) > U(! ¡ x̂i; X̂) for at least one

i 2 f1; :::; kg and all j 2 fk + 1; :::; Ng.

Proof of Claim 2. Given that x̂j = 0 for all j and U1 > 0; the …rst part of the claim is

obvious. In fact, the payo¤ level of any interdependent player would then obviously be strictly

greater than any independent player with x̂i > 0: But since limX!0 U2(!;X) > U1(!; 0); we

must have x̂i > 0 for some i 2 f1; :::; kg; and we are done. QED

Proof of Proposition 4

Letting N ¤ stand for an upper bound for Nt; we have

st 2 S =
N¤[

N=2

½
k

N
: k 2 f1; :::; N ¡ 1g

¾
for all t = 0; ::: :

Since S is …nite, and st+1 < st whenever st > 0; there must exist a T · #S such that

st = kt = 0 for all t 2 fT; T + 1; :::g: QED

Proof of Proposition 5

By appealing to the assumption of “large” population, we may assume that the probability

that a given person is matched with an independent agent is st in period t: Consequently,

for any t;

¼indep(st) = st

µ
b+ c

2

¶
+ (1¡ st)c and ¼inter(st) = stb+ (1¡ st)a:

By using payo¤ monotonicity, therefore, we have

¼indep(s) R ¼inter(s) , s Q s¤ , g(s) R s (13)

where s¤ = 2(c¡a)
b+c¡2a : By using (13), one can easily verify that either s¤ 2 argmaxs2[0;s¤] g(s)

or s¤ 2 argmins2[s¤;1] g(s) implies that limn!1 gn(s) = s¤ for all s 2 (0; 1); which in turn

establishes the proposition trivially.24 In what follows, therefore, we assume that neither of

these conditions hold.

De…ne

µ = sup g¡1
µ
max
s2[0;s¤]

g(s)

¶
and µ = inf g¡1

µ
min
s2[s¤;1]

g(s)

¶

(see Figure 3). By continuity of g; µ and µ are well-de…ned. Moreover, since g is continuous,

24For any positive integer n; we let gn stand for the nth iterate of g; that is, gn = g ± ¢ ¢ ¢ ± g where the
composition operator is applied n times.
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1
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Figure 3: Construction of the interval [µ; µ]

g(0) = 0; g(1) = 1 and g(s) 2 (0; 1) for all s 2 (0; 1); we have 0 < µ < s¤ < µ < 1. Finally,

we de…ne µ = minfµ; 1¡µg: Proposition 5 is then an immediate consequence of the following

Claims 2 and 3.

Claim 1. If s 2 (0; s¤); then g(s) < µ; and if s 2 (s¤; 1); then g(s) > µ:

Proof of Claim 1. We only prove the …rst assertion, the second one is proved similarly.

Take any s 2 (0; s¤) and suppose that g(s) ¸ µ: Then since g is continuous and g(1) = 1;

the choice of µ implies that g(g(s)) ¸ g(µ) (otherwise, it follows from the intermediate value

theorem that there exists a µ0 > µ such that g(µ0) = g(µ)). But since g(s) > s¤ > s; by (13)

and the de…nition of µ;

g(g(s)) < g(s) · max
s02[0;s¤]

g(s0) = g(µ);

contradiction.

Claim 2. If s 2 [µ; µ]; then gn(s) 2 (µ; µ) for any positive integer n.

Proof of Claim 2. Let s 2 [µ; s¤): By Claim 1, g(s) < µ and by (13), g(s) > s ¸ µ: The

claim then follows by induction. The case where s 2 (s¤; µ] is established similarly.

Claim 3. For any s 2 (0; µ) [ (µ; 1); there exists a positive integer M such that gM (s) 2
(µ; µ).

Proof of Claim 3. W.l.o.g., we only study the case where s 2 (0; µ): Suppose for con-

tradiction that gn(s) · µ for all n ¸ 1: This means that µ is an upper bound for the

sequence gn(s) which is, by (13), strictly increasing. Therefore, there exists an ŝ such that
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0 < limn!1 gn(s) = ŝ · µ: But then ŝ must be a …xed point of g; for by continuity of g;

ŝ = lim
n!1

gn+1(s) = lim
n!1

g(gn(s)) = g
³
lim
n!1

gn(s)
´
= g(ŝ):

By (1), therefore, µ ¸ ŝ = s¤ > µ; contradiction. Consequently, there exists a positive integer

M such that gM (s) > µ. Let M be the smallest such integer. Then gM¡1(s) 2 (0; s¤); and

by Claim 1, we also have gM(s) < µ: Proof is then complete. QED

Proof of Proposition 6

The myopic socialization with probability ¾ entails the discrete time Markov chain with the

transition matrix  2 [0; 1](N+1)£(N+1) where

rp = Prob [kt+1 = p j kt = r]

=

8
>>>>><
>>>>>:

8
<
:

r!

p! (r ¡ p)! (1¡ ¾)p¾r¡p; if p · r

0; if p > r
; if r < N

(
1; if r = p

0; if r 6= p ; if r = N:

Let, for any positive integer n; 4n denote the n-dimensional unit simplex (i.e., the set of

all probability distributions on a set of cardinality n), and let ein denote the ith unit vector

in 4n: We wish to show that limt!1 eiN+1
t = e1N+1 for all i 2 f1; :::; Ng: (Notice that e1N+1

is the degenerate probability distribution that corresponds to the state kt = 0:) Clearly, 

represents a reducible chain with states 0 and N being absorbent. De…ne ̂ 2 [0; 1]N£N by

̂rp = rp for all r; p 2 f0; :::; N ¡ 1g: Given that the unique essential class of ̂ is composed

only of the aperiodic state 0, there exists a unique invariant distribution of ̂:25 But since

̂ is lower triangular, it is easily observed that x̂ = x implies that x = e1N : So, the unique

stationary distribution of the chain ̂ must be e1N : By using the ergodic theorem, therefore,

we obtain

lim
t!1

(x; 0)t = lim
t!1

(x̂t; 0) = e1N+1

for all x 2 4N ; and the proposition follows. QED

Proof of Proposition 7

Let k¤ = N
³
2(c¡a)
b+c¡2a

´
: Notice that if kt = k¤ (or 0; or N), we have kt = kt+1 = ¢ ¢ ¢ . On the

other hand, if kt > k¤; then the probability of kt+1 > kt is zero, and there is a probabilistic

25State i is essential, if any state j is accessible from i, then i is accessible from j: See Bhattacharya and
Waymire (1990, Theorem 7.1(i), p. 134.)
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tendency for kt to shrink. More precisely, the myopic socialization with probability ¾ yields

the discrete time Markov chain with the transition matrix  2 [0; 1](N+1)£(N+1) where

rp = Prob [kt+1 = p j kt = r]

=

8
>>>>>>>>>>><
>>>>>>>>>>>:

8
<
:

r!

p! (r ¡ p)!(1¡ ¾)p¾r¡p; if r ¸ p

0; if r < p
; if N 6= r > k¤

8
<
:

(N ¡ r)!
(N ¡ p)! (p¡ r)!(1¡ ¾)N¡p¾p¡r; if r · p

0; if r > p
; if 0 6= r < k¤

(
1; if r = p

0; if r 6= p ; if r 2 f0; k¤; Ng:

(Notice that k¤ may or may not be a state in this chain. W.l.o.g., however, we shall assume

in what follows that it is.)26

Now choose any ei; i =2 f1; N + 1g: Proposition 7 will be established if we can show that

limt!1 eit =2 fe1; eN+1g. If i = k¤ + 1; the claim is trivial, so let i 6= k¤ + 1: Since any

state r is aperiodic (i.e., rr > 0) and since the mean recurrence rate of state k¤ is 1, by

the generalized ergodic theorem for Markov chains (Grimmett and Stirzaker, 1992, Theorem

6.4.21), we have

lim
t!1

trk¤ =
1X

t=1

Prob [k1 6= k¤; :::; kt¡1 6= k¤ and kt = k¤ j k0 = r] :

That is, limt!1 trk¤ is equal to the probability that the chain ever visits k¤ given that it

starts from r =2 f0; k¤; Ng: But the latter probability is obviously nonzero since all states

other than 0 and N communicate to k¤: Consequently, the (k¤ + 1)th entry of ei limt!1 t

is nonzero, and we are done.27 QED

26It is not di¢cult to show that all states of this chain other than 0; k¤ and N are transient. It follows
that if x 2 4N+1 is a stationary distribution, then xi = 0 for all i =2 f1; k¤ + 1;N + 1g: Given that 0; k¤ and
N are absorbent states, therefore, cofe1; ek¤+1; eN+1g is the set of all stationary distributions of : (Here
co(¢) stands for the convex hull operator, and ei denotes the ith unit vector in 4N+1.)

27Now suppose k¤ is not a state of the chain. Since by the “large” population hypothesis, we can assume
that 2(c¡a)

b+c¡2a
< N¡1

N
; i.e., k¤ < N ¡ 1; state 0 is accessible from all states other than N: Thus, again by the

generalized ergodic theorem, limt!1 t
r0 > 0 for all r 6= N: Hence, limt!1 eit 6= eN+1: Similarly, one can

show that the invariant distribution of the chain is not equal to e1: (In fact, when k¤ is not a state, we have
limt!1 eit 2 int(cofe1; eNg):)
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