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Estimating Full IM240 Emissions from Partial Test Results:
Evidence from Arizona

Amy W. Ando, Winston Harrington, and Virginia McConnell

Abstract

The expense and inconvenience of enhanced vehicle emissions testing using the full
240-second dynamometer test has led states to search for ways to shorten the test process. In
fact, all states that currently use the IM240 allow some type of fast-pass, usually asearly in
the test as second 31, and Arizona alows vehicles to fast-fail after second 93. While these
shorter tests save states millions of dollars in inspection lanes and driver costs, thereis aloss
in information since test results are no longer comparable across vehicles. This paper presents
amethodology for estimating full 240 second results from partial-test results for three
pollutants: HC, CO and NOx. Using random sample of vehiclesin Arizona which received
full 240 second tests, we use regression analysis to estimate the relationship between
emissions at second 240 and emissions at earlier secondsin the test. We examine the
influence of other variables such as age, model-year group, and the pollution level itself on
thisrelationship. We then use the estimated coefficients in several applications. First, we
attempt to shed light on the frequent assertion that the results of the dynamometer test provide
guidance for vehicle repair of failing vehicles. Using a probit analysis, we find that the
probability that afailing vehicle will passing the test on the first retest is greater the longer the
test has progressed. Second, we test the accuracy of our estimates for forecasting fleet
emissions from partial test emissions resultsin Arizona. We find that forecast fleet average
emissions are very close to the actual fleet averages.

Key Words: ingpection and maintenance, mobile source, fast pass
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ESTIMATING FuLL IM240 EMISSIONS FROM
PARTIAL TEST RESULTS: EVIDENCE FROM ARIZONA

Amy W. Ando, Winston Harrington, and VirginiaMcConnelll

I. INTRODUCTION

Four states -- Arizona, Colorado, Ohio and Wisconsin -- now use |M240 tests for
vehicle emission measurements in their state Enhanced I/M programs, and other states are
expected to do so shortly. Each of these states has, or is expected to adopt, a fast-pass
algorithm, which allows emission tests for most vehicles to be truncated before the test has
run its full 240 seconds. In addition, Arizona has adopted a fast-fail algorithm. The use of
fast-pass and fast-fail algorithms generates raw test results that are not comparable to the
results of full-length IM240 tests. In this paper we describe a method for estimating full-
length test results from the results of tests that were truncated by these fast-pass and fast-fail
options. We also examine whether the use of fast-fail interferes with the main objective of
I/M programs: the diagnosis and repair of high-emitting vehicles.

The principa advantage of fast-pass and fast-fail is that their use can substantially
reduce both the time motorists spend waiting in testing queues and the costs of vehicle
emission testing itself. Also, short tests avoid the high-speed phase of the IM 240 trace, which
some critics claim has been responsible for vehicular damage. These advantages may be
achieved with only a small reduction in the ability to discriminate between normal vehicles
and vehicles with high emissions. It was the aim of the fast-pass and fast-fail algorithms
recommended by the EPA (and adopted with some minor modifications by the various states
so far) to be sufficiently conservative that only a small number of fast-passing vehicles would
fail the full test, and few fast-failing vehicles would pass the full test. Although no rigorous
test of these algorithms has been completed, most observers are confident that they have
largely succeeded in these objectives.2

1 Amy W. Ando, Fellow, and Winston Harrington and Virginia McConnell, Senior Fellows, Resources for the
Future. Portions of this work were funded by a grant from the EPA. We would like to thank Phil Enns, Ed
Glover, and Phil Lorang of EPA's Office of Mobile Sources, Phil Heirigs of Sierra Research, and employees at
both the Arizona Department of Environmental Quality, and the I/M contractor, Gordon Darby, Inc. Through
their efforts and assistance, we were able to obtain and make sense of the data for this project. The EPA staff
and Tom Wenzel of Lawrence Berkeley Labs aso provided us with helpful comments at various stages of the
effort. All errors remain our responsibility

2 We used the extrapolation method described in this paper to extrapolate from fast-pass and fast-fail test results
to full emission tests, including a random disturbance term. When we compare the fast-pass and fast-fail results
to these smulated full-test results, we find very few false positives or false negatives. Thisleads usto atentative
conclusion that the fast-pass and fast-fail algorithms do reasonably well at discriminating high-emitting vehicles.
However, amore conclusive test would be the reverse of our procedure: begin with a sample of complete tests
and use the algorithm to simulate fast-pass and fast-fail results. We have not been able to perform this analysis
because we have been unable to get areliable definition of the algorithms actualy in use.
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Despite the apparent conservatism of the algorithms, the great majority of vehicles fast-
pass; in Arizona, for example, over half the vehicles fast-pass at the earliest second allowed by
the test guidelines (31 seconds), and for only about 3.7 percent of vehiclesisthe IM240 test
run to completion. Truncation of this magnitude may lead states to need many fewer test lanes,
saving millions of dollars annually in inspection costs and driver "convenience" costs.3

Unfortunately, allowing fast-passes and fast-fails aso has two potential disadvantages.
There is some question whether truncation of failing tests interferes with the diagnostic value
of the test -- i.e., its ability to help mechanics identify and repair emission malfunctions. In
addition, allowing fast-passes and -failsin I/M programs makes it more difficult to use the
results of IM240 tests for other purposes. The results of emission tests terminated at different
times are not directly comparable because the test conditions vary over the test cycle. Thus,
fast-pass and fast-fail procedures could undermine the integrity of a valuable source of data
on real-world vehicle emissions. Despite the apparent success of fast-pass and fast-fail in
identifying high emitters, it isimportant for several reasons to have a way of extrapolating to
full-test estimates from partial IM240 tests. Some of the reasons are:

i.  To construct, prior to the start of an I/M program, a baseline emission inventory
for comparison to the emission inventory generated by computer models (EPA's
MOBILES in all states except California, which has its own model).

ii. To estimate the extent of emission reductions from various vehicle emission
reduction programs, including I/M itself.

iii. To estimate relationships between real-world vehicle emissions and vehicle
characteristics, such as age, model year, engine size and type, and manufacturer.

iv. To provide the owners of vehicles that fast-pass or -fail with test results that are
consistent with the results of full-length tests.

Although EPA regulations permit states to use fast-pass and fast-fail agorithms, they
attempt to preserve some of the measurement potential of the test by encouraging programs to
include atwo percent random sample of vehicles that complete the entire IM 240 test.
However, not all states plan to subject arandom sample of vehicles to the full test; indeed, of
the first four states adopting the IM240 test, Ohio does not. Furthermore, a two percent
random sample may not provide a sufficiently large sample for some purposes. For example,
al states allow or plan to allow failing vehicles to fast-pass on re-test, which means that the
number of failing vehicles receiving both complete initial tests and complete re-testsis
potentially quite small (especialy if the fast-fail algorithmisin use).# Thus, the sample of
vehicles with comparable emission test results before and after emission repair could be too

3 Us ng a cost model of I/M described in McConnell and Harrington (1992).

4 Arizonaforces failing random-sample vehicles to take full-length re-tests, but the number of such vehiclesis
quite small.
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small for meaningful statistical analysis. Thisisall the more trueif it is further desired to
subset the data by age, vehicle type, manufacturer, or emitter class.

Nonetheless, it is the two percent random sample that permits the analysis discussed in
this paper. We use such arandom sample of second-by-second test results collected in
Arizonain 1996 to relate the complete-test results to emission levels from truncated tests. We
use ordinary least squares (OLS) linear regression to estimate the link between partial- and
full-test results, for each partial-test length (from 31 to 239 seconds) and for three pollutants
(HC, CO, NOx). The method is designed to be a convenient way for state officials to estimate
full tests from partial results, because the independent variables used in these regressions are
routinely reported by emission-testing contractors. The matrix of regression coefficients for
al regression equations is available on request from the authors.

Il. THE ARIZONA IM240 PROGRAM AND EMISSION DATA

Arizonawas the first state to implement the IM240 dynamometer test as part of its
vehicle inspection program. Light duty cars and trucks from model years 1981 and later that
are registered in the Phoenix metropolitan area must be tested every two years with the IM240
test in centralized stations. Figure 1 shows the test trace, i.e. the prescribed vehicle speed
over the entire 240 second test cycle. Vehicles can fast-pass the test starting at second 31
(after the initial acceleration), and they can fast-fail any time after second 93 (once the first
"warm-up" phase of the test is completed). To fast-pass, vehicles must have emissions below
second-specific cutpoints for all three pollutants. A vehicle can be identified as failing for
any of the pollutants after second 93, but cannot fast-fail the test until all three pollutants have
either fast-passed or fast-failed. This means that the second at which a vehicle fails may not
be clearly indicative of the vehicle's pollution levels. The decision rules for the fast-pass and
fast-fail in Arizona are given in the Appendix.

Figure 2 shows the proportion of vehicles that have fast-passed or fast-failed either
before or on each second of the test. Thisfigureisbased on data from all IM240 tests
conducted in Arizona between January 1 and May 31, 1996. The graphs show that over half
of all vehicles fast-pass at second 31. Of the vehicles that fast-fail, a cluster fail at second 94
(the first second at which avehicleis eligible to fail), but significant numbers of additional
failures do not occur at any particular second until after second 150. From the tracein
Figure 1, we see that the majority of failures do not occur until the last major acceleration
phase of the test.

I1. ESTIMATION METHODOLOGY

To determine the relationship between full test emissions and truncated emissions for
vehicles that either fast-pass or fast-fail we use regression analysis on data from the Arizona
IM 240 test program, using tests done January-June 1996 for the random sample of vehicles.
There were 6,803 vehicles in this sample, and the analysis uses the entire second-by-second
trace for every vehicle. Many approaches could be taken in developing this methodology. In
general, the choices involve tradeoffs between accuracy (on the one hand) and ssmplicity and
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Figure 1
IM240 Trace
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generdizability (on the other). We have designed our methodology to yield a good fit between
predicted and actua full-test emissions, but not to be so linked to the Arizona program as to be

inapplicable to other testing programs, and not to use data which may not be widely available.

Figure 3
Cumulative Grams per Mile: Sample Car
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We estimate the relationships between partial and full-test emissions with separate
equations for each of the three pollutants at each second at which a vehicle can fast-pass or
fast-fail.> Other analysts have estimated similar relationships, but specify only one equation
for each of arelatively small number of groups of seconds.® If there is much variation in
emissions from one second to the next, however, the accuracy of this method's predictions of
full-test emissionsisinevitably challenged. Figure 3 shows the cumulative grams per mile of
HC, CO, and NOx for one car in the Arizona program from seconds 31 to 240. For NOx and
COin particular, there are few groups of seconds in the test for which emission rates are
relatively constant. Furthermore, although the patterns are often similar, emissions traces

S Although this produces many equations and coefficients, they are quite easy to transfer among analysts and to
use for forecasting.

6 An analysis of the Colorado fast-pass breaks the test into 10 second segments to reduce the number of
equations for forecasting the full 240 second reading from short test readings (Colorado Department of Public
Health and Environment, 1998). New Y ork's analysis breaks the full 240 second trace into 12 different driving
modes and uses those to predict the full IM240 reading (Shih and Whitby, 1996).
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vary greatly among vehicles. Although grouping seconds does produce an apparently simpler
procedure for converting fast-pass data to full-test estimates, that advantage is rendered
almost meaningless by the easy availability of computers. Taken as awhole, this evidence
leads us to conclude that estimating over groups of seconds could compromise the forecasting
power of the methodology with no compensating advantage in simplicity.

Some analysts have suggested that different groups of vehicles should be used to
estimate each equation. For example, the relationship between emissions at second 31 and
second 240 might be estimated using only vehicles that would have passed at second 31, since
the resulting coefficient is to be applied only to test results for vehicles that do pass at that
point in the test. This approach probably would yield more accurate predictions when the
resulting coefficients were applied to short-test results from the current Arizona program.
However, this method has a serious drawback. The estimated coefficients would be an
implicit function of the cutpoints and the fast-pass/fast-fail algorithm used in Arizona during
the time period of the sample. Thus, they would be of questionable validity in estimating full-
test results from truncated tests in other states or regions, or even in Arizona itself were the
cutpoints or algorithm to be changed.

Having weighed these concerns, we use all of the vehicles in the sample to estimate
each equation. However, we do explore the possibility that clean and dirty vehicles may have
different relationships between short- and full-test results. In one version of our estimates, we
allow the estimated relationships to vary with the emissions rate of the vehicle (see the
discussion of the spline function below).

Choosing Explanatory Variables

Our approach, then, isto perform alinear regression, for each second and for each
pollutant. With one exception to be discussed below, all specifications we examine can be
nested in the following:

P20 =alt +p" Pt +d"Z; +g"PZ; €l (1=31...239) (1)
where j indexes the particular vehicle, P isthe cumulative emissions in grams for
pollutant i (i =HC, CO and NOXx) at second 240, P"'is cumulative emissionsin grams for
pollutant i at second t, and the Z variables are other factors that may have an impact on full-
test emissions.” We explore a number of Z variables that might influence relationships

between the partial and full IM240 test results. These variables include: model-year-group
dummies (as proxies for technological variation), vehicle age, the type of vehicle (car or

7 1tisworth emphasizing that we estimate the relationship between partial- and full-test cumulative grams of a

given pollutant. We do not perform the estimation in terms of grams per mile because our data do not contain a
transparent measure of miles traveled at each second. If such data were available, our approach could easily be
used to estimate grams per mile at second 240 as a function of grams per mile at second t.
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truck), and the partial-test emission results for the other two pollutants (to exploit correlations
among them).

The bar chartsin Figures 4, 5 and 6 show the R? statistics8 for the estimation of
various equations for the three pollutants at a sampling of three different seconds: 31, 94 and
155. (Also see Table Al in the Appendix for the exact R? statistics)) Theseillustrate the
effects of the various Z variables on the explanatory power of the equation. The basic
equation is from estimation of Equation (1) above with no Z variables. The other estimated
eguations include additional explanatory variables as labeled in the figures. The "interact"
terminology in the labels means that the Z factors enter the equation multiplied by P" as well
as separately. At al seconds of the test, the estimated equations have the highest R? for HC,
and the lowest for NOx predictions.

Engine technology could affect relative emissions levels at various stages of
acceleration in the test, and therefore the magnitude of the coefficients on emission readings
at seconds less than 240. We try to capture the effects of engine technology with model-year
groups. These groupings are unlikely to capture technology differences perfectly, but they are
easily specified from available data. The model-year groups are:

Group 1. pre-1983
Group 2: 1983-1991
Group 3: 1992 +

Model-year groups are included first just as dummy variables (R? results shown as the
second set of barsin Figures 4-6).9 Then they are included both as separate variables and
multiplied by the emissions reading at the second for which the equation is being estimated,
P" (R? results shown in the third set of barsin Figures 4-6). Including model-year dummies
adds to the explanatory power, particularly for the NOx equations, but allowing for interaction
seems to have little impact for any second or for any pollutant.

A more precise specification of engine technology would include information about
whether each vehicle is carbureted or has afuel injection system. Unfortunately, this
information was unavailable for all vehiclesin the Arizona data set. \We were able to decode
the VIN to obtain such information for a small number of vehiclesin our sample. However,
including the carbureted/fuel injected variable for the resulting limited sample did not add
more explanatory power compared to model year or age. Given that, and our limited
information on the fuel systems of individua vehicles, we do not report the results here.

Including age by itself seems to add slightly more to the explanatory power of most
eguations compared to model-year groups alone. In fact, including age and age interacted
with the P terms results in the largest R? for the pollutants at all seconds (except for the

8 The R-squared is a common test statistic; for OL S regressions like those used here, it rangesfrom O to 1 and
measures the fraction of the total variation in the dependent variable that is explained by the regression.

9 Sincethe equation contains a constant, only dummies for the latter two groups are included; the first group is
the implicit default.
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Figure 4
R2 of Regressions at Second 31
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Figure 6
R2 of Regressions at Second 155
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equation that includes all the variables, which has a cumbersome number of coefficients).
Adding the model-year-group dummies and their interaction terms in addition to age does not
seem to improve the fit (as shown in Figures 4-6). The equation that includes age and age
interacted with partial-test result is simple and has high explanatory power. Therefore, we use
this equation below to forecast the full test results.

The type of vehicle, i.e. whether it isa car, light truck, or medium-duty truck, seemsto
add little to the explanatory power of the equations, even when also interacted with own-
pollution levels. The partial-test cumulative readings of the other two pollutants also add little
to the model.

Finally, we examined an aternative functional form for equation (1) by allowing the B
coefficients to vary with the emissions of the vehicle. It has been suggested that dirtier cars
may have a different relationship between emission levels early in the test and the final 240
second reading. To test for this possibility, we estimated a four part spline function which
alows both the constant term and the slope term to vary over the range of emissions for the
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second being estimated, but constrains the linear segments to intersect at the points where the
variations are allowed to occur. Thisis essentially a piecewise linear function.10

Figures 4, 5 and 6 show that the spline specification adds little to the estimated results.
The R? is not much larger than the basic model, and most of the estimated coefficients for the
four-part spline were not significantly different from each other. This result supports our
decision to estimate the equation for each second using the entire sample of vehicles.

Regression Analyses Using Chosen Model

We estimate the most promising of the models described above for each of the 209
seconds and each of the three pollutants, yielding 627 equations. The chosen model includes
a constant and t-second pollution term. Ageistheonly Z variable, and is included alone and
interacted with the t-second cumulative grams of pollution. The age variable is defined as age
relative to the 1996 model year.

P20 =alt +b"pt +d" Age; +g"'P"Age; +€|'  (t=31,...239) @)

Table 1 shows detailed regression results for each of the three pollutants at seconds 31,
94 and 155 of the test. Almost all terms are significantly different from zero at the 5 percent
level. Especialy in the early seconds, the overall fit of the HC equation is the best and the
NOXx equation is not nearly as good (R? of 0.67 for the NOx equation compared to 0.82 for the
HC equation at second 31). Aswe would expect, the coefficients on cumulative pollution at
second t fall toward one ast increases towards 240. The coefficient of age interacted with
cumulative grams is positive, large and highly significant, especialy for HC and NOx at early
seconds in thetest. Total 240-second emissions relative to cumulative emissions at 31
seconds are larger for older cars than for newer cars. This difference diminishes as the test
goes closer to the full 240 seconds.

Figure 7 illustrates how the R? statistics from estimating Equation (2) vary between
pollutants and as the test progresses through time; the statistics are superimposed on the MPH
trace of the IM240 test. Aswe have shown above for three sample seconds, the predictive
power of the regressions improves as data from later in the test are used to predict full-test
emissions. The predictive power of the HC equations is better than either CO or NOx in the
early seconds, and by second 185, the predictive power for all three pollutantsis close to
100 percent. The figure shows that the fit improves most rapidly during or immediately after
periods of acceleration, particularly for CO and NOx. Thereis alarge improvement in the fit
for all three pollutants between seconds 31 and 80, and by second 80, the R? is above .80 for
CO and NOx and above .90 for HC.

10 For more detail on the spline function, see Greene (1990).

10



Table 1: Regression Coefficients

Pollutant HC CO NOx
Second 31 94 155 31 94 155 31 94 155
Cumulative grams 3.56 1.90 141 2.27 2.04 1.55 3.44 2.01 1.62
(at second t) (0.35)* (0.089)* (0.37)* | (0.64)* | (0.20)* (0.08)* | (0.24)* | (0.06)* (0.03)*
constant -0.11 -0.094 -0.065 0.57 -1.53 -1.50 0.45 0.27 0.14
(0.041)* (0.023)* (0.015* | (1.09) | (0.70)* (0.42* || (0.04)* | (0.03)* (0.02)*
Age 0.030 0.022 0.019 0.73 0.80 0.54 0.08 0.06 0.037
(0.005)* | (0.0031L)* | (0.0024)* | (0.12)* | (0.07)* (0.05)* | (0.008)* | (0.006)* (0.005)*
(Cumulative grams)* Age 0.27 0.053 0.015 0.40 0.055 0.017 0.55 0.10 0.040
(0.032)* (0.008)* (0.003) | (0.06)* | (0.017)* | (0.0067)* | (0.03)* | (0.008)* (0.004)*
R? 0.8157 0.9165 09591 | 0.7181 | 0.8486 0.9087 | 0.6662 | 0.8366 0.9031
Notes:

(1) Heteroskedasticity-robust standard errors are in parentheses
(2) * indicates significant at 5% level, ** indicates significant at 10% level.

11
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Figure 7

Fit of Regressions to Predict 240-Sec.
Result from t-Sec. Cumulative Grams
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It isimportant to note that including the age variable alone in the analysis is probably
capturing at least two effects. vehicle aging, and technological differences (such as the shift to
fuel injection) among vehicles of different vintages. In the analysis above we tried to include
both age and model-year dummy variables in an attempt to differentiate between these two

factors. However, wereally do not have the ability to separate these two effects in this dataset.

We only have six months of data, so we do not observe vehicles of the same model year at
substantially different ages. As more data become available, it may be possible to disentangle
the two effects. In the meantime, the precise coefficients presented here are should be used
only for analyses of data from around 1996, since afive-year-old car is likely to have very
different technology in 2001 than in 1996. Analysis of vehicle-emission tests from another
time period should use coefficients from equations estimated on test data from that period.

12
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IV. FLEET-AVERAGE EMISSION-RATE PREDICTIONS

The regression coefficients can be applied to data on vehicle age and partial test
cumulative emission results to predict full-test cumulative emissions for a given vehicle. That
prediction can easily be converted into a prediction of the test result in terms of grams per
mile by dividing predicted grams by the average length of the IM240 test in miles.11

Policy makers and administrators are often interested in average fleet emissions, in order
to track changes over time and to evaluate any impact that policy may have had on those averages.
Here, wetry to evaluate the accuracy of average emission predictions made by applying our
technique to a sample of vehicles that took the IM240 under afast-pass/fast-fail regime.

First, we take our 6,803 random-sample vehicles, al of which went the full 240 seconds,
and subject them to a hypothetical test with the fast-pass/fast-fail algorithm turned on. In
particular, we estimate when those vehicles would have passed or failed the IM240 test in Arizona
using decision rules and cutpoints much like those used in the Arizona program (see Appendix),
and note what the cumulative emissions of HC, CO and NOx would have been for each vehicle at
the end of itstest. Then we use the coefficients estimated by applying Equation (2) to the same
sample of 6,803 vehicles, and calculate the predicted full-test emissions for each vehicle.

Figures 8 and 9 show how the average predicted cumulative emissionsin grams
compare to the actual average emission levels, when averages are taken first by model-year
and then by vehicle type. Looking first at Figure 8, we find that the predicted averages are
very close to the actual averages. Thelargest errors occur in pre-1986 NOXx estimates,
however, even those differences are small in absolute terms. Of the three vehicle types shown
in Figure 9, cars dominate the sample (comprising 65 percent of all thetests). Thus, itis
especially good news that our predictions of average emission levels are extremely accurate
for that group. The predictions are a little further off for light trucks, and further still for
medium-duty trucks. Our model performs best when predicting average emissions for cars,
the most common type of vehicle in the sample; conversely, errors are highest for the least
numerous vehicle type. If one were truly interested in accurate predictions of emissions from
medium-duty trucks, it would be worth including dummies for vehicle type as explanatory
variables in the regressions and interacting them with partial-test emission levels. However,
precisely because cars so dominate the fleet, the overall accuracy of the methodology is little
compromised by not controlling for vehicle type.

V. TEST LENGTH AND EASE OF REPAIR

Some enhanced I/M programs have touted the potential usefulness of the 240-second
trace as a diagnostic tool for repairing vehicles that fail the test. Owners of Arizona vehicles
that trigger afast-fail have relatively short traces available for diagnostic use. At the same
time, owners of similar vehicles may have full-length traces available if those vehicles happen
to fall into the random sample. We exploit that random variation in test length in an analysis
of the diagnostic usefulness of the IM240 trace.

1111 our sample, average miles-traveled for the 240-second test was 1.96.
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Figure 8

Random Sample Mean Emissions
by Model Year: Actual and Predicted
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We construct a sample for the analysis beginning with all vehicles in Arizona that
failed their initia tests between January 1996 and May 1996. We then keep only those
vehicles for which at least one re-test was recorded before the end of May 1996 (thisyields a
sample size of 31,163). The dependent variable in the analysisis adummy variable equal to 1
if avehicle passed itsfirst re-test, and O if it did not. This serves as asimple indicator of the
ease with which avehicle is able to be diagnosed and repaired; about 63 percent of the sample
had a successful first re-test.

We perform a simple probit analysisl? of avariety of factors that may influence the
probability that a given vehicle passesits first re-test. The first independent variable is the
second at which the vehicle'sinitial test ended. If the trace is auseful diagnostic tool, then
longer tests should yield better diagnostic information and increase the probability of a
successful re-test. Second, we include variables that capture, for each of HC, CO, and NOx,
the difference between the vehicle's estimated initial pollutant levelsin grams per milel3 and
the emission standards to which that vehicle is held. It may be more difficult to repair a
vehicle successfully with emission levels that greatly exceed the standards. Third, we include
the age of the vehicle, in case (for example) older vehicles, which may have had time to
accumulate numerous unrepaired malfunctions, are trickier to diagnose. Fourth, we control
for variations in the ease of repair by vehicle type (dummies for light- and medium-duty
trucks are included; vehicles are the excluded base category). Fifth, we include a dummy for
whether the vehicle failed only a single pollutant.

Interestingly, afull 24 percent of the vehicles in the main sample do not have recorded
failuresfor HC, CO, or NOx even though they failed the overall test. Presumably, these
vehicles were picked out for tampering. Since diagnosisis less of an issue when avehiclefalls
only due to tampering, we include a dummy variable that captures that status. We also perform
the analysis using a sub-sample which excludes vehicles that passed all three pollutants.

Table 2 contains the probit results for the full sample. Increased test length does
appear to improve the owner's chances of successfully repairing his vehicle in the first round.
This supports the hypothesis that the IM240 trace is a valuable diagnostic tool in emission-
related repair. Many of the other variablesin the analysis are significant aswell. Vehicles
with emission rates that far exceed the standards they must meet are harder to repair; that
effect is most pronounced for HC, and more for NOx than for CO. Old cars seem more
difficult to diagnose and repair in asingle round. This may be because of differencesin the
technologies found in vehicles of different vintages, or because old cars tend to be plagued
with anumber of problems, making the culprit responsible for high emission levels difficult to

12 propit anal ysisis acommonly-used statistical method for estimating regression model s where the dependent
variable can only take on two values —in our case, pass or failure of the re-test. The predicted value can be
interpreted as the probability that the re-test is passed given the values of the independent variables. For more
information see, for example, Greene (1990).

13 Al tests have emissions in grams reported at the last second of the test. For partial tests, full-test emissions
are estimated using the estimation method outlined in Section I11. Then g/m are derived for al tests by dividing
total cumulative grams by 1.96 miles.
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identify. Light- (but not medium-) duty trucks seem more difficult to repair. Finaly, vehicles
that failed the test only because of tampering have a much higher rate of first-round success.
The average probability that a vehicle passesitsfirst re-test is fully 0.37 greater if its only
problem is tampering.

Table 2: Probit Results of Whether Failed Vehicle Passed First Re-Test (N=31163)

Variable Cosef. SE. Sig? dP/dx
Second initial test ended 0.0018 0.00026 * 0.00067
Estimated HC g/m - HC standard g/m -0.17 0.0075 * -0.060
Estimated CO g/m - CO standard g/m -0.0015 0.00047 * -0.00053
Estimated NOx g/m - NOx standard g/m -0.057 0.0065 * -0.021
Age of vehicle -0.07 0.0030 * -0.026
LDT1 (light-duty truck) -0.19 0.033 * -0.070
LDT2 (medium-duty truck) -0.06 0.041 -0.024
Failed only one pollutant in initial test 0.24 0.024 * 0.087
Failed no pollutantsin initial test 1.29 0.046 * 0.37
constant 85.05 554 *

Table 3 shows the results of the same analysis performed on a sub-sample of vehicles
that includes only those that failed at least one of the three pollutants. The findings are
gualitatively similar, but the coefficients tend to be larger, and thus the estimated effects of
variables on the probability of successful first-round repair are often larger. Recall that this
probit analysis was designed primarily to capture the importance of the trace to diagnosing
vehicles with high emission levels. Hence, we use the results of the sub-sample analysisin
the calculations of Table 4. Those calculations provide a sense of how much the fast-fail part
of the test algorithm reduces owners chances of being able to successfully repair their failing
vehiclesin just asingle round of repair.

Second 94 isthefirst at which avehicleisallowed to fail. Only 3.5 percent of all
failures occur then, but those unlucky car owners would have had their probability of success
in the first round of repair raised by 0.26 if the tests had been allowed to run the full 240
seconds. In general, the loss of diagnostic ability gets smaller as the fast-fail occurs later in
the test. However, even by second 165, at which point 20 percent of all failures have
occurred, the reduction in success probability associated with the fast-fail is till .14.

Each round of repair entail substantial transaction costs for a vehicle's owner. For
many vehicles, the fast-fail agorithm does seem to substantially increase the chances that the
owner will have to engage in more than one round of time-consuming, inconvenient emission
repair. States must balance that cost against the benefits of fast-fail that come from faster-
moving queues at the testing stations.
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Table 3: Probit Results of Whether Failed Vehicle Passed First Re-Test
(Exclude Vehicles that Failed No Pollutants, N=23772)

Variable Coef. SE. Sig? dP/dx
Second initial test ended 0.0045 0.00032 * 0.0018
Estimated HC g/m - HC standard g/m -0.18 0.0083 * -0.070
Estimated CO g/m - CO standard g/m -0.0020 0.00050 * -0.00078
Estimated NOx g/m - NOx standard g/m -0.074 0.0071 * -0.030
Age of vehicle -0.064 0.0032 * -0.025
LDT1 (light-duty truck) -0.20 0.034 * -0.080
LDT2 (medium-duty truck) -0.062 0.043 -0.025
Failed only one pollutant in initial test 0.21 0.025 * 0.084
constant 120.74 6.05 *

Note: dP/dx gives the marginal effect of each variable on the probability a vehicle passesits first re-
test, given other variables at their mean values. Thisis evaluated at the mean of the variable (if
continuous). For adummy variable, this compares the probability given dummy=1 to the
probability given dummy=0.

Note: * indicates statistically significant at the 5% level.

Table 4. Quantifying Impact of Fast Fail on Probability that First Re-Test is Successful

Second Fraction of all failures Cumulative fraction of Increased probability if wait
testends | occurring exactly then failures occurring by then until second 240

94 0.035 0.035 0.26

165 0.017 0.20 0.14

213 0.012 0.88 0.049

Note: Uses coefficient from sub-sample analysisin Table 3.
Note: The numbersin the second and third columns are from the distribution shown in Figure 2.

VI. CONCLUSIONS AND RECOMMENDATIONS

Truncated emission tests -- "fast-pass’ and "fast-fail" tests -- are nearly universal in
states using or planning to use the IM240 emission test in their Enhanced I/M programs. Such
tests appear to do agood job of distinguishing vehicles that do and do not comply with
applicable emission standards, athough to our knowledge there has been no conclusive test of
this assertion. Also, we are not aware that the savings in time and equipment that serve as the
main justification for such tests have been quantified using empirical data, at least in the open
literature. We believe that empirical investigations of the benefits in time and equipment
savings as well as the costs of errorsin classification that result from use of truncated tests
should therefore be completed as soon as possible.
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In this paper we have examined two other potential disadvantages of the use of
truncated tests: (i) whether the use of afast-fail procedure interferes with vehicle repair and
(i) how to extrapolate the truncated test results to estimates of full IM240 test results, for use
in making quantitative estimates of vehicle emissions.

In order to examine the determinants of success in passing the re-test, we used a probit
model applied to al initial emission-test failures during the first five months of 1996. We
found that after controlling for the age, type of vehicle, initial pollutant levels and other
variables, the duration of the initia test had a positive and significant effect on the probability
of asuccessful re-test. Moreover, the result was not merely significant in a statistical sense; it
also suggested a quantitatively important effect. We estimate that had a vehicle fast-failing at
second 94 been allowed to complete the test, the probability of a successful first-round repair
would have been increased by an increment of 0.26. Considering the high cost to motorists of
repeat vehicle repair and emission tests, these results call into question the continued use of
the fast-fail algorithm in Arizona.

Notwithstanding this interesting result, the principal achievement of the paper has
been the development of a method of extrapolating the fast-pass and fast-fail test results to
completed IM240 test estimates. Our method applies OL S regression to second-by-second
emission data on arandom sample of vehicles required to have afull IM240 test.

Unlike some other methods that have been proposed, the method described here is
independent of the emission standards in use and the fast-pass and fast-fail algorithms
employed. The predictive ability of the methodology is improved somewhat by the inclusion
of vehicle age, but since we only had test data from six-month period, we could not
distinguish the effects of age from those of model year. It may therefore be useful to repeat
thisanaysisin a couple of years to see if separate age and model-year effects can be
identified and if so, whether those effects are important. Caution should be used in using the
coefficients generated here in extrapolating partial- to full-test results in future years.

We find that the correspondence between predicted and actual full test resultsis fairly
good for HC even for tests that are truncated at 31 seconds (R* = 0.80), though somewhat
less so for CO (R? = 0.68) and NOx (R* = 0.61). For longer tests, the agreement between
predicted and actua is even better, so that, for example, for tests truncated at 94 seconds the
R? exceeds 0.8 for all three pollutants. In view of thisimprovement in statistical
performance, it would be very useful to know the costs, in terms of waiting time and
additional equipment requirements, of raising the minimum test length.

We investigated how well this procedure predicts emissions and conclude tentatively
that it predicts average fleet emission levels quite well, both for all vehicles and within model
years. We found that the errorsin predicted average emissions were very small for cars and
somewhat larger for trucks. Asthe fraction of trucks in the fleet increases, it may be
worthwhile to account for vehicle type more fully in the estimation.
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APPENDIX

Decision Rule Used for Fast-pass:
See EPA Guidance Document rules (USEPA, 1996).

Therules are:
The vehicle passesiif, for any second between seconds 31 and 93:
Enc< Suc for the composite emissions, and
Eco< Sco for the composite emissions, and
Enox< Snox for the composite emissions.

The vehicle passes if, for any second between seconds 94 and 239:

Enc< Swc for the composite emissionsor Enc< Sy for the Phase |1 emissions, and
Eco< Sco for the composite emissions or Eco< Sco for the Phase Il emissions, and
Enox< Snox for the composite emissions or Exox< Syc for the Phase |1 emissions
(there are no Phase Il standards for NOx so we did not include a Phase Il check
for NOXx).

Where,

Euc, Eco, Enox are cumulative emissions for each pollutant up to any second,

Suc , Sco , Snox are the standards for each second ( from EPA Guidance document (1996)).
Composite emissions are cumulative emissions over the entire test up to any given
second. Phase Il emissions are cumulative emissions over the second phase of the test
which starts at second 94.

Decision Rules for Fast-fail:
See Gordon/Darby memo titled “ Arizona Fast-pass and Fast-fail Guidelines.”

The vehicle can only fast-fail after second 93. The decision rules are:
The vehiclefailsif, for any second between seconds 94 and 239:
Fast-fails HC: Epc>Snc for the composite emissionsand Epc>Shc for the
Phase || emissions,
Fast-fails CO: Eco> Sco for the composite emissions and Eco> Sco for the
Phase || emissions,
Fast-fails NOx: Enox>Snox for the composite emissions and Enox> Swc for the
Phase Il emissions

However, the vehicle does not get a fast-fail until all three of the pollutants
have been found to pass the fast-pass or fast-fail criteria.

Note: Although we have been told that these are the decision rules being used in Arizona, we
have not been entirely successful in using these to correctly predict when vehicles actually do
pass or faill. For example, we were able to predict the correct second at which the test ended
for about 80% of both the fast-passes and fast-fails for 10,000 vehicles test in January 1996.
Gordon-Darby, the contractor for Arizona, was unable to help us resolve this discrepancy.
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Table Al. R? Statistics for Regression of Cumulative Pollutant Grams at Second 240
on Cumulative Grams at Second t and Other Variables

Variables included in addition to HC at second: CO at second: NOXx at second:
"own grams' and "constant”
31 94 155 31 94 155 31 94 155
none 0.783| 0.907| 0.956| 0.656| 0.834| 0.904| 0535 0.791 0.886
model-year group dummies 0.793| 0.910| 0958| 0.673| 0.840| 0.906| 0.595| 0.812 0.894
model-year-group dummies interacted 0.801 0912 0958 0684 0.841 0.906| 0610 0.820 0.897
with own grams
age 0.799| 0912| 0958| 0.686| 0.845| 0.908| 0.632| 0.824 0.899
age, and age interacted with own grams 0816| 0.917| 0959| 0.718| 0.849| 0.909| 0.666| 0.837 0.903
model-year-group dummies, age, and 0.816 0.917 0.959 0.722 0.851 0.909 0.671 0.837 0.903
dummies and age interacted with own
grams
vehicle-type dummies (LDT1 and 0.784| 0.908| 0957 0.657| 0.835| 0.904| 055 | 0.798 0.889
LDT2vs. LDV)
vehicle-type dummies interacted with 0.787| 0.908| 0957 0.658| 0.835| 0.904| 0569 0.799 0.890
own grams
other pollutants cumulative grams 0.785| 0911 0960 0.663| 0.837 0.905| 0580 0.802 0.891
all variables 0824 0921| 0963 0.725| 0.853| 0.910| 0.736| 0.861 0.915
components to specify own gramsin a 0.785| 0.908| 0.957 0.661| 0835 0904 0.537| 0.791 0.887
four-part spline
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