

Daniel Holmström

Developing Android Application for Work
Order and Work Hour Management

Helsinki Metropolia University of Applied Sciences

Master of Engineering

Information Technology

Master’s Thesis

29 September 2017

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Theseus

https://core.ac.uk/display/93084229?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 Abstract

Author
Title

Number of Pages
Date

Daniel Holmström
Developing Android Application for Work Order and Work Hour
Management
46 pages + 0 appendices
29 September 2017

Degree Master of Engineering

Degree Programme Information Technology

Instructor(s)

Ville Jääskeläinen, Principal Lecturer

This Master’s thesis deals with the development process of an Android application. The
application is meant to be used as a tool for managing both a company’s work orders and
the individual work hours of the staff. First, the study gives a brief introduction to the com-
pany and a general overview of the thesis subject. Next, it goes deeper into the back-
ground of this thesis, explaining the need for the application and how it can help the com-
pany to achieve a more efficient work routine.

The development tools utilized in this project are also introduced. The application itself was
developed using the Microsoft Visual Studio 2017 Professional Edition with the Xamarin
plugin, the database utilized for storing work order and work hour information was a Mi-
crosoft SQL Server. In order for the application to be able to connect to the database, a
Web service was created on a local web server. The study also goes through theory about
the Android operating system, providing a brief history of the platform along with explana-
tions regarding terms such as views, activities and intents.

Next the study deals with the actual implementation process of the application, starting
with the planning stages where diagrams and timetables are laid forth. It is also explained
why the development process slightly deviates from standardized development methods
such as Scrum and Agile. The problems and challenges faced by the thesis author both in
terms of technical issues and pressed timetables are also presented.

After the product was released, feedback was gathered from the end users and that to-
gether with potential scenarios for future development needs for the application are intro-
duced.

Keywords android, application, work order, work hour, programming, csharp,

sql

Contents

Abstract

List of Abbreviations

1 Introduction 1

2 Current Situation 3

3 Development Tools and Timetable 5

3.1 Xamarin for Visual Studio Professional Edition 5

3.2 Microsoft SQL Server 6

3.3 Timetable and Methods 7

4 Developing Android Application 9

4.1 Android Platform 9

4.2 Android and Application Framework 11

5 Planning, Implementation and Testing 13

5.1 Phase One: Planning 13

5.2 Phase Two: Implementation First Cycle 15

5.2.1 Setting up Development Environment 15

5.2.2 Implementing Primary Activities, Views and Database Login 19

5.2.3 Concerns Regarding Web Services 24

5.2.4 Setting up Stored Procedures 25

5.2.5 Phase Two Testing 26

5.3 Phase Three: Implementation Second Cycle 27

5.3.1 Adding New Work Order 27

5.3.2 Character Conversion Issues with Database 31

5.3.3 Edit or View More Details about Specific Work Order 31

5.3.4 Phase Three Testing 33

5.4 Phase Four: Implementation Third Cycle 34

5.4.1 Viewing Work Hours 34

5.4.2 Dealing with Week Numbers 36

5.4.3 Adding and Editing Work Hours 37

5.4.4 Displaying Decimal Number Values with Seekbar Control 39

5.4.5 Submitting Work Hour Report 40

5.4.6 Phase Four Testing 40

5.5 Phase five: Finalizing 41

5.5.1 Cleaning up Code 41

5.5.2 Storing Pictures in Database and Final Bug Fixes 42

6 Discussions and Conclusions 43

References

Abbreviations

API Application Programming Interface. A set of tools and utilities for develop-

ing different software applications.

ART Android RunTime. An application runtime environment in the Android sys-

tem, replaces the Dalvik runtime since Android version 5.x.

DB Database. Refers to the Microsoft SQL relational database in this thesis.

EE Ekenäs Energi Ab. A local electricity distribution company in the town of

Raseborg (Raasepori) Finland.

MVC Model-View-Controller. An architectural pattern used in user interface

development.

ODBC Open Database Connectivity. A standardized method for accessing and

retrieving data from any database.

Open GL Open Graphics Library. A cross language and cross platform tool for ren-

dering 2- and 3D graphics.

SQL Structured Query Language. In this Master’s thesis it refers to the Mi-

crosoft T-SQL standard of the language.

SP Stored Procedure. A static database query that has been created in order

to speed up query execution times and reduce the risk of SQL –injection.

SSL Secure Sockets Layer. A web based protocol that enables encrypted

communication over a network.

UI User Interface. Any information that is being displayed to the user on the

screen.

VPN Virtual Private Network. A technology that makes it possible to connect to

a private or closed network from an outside source.

1

1 Introduction

The aim of this master’s thesis was to examine and develop a solution for easy man-

agement of work orders and work hours that can be used anywhere, anytime. This

chapter gives a brief introduction of the company involved and some background in-

formation on the thesis subject. The company for which the thesis was made is called

Ekenäs Energi Ab in Swedish, or Tammisaaren Energia Oy in Finnish, and is abbrevi-

ated EE for future reference. EE is a company in the electrical/energy industry that

owns the core electric grid and the district heating grid in the municipality of Ekenäs

(Raseborg) in the southwestern part of Finland. The electrical grid consists of a net-

work of electrical wires spanning 419 km in total with almost 7000 metering points

along the way. EE is responsible for the maintenance of this grid and for continually

supplying their grid customers with electricity. The district heating grid stretches

throughout the city of Raseborg (Raseborg consists of the old municipalities Ekenäs,

Karis and Pojo) with around 600 customers in Ekenäs, 170 customers in Karis and 60

customers in Pojo. In addition, EE also offers electrical installation jobs, mainly for

schools, health care centers and other public institutions within the city. For private

consumers, EE mainly offers installation services for electrical car charging stations

and solar panels.

All in all, EE performs around 700 individual work orders including more than 50 000

work hours every year divided by a little over 20 workers in total. To make the man-

agement and follow up possible, there are two separate software programs in use, one

for managing work hours and the other for managing work orders. Both of these pro-

grams were designed by the current IT staff of EE and are meant to work on devices

that use the Microsoft Windows operating system and are written in the C# program-

ming language. The work order management program was developed back in 2011 as

a Bachelor’s thesis project by the author of this Master’s thesis. However, even though

these programs are still in use on a daily basis and have helped the company man-

agement a lot, the drawbacks have become quite evident, they offer close to no mobili-

ty at all for the workers.

One way to deal with the mobility issue and thus improve the work efficiency, is to de-

velop a new mobile application solution that serves as a compliment to the existing

software. This also offers an opportunity to merge the work order and work hour soft-

2

ware into one application and it makes more sense to have only one application since

they already are dependent on each other.

This thesis includes a study to define and implement the new mobile application. The

new application will not be identical to the existing software solutions, rather, it will be a

light-weight version were only the more basic functions are included. This is mostly due

to the fact that it is very difficult to fit a large amount of information on a small mobile

phone screen.

This thesis has been divided into six chapters. Chapter one introduces the topic of the-

sis on a general level while chapter two gives more background information about the

topic. In chapters three and four, theory on the Android operating system is dealt with

along with an introduction of the development tools utilized in this thesis as well as a

preliminary timetable. Chapter five deals with the actual development process where

the solutions for the UI and coding are presented. Several practical challenges regard-

ing the project schedule and programming difficulties are also included in this chapter.

The sixth chapter gives some final thoughts about the project as a whole and con-

cludes this thesis.

3

2 Current Situation

Since the idea behind this project was to make the workflow more efficient through of-

fering more mobility to the workers, a general understanding of what the functional re-

quirements are needed to be studied. One of the best ways to accomplish that was to

ask a selection of central users, or workers as they are referred to in this thesis, what

their thoughts were. This was done by conducting personal interviews with three em-

ployees. During the interviews the following questions were asked:

- When considering the company’s software for handling work orders and work

hours, can you think of any practical issues with these programs, functional or

other issues?

- How important is it, from your perspective, to address these issues?

- What is the current situation in regards to these programs?

- In your opinion, what could be done to develop a better solution?

- Can you specify which parts of these programs would need redesigning or add-

ed functionality?

- What are the company specific requirements for the outcome / solution?

- Which data / information will the company allow me to analyze or have access

to?

- Which resources (work time / budget / help) is the company willing to invest into

this project?

Note that these questions were mostly meant to establish a general understanding of

the functional requirements to improve efficiency. Even before the interviews were

conducted, the idea of developing a mobile application solution had been suggested.

4

After conducting the interviews and analyzing the results, a few key areas were discov-

ered. One aspect that frequently came up was the lack of mobility, the current software

solution can only be used on a device running the Windows operating system which in

this case means desktop or laptop computers. This coupled with the fact that the soft-

ware can only be used either while being physically inside the company’s own network

or through a VPN connection means that there is no practical way of utilizing it when

working in the field. This could mean a field worker, especially the foremen, must make

several extra trips back and forth between the office and the worksite. Other issues that

were brought up dealt with improving or adding functionality to the software. These

included having an option for taking pictures of work sites and adding them as an at-

tachment to work orders, and adding a reporting function for field workers that are on

call.

One way to solve the issues would be to remake the software in such a way that it

adds mobility, in other words so that it can be used wherever and whenever. At the

same time, adding requested additional functionality such as taking pictures and stor-

ing them in a specific work order and having an area for on call workers reports. Devel-

oping an Android application that is configured to communicate with the existing Mi-

crosoft SQL -database would immediately solve the issue of mobility and allow for an

easy integration with the mobile phone camera for taking pictures of work sites. This

solution was also the preferred one among the interviewees.

5

3 Development Tools and Timetable

To start off, one first needs to consider what kind of approaches and tools are available

for Android application development. The main programming language for Android is

Java coupled with xml for the user interface design. However, there are many software

solutions available that allow the developer to do the programming in other languages

which is then converted to Java code by the compiler.

The most commonly used platform among Android developers is Android Studio, a

powerful development tool that allows for a “drag ’n drop” style design of the user inter-

face and Java programming for the functionality of the application. Although this could

have been chosen as the main development tool, considering the author’s previous

knowledge of C#, choosing a development environment that utilizes C# programming

seemed more appropriate. Therefore, the development tool of choice was Xamarin for

Visual Studio Professional Edition. Xamarin is a plugin for Microsoft Visual Studio that

enables for programming in C# instead of Java, the code is then translated to Java by

the compiler when the application is built.

3.1 Xamarin for Visual Studio Professional Edition

The Visual Studio Professional Edition is a cross-platform development tool from Mi-

crosoft meant for small teams, a maximum of five developers according to the license

agreement, and allows for the use of various plugins and programming in many lan-

guages, among others Basic, C++ and C#. Xamarin for Visual studio is a plugin tool

that enables for mobile application development for iOS, Windows Phone and Android.

Figure 1 demonstrates the project solutions that are available in the Visual Studio 2017

Professional Edition with the Xamarin plugin installed.

6

Figure 1. The “New project” window of the Visual Studio 2017 Professional Edition with the
Xamarin plugin.

As can be seen in Figure 1, Visual Studio offers templates for a large variety of plat-

forms such as Android, iOS, Windows and cross-platform solutions. In this study

though, the focus was on the Android templates.

3.2 Microsoft SQL Server

The Microsoft SQL server is a relational database solution that offers the ability to run

database queries using the transact SQL standard (T-SQL). The Android application

will utilize an already existing Microsoft SQL database for storing information on work

orders and work hours. This means all application queries and connection strings must

be written to suit the existing table and field structures.

In order for the application to be able to access this DB, a Web service located on a

separate server will be used, this enables the application to connect to the database

from an outside source. In addition to establishing a link between the application and

the DB, the Web service will also be responsible for sending query requests to the DB.

7

3.3 Timetable and Methods

The preliminary goal at the start of the study was to deliver the new product to the

company by June 2017. The actual development process started back in December

2016 so the whole length of the project was planned to take just over six months. How-

ever, while the project was still in the planning stages at the end of February 2017 it

became evident that the original timetable had been too optimistic, the new delivery

date of the product was therefore moved to September 2017. The updated timetable

can be seen in Figure 2.

Figure 2. The updated version of the timetable.

Due to the fact that there is only a single developer involved in the project, it does not

directly follow any of the established project development models. Rather, the project

consists of five parts referred to as phases. In the Scrum development model, the

equivalent to these phases would be the sprints. However, the length of such a sprint is

usually no more than two or three weeks, in this project the length of one development

cycle, or phase as they are referred to, is roughly two or three times as long, around

five to nine weeks. And also, since a sprint generally refers to something of a short

duration, it seemed more fitting to use the term phase here.

The first phase mostly involved the planning and groundwork for the application. Inter-

views were conducted with the key staff that mainly use the application to find out what

8

the needs were and in accordance to those needs, design visual process flow charts

and make a detailed project plan of key features. Research about development tools

and environments was also included in this phase.

The second to fourth phases were about gradually implementing features, adding more

functionality at each new phase and conducting testing at the end of each phase with a

selection of workers. In the reporting of these phases the reader can also get an over-

view of different approaches to problem solving and some security considerations in

programming.

The fifth phase was the final phase of the project and it included implementing any ad-

ditional features that might have been requested during the previous phases and refac-

toring and reviewing the code. There was no testing at the end of this phase, however,

as the finished application will be in production use, any potential further improvements

or bug fixes will be dealt with as they are reported.

9

4 Developing Android Application

When it comes to Android application development, a vast amount of information is

available for free from various web sites and discussion forums. The Xamarin team has

their own web page with detailed tutorials about simple android application solutions.

This chapter goes into more detail about the Android operating systems history and

basic components and the framework.

4.1 Android Platform

Since the Android operating system first became available on mobile devices back in

2008, Android has become the dominant operating system for mobile devices world-

wide with a market share that exceeds all the other mobile operating systems com-

bined. The source code for the Android operating system goes under the so called

“open source” license, meaning that not only is it free to use but anyone can also make

changes to the code as they see fit. (Burton, 2015: 9-10)

The Android operating system is built on the Java programming language, however,

due the extensiveness of the Java libraries only a smaller subset of Java classes have

been included to eliminate any potential incompatibilities for mobile devices. (Burton,

2015: 12-13)

Since the Android operating system was first released as a beta version back in No-

vember 2007, the OS has gone through multiple changes and version updates. The

Android platform includes both a version number and a platform number, for instance

version number 5.1 where the number five represent the major version number and the

number 1 is the minor version release number. The platform number or API number as

it is referred to, is always represented by an integer, in other words a non–decimal

number such as API 22. (Panigraphy, 2015: 2)

Android activities

In all Android applications there are at least one or several activities. An activity is basi-

cally a container that encapsulates an assigned user interface coupled with the code

that runs in the background for that user interface. In general, one activity equals one

page in an application (Burton, 2015: 13). In order for a user to interact with an activity,

10

a view is required, this could be compared to the MVC (Model-View-Controller)–model,

the activity in this case represents the controller in that model (Panigraphy, 2015: 12).

Android fragments

For mobile devices such as phones where the screen size is limited, displaying one

activity at any given time is usually appropriate, having more than one activity at a time

on such a screen would make the outlook very cramped. However, on a device with a

bigger screen such as a tablet PC there is more than enough room for several activities

at a time. Since it is not possible to place several activities on one page the solution

offered by Android is called fragments. A fragment is simply put a lightweight activity

that only occupies a small part of your screen, allowing for multiple fragments to be

visible at the same time on the same page. (Burton, 2015: 13-14)

Android intents

In Android, an intent is simply a way of sending commands or information within an

activity or passing them on to another activity. There are two components that make up

an intent:

- An action, which can be a view, edit or dial function.

- Data, which is the information contained within an action.

An intent can be, for example, a method within one activity that calls another activity to

be started. (Burton, 2015: 14)

Android views

Activities, fragments and intents make up the core functionality of Android, however, to

be able to see anything on the screen we need one more thing, a view. Views are as-

signed to a specific rectangular area of the screen and are usually one of these:

TextView, ImageView, Layout or Button. (Burton, 2015: 15)

11

4.2 Android and Application Framework

The Android framework was developed to run on top of the Linux kernel, an open

source operating system kernel. With the aid of a variety of different open source pro-

jects, the following features were included in the Android framework: (Burton, 2015: 27)

- ART: This is basically a collection of Java core libraries and the ART. In the

Android versions predating 5.x, the Dalvik runtime was utilized instead of An-

droid runtime.

- Open GL: The Open GL is both a cross-platform and cross-language API that

is utilized in order to produce computerized 2D or 3D graphic.

- WebKit: This is a simple web browser engine that can be used to display web

content and simplify loading of pages.

- SQLite: An open source version of the relational database engine mainly in-

tended for use in embedded devices.

- Media frameworks: These frameworks allow for the playing and recording of

both audio and video.

- SSL: A collection of libraries that are used for secure connections.

In order to for a developer to be able to utilize the above mentioned libraries, the An-

droid platform has a built-in application framework that offer, among others, the follow-

ing tools: (Burton, 2015:28)

- Activity manager: A tool for managing an activity’s lifecycle.

- Telephony manager: As the name suggests, this tool provides access to te-

lephony services including subscriber information such as phone numbers.

- View system: A tool for handling and adding components to the UI, such as

views and layouts.

12

- Location manager: Utilizes GPS in order to find the actual location of the

phone.

Figure 3 displays all of these components put together to form the complete framework.

Figure 3. The different layers that make up the Android framework stack. (EE Daily news,
2011)

To put all of this into perspective, Figure 3 illustrates the different framework compo-

nents as they are stacked on one another. As a developer, the topmost part of the

stack represent the visual tools that are at disposal: (Burton, 2015:29)

13

5 Planning, Implementation and Testing

This chapter describes in detail the actual development cycle of the software, from the

planning stages up until completion of the new application. Images of the actual code,

different programming ideas and difficulties along the way are also included here.

5.1 Phase One: Planning

In Chapter 2, it was explained what kind of a solution was needed and the project then

moved on to take a closer look at the functionality and visual appearance of the desired

end product.

The visual layout of the finalized application takes into account the different processes

involved when filling in and editing work orders and work hours. The design chart in

Figure 4 illustrates the basic application layout and process flows. In the chart, names

such as EditText and Spinner directly represent the controls that are used in Visual

Studio, a control is a basically a component for user inputs in Android. For clarity, the

adding of work orders processes have a light blue colored background while the adding

of work hours processes have a light green background color.

14

Figure 4. Application design as a process flow chart.

There are two distinct user categories in this application, regular workers and work

foremen acting as administrators of the application. The work foremen have access to

all available work order and work hour data whereas regular workers only have access

to their own work hours and the work orders they are currently assigned to. When the

application is opened, a simple login page is displayed where a username and pass-

word can be entered. Every user is authenticated to the SQL database and if the en-

tered credentials are correct, the main window of the application is opened. Here, the

full name of the logged in worker is displayed along with some basic information about

the workers current weekly working hours. Below this information, a list of work orders

are displayed in accordance with the selected filters.

Clicking on a the weekly hours opens up a more detailed view of the work hours includ-

ing options for editing or erasing existing hours or filling in new ones. There is also an

option for submitting a report of the hours to the assigned foreman for inspection. Edit-

ing or adding hours opens up a three step process which ends with a summary window

and a save button that saves the information to the DB. Clicking on a work order from

the list of work orders opens up a summary window of that work order with the option of

editing and an info button for viewing more detailed information about the work order.

15

The more detailed view also includes the ability to fill in a work report and to take pic-

tures and add them to the work order. In the more detailed view there is also an option

for filling in work hours for that particular work order.

A button for adding work orders is available from the main window, clicking on this but-

ton will open up a three step process with a similar logic to that of the work hours. Edit-

ing existing work orders from the edit button will also start this three step process.

5.2 Phase Two: Implementation First Cycle

When the project plan had been created along with a time table and the theoretical

functionality drawings for the application were ready, the development work started.

Next, the systems for this project were set up, including installing the required software

and configuring it.

5.2.1 Setting up Development Environment

The development system was a workstation with the Windows 10 64-bit operating sys-

tem. In addition, the following tools were needed for the development setup: Microsoft

Visual Studio Professional Edition 2017, Xamarin for Visual Studio plugin and a Mi-

crosoft SQL database server. The SQL database server was already installed and in

use so no additional actions were required for this part. The Visual Studio Professional

Edition can be downloaded from this website: https://www.visualstudio.com/downloads/

note however that the Professional and Enterprise Editions of Visual Studio are not free

of charge. The Visual Studio Community Edition is the only choice for those developers

who are looking for a free version of Visual Studio, however, it is not allowed to develop

commercial products for large companies using that version. Figure 5 displays the

components chosen for this install, the “Mobile development with .NET” –component is

necessary to install in order to be able to utilize Xamarin Android development tools.

https://www.visualstudio.com/downloads/

16

Figure 5. The install options of the Microsoft Visual Studio installer.

The installation process for Visual studio is rather straightforward and does not require

any additional prerequisite software installations. Once all of these had been installed,

the Xamarin plugin inside the Visual Studio Options menu needed to be configured,

this menu is shown in Figure 6.

17

Figure 6. The Xamarin plugin options menu in Visual Studio

As seen in Figure 6, the paths to all three development kits needs to be checked and

corrected if needed, indicated by either a green or red icon. If any of the three icons are

red, it either means the path to the software is incorrect or that the software is not in-

stalled.

Next, the Android emulator was configured, this allows for a virtual Android device to

be run on the workstation. The Add / Edit device option displayed in Figure 7 can be

found in the Android Virtual Device -manager.

18

Figure 7. The Android Emulator Manager in Visual studio

Figure 7 displays the recommended setup of the virtual device as instructed from the

Xamarin website. Take particular note of the settings “CPU/ABI: Intel Atom (x86_64)”

and “Emulation Options: Use Host GPU”, these two options address the issue of the

emulator operating extremely slowly. Next, the Intel Hardware Accelerated Execution

Manager (HAXM) must be installed in order to see the “Intel Atom x86_64” -option,

instructions can be found from the Xamarin website (Xamarin 2017). The Android ver-

sion of choice here was 6.0 but a separate emulator running the newer Android version

7.0 was also utilized later in this thesis.

When configured correctly, the difference in speed is like night and day, going from an

extremely slow, almost unusable emulator to a fast and more stable emulator. Though,

depending on the emulated device and Android version, the option for “Intel Atom

x86_64” might not always be available, but for example the “Android Wear Intel Atom

x86” should also work just as well. Now when the environment was ready and the emu-

lator was running at an acceptable speed, the creation of a new project and implemen-

tation of some basic elements could begin.

19

5.2.2 Implementing Primary Activities, Views and Database Login

Among the Android development community, discussions can be found regarding

whether it is better to use a single activity for the whole app, use one activity with frag-

ments or simply have many activities for different screen layouts (Stack overflow 2010).

All of these options have their own advantages and drawbacks and in the end, which to

choose comes down to personal preference. The path followed in this thesis was the

last option; one activity for one layout with a couple of exceptions. The activities for

creating and editing work orders and work hours have three layouts controlled by one

activity. The reason why this way was chosen was mainly because it corresponds well

with the Windows way of thinking in C#, where one form (layout in the Android world)

has an underlying code base (activity in the Android world). Another reason is that hav-

ing all code in a single activity can be messy and hard to maintain, dividing the code

into multiple places gives a seemingly more organized overview of the system. The

issues that could potentially arise from this are, for example, that running multiple activ-

ities at the same time eats up more system memory than necessary. One way to limit

the use of memory is to “clean up”, in other words dispose of activities immediately

after the worker has finished working with that particular layout and limit the amount of

simultaneous activities running.

The project started by creating .axml- (layout) and .cs (code) –files that correspond to

the intended layout in Figure 4. Since one .cs –file can be utilized to operate several

.axml –files, there were seven .cs-files and 11 .axml-files in this project. If the intention

had been to develop a cross-platform application (useable on both Android and iOS)

the .xaml file format would have been used instead of the .axml format. However, since

this was a pure Android project, the .axml format made more sense to use.

After the basic layout and code files had been created one could move on to implement

some basic functionality such as log in with a user name and a password. The log in

page can be seen in Figure 8.

20

Figure 8. The log in page of the application.

The project immediately ran into some difficulties though, since this was not a pure

Windows application but rather an Android application and there is no native way of

connecting to a Microsoft SQL database server from the application itself. One must

instead rely on Web services for this operation to succeed. In short, a Web service is

an interface, usually situated on the same server as the SQL database that acts as an

intermediate layer for connecting to the DB from an outside source.

The Web service in this case consists of two .php –files, one that holds connection in-

formation to the DB itself and the main .php -file that contains all queries, execution

and results return parameters. Initially, the main .php -file calls the connection script

which in turn establishes the DB server connection using the ODBC interface. After the

connection to the DB has been established, the correct query is chosen by a parameter

sent from the application. After the query has been executed, the result from the DB is

sent back to the application as a string.

The communication to the Web service is made possible by using a set of predefined

methods uploadValuesCompleted and uploadValuesAsync along with the WebClient

library. In order to be able to pass parameters to the Web service, the NameValueCol-

21

lection library is utilized. Figure 9 illustrates a part of this code. It is worth taking particu-

lar note of the [Export(“name of the method”)] that is written just before the method is

invoked, without this export tag, the application would encounter an error when the

worker clicks on the log in button, labeled “Logga in”. This is a general rule for all

methods that are user input triggered, the compiler will not process such methods with-

out the export tag and therefore any such method will fail when called. In addition,

these methods must be public, not private.

Figure 9. The method that initially connects to the Web service, some elements have been
hidden for company privacy reasons.

When a worker logs in, the Web service checks the workers’ credentials and if they

match the information stored in the DB, user information along with information about

every work order from the past three months is returned as a string to the application.

After successfully logging in, the page illustrated in Figure 10 is shown.

22

Figure 10. The main page of the application showing ongoing work orders. The contents of
work orders have been hidden for privacy reasons.

To utilize the information sent back from the DB, one needs a way to extract the unique

fields of the returned string. Since the individual fields are separated by a semicolon (;),

it is possible to loop through the string using a few simple “foreach” - loops that break

on every semicolon. In addition, to separate queries from one another, the vertical bar

character (|) is utilized. Figure 11 displays a part of the code used when a worker logs

in to the application.

23

Figure 11. A part of the “foreach” -loop code used to extract user information.

A major part of this application centers on the use of intents, which were briefly intro-

duced in Chapter 4. In order to pass the DB values received from one activity to the

next activity, the Bundle() library can be utilized. For instance, by using the “In-

tent.PutString” command this function generates a “package” of strings of information

that can be sent to any other activity and then extracted by using the reverse command

“Intent.GetStringExtra”. Figure 12 demonstrates how this was implemented in the “log

in” -page.

24

Figure 12. Using intents in order to pass information on to other activities.

In this application, it was very important to keep track of the parameters that pass in-

formation between activities. Since some information was only acquired once from the

DB, such as the names of the workers, the parameters needed to be passed on every

time a new activity started in order preserve the information along the way.

5.2.3 Concerns Regarding Web Services

One issue that immediately surfaced when designing the Web service was the appar-

ent lack of security measures. Since the idea behind Web services is that one is able to

connect to resources on a private network from a public network, security should be

one of the main focuses when implementing them. The immediate problem is that con-

nections to the Web service can be established by using simple http only, meaning

they are not protected or encrypted in any way thus opening a way for potential attack-

ers. Using https is preferable, however, it was decided that this was not enough on its

own and the DB needed more protection.

After doing some research on the matter, a few solutions came up. Most people rec-

ommended to use so called prepared statements to combat SQL injections. An SQL

injection refers to a malicious procedure, often when a user input is required that runs

an SQL query in the background, that makes it possible for an attacker to insert (inject)

an additional command at the end of the query. This additional command could for in-

stance be “drop table x” or simply something like commenting out the latter part of the

query by adding the following: “’—“. The drop table command basically deletes the

25

whole DB table along with its contents which could have catastrophic consequences

since a large amount of data could be lost forever (Microsoft TechNet 2011). This

would of course require the attacker to have knowledge about the names of the tables

within the DB. A prepared statement works in such a way, that instead of directly using

real input data for table fields, placeholder names are specified and they can be in the

form of simply a “?”. The prepared statements are then sent to the DB for execution

only once and then cached for later reuse. In theory, this should prevent SQL injection

from ever occurring since the parameters need to be properly escaped. This also im-

proves the query execution times since the query itself does not need to be resubmit-

ted to the DB every time it executes (W3Schools, 2017).

With security in mind, using prepared statements seemed like a step in the right direc-

tion, however, most of the examples were written for MySQL -based solutions, not Mi-

crosoft SQL server. When it comes to a Microsoft SQL server though, finding infor-

mation and examples on prepared statements was quite challenging. On Microsoft’s

website however, they recommended validating all inputs before executing the query.

This includes validating data size, type or content and using stored procedures. A

stored procedure is similar to a prepared statement in the sense that it is created and

stored on the DB server only once and then accepts incoming parameters only, so one

never needs to send an entire query directly to the DB. (Microsoft TechNet 2011)

5.2.4 Setting up Stored Procedures

Before one begins to import the SQL queries directly to the stored procedures, there

are a couple of things that should be kept in mind. It is imperative that one implements

a correct syntax when assigning variables to a specific field in the DB. For example the

following query: “SELECT * FROM UserTable WHERE UserName = ‘’’ + @username +

’’’ AND PassWord = ‘’’ + @password + ‘’’;” contains two variables from a user input,

@username and @password. As such, the query would work fine, however, if one

were to write “Brian’—“ as our user name input variable, the rest of the query would be

commented out. This means that regardless of what the user input is in the password

field, if the DB contains a user called Brian access is granted without ever checking the

password! A better way to construct the above query would be as follows: “SELECT *

FROM UserTable WHERE UserName = @username AND PassWord = @password;”.

In this case even if a user submits the value “Brian’—“ as the user name variable, it will

26

only be treated as a user input and not as a part of the query itself. (Microsoft Develop-

er 2011)

Adding a stored procedure to the DB is quite simple and straightforward. After logging

in to the Microsoft SQL Management studio tool and selecting the correct database,

right clicking on Programmability -> Stored procedures and selecting “Create to new

window” will generate a template for adding a stored procedure to the selected DB. It is

however important to remember that stored procedures operate around variables which

are basically user input sent to the stored procedure for execution. The variables need

to be sent to the DB in the exact same order as they are specified in the stored proce-

dure.

5.2.5 Phase Two Testing

The first test version of the application was released to two test workers, both having

the position of foremen, in early April 2017. In this version, the workers were able to:

- Log in to the application (DB) using their existing credentials.

- View a list of all work orders from the past month and filter them by:

o Open: work is ongoing.

o Closed: work is finished.

o All: shows all work orders, regardless of status.

o Field worker: name of the field worker in charge.

- Navigate to some pages: New work order and Add work hours, both of these

were empty pages without functionality at this time.

After testing for a few days, the initial feedback from the workers was overall positive,

although some improvements were immediately proposed. The test workers wanted

the application to display work orders dating further back than just one month, a three

month period was requested by both test workers. The test workers were also in

agreement that the display of the end date (if applicable) of a work order in the list was

27

unnecessary since the worker already could filter work orders by their status (open or

closed). It was then decided that this field would be removed from the list in order to

save screen space. No other major issues were found in the application at this stage,

however, the test workers expressed their interest in seeing and trying out more fea-

tures, such as adding new work orders and work hours in the application.

In summary, after a couple of weeks of testing and receiving feedback the test could be

considered a success. Since the first version of the application was officially accepted

by the test workers, the project then moved on to phase three.

5.3 Phase Three: Implementation Second Cycle

Next, to continue the development process in the second cycle, the “Add new work

order” functionality as well as viewing more detailed information about a specific work

order was implemented. A function for writing a work report and taking pictures of

worksites with the mobile phone camera was also added. The estimated amount of

time for this phase was around one month.

5.3.1 Adding New Work Order

The procedure of adding a new work order actually consists of a three step process,

each step is represented by a new application window with back and next buttons, la-

beled “Tillbaka” and “Nästa” respectively. The exceptions are the first window where

cancel button, labeled “Ångra”, is in place of the back button and the third window

where a save button, labeled “Spara”, is in place of the next button. Clicking the button

for adding a new work order, labeled “Ny arbetsorder”, will open up a new application

window where workers can input basic information about the work order, such as work

order number and account number information. All input fields in this window are man-

datory and cannot be skipped as seen in Figure 13.

28

Figure 13. The initial page of the process for adding a new work order.

All of the input fields using a “drop down” style list were created by using a control

called a “spinner”. Since these “drop down” lists consist of predefined values, an

adapter needs to be used in order to extract information stored within an array and add

it to the spinner. Figure 14 shows how this was implemented. The “if” clause was uti-

lized in order to filter the results of a work order according to the logged in worker by

setting the default value of the “drop down” list.

Figure 14. Binding an array adapter to a spinner control.

The work order number is a six digit number where the first three numbers represent a

cost place and an account plan, these are chosen from a dropdown style list of availa-

29

ble numbers. The latter three numbers however, are represented by a continuous

number system that start from 100 (one hundred), this resets every year so it is possi-

ble to find the same number from two or more different years.

But, since work order numbers must be unique during the same year, it was important

to implement some functionality that prevents duplicate number input by accident.

Therefore, one needed to implement a DB query that picks the highest available num-

ber based on the last three digits and then adds one (+1) to this number. The code in

Figure 15 shows how this was implemented in the application. This query is not only

called when the worker clicks on the add new work order button, but also just before

saving a new work order to make sure the highest available number matches the input

data. The application again uses the NameValueCollection library for sending parame-

ters to the DB. Note that this method is a general DB query method, meaning a param-

eter needs to be given to this method (queryName) in order for the method to choose

the correct parameter(s) to send to the Web service.

Figure 15. The method that sends the request for the next free work order number to the Web
service.

After the worker has filled in the basic information about the work order and clicked on

the next button, a second window appears where more detailed information about the

work order can be defined. These include, among others, the name of the client, ad-

dress, social security or company number, starting date, name of the field worker in

charge and an estimated amount of work hours. None of these fields are mandatory at

this stage and can be left blank if necessary.

30

Again, after the worker has clicked the next button on the second window, a third win-

dow opens. This window merely displays a summary of all the information the worker

has filled in. The worker now has a chance to check if everything seems to be in order

and in that case, the worker can then proceed to click the save button, which will save

the new work order to the DB and return the worker to the main window of the applica-

tion. If something is amiss with the values, the option of going back one step is still

available before saving by clicking the back button. Figure 16 shows a part of the

method used for either getting the next free number or updating and saving a work or-

der to the DB.

Figure 16. Part of the method for saving or updating a work order to the DB.

As can be seen from the code in Figure 16, different parameters are added to the DB

query depending on if the worker has recently opened the page for adding a work order

31

or has clicked on the button for saving the work order. The information stored in the

text string “queryName” is used by the Web service in order to determine what stored

procedure should be executed.

5.3.2 Character Conversion Issues with Database

After saving the very first work order to the DB it became clear that some fields had

incorrectly stored values and characters in the DB. The affected fields were the end

and start dates, which were all given a default value of “01-01-1900” when no date was

specified in the application. This was actually quite easy to remedy since the issue was

down to the PHP script interpreting null values as empty strings, causing the DB to

default these empty strings to “01-01-1900”. By adding a CASE WHEN clause to the

DB query it was possible to force a null value entry directly to the DB when the input

was an empty string.

The second issue was a little more complex to solve. For some reason, all Scandinavi-

an letters (å, ä, ö) did not appear correctly in the DB, rather as unintelligible symbols.

This was obviously a character encoding issue, but finding out whether the problem

was in the application code itself, the PHP-scripts or the ODBC connection to the DB

was a lot more work than anticipated. The application code was ruled out after using

the PHP print to file function on the parameters that were sent to the web service.

There one could clearly see that the Scandinavian letters were still correctly displayed

so the problem had to be the ODBC connection to the DB. After several days of re-

search and trials without any result, the decision was made to use SQLSRV instead of

ODBC. The SQLSRV works in a similar fashion to ODBC but it is possible to specify

the character set in the connection string parameters of the SQLSRV_connect com-

mand (Johnro 2012). Setting the character set to UTF-8 in the connection string solved

the problem and å, ä, ö were displayed correctly in the DB.

5.3.3 Edit or View More Details about Specific Work Order

If a worker wanted to add a work report, edit the contents or see more details on a spe-

cific work order they can click on the work in the list of work orders on the main page.

This opens up a new page, shown in Figure 8, where the work number and the descrip-

tion of that work order is displayed on the top half of the screen. Below this information,

four buttons are visible. The topmost button adds work hours to the work order, the

32

following one edits the work order contents, the third open up a new page where the

worker can write a work report or add a picture and the final button closes the current

page. The button for adding work hours will remain without functionality for now since it

is a part of the fourth phase of this project.

Figure 17. The page for editing and viewing more details about a work order. Some contents
has been removed for privacy reasons.

In order to change details such as description, start date and estimated amount of work

hours, the worker can press the edit work order contents button, labeled “Ändra ar-

betsorder”. This will open the same page as described in Chapter 5.3.1, sending infor-

mation about all filled in fields as parameters to that page. The worker can then go

through the same three step process and save the updated information to the DB.

Clicking on the button for writing a work report and adding a picture, labeled “Skriv ar-

betsrapport / ta bild”, opens up a new page, shown in Figure 18. Here the worker is

able to write an optional report regarding the progress of the work order or any other

particular things that need to be observed. The top most button on this page is meant

for taking a new picture but will remain without functionality for now. The one below that

saves any changes made to the work report to the DB and the last button closes this

33

page and goes back to the editing and viewing more details about the specific work

order.

Figure 18. The page for writing a work report and adding a picture.

The initial idea in this phase was to also add the functionality for taking pictures and

then storing them to the DB. However, due to both a pressed schedule and running into

some issues with the varbinary(max) column, which is the recommended way of storing

images in the DB, this functionality will instead be implemented at phase five of the

project (Microsoft TechNet 2013).

5.3.4 Phase Three Testing

The testing for this phase had the same structure as the previous one, two foremen at

EE tested the product and gave feedback on the new functionality. In addition to the

functions available in the phase two testing, the workers were now able to:

- Add new work orders to the DB.

- Click on work orders in the list of the main application window to open up more

details about that particular work order.

34

- Edit an existing work order.

- Write and save a work report.

The testing officially started on July 25 2017 and the first feedback received from this

testing phase was that the input field estimated worktime was obsolete and could

therefore be removed completely. In addition to being unnecessary, the Android control

used for this field could not handle decimal inputs either, which meant that half hour

work time estimations were not possible to add without using additional mathematical

calculations. Another issue was that the user interface looked slightly different depend-

ing on the screen size of the mobile phone, for example on a smaller screen, some of

the buttons and fields in the add new work order pages were not visible or only partly

visible.

Other than this, no further bugs or improvements were brought to light and testing was

officially concluded on 25 August 2017. Now, the project shifted focus to the adding of

work hours to a work order and dealing with overtime and on call hours as well as

specifications of vehicles used during the work time.

5.4 Phase Four: Implementation Third Cycle

At this point, mainly due to summer vacations, the project had fallen a few weeks be-

hind the schedule, it seemed reasonable to aim for a late September or early October

release of the final application version at. In this phase viewing capabilities for weekly

work hours, adding work hours to a work order and submitting the work hour report to a

foreman were implemented. After this phase had been concluded, the application with

reservations regarding taking pictures and other potential functions and fixes, could be

considered a fully functional product.

5.4.1 Viewing Work Hours

Any work order can never be considered complete without having some sort of specifi-

cation regarding how many hours a worker has spent on that specific job. Therefore,

there is a need to implement an additional UI and page that can both display infor-

mation regarding existing work hours in the DB and enable the worker to add work

hours to a work order. First, the focus was on the page for viewing existing work hour

35

information. The first thing to do was to add a new button directly above the button for

adding a work order, by default, pressing this button, labeled “Granska arbetstimmar”,

will take the worker to a new page that displays the status of the workers own work

hours for the current week.

This page is similar to the main page of the application since it also consists of a list -

type overview of the work hours for the current week with an option for filtering the re-

sults by week. Additionally, the sum of remaining hours for the chosen week is dis-

played above the list so the worker has an easier time to keep track of his weekly work

hours. For example, if a worker has a designated 40 hour work week and has worked

16 hours so far on the selected week, the application would display 24 hours remaining

above the work hour list. A dropdown style list of available workers is also visible on the

topmost part of the page but only a worker with foreman privileges can select and view

another workers work hours from the list. For regular workers this list is disabled. At the

bottom of the page one can find a button for submitting the work hour report, labeled

“Lämna in”, adding new work hours, labeled “Lägg till timmar”, and a back button that

closes this page and goes back to the main page. Figure 19 shows this page as it ap-

pears to the worker.

Figure 19. The page for viewing work hours during a specified week.

36

Inside the work hour list itself, the worker can see information regarding the selected

week. This includes a date, the work hour number and how many hours that worker

has spent on working that day as well as an optional field for comments. A worker can

add several rows of information on the same day if needed. The total sum of hours for

each day is displayed as an extra row beneath the last inserted row of work hours for

that day.

5.4.2 Dealing with Week Numbers

A stored procedure is utilized to extract the workers names, ID: s and the required

weekly work hours for each worker as well as detailed information on past work hours.

However, in order to figure out what week of the year a certain date belongs to, the

following code is needed: CultureInfo.InvariantCulture.Calendar.GetWeekOfYear(date,

CalendarWeekRule.FirstFourDayWeek, DayOfWeek.Monday). The variable date rep-

resents the date from which the week number is requested, this variable needs to be in

the format of DateTime. The problem with this approach is that in some rare cases, if

the last week of the year happens to cross over into the following year and the week

number is 1, the application interprets that specific week to be week 53 instead of week

1. In this particular project though, it does not really have any impact on the functionali-

ty since week numbers are not utilized from the DB, although in the authors’ opinion

this issue should be brought to light since it can be beneficial for others to know. The

reason why week numbers are shown incorrectly in this case is because the week

numbering of the ISO8601 and the .NET are different (Stack overflow 2012). Figure 20

illustrates a simple approach that shows the correct week at the end of a 53 week year

and additionally converts the last week to 52 in case the week number is 1. The varia-

ble “time” is always set to the 31 December of the current year.

37

Figure 20. How to extract the correct week number using the ISO8601 standard.

In this project though, the week numbering will always be from 1 to 53, regardless of

whether the last week is actually 52 or the last week is divided between two years.

5.4.3 Adding and Editing Work Hours

Pressing the add new work hours button will once again open up a new page where

the worker can fill in his personal work hours for one day at a time. From the top of the

page, the worker will find a dropdown list of work orders that have the status of open, it

is mandatory to select a work order from this field. Below this list a spinning style date

picker can be found, the default value of this control is the current date. Going even

further down the page one will come across a slider style control called a “Seekbar” in

Xamarin. The amount of hours is shown next to this slider and the worker can change

the value by sliding the pin with his finger to the right or left. The slider can show values

between 0 and 24 with a .5 precision, the default value of this control is 0. The last con-

trol of this page is another dropdown list. This should only be selected if the worker has

worked overtime or has been on call since these scenarios affect the hourly salary.

Choosing a value from this dropdown will make two additional time pickers appear be-

low, the idea is that the worker will then choose a start and end time for the overtime or

on call hours. This page is illustrated in Figure 21.

38

Figure 21. The first page of the adding of new work hours process.

The add hours process follows the same logic as the add new work order process,

meaning there is a three step process to go through before the worker can save the

new hours to the DB. Clicking on the next button on the first page will open the second

page where more information regarding the use of a company or private vehicle as well

as an additional text field for comments can be found. After the worker has clicked on

the next button on the second page, the third and last page is shown where a summary

of the filled in information can be seen and an option to save it to the DB. The worker

can also choose to go back to the previous page by clicking the back button in case

something is incorrect.

And in case a worker wishes to edit the already existing work hours in the DB, clicking

on a row in the list view of work hours will again open up the same three step process

that is used when adding work hours. This should be quite familiar to workers already

since the same mechanism is in place when editing an existing work order.

The use of “if” clauses have been quite frequent in this project since it is a pretty

straightforward way of getting a different outcome depending on the input values. In

some cases however, the “if” clause might not be the best or at least most efficient way

39

of accomplishing variable outcomes. For example, the value for the “on call” list needs

to be converted before it is stored in the DB, one of the fastest ways to accomplish this

is by using a “switch-case” clause illustrated in Figure 22.

Figure 22. A “switch-case” –clause that changes the value extracted from the “on call” list.

The “switch-case” clause has a similar structure to the “if” clause, as can be seen in

Figure 22. On important difference to note is the “break” command at the end of each

“case”, this terminates the execution in order to prevent the method from looping

through unnecessary rows of code.

5.4.4 Displaying Decimal Number Values with Seekbar Control

By default, the Seekbar control has no built in support to show numbers containing

decimals meaning an alternative approach is needed to simulate the appearance of

decimals. One option is to utilize a little mathematics by first setting the maximum al-

lowed number for the Seekbar control to a value ten times higher than the expected

maximum, 240. After this, as shown in Figure 23, the inserted number is divided by the

static value seekBarSteps, which is set to 5 in this case. In turn, the outcome number is

multiplied again with 5 and then finally divided by ten. This number is then shown to the

worker as a decimal number, for example, an input of 75 in the Seekbar is displayed as

7.5 hours. (Stack overflow 2011)

40

Figure 23. The formula for converting a non-decimal number into a decimal number.

This approach works well here since there is no need for a higher number input than

240. That being said, it would have been a less than ideal choice to use in the estimat-

ed work hours function that was implemented at first in phase 2, but later skipped. This

is because the maximum number there would have been required to be at least 3000,

which would have made precision input with one’s finger almost impossible, a shift of

merely a millimeter or two on the slidebar pin would have resulted in a jump of several

hours.

5.4.5 Submitting Work Hour Report

The company expects its workers to submit a summary report of all work hours on a

weekly basis. In itself, submitting the work report is quite simple, after the worker has

finished filling in all work hours for the week, the worker can simply press the submit

work report button. This procedure will store all work hours from the given week in an-

other table in the DB and additionally add a time stamp with the date and time of occur-

rence. This will also enable the foreman to check each workers hours before approval.

5.4.6 Phase Four Testing

On 13 September 2017, as the final testing began for this project, the focus shifted to

the adding and editing work hours functionality as well as reviewing the application as a

whole. The test group remained the same as before, two workers with foreman position

in the company tested the application for about two weeks before giving the final feed-

back.

In this testing phase, the following functionality was added:

- A page for checking the status of individual work hours including filtering op-

tions on worker name and week.

41

- Ability to add work hours.

- Editing existing work hours by selecting it from the list in the status page for

work hours.

- Sending the work report.

The duration of this test was merely five days and at the end of the test, only a couple

of bugs were reported. The only feedback received from the test workers were on mi-

nor adjustments to the UI and changing the functionality on some controls. For exam-

ple, on the first page, the rightmost radio button filtered results based on the main

worker for that project. This functionality was changed so that it shows the results

based on who added the work order instead of who was the main worker. The project

now continued to the fifth and final phase.

5.5 Phase five: Finalizing

The project had now reached the final milestone and before it was released for produc-

tion use, some final adjustments to the code and refinement of the user interface were

made. Some bugs were also fixed here since it is important that the application func-

tions without any glitches after this point.

5.5.1 Cleaning up Code

So far, the focus had been merely on getting a functional application running without

putting too much effort into optimizing the way variables, pages and memory are han-

dled within the application code. The time had now come to take a closer look at what

could be done more efficiently within the system itself.

Starting with the variables, when calling a specific control in this project, the FindView-

ById<> -command has been used frequently. For example FindViewBy-

Id<EditText>(Resource.Id.EditText1), this is basically a call to a specific text input field

labeled EditText1, but the FindViewById<> command could also be used to call a spin-

ner or seekbar among other controls. However, instead of writing that whole sequence

over and over again, it can simply be called once and shortened to a variable, for ex-

42

ample as follows: _EditText1 = FindViewById<EditText>(Resource.Id.EditText1). After

doing this, only the much shorter _EditText1 needs to be called in order to perform dif-

ferent operations on the control.

As mentioned previously, managing activities in order to reduce memory consumption

is recommended. An easy way to accomplish this is by always using the Finish() com-

mand on the previous activity when starting a new one. The Finish() command dispos-

es of the currently active activity. This of course means that all variables and stored

data in the previous activity is lost and the activity itself needs to be recreated every

time the worker needs to go back to that page. A way to prevent any important data

loss that has a limited impact on memory usage is to send array strings of information,

such as work order and work hour lists, to the new activity.

5.5.2 Storing Pictures in Database and Final Bug Fixes

At this stage of the project the idea was to get back and tackle the taking pictures func-

tionality that was put on ice in phase two. However, since the project had already been

delayed for several weeks and the author could not reliably predict how long it would

take to implement this functionality, it was decided that the add pictures functionality

would be put on hold and only implemented after the application has been released for

production use. In other words, the add pictures to a work order functionality will now

only be mentioned in Chapter six regarding future development needs and not a part of

this thesis in any other way.

Surprisingly few bugs were detected throughout the course of this project and the final

testing phase was no exception. A few things did, however, come up, for example,

when the worker first navigated to the “add new work order” page and directly after this

to the “add work hours” page the list of available work orders was empty. This was due

to an intent not being sent correctly from and to the “add new work order” page result-

ing in loss of information. Fortunately, this was quite easy to correct.

On 20 September 2017, the application was officially released for production use, how-

ever, the work will still continue in terms of continually improving the application and

fixing any further bugs that may show up.

43

6 Discussions and Conclusions

The overall reception of the Android application has been a positive one. One test user

commented: “Now I can see all my work orders regardless of where I happen to be at

the time, something that was not possible before”. In general, the workers that acted as

testers thought that the adding of work hours functionality would mostly be used by the

regular workers whereas the adding of work orders would mostly be used by the work

foremen. This was not really surprising since the work foremen are in charge of adding

and monitoring work orders while every individual worker is responsible for their own

work hours.

When it comes to adding more functionality in the future, the obvious thing to start with

is the ability to take pictures of work sites and attach them to a work order. This will be

the next challenge for the author to tackle. After this, a review of the current functionali-

ty of both the work hours and work order parts of this project would be useful, especial-

ly when it comes to the adding of work orders where some input fields might need to be

removed while others can be added. Another thing that might come to be requested in

the future is a function for exchanging overtime hours into work leave, where 8 hours of

overtime translates in one extra day of leave. Though, this is something that would

need to be planned carefully before being implemented in order to avoid a chaotic look-

ing UI.

Looking back to December 2016 when this project officially started, it can be concluded

that a lot of things have occurred along the way, some events were expected while

others came as a complete surprise. The main goals of this project was, as stated in

the Introduction, to develop a solution for easy management of work hours and work

orders that can be used anywhere and anytime. Judging by the feedback collected

from the workers, it is not hard to draw the conclusion that all of these goals have been

fulfilled. The Android application is fairly easy to use and understand without too many

advanced functions and workers now have access to their work orders and work hours

from any location and at any given time.

If at least one lesson is to be taken it should probably be that managing the project

schedule is very important and having too optimistic goals for the project will most cer-

tainly lead to delays. This is not to say that having optimistic goals is a bad thing, on

44

the contrary, it is a good thing but only if accompanied by the internal knowledge that

chances are very high that the deadlines will be pushed forward at some point.

The outcome of this project has been a positive experience in many ways, having to

overcome challenges, prioritize work in order to meet the schedule deadlines, learning

about new technologies and finally having a sense of accomplishment when the prod-

uct was finalized.

References

Burton, M. Android App Development for Dummies, 2015.

EE Daily news, 2011 Global Unichip moves to ASIC design services, acts as a
virtual IDM with TSMC. URL: http://www.eedailynews.com/2011/10/
Accessed 12 April 2017.

Johnro, 2012 PHP: sqlsrv problems with UTF-8 values? Set your CharacterSet
option!. URL: http://www.johnro.net/2012/07/25/php-sqlsrv-problems-with-utf-
8-values-set-your-characterset-option/ Accessed 24 May 2017.

Microsoft Developer, 2011 Do Stored Procedures Protect Against SQL Injec-
tion?. URL: https://blogs.msdn.microsoft.com/brian_swan/2011/02/16/do-
stored-procedures-protect-against-sql-injection/ Accessed 14 April 2017.

Microsoft TechNet, 2011 SQL Injection. URL: https://technet.microsoft.com/en-
us/library/ms161953(v=sql.105).aspx Accessed 14 April 2017.

Microsoft TechNet, 2013 Storing Images and Photos in SQL Server. URL:
https://social.technet.microsoft.com/wiki/contents/articles/6519.storing-images-
and-photos-in-sql-server.aspx Accessed 21 July 2017.

Panigraphy, N. Xamarin Mobile Application Development for Android – Second
Edition, 2015.

Stack overflow, 2010 Android: What is better – multiple activities or switching
views manually?. URL: https://stackoverflow.com/questions/2072244/android-
what-is-better-multiple-activities-or-switching-views-manually
Accessed 28 March 2017.

Stack overflow, 2012 Get the correct week number of a given date. URL:
https://stackoverflow.com/questions/11154673/get-the-correct-week-number-
of-a-given-date Accessed 28 August 2017.

Stack overflow, 2011 SeekBar with decimal values. URL:
https://stackoverflow.com/questions/6197674/seekbar-with-decimal-values
Accessed 28 August 2017.

W3Schools, 2017 PHP Prepared Statements. URL:
https://www.w3schools.com/php/php_mysql_prepared_statements.asp
Accessed 16 June 2017.

Xamarin, 2017 Accelerating Android Emulators. URL:
https://developer.xamarin.com/guides/android/getting_started/installation/acce
lerating_android_emulators/ Accessed 17 March 2017.

http://www.eedailynews.com/2011/10/
http://www.johnro.net/2012/07/25/php-sqlsrv-problems-with-utf-8-values-set-your-characterset-option/
http://www.johnro.net/2012/07/25/php-sqlsrv-problems-with-utf-8-values-set-your-characterset-option/
https://blogs.msdn.microsoft.com/brian_swan/2011/02/16/do-stored-procedures-protect-against-sql-injection/
https://blogs.msdn.microsoft.com/brian_swan/2011/02/16/do-stored-procedures-protect-against-sql-injection/
https://technet.microsoft.com/en-us/library/ms161953(v=sql.105).aspx
https://technet.microsoft.com/en-us/library/ms161953(v=sql.105).aspx
https://social.technet.microsoft.com/wiki/contents/articles/6519.storing-images-and-photos-in-sql-server.aspx
https://social.technet.microsoft.com/wiki/contents/articles/6519.storing-images-and-photos-in-sql-server.aspx
https://stackoverflow.com/questions/2072244/android-what-is-better-multiple-activities-or-switching-views-manually
https://stackoverflow.com/questions/2072244/android-what-is-better-multiple-activities-or-switching-views-manually
https://stackoverflow.com/questions/11154673/get-the-correct-week-number-of-a-given-date
https://stackoverflow.com/questions/11154673/get-the-correct-week-number-of-a-given-date
https://stackoverflow.com/questions/6197674/seekbar-with-decimal-values
https://www.w3schools.com/php/php_mysql_prepared_statements.asp
https://developer.xamarin.com/guides/android/getting_started/installation/accelerating_android_emulators/
https://developer.xamarin.com/guides/android/getting_started/installation/accelerating_android_emulators/

Xamarin, 2017 Guides – Android. URL:
https://developer.xamarin.com/guides/#android Accessed 17 March 2017

https://developer.xamarin.com/guides/#android

