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Abstract

This paper analyzes the impact on exhaustible resource markets of setup or shut-

down costs, a sparsely analyzed category of nonconvex production technologies. This

paper proves that, even under idealized circumstances for competition, a competitive

equilibrium will fail to exist in the presence of setup costs, for any utility and cost

functions such that a planner would exploit exhaustible resource pools sequentially.

Keywords. natural resources, setup costs, shutdown costs, nonconvexities, competitive equilib-

rium.

JEL Classi�cation No(s).: Q3, C62

1Thanks to Steve Salant and Michael Moore, to conferees at the 1994 Journe�es de GREEN at the Uni-
versity of Laval, Quebec, and to seminar participants at the University of Michigan for helpful comments.
This work has been supported �nancially by Resources for the Future.

2Resources for the Future, 1616 P St. NW, Washington, DC 20036. E-mail: �scher@r�.org



1 Introduction

Once-and-for-all costs are common to exhaustible resource markets, occurring in the guise

of setup costs, such as exploration, or shutdown costs, such as environmental cleanup and

land reclamation. These costs represent a category of nonconvex production technologies,

which often cause a competitive equilibrium to fail to exist. While such problems have been

well documented in static markets, analysis is sparser for the e�ects of nonconvexities on

dynamic markets for exhaustible resources.

Much of the existing resource literature has concentrated on nonconvexities caused by

U-shaped cost curves and �xed ow costs (i.e., �xed costs which are incurred in each period

of extraction). The key problem here is that as exhaustion approaches and equilibrium

prices rise, identical �rms will be pushed to produce below minimum e�cient scale (crawling

back up the left side of the cost curve), which destroys the equilibrium. Lewis, Matthews,

and Burness (1979) show the nonexistence of a competitive equilibrium in the presence of

�xed ow costs. Eswaran, and Lewis, and Heaps (1983), followed by Mumy (1984), Kimmel

(1984), Fisher and Karp (1993), and Lozada (1996) examine the impact of economies of

scale over a range of production (U-shaped cost curves). These authors have shown that

such nonconvexities pose problems for existence of a competitive equilibrium, but existence

may be restored (though not necessarily optimality) with a combination of free entry and

exit, heterogeneous �rms, backstop technologies, and uncertainty.

Setup and shutdown costs, however, di�er substantially from �xed ow costs. While

ow costs are �xed costs incurred in each period of extraction; once-and-for-all costs are

�xed costs incurred only once for each resource pool, either before or after the utilization

of that pool. This paper considers well-behaved (convex) ow costs, concentrating on the

nonconvexities created by �xed startup costs. Unlike the U-shaped costs case, the planner

here will not want more than one �rm producing at a time. Still, it is conceptually plausible

that sequential production of an exhaustible resource may be compatible with competition.

However, this paper shows that, even under idealized circumstances, the social optimum
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cannot be decentralized in the presence of setup costs.

In a regular static market, it is easy to see how setup costs may prevent the decentraliza-

tion of the solution to the planning problem. Imagine an industry with a one-time, �xed cost

of production and a constant marginal cost. The social maximum requires P =MC, but at

such a price, pro�ts would be negative and no competitive �rm would want to produce.

The situation in exhaustible resource markets is similar, although less evident because

of the dynamic nature of the problem. Assume once again that marginal costs are constant.

Then, as in the static market, the social optimum dictates that no two �rms should simulta-

neously produce, preventing the setup costs from being incurred twice. For the static market,

this observation rules out the possibility of competition; however, for the resource market,

this rule merely implies that �rms will produce sequentially, since the exhaustible nature

of the resource means no �rm can produce inde�nitely. Furthermore, the optimal price of

an exhaustible resource is above marginal cost, to account for its scarcity, so a �rm taking

socially optimal prices could still cover its �xed costs, unlike the �rm in the static case.

Therefore, with several �rms, competing over time rather than simultaneously, and with

non-negative pro�ts, a competitive equilibrium could conceivably function in an exhaustible

resource market in the presence of once-and-for-all costs. Or could it?

Hartwick, Kemp and Long (1986, henceforth HKL) showed that in the presence of setup

costs the social optimum dictates sequential exploitation of the natural resource pools, and

the optimal path of marginal current net bene�t will rise \in a saw-tooth fashion at an average

rate less than the rate of interest" (p. 212). To demonstrate that a competitive equilibrium

would not always exist, they utilized a two-period example with constant-elasticity utility

and setup costs chosen so that last-period pro�ts were zero. With this model they found that

at the shadow prices associated with the social optimum, the �rm earlier in the sequence

would earn lower discounted pro�ts than the one extracting later; therefore, both �rms would

want to produce last. This could not be an equilibrium, since excess demand would occur in

the preceding period. But was this particular example symptomatic of a general problem?
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The present paper analyzes the decentralization problem in a more general and con-

clusive fashion, proving that for any reasonable utility and cost functions, the competitive

equilibrium will fail to exist. In the next section, the HKL problem will be revisited. Us-

ing a generalized form, the case with an in�nite number of deposits will then be examined,

without and with variable costs. Analysis of the case of a �nite number of deposits follows.

It will show that a competitive equilibrium is infeasible whenever sequential extraction is

warranted.

2 Model

The problem to be examined will be that de�ned in HKL (with a few notational di�erences).

Each of N identical deposits has a stock of �S units of the exhaustible resource. Above-ground

storage is not an option, and no variable costs of extraction exist at this point. The only costs

are once-and-for-all costs K,3 which must be incurred to set up exploitation of the deposit

but need not be paid if the deposit goes unused. Since HKL showed that once-and-for-all

costs make optimal exploitation of the resource pools occur in sequence, these costs can be

easily thought of as setup or shutdown costs; in either case, the cost must be incurred before

exploitation of the next pool can begin. Social welfare equals the present value of the utility

ows generated by the resource consumption (u(qt)) net of setup costs. The social discount

rate, r, is positive and constant.4

Let V represent the value of socially optimal extraction from the closing of the current

deposit (at time T ) onward. Given that value, F (V ) represents the value of current extraction

onward when the decision variables associated with the current deposit, T and qt for t 2

3For brevity, once-and-for-all costs may be referred to here as \setup costs." However, the analysis holds
for any cost that must be incurred before exploitation of the next deposit can begin, including shutting down
the previous deposit.

4While HKL express K in terms of leisure and consider r a rate of time preference, this paper develops
the problem in value terms, making the utility function analogous to social surplus and r an interest rate.
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(0; T ), are optimally chosen:

F (V ) = max
qt�0;T�0

n
�K +

Z T

0

u(qt)e
�rtdt+ V e�rT � �

�Z T

0

qtdt� �S
�o
: (1)

Thus, for the current deposit in the sequence, �rst-order and endpoint conditions are

obtained from di�erentiating the bracketed term with respect to qt:

u0(qt)e
�rt � � = 0 8t; (2)

and T :

u(qT )e
�rT � rV e�rT � �qT = 0: (3)

From these conditions, two key equations are derived:

u0(qt)e
�rt = u0(qT )e

�rT ; (4)

which is the standard Hotelling result that the present value of marginal utility remains

constant, thus de�ning qt as a function of qT , and

u(qT)� u0(qT )qT = rV; (5)

which de�nes qT as a function of V . To pin down T , a third equation is required, namely

the constraint that the sum of the quantities extracted over time must equal the total stock

of the resource available: Z T

0

qtdt = �S: (6)

It will also be useful to de�ne the following variable:

 (qt) = u(qt)� u0(qt)qt: (7)
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Note that  (�) essentially represents net consumer surplus: total utility less the \price"

(marginal utility) times the quantity. For any concave utility function beginning at the

origin, assuming marginal utility is �nite at that point,  (qt) � 0 and rises as qt rises:

 (0) = u(0)� u0(0)0 = 0;  0(qt) = �u00(qt)qt > 0:

Given the strict concavity of u(�), (4) implies that qt declines monotonically as t rises and

thus is smallest at the time of shutdown (T ); therefore,  (qt) declines as t rises and reaches

its smallest point at shutdown.

3 In�nite Number of Deposits

3.1 No Variable Costs

Consider the case where there is an in�nite number of the resource pools.5 Municipal land�lls

are an example easy to visualize: they have limited capacity (the resource stock), another

one can always be built, but it does not make sense to have more than one serving the

municipality at a time, since large costs must be incurred for construction and for contain-

ment at closure. In the �nite case, the likelihood of �rms behaving competitively has been

questioned, since the �rms with the last deposits to be extracted would be ignoring potential

monopoly rents. Looking at the in�nite case makes these criticisms irrelevant and focuses

on the e�ect of the setup or shutdown costs.

With an in�nite number of future land�lls, the incentives for each land�ll are identical

since the value stream of the subsequent in�nite land�lls is always the same. In a stationary

solution, F (V ) = V : the function maps V back into itself. From the �rst equation, one can

5Note that even though the number of resource pools (and therefore the total amount of the resource)
is in�nite, the stock of each individual pool is �nite. Furthermore, with setup costs, scarce factors in the
economy must be employed to exploit each pool. Therefore, in�nite amounts will not be extracted.
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solve for that V :

V =

R T

0
u(qt)e

�rtdt�K

1� e�rT
: (8)

Setting this stationary value of V equal to that derived from the individual endpoint

condition (5), along with the �rst-order condition (4) and the constraint (6), one can solve

for qT and T in terms of K and S. Thus, Equations (4)-(6) and (8) de�ne T , V , qT , and qt

for t 2 [0; T ).

What are the implications for a competitive equilibrium in this stationary case? Fol-

lowing the same logic presented with the static example, the �rm's pro�ts under socially

optimal pricing will be examined. For this social planning problem to be decentralized to

a competitive market, marginal bene�t pricing is required, and price-taking �rms must be

indi�erent as to when they produce. For the latter to hold, the present value of pro�ts must

be equal, regardless of the �rm's position in the series. In a stationary solution, pro�ts are

constant because V is constant; therefore, the only way they will be constant in present

value terms will be if they are zero. To answer the question of whether pro�ts net of start-up

costs are positive, negative, or zero under competitive (marginal bene�t) pricing, we must

see whether Z T

0

u0(qt)qte
�rtdt�K R 0: (9)

Using Equations (8) and (5), K can be represented in terms of the utility function and

the main parameters, thus making the key question

Z T

0

u0(qt)qte
�rtdt�

Z T

0

u(qt)e
�rtdt+

(1� e�rT )

r
[u(qT )� u0(qT )qT ] R 0: (10)

This equation can be rearranged as

(1 � e�rT )[u(qT)� u0(qT )qT ]� r

Z T

0

(u(qt)� u0(qt)qte
�rtdt R 0: (11)

Recalling the function  (�) and its properties de�ned in Equation (7), one can rewrite
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the previous equation in a simpler form and make the following statement:

(1 � e�rT ) (qT )� r

Z T

0

 (qt)e
�rtdt

< (1 � e�rT ) (qT )� r (qT )

Z T

0

e�rtdt

= (1 � e�rT ) (qT )� r (qT )
(1 � e�rT )

r
= 0: (12)

Socially optimal marginal bene�t pricing will always generate revenues less than setup

costs. With negative pro�ts, �rms would all want to go last, if at all. Therefore, a competitive

equilibrium cannot exist in this situation.

3.2 Variable Costs

Suppose now that variable costs do exist. How do they a�ect the results? In addition to

inuencing resource utilization rates, convex costs also pose another problem, since at some

level of convexity, the social planning problem would no longer call for serial production.

For the purpose of concentrating on the decentralization question, costs are assumed to be

not so convex as to jeopardize the sequential nature of the problem.

To study the e�ects of variable costs, de�ning the following variable will prove useful:

�(qt) = c(qt)� c0(qt)qt: (13)

Essentially, �(�) represents a sort of negative producer surplus: total costs less marginal cost

times quantity (which would be revenues at marginal-production-cost pricing). If costs are

zero when production is zero, and the cost function is somewhat convex, then �(qt) � 0 and

falls as qt rises:

�(0) = 0;
@�(qt)

@qt
= �c00(qt)qt < 0:
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The revised social planning problem can be characterized as

F (V ) = max
qt�0;T�0

n
�K +

Z T

0

[u(qt)� c(qt)]e
�rtdt+ V e�rT � �

�Z T

0

qtdt� �S
�o
: (14)

The �rst-order conditions with respect to qt give

[u0(qt)� c0(qt)]e
�rt = [u0(qT )� c0(qT )]e

�rT = � 8t; (15)

which de�ne qt as a function of qT .

The endpoint condition, along with the �rst-order condition for qT , yields

[u(qT) � u0(qT )qT ]� [c(qT )� c0(qT )qT ] = rV; (16)

or, more simply written,

 (qT)� �(qT ) = rV; (17)

which de�nes qT as a function of V . The capacity constraint is unchanged.

Solving for the stationary solution V from Equation (14) yields

V =

R T

0
[u(qt)� c(qt)]e

�rtdt�K

1� e�rT
: (18)

As before, the previous three equations along with the capacity constraint de�ne T , V ,

qT , and qt for t 2 [0; T ).

In investigating the importance of variable costs to the question of decentralizing the

social planning problem, the incentives for the competitive �rm warrant identi�cation. Let

� represent the stream of discounted pro�ts from the pro�t-maximizing exploitation of the

resource pools from the close of the current one onward. The function H(�) then maximizes
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pro�ts in the current period, given that stream of future pro�ts:

H(�) = max
qt�0;T�0

n
�K +

Z T

0

[Ptqt � c(qt)]e
�rtdt+�e�rT � 

�Z T

0

qtdt� �S
�o
; (19)

where Pt = u0(qt).

The �rst-order conditions are the same as in the social planning problem when marginal

bene�t is substituted for the price (see Equation (15)). Obviously, the constraint also remains

unchanged. The endpoint condition, however, is di�erent:

@f:::g

@T
= [u(qT )� c(qT )]e

�rT � r�e�rT � qT = 0: (20)

Combined with the �rst-order condition, the �rm's endpoint condition implies

�[c(qT)� c0(qT )qT ] = r�; (21)

or simply written,

��(qT ) = r�: (22)

The endpoint conditions of the social planner and the �rm determine each actor's optimal

qT . For these quantities to coincide (i.e., for Equations (16) and (21) to hold simultaneously),

the following equation must hold:

 (qT) = r[V ��]: (23)

In a stationary solution, the subsequent stream of pro�ts is the same for each point in

the series, implying H(�) = �. From Equation (19), one can solve for the stationary value

of �:

� =

R T

0
[u0(qt)qt � c(qt)]e

�rtdt�K

1 � e�rT
: (24)
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Subtracting the stationary value of � from that of V (Equation (18)) yields

V �� =

R T

0
 (qt)dt

1� e�rT
: (25)

Substituting Equation (25) into (23) produces the same condition which the last section

proved could not hold for any reasonable utility and cost functions (i.e., ones for which the

planner would dictate serial exploitation of the resource pools). Thus, the �rm's incentives

are incompatible with those of society: for no reasonable utility or cost functions can a

stationary competitive equilibrium replicate the social optimum. The next section shows the

same holds for a �nite number of resource pools.

4 Finite Number of Resource Pools

Let n > 1 equal the number of resource stocks left in the sequence. Subscripts will denote

periods or stocks until the end of the sequence, except for qnt , where the subscript will continue

to represent time within the period and the superscript will signify the period in question.

The value of maximized current and subsequent extraction, Vn, equals the greater of F (Vn�1)

and Vn�1, since foregoing extraction of the current deposit and proceeding straight to the

next is always an option. By the same logic, the representative �rm's stream of pro�t in n,

�n, equals the greater of H(�n�1) and �n�1.

Backing out these values yields the optimal extraction paths for society and for the �rm,

given the values obtained after all extraction is completed, V�1 and ��1. Let ��1 = V�1 =

0, since no gain or loss is expected after all sources of the resource are depleted. As a

consequence, optimal actions in the last period (n = 0) merely maximize use of the last

pool and are determined independently of K:6 V0 = F (0) > 0. Furthermore, the social

6This analysis holds for both setup and shutdown costs. The shutdown costs of the last deposit are
postponed inde�nitely and thus avoided; the problem thus returns to one of setup costs, where the previous
deposit's shutdown costs are the next one's setup costs. Since only subsequent values a�ect extraction
decisions, the optimal paths will be identical. Of course, which pool the costs are associated with is important
for the determination of pro�ts of the �rst and last. Furthermore, a competitive �rm may want to avoid
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value of the last deposit's extraction must be positive, or exploitation of the resource would

not be worthwhile. Since K does determine the ultimate value of V0, optimal actions in

the penultimate and all preceding periods will depend on K: V1 = F (V0), V2 = F (V1), etc.

(until Vn = F (Vn), when the stationary solution is reached).

While HKL showed one case where a competitive equilibrium would fail under once-and-

for-all costs and a �nite number of resource pools, this section shows that it must fail for any

reasonable utility and cost functions. The approach follows that of the previous section on

variable costs: rather than determining whether pro�ts increase or decrease in real terms,

addressing whether the incentives for the competitive �rm and for society are compatible

yields a simpler, more intuitive proof.

For an equilibrium to exist for any number of deposits, it must function in the last two

periods. Recall the endpoint conditions for the �rm and society, Equations (21) and (16),

expressed here in the new notation for the penultimate period:

��(qT1) = r�0; (26)

 (qT1)� �(qT1) = rV0: (27)

Each of these equations de�nes qT1, implying that the variable is overdetermined unless

the two equations are equivalent. For both to hold simultaneously, the following equality

must be true:

 (qT1) = r(V0 ��0): (28)

The right-hand term simpli�es easily since no subsequent social value or pro�ts stream

exists:

V0 � �0

shutdown costs regardless of position. The point is, even abstracting from the complications of the �nite
horizon which make perfect competition implausible, the nonexistence result holds.
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=

Z
1

0

[u(q0t )� c(q0t )]e
�rtdt�K �

Z
1

0

[u0(q0t )q
0

t � c(q0t )]e
�rtdt+K

=

Z
1

0

[u(q0t )� u0(q0t )q
0

t ]e
�rtdt

=

Z
1

0

 (q0t )e
�rtdt: (29)

Therefore, for a competitive equilibrium to coincide with the social optimum, the follow-

ing equation must hold:

 (q1T1) = r

Z
1

0

 (q0t )e
�rtdt: (30)

Since the optimal quantities in the last period are determined independently of K, this

equation implies that qT1 would also not depend on K. This result directly contradicts the

individual endpoint conditions, which state that qT1 falls as K rises (since �0 and V0 fall as

K increases).

For example, suppose the �rm has constant marginal costs: the left-hand side of Equation

(26) is then zero. If last period pro�ts are non-zero, already no solution exists. Suppose

then that last period pro�ts are zero: (26) holds, but the �rm acts in each preceding period

as if it were the last, since subsequent pro�ts will be zero. However, society gains positive

net bene�ts from using the last resource, so it prefers to use the preceding pool more rapidly

than the last pool.

Evidently, the endpoint conditions for the �rm and society are not compatible; therefore,

in no case where sequential exploitation is warranted can the social optimumbe decentralized

in the presence of once-and-for-all costs.

5 Conclusion

A perfectly competitive equilibrium cannot replicate the socially optimal serial exploitation

of an exhaustible resource when once-and-for-all costs are present. Furthermore, because in

this scenario only one extractor should operate at a time, many of the techniques used to
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\convexify" other nonconvex cost problems | like free entry and exit of multiple, heteroge-

neous �rms for the U-shaped costs case | do not apply here.

As a result, two policy questions merit investigation. First, what is the second-best solu-

tion? Is some system of Ramsey pricing and/or subsidies available to maximize social surplus

under the constraint of competition-compatible incentives? Or is oligopolistic competition

and regulation a more reasonable approach? Second, can policies themselves be the source

of the nonconvexities that cause the breakdown of a competitive equilibrium? For example,

the Surface Mining Control and Reclamation Act requires strip-mining �rms to restore the

land to its original condition upon completion | in e�ect, the Act imposes a shutdown cost.

This possibility of policy-induced market failures reinforces the need to better understand

the social costs involved.
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