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Abstract 

This paper examines whether the welfare gains from technological innovation that reduces future 
abatement costs are larger or smaller than the “Pigouvian” welfare gains from optimal pollution control. 
The relative welfare gains from innovation depend on three key factors—the initially optimal level of 
abatement, the speed at which innovation reduces future abatement costs, and the discount rate. We 
calculate the welfare gains from innovation under a variety of different scenarios. Mostly they are less 
than the Pigouvian welfare gains. To be greater, innovation must reduce abatement costs substantially and 
quickly and the initially optimal abatement level must be fairly modest. 
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 How Large Are the Welfare Gains from Technological Innovation Induced by 
Environmental Policies? 

Ian W.H. Parry, William A. Pizer, and Carolyn Fischer∗ 

1. Introduction 

Some economists have speculated that technological advance is likely to be the most 

important factor in achieving environmental quality goals. For example, Kneese and Schultz 

(1978): “Over the long haul, perhaps the single most important criterion on which to judge 

environmental policies is the extent to which they spur new technology towards the efficient 

conservation of environmental quality”; and Orr (1976): “Technological adaptation rather than 

resource allocation [is] the key to an effective solution of [environmental problems].”1 Clearly, 

over a period of decades innovation may go a long way in alleviating unpalatable short-run 

trade-offs between economic activity and the environment. But when evaluating environmental 

policies on the basis of costs and benefits what matters is the welfare gain from induced 

innovation. This paper examines whether the welfare gains from abatement cost-reducing 

innovation are in fact large or not relative to the “Pigouvian” welfare gain from achieving 

optimal pollution control. 

There is a fairly well developed literature on technological innovation and the 

environment. This literature has explored the implications of induced innovation for the choice 

among different types of emissions control instruments and the optimal stringency of emissions 

                                                 
∗ The authors thank Tim Brennan, Dallas Burtraw, Larry Goulder, Richard Newell, Michael Toman, Karen Fisher-
Vanden, and two referees for very helpful comments and the Environmental Protection Agency (Grant CX 
82625301) for financial support. 
1 Others have made the more controversial claim that costs of environmental regulations might even be negative 
owing to induced innovation (see Porter and van der Linde 1995 and Palmer et al. 1995 for different perspectives on 
this). 
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controls.2 Much of the recent research has focused on the implications of technological 

innovation for the costs and optimal level of carbon control policies over time.3 However, one 

issue that has not received much attention is the magnitude of the welfare gains from induced 

innovation. 

Knowing the size of the welfare gains from innovation would be useful for a number of 

reasons. First, it would indicate to what extent previous, exogenous-technology models may have 

understated the net benefits to society from environmental regulations. Indeed, if the welfare 

gains from innovation are larger than the welfare gains from pollution control, previous cost–

benefit studies may have omitted the most important source of welfare gain!4 Second, it may 

shed some light on the quantitative importance of previous theoretical analyses demonstrating 

that different emissions control instruments provide different incentives for technological 

innovationthe larger the welfare gains from innovation the stronger the case for preferring 

instruments that are more effective in promoting innovation.5 Third, if the potential welfare gains 

from induced innovation are large, this may provide a strong efficiency argument for buttressing 

environmental policies with other instruments, such as research subsidies, tax credits, and 

technology prizes, to promote innovation. 

                                                 
2 See, for example, Downing and White (1986), Milliman and Prince (1989), Jaffe and Stavins (1995), Jung et al. 
(1996), Kemp (1997), Parry (1995, 1998), Petrakis et al. (2000) and Fischer et al. (2002). For a good review see 
Jaffe et al. (2000). 
 
3 See, for example, Peck and Teisberg (1994), Kolstad (1996), Wigley et al. (1996), Nordhaus (1998), Goulder and 
Schneider (1999) and Goulder and Mathai (2000). 
 
4 See, for example, Cropper and Oates (1990), Morgenstern (1997), and Portney and Stavins (2000) for cost–benefit 
discussions of environmental regulations that do not consider the magnitude of the efficiency gains from innovation. 
 
5 Previous literature has shown that (equivalently scaled) market-based instruments usually provide stronger 
incentives for innovation than technology mandates and performance standards, and that emissions taxes can 
provide more incentives than freely allocated emission permits (e.g., Milliman and Prince 1989, Jung et al. 1996, 
Parry 1998, Fischer et al. 2002, Keohane 1999).  
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This paper provides a preliminary assessment of the relative magnitude of the welfare 
gains from induced innovation. We use a dynamic social planning model in which the control 
variables are annual pollution abatement and R&D expenditures, where R&D investment 
enhances a knowledge stock that reduces future abatement costs. We define the Pigouvian 
welfare gains as the present value of welfare gains from optimal emissions abatement in each 
period with exogenous technology. We then solve for the discounted welfare gains from the first-
best level of abatement and R&D in each period with endogenous technology. The difference 
between these two welfare measures is the welfare gain from innovation.  

The welfare gain from innovation, expressed relative to the Pigouvian welfare gain, boils 

down to three key factors. First, the optimum abatement level in the first period. If the optimum 

abatement level is initially small, the Pigouvian welfare gain will be small and the potential to 

further increase welfare by reducing abatement costs is large.6 Second, the speed with which 

innovation reduces future pollution control costs on the optimal innovation path, which depends 

on the costs of developing improved abatement technologies: faster cost reductions imply greater 

gains to innovation. Third, the social discount rate: a lower rate increases the relative welfare 

gain from innovation because the benefits from innovation occur in the future while costs are up-

front.  

Our analysis illustrates the welfare gain from innovation over a broad range of different 

scenarios for these three effects. In most cases the welfare gain is smaller than the Pigouvian 

welfare gainfor it to be larger requires that innovation substantially reduce abatement costs 

quickly (by roughly 50% within 10 years) and that the optimal amount of abatement is initially 

fairly modest. The results apply for flow and stock pollutants, for linear and convex 

environmental damage functions, and when the welfare gains from innovation and abatement are 

compared over shorter periods of time.  

                                                 
6 The cost savings from innovation is larger when there is more abatement over which to reduce costs. However, our 
focus is on the mark-up in the welfare gain from optimal emissions control, when account is taken of induced 
innovation.  
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We are aware of two other studies that calculate the welfare gain from induced 

innovation, both in the context of moderate carbon taxesNordhaus (1998) and Goulder and 

Mathai (2000). In both cases induced innovation has relatively minor effects on welfare (at least 

in the central case estimates).7 Our analysis differs by providing a taxonomy that applies for 

pollutants in general and by illustrating results over a broad range of scenarios for the amount of 

abatement, the optimal speed of innovation, discount rates, the shape of the environmental 

damage function, and the length of the planning horizon. 

There are a number of important qualifications to the results. For example, we evaluate 

innovation only in terms of social welfare: innovation may still be of primary concern to 

policymakers because of the long-run effect on ameliorating environmental and economic 

conflicts, even if reductions in pollution control costs, when discounted back to the present, are 

relatively modest. Moreover, in many of our simulations the welfare gains from innovation are a 

sizeable fraction of the welfare gains from pollution control. Thus, they can still be very 

important, even though they might be less than the gains from pollution control. Furthermore, the 

results are sensitive to the discount rate, over which there is much dispute for long-range 

problems. For our benchmark case we use a discount rate of 5%; using a lower value 

significantly increases the range of outcomes for which the welfare gains from innovation 

dominate those from optimal pollution control. Additional limitations are discussed below. 

The rest of the paper is organized as follows. Section 2 describes the model and presents 
our benchmark results. Section 3 relaxes a number of simplifying assumptions and provides an 
extensive sensitivity analysis. Section 4 concludes and discusses caveats. 

                                                 
7 According to Nordhaus (1998) this is because firms already have an incentive to develop energy-saving 
technologies to reduce private production costs, and a moderate carbon tax would do little to augment this incentive. 
In addition, more R&D into carbon-reducing technologies may crowd out R&D elsewhere in the economy, 
producing a welfare loss if the social rate of return exceeds the private rate of return on the forgone R&D. Goulder 
and Mathai (2000) emphasize that their findings are sensitive to the curvature of the marginal abatement cost 
function: for example, induced innovation has more effect on welfare and optimal abatement when the marginal cost 
function is concave rather than convex. 
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2. Benchmark Results 

2.1. Model Assumptions 

Consider an industry where a by-product of production is waste emissions that are 

detrimental to environmental quality (e.g., air or water pollutants, hazardous waste). In the 

absence of emissions abatement, “baseline” emissions in period t would be an exogenous amount 

E . The cost of reducing emissions by At below E , or emissions abatement, is C(At, Kt). Kt 

denotes the stock of knowledge about possibilities for reducing emissions. A higher Kt may 

represent, for example, improved techniques for replacing coal with natural gas in electricity 

generation, or a more efficient end-of-pipe technology for treating pollution. We assume that 

marginal abatement costs are upward sloping and pass through the origin for a given knowledge 

stock. In addition, more knowledge rotates the marginal abatement cost curve downwards about 

the origin but at a diminishing rate. Thus CAA > 0, CA(0, Kt) = 0, CAK < 0, CAKK > 0. 

Knowledge accumulates as follows: 

(1) ttt IKK +=+1  

where K0 is given and It is investment in environmentally oriented R&D activities. The cost of 

R&D (i.e., the cost of scientists, engineers, research equipment, etc.) is f(It) where f(.) is weakly 

convex. To keep the model parsimonious, and the results conservative, diffusion is subsumed in 

f(.). There is no knowledge depreciation (knowledge cannot be disinvented); thus, Kt ≥ Kt–1. 

Emissions accumulate in the environment over time as follows: 

(2) 1)1( −−+−= ttt SAES δ  

where St denotes the stock of pollution at time t and the initial stock S0 is given. δ is the 

decay rate of the stock: δ = 1 for a flow pollutant (e.g., sulfur dioxide, nitrous oxides, and 

particulates) and 10 <≤ δ  for stock pollutants (e.g., nuclear waste, carbon dioxide, toxics).  

Environmental damages at time t are φ(St) where φ ′  > 0, φ ′′  ≥ 0. A social discount rate of 

r is applied to future benefits and costs, and the planning period extends over an infinite horizon.  
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2.2. Analytic Results 

We now make some simplifying assumptions to establish some benchmark results in a 
transparent manner; most of these assumptions are relaxed later. We focus on a flow pollutant 
with constant marginal environmental damages; that is, δ = 1 and φ ′  = φ > 0. The marginal cost 
of research is constant ( 0=′′f ). In addition, we use a quadratic abatement cost function: 

(3) { } 2/)(1),( 2
0 cAKKzKAC −−=  

where c is a parameter and z(.) is the proportionate reduction in abatement costs from innovation 

(0 ≤ z ≤ 1, z′ > 0, z′′ < 0 and z(0) = 0). For accounting convenience we assume that abatement 

occurs from t = 1…∞ while research can occur in period zero.  

To begin with, suppose the state of technology is exogenous as in the traditional 

Pigouvian model: knowledge is fixed at K0 for the entire planning horizon. Optimal abatement 

(AP) is where marginal abatement cost equals marginal environmental benefit (or marginal 

damage from emissions). Using (3) this gives cAP /φ=  for t = 1…∞ and the Pigouvian welfare 

gain per period, denoted WP, is triangle 0pq in Figure 1.  

 

Figure 1. Welfare Gains with and without Innovation 
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We define PVP as the present discounted value (as of t = 0) of the Pigouvian welfare 

gains summed from t = 1 to ∞:  
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Allowing for innovation, the social planning problem becomes: 
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subject to ttt IKK +=+1  

That is, choose abatement and innovation to minimize the discounted sum of 

environmental damages, abatement costs, and innovation costs. Using (3) the first-order 

conditions yield: 

(6)

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From (6), P
t AA >*  (since 1−z* <1): optimal abatement is greater than in the Pigouvian 

case because innovation lowers the marginal abatement cost curve. If φ<− Ecz )1( * , we have a 

corner solution with emissions abatement equal to 100% and EA =* . 

Equation (7) is an Euler equation specifying that the marginal cost of innovation in period 

t equals the (discounted) reduction in abatement costs in period t + 1 from an increase in the 

knowledge stock, plus the marginal cost of innovation in period t + 1. With our assumption that f′ 

is constant, frKAC ttK ′=− ),( ** . Along with (6) we have two static equations providing implicit 

solutions for K* and A*. Thus, abatement and the knowledge stock are constant over t = 1…∞ 

and innovation occurs only in period 0 (this is unrealistic but simplifies our discussion and, as 

discussed below, makes our benchmark results conservative). 

In any given period, the benefit from having a knowledge stock equal to K* rather than K0 

is denoted WK, and is indicated by triangle 0qr in Figure 1. This consists of the reduction in 
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abatement costs at the Pigouvian amount of abatement (triangle 0qs) plus the gain from 

increasing abatement from PA  to *A  (triangle qrs). Using some simple geometry: 

(8)
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where { } { } 0)1(2)1( *2* >−−−=∆ czEczφ . ∆ is positive only in the corner solution with 100% 

abatement. 

We define the welfare gain from innovation, PVI, as the discounted sum of benefits from 

additional knowledge (K* − K0) over all periods, less the cost of innovation in period zero. Thus: 

(9) )()(
)1(

*
0

*
0

1
2 If

r
WIf

r
WPV

K

t

K
I −=−

+
= ∑

∞

=

 

Using (4): 

 (10) P

K

P

I

W
IrfW

PV
PV )( *

0−
=  

The (discounted) welfare gain from innovation is greater (less) than the (discounted) 
Pigouvian welfare gain when PVI/PVP is greater (less) than unity. 

We now establish two analytic results that bound the magnitude of PVI/PVP: 
 

(i) If 1/ ≤EAP  is the Pigouvian abatement level relative to baseline emissions then the 
maximum value of PVI/PVP is 1)/(2 1 −−EAP . 

 

Proof: Suppose that innovation completely and costlessly eliminates abatement costs in the 
initial period. In this case PVI/PVP is simply WK/WP, or area 0qtu in Figure 1 divided by triangle 
0pq. Since area 0pq equals 2/PAφ  and area 0qtu equals )(2/ PP AEA −+ φφ , then PVI/PVP 
equals 1)/(2 1 −−EAP . 
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(ii) If innovation reduces abatement costs by a factor z then the maximum value of PVI/PVP is 
z/(1−z). 

 

Proof: Using (8) and (10),  

P

P

P

I

W

IrfW
z

z

PV
PV )(

1
*
0−∆−

−=  

Since ∆ and f(.) ≥ 0, )1/(/ zzPVPV PI −≤ . 

 

Result (i) puts an upper bound on PVI/PVP for the case when innovation completely 
eliminates abatement costs with no cost to innovation. According to this formula, when the initial 
Pigouvian abatement level is 10%, 40%, 60%, or 100%, then the maximum value of PVI/PVP is 
19, 4, 2.3, or 1, respectively. Therefore, only in cases when the Pigouvian abatement level is 
relatively modest (less than 40%) is there potential for the welfare gains from innovation to be 
several times as large as the Pigouvian welfare gains. Intuitively, if a pollution problem is severe 
enough to warrant a high level of abatement without innovation, then the additional welfare gain 
to innovation will be relatively small. Conversely, if abatement is initially too costly to justify 
major emission reductions, the potential welfare gains from innovation can be relatively large.8 

Result (ii) puts an upper bound on PVI/PVP for the case when innovation does not 
completely eliminate abatement costs. Here we see that PVI/PVP cannot exceed unity if 
innovation reduces abatement costs by 50% or less (z ≤ 0.5).  

These results demonstrate that, in the highly simplified analysis so far, for the welfare 
gains from innovation to be large relative to the Pigouvian welfare gains, innovation must have 
the potential to substantially reduce abatement costs and the initial Pigouvian abatement level 
must not be too large. 

 

                                                 
8 According to this result PVI is unlikely to exceed PVP for pollutants for which the Pigouvian pollution reduction is 
around 100%. This appears to be the case for lead emissions from gasoline and ozone-depleting CFC emissions (see 
Nichols 1997 and Hammitt 1997, respectively). 
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2.3. Numerical Simulations 

The previous results may seriously overstate the actual value of PVI/PVP for two reasons. 
First, research costs are positive and we need to subtract them in order to obtain the net welfare 
gain from innovation. Second, in general it will be optimal to smooth out knowledge 
accumulation over time rather than doing it all in period zero; that is, f′′ is typically positive.9 
Hence, for a whole range of future periods, the benefit from knowledge accumulation will be 
smaller than the benefits in the steady state when knowledge accumulation has been completed.  

We now generalize the model to allow for convex research costs. Smoothing out 
innovation over time involves striking a balance between the gains of immediate increases in the 
knowledge stock and the cost savings from gradual adjustment. This is captured by the Euler 
equation (7), which equates the difference in marginal innovation costs in adjacent periods with 
the one-period return to innovation. The model with adjustment costs cannot be solved 
analytically, and therefore we use numerical simulations. 

We adopt the following innovation cost function: 

(11) 2
21)( ttt IfIfIf +=  

where f1 and f2 are positive parameters. f1 determines knowledge in the steady state: the smaller f1 
is, the more likely that it will be optimal to accumulate enough knowledge to reduce abatement 
costs by 100%. f2 determines the speed of adjustment to the steady state: the smaller f2 is, the 
shorter the transition period to the steady state.  

We also specify the following functional form: 

(12) 22 )1(12)( KKKKz −−=−=  

The choice of K0 is arbitrary because only the difference K – K0 matters. We therefore choose K0 
= 0 and, from (12), Kt = 1 achieves a 100% reduction in abatement costs. 

To start with, we choose f1 = 0, which implies that the steady state knowledge stock will 

completely eliminate abatement costs because the first unit of research in a period always has 

zero cost. As discussed in the next section, this leads us to overstate PVI/PVP relative to the more 

                                                 
9 It is increasingly costly to enhance the knowledge stock all at onceat any point in time there is a limited pool of 
expert engineers/scientists as well as specialized capital equipment such as research labs. 
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realistic case of f1 > 0. Emissions and environmental damages are normalized to imply 1=E  and 

φ = 1. We assume the discount rate r equals 5% (alternative values are discussed later). 

We choose c to imply that the Pigouvian amount of abatement (AP = φ / c) is 10%, 40%, 

or 60%. Finally, we select different values of f2 to imply a wide range of scenarios for the time it 

takes for knowledge accumulation to reduce abatement costs by 50% on the optimal innovation 

path.  

Table 1 summarizes the benchmark simulations. In the second column, we set f2 = 0; 

consequently, innovation completely and immediately eliminates abatement costs at zero cost. 

These entries confirm our earlier calculations of the maximum value of PVI/PVP.  

Table 1. Calculations of PVI / PVP  
Time lag until abatement costs halve Initial Pigouvian 

abatement level (%) 0 10 Years 20 Years 40 Years 
 

10 19.00 2.98 0.88 0.16 
 

40 4.00 1.07 0.46 0.16 
 

60 2.33 0.79 0.41 0.17 
  

The next three columns show the effect of incorporating positive and increasingly higher 

adjustment costs for research. Suppose the initial Pigouvian abatement level is 40%. In this case, 

the welfare gain from innovation is 107%, 46%, and 16% of the Pigouvian welfare gain when 

innovation reduces abatement costs by 50% over 10, 20, and 40 years, respectively (and by 

100% in the steady state). In addition, and as predicted earlier, the ratios in Table 1 diminish as 

the Pigouvian abatement level rises. But regardless of the initially optimum abatement level, PVI 

is less than PVP if it takes 20 years or more for innovation to reduce abatement costs by 50% on 

the optimal dynamic path. Indeed, if the Pigouvian abatement level is initially 60% or more, PVI 

is less than PVP even if abatement costs are reduced by 50% in 10 years.  

These simulations demonstrate that the conditions for PVI to be large relative to PVP are 

rather stringent in our model. Innovation must rapidly reduce abatement costs by more than 50% 

and the initial Pigouvian level of abatement must be fairly modest. If the initial Pigouvian 
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abatement level is large, if cost savings from innovation are small, or if these cost savings occur 

with a substantial time lag, then PVI is smaller than PVP.10 

In practice how long might it take for technological innovation to substantially reduce 
abatement costs? Under the tradable permit program for sulfur, which has roughly halved 
emissions, abatement costs were about 50% lower 10 years into the program than initial 
projections (e.g., Carlson et al. 2000). For illustrative purposes let us assume that the program is 
optimal from a Pigouvian standpoint.11 According to our analysis, this would suggest that PVI is 
about the same size as PVP. However, not all of the reduction in sulfur control costs was due to 
induced innovation; a substantial portion resulted from the deregulation of the railroad industry, 
which reduced transport costs for low-sulfur coal. Taking this onto account would lower PVI 
below PVP in this illustrative example. 

In the context of climate change, if the United States had stuck with the Kyoto Protocol, 
it would have had to reduce carbon emissions by around 30% below baseline levels by 2008–
2012 (Energy Information Administration, 1999, pp. 89). Again, for illustrative purposes 
suppose that this represents the optimal Pigouvian amount of abatement. According to our 
analysis, for PVI to exceed PVP innovation would have to cut abatement costs by 50% in less 
than 15 years. Given the current dependency of the U.S. economy on fossil fuels and that, unlike 
in the case of other air pollutants, there is currently little prospect of developing economically 
viable end-of-pipe treatment technologies, it seems highly unlikely that innovation could halve 
carbon abatement costs within such a short time frame. 

Of course, the above discussion is based on a highly simplified model with specific 
assumptions about functional forms (e.g., for environmental damages, research costs) and 
parameter values (e.g., the discount rate). In the next section we consider how robust the results 

                                                 
10 Another way to interpret these results is that incorporating research costs can dramatically reduce the potential 
welfare gains from innovation. For example, when the Pigouvian abatement level is 40% without any research costs 
the welfare gain from innovation is 4 times the Pigouvian welfare gain. But with research costs, the welfare gain 
from innovation falls to only 46% of the Pigouvian welfare gain when it takes 20 years for innovation to reduce 
abatement costs by 50%. 
 
11 In practice, marginal environmental benefits appear to be higher than marginal abatement costs, implying that the 
program is not stringent enough (Burtraw et al., 1998). 
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are to a variety of generalizations and sensitivity analyses. Other limitations that are beyond the 
scope of the paper are discussed in Section 4. 

3. Generalizations and Sensitivity Analysis 

In this section we discuss discount rates, research cost functions, environmental damage 
functions, stock pollutants, shorter planning horizons, and shorter abatement/innovation timing. 

3.1. Discount Rate  

The benchmark simulations assume a discount rate of 5%, which is a typical value used 
by economists (e.g., Nordhaus 1994). However, there is considerable dispute over the 
appropriate rate. The Office of Management and Budget recommends a rate of 7%, while on the 
other hand a theoretical case can be made for using a lower discount rate when investments have 
very long-range benefits.12 

Qualitatively, the main point is that a higher (lower) discount rate reduces (increases) the 
relative welfare gains from innovation. This is because the benefits from innovation occur across 
a range of future periods, whereas the costs are up-front. Therefore, higher discount rates lower 
the annualized welfare gains from innovation. In contrast (at least for flow pollutants) benefits 
and costs from pollution abatement occur simultaneously, and the discount rate has no effect on 
annualized welfare gains.13  

The effect of varying the discount rate between 2% and 8% on PVI/PVP is shown in Table 
2.14 In first three columns under the “Time lag” heading there are no research costs. Here the 

                                                 
12 See for example Newell and Pizer (2000). The discount factor is a convex function of the discount rate. 
Therefore, using a discount factor calculated simply from the average discount rate will understate the expected 
value for the discount factor given a probability distribution for the discount rate. This understatement starts to 
become significant when benefits occur several decades or more into the future. See Portney and Weyant (1999) for 
a broader discussion of viewpoints on the appropriate discount rate. 
 
13 This result is easy to see for the simplified case of no adjustment costs in the last term in equation (10).  
 
14 For these simulations, we adjust the research cost parameter f2 to keep constant the time lag until abatement costs 
halve. 
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benefits from innovation and the Pigouvian welfare gain are the same in every period, so the 
discount rate has no effect on their ratio [see equation (10) when f(.) = 0].  

Table 2. PVI / PVP Calculations under Alternate Discount Rates 

 

In the remaining columns, varying the discount rate significantly affects the size of 
PVI/PVP. For a particular time lag until abatement costs are halved, we see from Table 2 that 
using a discount rate of 8% rather than 5% roughly halves the value of PVI/PVP, while using 2% 
rather than 5% can easily increase PVI/PVP by a factor of two or three. For example, when the 
Pigouvian abatement level is 40% and innovation reduces abatement costs by 50% in 10 years, 
varying the discount rate between 2% and 8% produces values of PVI/PVP between 2.13 and 
0.63.  

Another way to view these results is that using a lower discount rate increases the range 
of outcomes under which the welfare gains from innovation exceed the Pigouvian welfare gains. 
From the last three columns in Table 2, PVI exceeds PVP in 2 out of 9 cases when the discount 
rate is 5%, but in 6 out of 9 cases when the discount rate is 2%. 

3.2. Research Costs 

Introducing research costs into the model lowers PVI/PVP, relative to its value when 

innovation is costless and all innovation occurs in the first period, for two reasons. First, the 

direct costs of innovation, and second, the lagged adjustment of the knowledge stock and hence 

abatement costs. In this subsection we separate out these two effects in order to assess the 

maximum value of PVI/PVP under different functional form/parameterizations for f(.) and z(.), 

for a given path of abatement cost reductions. 

 

Time lag until abatement costs halve 
0 10 Years 20 Years 40 Years Pigouvian abatement 

level (%) r=2% r=5% r=8% r=2% r=5% r=8% r=2% r=5% r=8% r=2% r=5% R=8%
 

10 19.0 19.0 19.0 8.00 2.98 1.36 4.05 0.88 0.28 1.39 0.16 0.08 
 

40 4.00 4.00 4.00 2.13 1.07 0.63 1.32 0.46 0.22 0.63 0.16 0.07 
 

60 2.33 2.33 2.33 1.37 0.79 0.52 0.92 0.41 0.23 0.52 0.17 0.09 
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Figure 2. Abatement Cost Reduction Schedules Under Different Alternatives 
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For simplicity, we consider a linear path of abatement cost reductions over time, 

removing the ambiguity of how a nonlinear path might be determined by f(.) and z(.). For 

reference, Figure 2 shows the endogenous, optimal path of abatement cost reductions, z(Kt), 

associated with our earlier “20-year lag until abatement costs halve” specification for the cases 

when the initial Pigouvian abatement is 10% and 40%, alongside the linear alternative. The 

benchmark quadratic specifications for f(.) and z(.) generate roughly linear cost reductions up to 

50%, and thereafter move asymptotically toward 100% at different rates depending on the initial 

abatement level.15  

Implementing the linear reduction schedule as exogenous, and ignoring innovation costs, 
we re-compute PVI/PVP. The results are reported in Table 3. Comparing the left column with the 
costless linear reductions shows the reduction in the maximum value of PVI/PVP due to the pure 
effect of the innovation lag, for a given abatement level and time to halving abatement costs. 
Then comparing the costless linear reduction case with the quadratic case shows the further 

                                                 
15 Intuitively, this occurs because once the abatement level itself reaches 100%, the marginal gain to innovation 
begins to diminish since in Figure 1 the additional gain qrs no longer exists. 
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reduction in PVI/PVP because of the direct costs of innovation. These results indicate that the 
lagged effect of innovation has more effect on reducing PVI/PVP than subtracting out research 
costs, though both effects are substantial. For example, when the initial Pigouvian abatement 
level is 40% and abatement costs halve in 10 years, the lagged effect of innovation reduces 
PVI/PVP from 4.0 to 2.25, and subtracting innovation costs reduces it further to 1.07.  

Table 3. PVI/PVP under Alternative Models of Research Costs and Innovation Effects 

 

We can imagine alternative functional forms/parameterizations for f(.) and z(.) that might 

yield lower innovation costs than in our benchmark, for a given schedule of abatement cost 

reductions.16 The upper bound value for PVI/PVP in these cases is indicated by the entries for the 

costless linear reductions in Table 3. Here we see that the maximum value for PVI/PVP exceeds 

one in many cases; however only when the initial Pigouvian abatement is 10% and abatement 

costs halve in less than 20 years is it conceivable that the welfare gains from innovation could be 

several times the Pigouvian welfare gains. 

                                                 
16 However, with marginal R&D costs starting at zero, we believe our benchmark already represents a conservative 
model of R&D costs. 
 

Time lag until abatement costs halve Pigouvian abatement 
level (%) 

Innovation model 
0 10 Years 20 Years 40 Years 

 
10 

Original  
quadratic z & f 19.00 2.98 0.88 0.16 

 Costless linear 
reductions 19.00 8.61 3.95 1.01 

 
40 

Original  
quadratic z & f 4.00 1.07 0.46 0.16 

 Costless linear 
reductions 4.00 2.25 1.31 0.55 

 
60 

Original  
quadratic z & f 2.33 0.79 0.41 0.17 

 Costless linear 
reductions 2.33 1.42 0.90 0.44 
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3.3. Convex Damages 

The assumption of constant marginal environmental damages from emissions appears to 
be a reasonable approximation for certain problems.17 However, convex damages can occur, for 
example, when there are thresholds and discontinuities in ecological effects (e.g., Muradian 
2001). 

For a given Pigouvian abatement level, allowing for convex environmental damages 
reduces the size of PVI/PVP. This is easy to see from Figure 1. Suppose that we rotate the 
marginal environmental benefit curve clockwise about point q. This increases the Pigouvian 
welfare gain WP (triangle 0pq) because there is a larger benefit from inframarginal abatement. 
But it reduces the benefits from innovation WK because it reduces the gain from increasing 
abatement above AP (i.e. it reduces triangle qrs). Hence PVI/PVP must be smaller. 

To illustrate the extent of the reduction in PVI/PVP, we assume the marginal 

environmental benefit function is A21 φφ − . We continue to normalize both emissions E  and the 

marginal environmental benefit at the Pigouvian abatement level to be one, and consider values 

of φ2 equal to 0.25, 0.50, and 1.00. In other words, we rotate the marginal benefit schedule about 

the Pigouvian abatement level, with the slope such that increasing abatement by 1% above the 

Pigouvian abatement level reduces marginal benefits by 0.25%, 0.5%, or 1%.  

Table 4 shows the results for the case when innovation leads to a halving of abatement 

costs in 10 years. The first column under the “marginal benefit slope” heading simply repeats the 

results from Table 1. The remaining columns show that steeper marginal environmental benefits 

can lead to considerable reductions in PVI/PVP. The effect is similar under different assumptions 

about the initial Pigouvian abatement level. With a marginal environmental benefits slope of 

0.25, 0.50, and 1.00, PVI/PVP falls by about 15%, 30%, or 50%, respectively, relative to the case 

of constant marginal environmental benefits.18  

                                                 
17 For example, human fatalities are the major environmental damage component for major air pollutants like sulfur, 
particulates, and nitrogen oxides, and the number of fatalities appears to be roughly linear in the atmospheric 
concentration of these pollutants (e.g. Burtraw et al., 1998). 
18 In the extreme case when the marginal environmental benefit curve is vertical at the Pigouvian level of 
abatement, then it is easy to infer from Figure 1 that PVI/PVP falls to zero because the Pigouvian welfare gain 
become infinite. 
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Table 4. PVI/PVP for Flow Pollutant with Convex Environmental Damages 

 

3.4. Stock Pollutant 

For our purposes, the case of a stock pollutant with constant marginal environmental 

damage is operationally equivalent to that of a flow pollutant with constant marginal damage. 

Suppose that pollution emissions accumulate in the environment according to equation (2) with 

0<δ≤1, and that the damage from accumulated pollution at time t is φSt. The present value at time 

t from environmental damages over the rest of the planning period (Φ t) is therefore: 
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∞

=

+

+
=Φ

1 )1(j
j

jt
t r

S
φ  

Using (2) and (13) we can obtain: 

(14)
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This is the marginal benefit from abatement at time t. It equals the present value of 

avoided damages from incrementally reduced pollution stocks over all subsequent periods. But 

this marginal benefit is the same at the start of every period. Thus, the social planning problem 

for a stock pollutant with constant marginal damage from the stock is equivalent to that for a 

flow pollutant with the same abatement costs, innovation costs, and marginal environmental 

damage in emissions equal to )/( δφ +r . Thus, we would obtain the same values for PVI/PVP as 

before for given Pigouvian abatement levels. 

Marginal benefit slope Pigouvian 
abatement level 0 0.25 0.50 1.00 

 
10% 2.98 2.61 

 
2.25 

 
1.64 

 
40% 1.07 0.91 0.78 0.58 

 
60% 0.79 0.65 0.55 0.41 

 



Resources for the Future Parry, Pizer, and Fischer 

19 

3.5. Innovation and Abatement over Shorter Planning Periods 

It might be argued that, by using an infinite planning horizon, we have understated the 

value of PVI/PVP; that is, PVI/PVP might be larger when innovation is compared with abatement 

over a shorter period. Imagine, for example, a policymaker comparing a short-term R&D 

program to reduce the future costs of abatement with a program to simply reduce emissions for 

the next few years. By augmenting a knowledge stock, R&D in one period can yield benefits in 

all future periods, whereas reducing emissions of a (flow) pollutant for several years yields only 

limited short-term benefits.  

If the choice is between doing R&D now or never, then this argument may have some 

validity. But this comparison is questionable: if innovation is not conducted for the first, say, 0 to 

n periods of the planning horizon, innovation can still begin in period n + 1. In our example, the 

R&D program could be implemented after the program to simply reduce emissions for the next 

few years. Therefore, the welfare gain from innovation in this “short horizon” experiment is 

really the welfare gain from starting the optimal innovation path in period 0 rather than delaying 

its start to period n + 1. Using this definition of the welfare gain to innovation (PVI) and the 

model of Section 2, it is straightforward to show that PVI/PVP is unaffected when innovation is 

compared with the Pigouvian gain (PVP) measured over a shorter n-period horizon, rather than 

an infinite horizon. 

 

Proof: Using equation (9), the welfare gain from beginning the optimal innovation path in period 

zero rather than period n + 1 is: 

(15)
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Using (4), the discounted welfare gain from the Pigouvian amount of abatement from 

period 1 to period n with no innovation is: 
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Dividing I
nPV  by P

nPV  gives the same ratio as in equation (10).  

3.6. Delayed Abatement 

Sometimes environmental regulations are proposed long before they actually become 
binding, and therefore they may encourage innovation well before any emissions reduction 
actually occurs. For example, under the Kyoto Protocol countries do not have to control carbon 
emissions until 2008–2012. In this final subsection we consider the case when innovation can 
begin immediately, but abatement is delayed by 10 years.19 Allowing knowledge to be 
accumulated over a 10-year period before any abatement occurs raises the value of PVI/PVP, 
since the cost of innovation can be spread over a longer period of time, reducing convex R&D 
costs. 

Table 5 shows the effect of this lead time on PVI/PVP when the Pigouvian abatement 
level is 40% and for our benchmark assumptions about how quickly innovation halves abatement 
costs. In the extreme case with no R&D costs (first column), there is no change in PVI/PVP. 
Here, innovation simply occurs in the one period just prior to abatement. But when the marginal 
cost of research is upward sloping, it pays to begin knowledge accumulation early rather than 
waiting 10 years until abatement first occurs. In this case, the value of PVI/PVP increases by 
around 40%. Therefore, allowing for a 10-year lead time does have a notable impact on lowering 
the hurdle for PVI to exceed PVP. However, our qualitative results are still valid. Innovation must 
still produce a major reduction in abatement costs quickly. If, for example, it takes 20 years to 
reach the 50% reduction in abatement costs, PVI is still well below PVP when the initial 
Pigouvian abatement level is 40%.20 

 

                                                 
19 That is, in the Pigouvian case there is no R&D and abatement begins in 10 years, whereas in the innovation case, 
abatement still begins after 10 years but R&D can begin immediately. 
 
20 In practice, an announcement that pollution control will begin 10 years from now may lack some credibility and 
hence undermine innovation incentives. For example, the policy may be weakened if the government changes in the 
interim period. Moreover, an international agreement to control emissions, such as the Kyoto Protocol, may soon 
unravel if one major country reneges on its emissions pledge. 
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Table 5. PVI/PVP when Abatement Begins after 10 Years (40% Abatement) 

 

4. Conclusion 

This paper assesses the magnitude of the welfare gain from abatement cost-reducing 

innovation, relative to the welfare gain from optimal pollution control over time. The relative 

welfare gain depends on three factorsthe initially optimal abatement level, the speed with 

which innovation reduces future abatement costs (on the optimal innovation path), and the social 

discount rate. Under most parameter scenarios, the welfare gain from innovation is smaller than 

that from pollution controlfor the welfare gain to be larger requires that innovation quickly 

reduce abatement costs by a substantial amount (by roughly 50% within 10 years) and that the 

optimal amount of abatement initially be fairly modest.  

These findings appear to contradict earlier assertions by some economists that 

technological advance might be more important than achieving optimal pollution control in the 

design of environmental policies. They may also reinforce concerns about the efficiency of the 

Bush administration’s plan for reducing the growth of carbon emissions primarily through 

technology subsidies rather than by direct emissions controls.21 

However, for a number of reasons the results should not be taken to imply that 

technological innovation is unimportant. First, there are other criteria besides social welfare on 

which to evaluate environmental policies (and economists probably had these other criteria in 

mind when asserting the importance of technological advance). For example, innovation is 

                                                 
21 Technology subsidies, however, may be far more attractive politically than emissions reductions that impose a 
substantial cost burden on energy producers and consumers. 
 

Time lag until abatement costs halve 
 0 10 Years 20 Years 40 Years 
 

Abate now 4.00 1.07 0.46 0.16 
 

Abate in 10 years 4.00 1.53 0.67 0.22 
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obviously very important if policymakers are concerned about ameliorating economic/ 

environmental conflicts for future generations. Alternatively, the policy objective might be to 

minimize the costs of achieving a specific environmental goal. This is relevant when 

environmental benefits point to an unambiguous goal, when uncertainty about environmental 

benefits focuses attention on a particular goal, or when the political process separates goal setting 

and implementation. Based on the considerable uncertainty surrounding the benefits of climate 

change mitigation, for example, Dowlatabadi (1998) chose a fixed stabilization target and found 

that allowing for technical change reduces the costs of achieving that target by 50%, suggesting 

that technical change is very important.22  

None of this is inconsistent with our result that the welfare gains from innovation tend to 

be less than those from optimal pollution control. The underlying assumption behind an 

unambiguous environmental goal, if it reveals social preferences, must be that benefits exceed 

the costs of achieving the goal—whatever the costs. That is, what we call the Pigouvian gain is 

large relative to any potential cost savings from innovation. Once an environmental goal is 

decided, however, the Pigouvian gain becomes irrelevant and the potential importance of 

innovation is unlimited—hence its frequent appearance in the literature. 

Second, even though the welfare gain from innovation may be smaller than that from 

optimal pollution control, it is still a sizeable fraction of the Pigouvian welfare gain in many 

cases, implying that prior studies that ignore induced innovation may have seriously 

underestimated the net benefits from environmental regulations. Moreover, even if the welfare 

gains from innovation are not that large relative to those from pollution control, they may still be 

large in absolute terms.  

Third, our analysis uses a social planning model in which innovation and abatement in 

each period are both socially optimal. In practice, environmental policies may not be set 

optimally for political or other reasons; indeed until recently policymakers in the United States 

relied on “command and control” policies to reduce pollution rather than more efficient market-

                                                 
22 This calculation does not account for the costs of R&D, however. See also Carraro and Hourcade (1998). 
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based approaches. In future work it would be useful to compare the welfare gains from 

innovation and pollution control in the (more realistic) case when the stringency of 

environmental regulation, and perhaps the choice of instrument, are inefficient. 

Fourth, our model is highly simplified and omits a variety of complicating factors that 

might affect the welfare comparison. These include possible spillover benefits of environmental 

technologies to other industries or other countries, strategic behavior in product and research 

markets, efficiency effects from crowding out R&D in other sectors of the economy, and 

interactions between environmental policies and distortions in the economy created by the tax 

system. It is also possible, as Porter and van der Linde (1995) have argued, that innovative 

efforts to reduce pollution can have the added benefit of reducing other production costs. 

Although most economists have been skeptical of such benefits (Palmer et al. 1995), it remains a 

potent argument among supporters of increased environmental regulation—especially those 

regulations that encourage or force technology changes. 

Finally, even in our simplified model the results should be treated with caution. They are 

sensitive to the discount rate, and a low rate substantially raises the importance of innovation. 

Moreover, the costs of developing future abatement technologies are not known ex ante; 

consequently, we can only illustrate plausible ranges of outcomes for the welfare effects of 

innovation, rather than provide accurate estimates.
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