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Are the Costs of Reducing Greenhouse Gases from Passenger Vehicles Negative? 

Ian W.H. Parry 

Abstract 

Energy models suggest that the costs of reducing carbon emissions from transportation are high 
relative to those for other sectors. This paper discusses why taxes (or equivalent permit systems) to reduce 
passenger vehicle emissions produce large net benefits, rather than costs, when account is taken of (a) 
their impact on reducing other highway externalities besides carbon and (b) interactions with the broader 
fiscal system. Both of these considerations also strengthen the case for a tax-based approach over fuel 
economy regulation, while fiscal considerations strengthen the case for taxes over grandfathered 
emissions permits. The paper also comments on the practical relevance of automobile fuel taxes, or their 
policy equivalents, to broader legislation intended to mitigate climate change. 
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Are the Costs of Reducing Greenhouse Gases from Passenger Vehicles Negative? 

Ian W.H. Parry∗
 

 
 

1. Introduction 

 U.S. policymakers face growing domestic and international pressure to control greenhouse gas 

emissions in light of solidifying scientific consensus that global warming is occurring, various state-level 

initiatives to control emissions, and the birth of carbon trading in Europe. Understanding the costs of 

alternative emissions control proposals is critical both for balancing economic and environmental 

objectives, and for achieving environmental objectives at lowest cost. 

 The costs to the United States of a nationwide carbon tax or cap-and-trade system have been 

estimated from various energy models. Although estimates differ widely, one robust finding is that the 

marginal costs of a given percentage reduction in emissions from transportation fuels (or petroleum more 

broadly) are much larger than the corresponding marginal costs in the power sector.1 One reason for this 

is that possibilities for substituting alternative fuels for conventional motor fuels are currently limited; 

another is that, because of different carbon intensities, a carbon tax has a relatively larger effect on the 

cost of energy from coal-fired generation than from transportation fuels.2

Those studies pay little attention to preexisting distortions in the economy; however, as long 

recognized in public finance (e.g., Lipsey and Lancaster 1956–57; Harberger 1974) the magnitude and 

even the sign of the welfare impact of a new policy can be critically affected when second-best 

considerations are taken into account. One preexisting distortion is noncarbon externalities from 

automobiles that fall with higher fuel prices, including local pollution, energy security, congestion, and 

accidents; a new tax on the carbon content of gasoline, or a cap-and-trade policy imposed on refined 

gasoline, may involve negative efficiency costs if the preexisting gasoline tax is below combined per 

                                                 
∗ Resources for the Future, 1616 P Street N.W., Washington, D.C. 20036. Phone (202) 328-5151; email 
parry@rff.org; web www.rff.org/parry.cfm. This paper was prepared for a special issue of the Journal of Urban 
Economics to honor the distinguished career of one of the world’s leading transportation economists, Ken Small. I 
am grateful to Joe Aldy, David Brownstone, Jan Brueckner, Richard Newell, and two reviewers for very helpful 
comments on an earlier draft. And I am especially fortunate to have worked with, and learned from, one of my 
favorite economists, Ken Small, on other projects; he has done so much to improve the field of transportation 
economics and is an outstanding colleague. 
 
1 For discussions of different energy models, see The Energy Journal 1999, special issue, The Costs of the Kyoto 
Protocol, Conrad (2002), Fischer and Morgenstern (2003), Ghersi and Toman (1999), and Repetto and Austin 
(1997).   
 
2 A further possibility is that low-cost, fuel-saving technologies may have already been adopted in transportation 
because of higher energy taxes relative to other sectors.  
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gallon costs from these externalities. Moreover, new policies interact with distortions created by the 

broader fiscal system: if revenues from carbon taxes (or permits if they are auctioned) are used to reduce 

labor income taxes, labor supply can increase overall, leading to a further efficiency gain, if gasoline is a 

relative complement for leisure (Sandmo 1976; Christiansen 1984). 

Objections have been raised to that line of argument. One is that noncarbon externalities are 

better addressed through other instruments, so why include them in an evaluation of carbon policy? If 

other externalities were perfectly internalized (e.g., through peak-period pricing on every road link in 

urban areas), welfare gains would be a lot larger than from indirectly mitigating them via carbon policy, 

and they would become irrelevant to the welfare effects of carbon policy. However, until these ideal 

policies have been fully implemented⎯which might be quite a while⎯carbon policies still improve 

welfare by mitigating other externalities, and this must be accounted for in an unbiased welfare 

assessment of near-term carbon policies.  

As for labor tax distortions, it might be argued that these are a necessary cost to pay for needed 

public expenditure, so why are they relevant for carbon policy? But again, the unavoidable point is that if 

labor supply is at all responsive to carbon policy, there will be a welfare change in the labor market that 

needs to be included in the overall welfare evaluation of the carbon policy; whether that efficiency effect 

is large or small is mainly an empirical issue. 

Skeptics of higher automobile fuel taxes raise two concerns about the practical value of studying 

them: first, that auto companies and other interest groups will likely stave off any attempt to increase 

taxes, and second, that even if they do not, the government may not use the extra revenues wisely. Do 

revenue-neutral fuel taxes, or the auctioned permit equivalent, have any relevance to current political 

debate? 

Despite pledges by both candidates in the 2004 presidential election not to raise fuel taxes, it 

seems increasingly likely that legislation will move forward to implement a broad carbon cap-and-trade 

system, which will raise gasoline prices in the same way that a carbon tax would.3 Moreover, it is now 

widely appreciated that if those permits were grandfathered to emissions sources, they would confer 

enormous profits on energy industries (and their relatively well-off stockholders) at the expense of energy 

consumers (e.g., Bovenberg et al. 2005). Some recent bills therefore propose grandfathering only a small 

amount of permits to affected industries to prevent their profits from declining; these proposals are almost 

equivalent to (modestly) raising gasoline taxes (in conjunction with taxes on other fossil fuels), with 

revenues retained by the government.  

                                                 
3 This applies to the upstream programs proposed in bills H.R. 6 and H.R. 5049, sponsored by Senator Jeff 
Bingaham and Representative Tom Udall, respectively.  
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The second concern may have some historical validity. Becker and Mulligan (2003) find that 

revenue windfalls have financed extra public spending more often than tax cuts in the past; if these 

decisions are driven more by political rather than by benevolent, welfare-maximizing motives, worries 

about revenues from new fuel taxes, or equivalent policies, are well founded.4  

However, what matters are the details on permit allocation in the specific legislation before 

Congress. Admittedly, of the nongrandfathered permits, typically only a few are left aside for auctioning, 

with the revenues usually accruing to the Treasury; other permits are used to compensate low-income 

energy consumers, help displaced workers, or fund climate technology programs. Nonetheless, there is an 

elephant in the room, one that may ultimately tip the scales in favor of a lot more auctioning—the 

looming retirement of the baby-boom generation, which will likely force future governments to find new 

revenue sources to counteract growing pressure on the Medicaid and Social Security systems (Rangel 

2005). To the extent that permit revenues help plug the deficit, they are effectively lowering tax burdens 

on future generations.  

Meanwhile, as climate bills move forward in Congress, the academic community is becoming 

increasingly vocal in its advocacy of gasoline and carbon taxes that might be implemented either 

alongside or in place of the quantity-based approaches in current legislation (see Nordhaus 2006 and 

contributing members of the “Pigou Club” at Gregory Mankiw’s blog). With this backdrop, 

understanding the welfare effects of revenue-neutral automobile fuel taxes (or their equivalents), and how 

they compare with other policies that might be used to control vehicle emissions, is of more than 

academic interest. 

Several recent studies relying on simple models, rather than disaggregated energy or computable 

general equilibrium models, have explored, in isolation, the welfare effects of certain automobile policies, 

accounting for highway externalities or fiscal interactions or sometimes both.5 This paper does not add 

any major methodological innovations to the literature. Rather, its two purposes are first, to synthesize 

previous results by comparing, on a consistent basis, the welfare costs or benefits of a broad range of 

alterative policies to reduce passenger vehicle emissions; and second, to derive simple and intuitive rules 

                                                 
4 This seems to be less of a problem in European countries, where a variety of environmental tax shifts have recently 
been implemented; in fact, political parties in the United Kingdom are now frantically outbidding each other with 
promises of using green tax revenues to lower the personal tax burden. In contrast, however, the European Trading 
System in the European Union is essentially a grandfathered scheme; in the first phase of the program, member 
states could auction no more than 5 percent of their permit allocation. 
 
5 See Parry and Small (2005) on gasoline and mileage taxes, and West and Williams (2004) on gasoline taxes, with 
prior externalities and fiscal interactions; Austin and Dinan (2005), Kleit (2004), and Parry et al. (2004) on fuel 
economy standards with prior externalities; and West and Williams (2005) on fuel economy standards with fiscal 
interactions.  
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of thumb (which are not explicit in other studies) for approximately adjusting welfare estimates from 

large-scale energy models to account for interactions with pre-existing distortions.  

  Briefly, reducing carbon emissions from passenger vehicles may result in very large net benefits 

(excluding the climate benefits), rather than large costs, when noncarbon externalities and broader fiscal 

interactions are taken into account. This applies to revenue-neutral emissions or fuel taxes, and even more 

so to mileage taxes, which have a more direct impact on reducing the two largest external costs—traffic 

congestion and accidents. However, this result is unlikely for grandfathered carbon emissions permits, or, 

equivalently, a gasoline voucher system (Feldstein 2006), which do not directly raise revenues for the 

government and therefore forgo the opportunity for efficiency gains from using extra revenue to reduce 

labor taxes. As for fuel economy standards, second-best considerations increase rather than reduce overall 

costs, as they slightly increase (rather than reduce) per mile driving costs and raise no revenues; thus, they 

perform badly relative to other policies in our analysis.  

 Clearly, there are important dimensions to instrument choice that are beyond our scope. For 

example, uncertainty over abatement costs and household equity effects also seems to favor carbon taxes 

over grandfathered permits (e.g., Pizer 2002; Dinan and Rogers 2002). Moreover, to the extent there are 

spillover benefits within the auto sector or to other countries, such as China, from new technologies 

induced by emissions control policies, welfare gains are larger than estimated here. And fuel economy 

regulations may address a market failure due to consumer undervaluation of fuel economy, in which case 

we overstate efficiency costs for this policy (e.g., Greene 1998); however, whether there is a 

quantitatively important market failure remains an open empirical issue.  

Nonetheless, leaving aside those issues and the benefits from reducing carbon emissions 

(Nordhaus and Boyer 2000, Tol 2005) there is a solid efficiency case for higher taxes on automobile fuel 

or use to reduce emissions, or their permit equivalents, so long as revenues do not end up financing pork-

barrel spending. Given that existing climate bills would only moderately affect fuel prices (e.g., even a 

$50 carbon price translates into only 12 cents per gallon of gasoline), supplementary measures (preferably 

taxes) targeted at the transportation sector may be appropriate. 

The rest of the paper is organized as follows. In Sections 2 and 3 we use a graphical approach to 

explain how noncarbon externalities and fiscal considerations, respectively, alter the costs of policies to 

control automobile emissions; we also derive formulas for welfare effects and implement them based on a 

best assessment of parameter evidence. A concluding section elaborates on distributional effects, 

additional complications in the balance between commodity and income taxes, broader fiscal distortions, 

R&D issues, and second-best issues in other carbon-emitting sectors. 
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2. The Role of Noncarbon Externalities 

2.1. Carbon Tax 

According to general equilibrium public finance, the welfare effects of a product tax can be 

calculated from changes in consumer benefits and producer costs in the market affected by the tax, 

assuming (for now) there are no other distortions in the economy (Harberger 1974, ch. 2, 3). Figure 1 

depicts the market for gasoline, G, where the height of the demand curve reflects private benefits to 

motorists from mileage per extra gallon, net of travel time, insurance, vehicle purchase and maintenance 

costs, etc., and the supply curve is perfectly elastic and defined inclusive of a preexisting gasoline tax of 

tG.6 These are long-run curves; that is, we are comparing annual steady-state gasoline use with different 

fuel prices, after full turnover of the vehicle fleet. We assume, for simplicity, that all price coefficients are 

constant over the relevant range; this should not introduce any substantial error, given that we consider 

relatively modest quantity changes. 

Suppose a carbon tax of tC per ton is levied, which raises the gasoline price from  to 

, where z is carbon content per gallon. The efficiency cost of this tax (ignoring externality 

benefits) consists of the usual Harberger triangle, abc in Figure 1, plus rectangle bcgf, equal to the 

quantity reduction ∆G times the distortion between marginal consumer benefit and the (pretax) marginal 

fuel supply cost.  

0
Gp

0
GCG pztp +=

 Now suppose gasoline use involves a noncarbon external cost per gallon defined by 

(2.1) βMG EE +  

EG denotes an external cost that varies in proportion to gasoline use, namely the cost of oil dependence 

(see below). EM denotes costs (in cents per gallon) of externalities that vary with miles driven but not fuel 

economy, including traffic congestion, accidents, and local pollution from tailpipe emissions, which are 

regulated on a grams per mile basis.7 β, which is assumed constant, is the fraction of a price-induced 

                                                 
6 Besides the tax, the height of the supply curve reflects the costs of crude oil purchase (currently around $1.40 per 
gallon) and fuel refining (around $0.30−$0.50 per gallon). State and local sales taxes amount to around $0.18 per 
gallon; however, since these taxes apply to most other consumption goods, they do not affect the price of gasoline 
relative to other goods.  

In practice, the supply curve may have a slight upward slope because the United States has limited 
monopsony power in the world oil market; this is accounted for in our estimate of energy security costs below. 
Constraints in refinery capacity may also create some modest market power, though we are not aware of solid 
evidence on this. Finally, we do not discuss diesel because (unlike in Europe) this accounts for a small amount of 
passenger vehicle fuel. 
 
7 Emissions standards are the same for all new cars, and therefore (assuming standards are binding and control 
technologies are durable) an improvement in new vehicle fuel economy will have no effect on local emissions; 
standards for light trucks are currently being harmonized with those for cars. We ignore local damage from upstream 
emissions leakageas, according to NRC (2002), this is only 2 cents per gallon. 
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reduction in fuel use due to reduced driving, as opposed to long-run improvements in average vehicle fuel 

economy; the smaller is β, the smaller the mileage-related externality benefits per gallon reduction of fuel 

(Parry and Small 2005). The carbon tax produces externality benefits of rectangle decb in Figure 1; at the 

margin the carbon tax is now welfare improving (leaving aside climate benefits) up to where 

=ztt CG + βMG EE + .  

 The marginal welfare cost of the carbon tax can be expressed as follows (see Appendix):  

(2.2) =TAXMC
⎭
⎬
⎫

⎩
⎨
⎧ −+

−
z

tEE GMG β
0

0

Z
Z

z
p

GG

G ∆
−

η
 

where  is emissions, and  is the price elasticity of gasoline demand 

(evaluated at t

zGZ = 00 /)/( GpdpdG GGGG =η

C = 0). MCTAX has a negative intercept equal to the difference between the marginal external 

cost of fuel use and the preexisting gasoline tax, expressed per ton of carbon. The slope of MCTAX is 

steeper (a) the more inelastic the demand for gasoline, as this implies it is increasingly costly for motorists 

to conserve on fuel, and (b) the smaller is z, as this implies a larger reduction in gasoline is required to 

reduce emissions by a ton. In our model so far, marginal costs under a cap-and-trade permit system would 

be identical to those for the carbon tax for a given emissions reduction. 

 

2.2. Mileage Tax 

 Now consider a simple tax per vehicle mile, which reduces mileage but has no effect on fuel 

economy; this policy is equivalent to a tax on gasoline, with gasoline demand conditional on a given fuel 

economy.8 If, with fuel economy variable, a fuel tax of tCz reduces gasoline demand by ∆G, then a fuel 

tax equivalent of tCz/β is needed to reduce gasoline consumption by the same amount when fuel economy 

is fixed. Therefore, the slope of the gasoline demand curve conditional on fuel economy is 1/β times the 

slope of the unconditional demand curve; consequently, the Harberger triangle under the mileage tax is 

ibc in Figure 2 rather than abc.  

The marginal welfare cost for the mileage tax is  

                                                                                                                                                             
 Evidence suggests that light-duty trucks pose greater fatality risks to other road users than cars, and 
therefore a shift in the vehicle fleet toward cars may reduce external accident costs (White 2004). However, we 
ignore this complication, given that most of the increase in fuel economy in response to higher gasoline taxes likely 
comes from incorporation of fuel-saving technologies in new vehicles rather than changes in fleet composition 
(Kleit 2004). 
 
8 A uniform mileage tax might cause a change in vehicle fleet composition that lowers average fuel economy as it 
increases vehicle operating costs per mile by a larger proportion for gas sippers than for gas guzzlers; this effect is 
ignored in our analysis.   
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(2.3) =MILEMC
⎭
⎬
⎫

⎩
⎨
⎧ −+

−
z

tEE GMG
00 )/(

1
Z

Z
pz GGG

∆
−

βη
 

The intercept of MCMILE is lower than that for MCTAX because mileage-related external costs EM are not 

multiplied by fraction β; in this case all, rather than just a portion, of the reduction in emissions is from 

reduced driving. On the other hand, MCMILE has a steeper slope equal to 1/β times the slope under the fuel 

or carbon tax, as this policy exploits only one of the two margins for reducing fuel use.  

 

2.3. Fuel Economy Standard  

Another way to reduce auto emissions is through higher fuel economy standards on new 

passenger vehicles.9 To examine the long-run cost of this policy in a simplified way, assume, for the 

moment, that the policy reduces fuel economy with no effect on mileage or the vehicle stock; again, we 

consider the welfare cost of the fuel tax that would have the equivalent effect as the fuel economy 

standard. With mileage fixed and fuel economy variable, a fuel tax of tCz/(1−β) is needed to reduce 

gasoline demand by ∆G in Figure 2; thus, the demand curve conditional on mileage has a slope equal to 

1/(1−β) times that of the unconditional demand curve, and the Harberger triangle for the fuel tax 

equivalent is hbc.  

Now suppose that a portion r of fuel savings from improved fuel economy is offset as people 

drive more in response to lower per mile fuel costs; r is actually fairly small, in part because higher 

vehicle costs reduce the demand for vehicles, which counteracts the effect of greater miles driven per 

vehicle. Accounting for this “rebound effect,” a fuel tax equivalent of tCz/{(1−β)(1−r)} is now required to 

reduce gasoline demand by ∆G. The marginal cost of reducing emissions is given by  

(2.4) =FEMC
⎭
⎬
⎫

⎩
⎨
⎧ −−

−
z

rEtE MGG
0

0

)1)(1( Z
Z

rz
p

GG

G ∆
−−

−
ηβ

 

The intercept of MCFE exceeds that for MCTAX because higher fuel economy standards (slightly) increase 

rather than reduce mileage-related external costs. MCFE also has a steeper slope than MCTAX because it 

exploits fuel savings only from higher fuel economy and increases rather than reduces mileage.10

                                                 
9 Existing corporate average fuel economy (CAFE) standards require manufacturers to meet sales-weighted averages 
of 27.5 and 22.5 miles per gallon for their car and light-truck fleets, respectively. We assume existing standards are 
nonbinding, which seems reasonable given that fuel prices have recently escalated and the car standard has not been 
altered since 1990 (see Small and van Dender 2005 for more discussion). As already noted, we ignore the 
contentious issue of whether consumers undervalue fuel economy (cf. Greene 1998 and Austin and Dinan 2005). 
 
10 Our long-run analysis neglects a short-term disadvantage of fuel economy regulations in that they apply only to 
new vehicles and therefore take several years or more to have much impact on total gasoline consumption; in 
contrast, fuel taxes encourage owners of both new and old vehicles to economize on use and prompt earlier 
retirement of old, fuel-inefficient vehicles.  
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2.4. Parameter Values 

The purpose of the empirical applications in this and the next section is to provide a rough 

indication of how prior distortions change the welfare impacts of different carbon policies under our best 

assessment of parameter values. Given that our formulas are very easy to compute under alternative 

parameter assumptions, we do not provide sensitivity analysis; nevertheless, it should be borne in mind 

that parameters are uncertain. For example, as regards congestion, there is dispersion in empirical 

estimates of the value of travel time, and assumptions about the delay to others caused by one extra driver 

are sensitive to peak-period travel flows and bottlenecks at interchanges. And accident costs are sensitive 

to assumptions about the value of life and whether one extra driver increases injury risks and other costs 

to existing motorists if those drivers take more care in heavier traffic volumes. 

Baseline price and quantities are taken from EIA (2005) for 2004, and unless otherwise noted, all 

other parameters are based on the review in Parry and Small (2005). Initial carbon emissions  = 336 

million tons, equal to gasoline demand of 140 billion gallons, times tons of carbon per gallon of gasoline, 

z = 0.0024 (NRC 2002). We assume an initial retail gasoline price  = $2.00 per gallon, a combined 

federal and state gasoline tax t

0Z

0
Gp

G = $0.40 per gallon, and a (long-run) gasoline demand elasticity GGη  = 

−0.55, and β = 0.4 (i.e., 40 percent of the gasoline demand elasticity reflects reduced driving and 60 

percent fuel economy improvement). For the rebound effect, we assume r = 0.05, based on Small and van 

Dender (2005).11  

We adopt values of 3.5, 3.0 and 2.0 cents per mile for traffic congestion, accidents, and local 

pollution, or EM = $1.79 per gallon, given on-road fuel economy of 21 miles per gallon.12 Following NRC 

(2002), we assume EG = 12 cents per gallon for the marginal external cost of oil dependence, reflecting 

the risk of macroeconomic disruption costs from oil price shocks that may not be internalized by the 

private sector and the appropriate tax to account for U.S. market power in the world oil market.13 Note 

that mileage-related external costs are 15 times fuel-related external costs; consequently, policies that 

                                                 
11 The rebound effect is smaller than the magnitude of the elasticity of mileage with respect to fuel prices; in both 
cases vehicle demand falls, thereby playing a counteracting role in the former case and a reinforcing role in the 
latter.  
 
12 For simplicity we assume EM is constant. Although mileage externalities are fixed in cents per mile, they increase 
when expressed in cents per gallon as fuel economy rises; however, this effect is modest for the range of carbon 
taxes we consider. 
 
13 This estimate omits any harm to U.S. foreign and national security interests from oil revenues’ accruing to 
nondemocratic nations, terrorist groups, etc., and the military burden of protecting oil flows from the Persian Gulf; 
in this regard our results may be conservative. 
 

 8



Resources for the Future Parry 

achieve a given emissions reduction through reduced driving alone will have a much larger externality 

benefit than policies that achieve the same emissions reduction partly, or entirely, through improved fuel 

economy.  

 

2.5. Welfare Costs 

 Figure 3 shows estimates of marginal and total abatement costs under the three policies for 

emissions reductions up to 25 percent, using the above formulas and parameters. We note results for a 10 

percent emissions reduction, which would require a carbon tax of $152 per ton (equivalent to a gasoline 

tax increase of 36 cents per gallon), a mileage tax equivalent (at current fuel economy) to 90 cents per 

gallon, or (approximately) a 10 percent increase in regulated fuel economy. 

 Panel (a) shows marginal costs when we ignore prior external costs and fuel taxes, and hence all 

the curves have zero intercepts. Marginal costs under the carbon tax (or permits) rise linearly to $379 per 

ton at a 25 percent emissions reduction. Marginal costs for the mileage tax and fuel economy standard are 

2.5 and 1.7 times as large, respectively, because they place the entire burden of emissions control on 

reduced mileage or improved fuel economy rather than striking the optimal balance between the two. 

Total annual welfare costs for a 10 percent emissions reduction, indicated in panel (c), are $2.5 billion, 

$6.4 billion, and $4.2 billion under the carbon tax, mileage tax, and fuel economy standard, respectively.14  

 However, marginal and total cost estimates, and policy rankings, change dramatically when we 

account for externalities and prior fuel taxes, as shown in panels (b) and (d). The marginal cost for the 

carbon tax shifts down, has an intercept of −$181 per ton, and is below the horizontal axis for emissions 

reductions up to 12 percent; reducing emissions by 10 percent now produces a welfare gain of $3.5 

billion. Under the equivalent mileage tax, however, the welfare gain is even larger, $16.4 billion, because 

this policy reduces mileage-related external costs by a much greater amount for each ton abated. 

Conversely, marginal costs increase for the fuel economy standard as this policy (slightly) increases 

mileage-related external costs, and energy security benefits fall short of the costs of compounding the 

prior gasoline tax; reducing emissions by 10 percent under this policy costs $8.4 billion. 

 

3. The Role of Fiscal Interactions 

 We now integrate the above analysis into a general equilibrium model containing a preexisting 

tax of tL on labor income, reflecting federal and state income taxes, employer and employee payroll taxes, 

                                                 
14 For comparison, using a computational model that distinguishes different manufacturers and 10 vehicles types, 
Austin and Dinan (2005, Table 3) estimate that reducing long-term gasoline demand by 10 percent through higher 
fuel economy standards would cost $3.6 billion per annum. Kleit (2004, Table 5) estimates that the long-run cost of 
reducing gasoline demand by around 3 percent through higher fuel economy would be $1.4 billion. 
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and broad sales taxes (Section 4 discusses interactions with the capital market). Figure 4 shows the 

economy-wide labor market where the demand for labor is perfectly elastic, assuming competition, 

constant returns, and that labor is the only primary factor; the height of this curve is the gross wage paid 

by firms or value marginal product of labor, normalized to unity. Though inelastic, the labor supply curve 

is still upward sloping as higher net wages encourage overtime, labor force participation, delayed 

retirement, etc.; the height of this curve reflects the marginal opportunity cost of forgone nonmarket time 

(e.g., child rearing, leisure pursuits). By creating a distortion between the gross and net wage, the labor 

tax depresses labor supply below the efficiency-maximizing level L* to L0; the resulting deadweight loss is 

the shaded triangle. 

 We define 

(3.1) 

L

L

L
L

t

t
Lt
t
Lt

MEC
L

∂
∂

∂
∂

−
=

)( u
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ε

ε

−
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where  is the labor supply elasticity and u denotes an uncompensated 

effect.  is the efficiency cost of an incremental increase in the labor tax, , expressed 

per dollar of extra labor tax revenue.  

0/)1)}(1(/{ LttL LLLL −−∂∂=ε

Lt
MEC LL tLt ∂∂− /

 

3.1. Additional Welfare Effects from Carbon Taxes 

  In this general equilibrium setting there are two additional welfare effects of corrective taxes 

(e.g., Goulder et al. 1999). First, the “revenue-recycling effect” is given by 

(3.2)  
LtGC

TAX MECGtZtRR }{ ∆−=

This expression is the carbon tax revenue, tCZ, net of the reduction in gasoline tax revenue, GtG∆ , and 

multiplied by the efficiency gain from recycling a dollar of extra tax revenue in labor tax reductions. In 

the derivations below we assume tL always adjusts to maintain government budget balance; in the 

Appendix we also derive welfare formulas for the case when government spending adjusts instead.  

 The second welfare change, the “tax-interaction effect,” is 

(3.3) 
G

Lt
TAX

p
LtMECTI

L ∆
∆

+−= )1(  

that is, the change in labor supply, or substitution into leisure, from the increase in the price of gasoline 

relative to the price of leisure, , times the labor tax wedge, times GpL ∆∆ /
Lt

MEC+1  to account for the 

change in labor tax revenue, which is offset by adjusting tL. Some manipulation gives (see Appendix) 
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(3.4) 
LtCu

LL

c
LL

G
t MECZZtTI ⎟

⎠
⎞

⎜
⎝
⎛ ∆

−
⎭
⎬
⎫

⎩
⎨
⎧

−+=
2

)1(1 0

ε
ε

θ ,  c
LL

c
GL

G ε
η

θ =  

where  denotes the elasticity of demand for gasoline with respect to 

the net wage or price of leisure, and superscript c denotes a compensated elasticity. In our model, where 

aggregate consumption is proportional to labor supply, the compensated labor supply elasticity  is 

equivalent to the elasticity of the average consumption good with respect to the price of leisure. 

0/)1)}(1(/{ GttG LLGL −−∂∂=η

c
LLε

 If gasoline is an average substitute for leisure, then θG = 1; comparing (3.2) and (3.4), the tax-

interaction effect exceeds the revenue-recycling effect, implying a net welfare loss from interactions with 

the tax system. If, however, as we argue below, gasoline is a relative complement for leisure, then θG < 1, 

and the tax-interaction effect can be dominated by the revenue-recycling effect.15 Differentiating the 

revenue-recycling and tax-interaction effects with respect to ∆Z, and combining with (2.2), the overall 

marginal cost of reducing emissions under the carbon tax is (see Appendix)  

(3.5) TAXMC
Lt

G MEC
z

t
+

GGG

tu
LL

c
LL

G

pz

MEC
Z
Z

Z
Z

L

η
ε
ε

θ

)/(

1)1(

0
00
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ∆
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ∆
−−

+   

  

3.2. Carbon Permits 

 Now suppose automobile emissions are reduced by a cap-and-trade permit system imposed on 

gasoline suppliers, where a permit is required for each ton of carbon in the fuel. If τC is the equilibrium 

permit price, the gasoline price is , since fuel suppliers must pay 0
GCG pzp += τ zCτ  for permits to sell 

an extra gallon, or forgo sales revenue of that amount by using their own permit allocation. Therefore, 

permits have exactly the same impact on fuel prices, and the same tax-interaction effect, as a carbon tax 

of tC, when τC = tC; moreover, if all permits are auctioned, the revenue-recycling effect is also the same. 

 However, if permits are grandfathered, the government forgoes direct revenues of ; 

instead, this represents a rent transfer that will be reflected in higher equity values for grandfathered 

firms. We assume this supernormal profit income is taxed at a rate of t

)( 0 ZZC ∆−τ

π, reflecting combined corporate 

and property taxes at the firm level and dividend and capital gains taxes at the personal level. 

                                                 
15 These results are consistent with widely accepted theory in public finance (e.g., Sandmo 1975). Kaplow (2005) 
suggests that interactions between externality taxes and labor taxes wash out with heterogeneous agents for 
“distribution neutral” tax shifts. However, this result hinges on two conditions, neither of which applies in our case; 
that the polluting good is an average leisure substitute, and that any external costs reduce the marginal value of work 
relative to that of leisure. 
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Nonetheless, welfare costs are larger under this policy than under the tax as the revenue-recycling effect 

is smaller. A more subtle point is that the tax-interaction effect is also larger as households (which own 

firms) are partly compensated for the gasoline price increase via capital gains and dividend income; this 

compensation reduces labor supply, since leisure is a normal good. 

Analogous to (3.5), the marginal welfare effect for this policy is (see Appendix)  

(3.6) TAXMC
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3.3. Mileage Tax 

 The marginal welfare effect of the mileage tax is (see Appendix)  

(3.7) MILEMC
Lt
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Comparing (3.5) and (3.7), the net welfare effect of the tax-interaction and revenue-recycling effects is 

magnified to the extent that β < 1. This is because the mileage tax (when expressed on a per gallon basis) 

must be larger than the fuel tax for a given emissions reduction.16

 

3.4. Fuel Economy Standard 

 No revenues are raised under the fuel economy standard. In fact, the revenue-recycling effect, 

, is negative (though small) as revenues from the erosion of the fuel tax are made up 

through higher labor taxes. The tax-interaction effect is 

LtG MECGt ⋅∆−

ML pLtMEG ∆∆+− /)1(  where pM is driving 

costs expressed on a per mile basis, consisting of both vehicle ownership and operating costs. The 

increase in driving costs Mp∆  for a given reduction in fuel use per mile g∆ is triangle hij in Figure 2 (the 

increase in vehicle costs less fuel savings) divided by mileage. Here the price effect is second order rather 

than first order; that is, unlike under emissions taxes and permits, there is no increase in driving costs 

from the pass-through of tax payments or permit rents; this implies the tax-interaction effect will be 

weaker (see also Goulder et al. 1999). The marginal welfare cost for this policy can be expressed (see 

Appendix) as follows: 

                                                 
16 We assume that the compensated elasticity of mileage with respect to the price of leisure equals that for gasoline 
with respect to the price of leisure; this is reasonable because mileage and gasoline should change in roughly the 
same proportion following changes in the price of leisure. 
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(3.8) FEMC
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3.5. Parameters 

 Following Parry and Small (2005), we assume values of 0.2 and 0.35 for the uncompensated and 

compensated labor supply elasticities,  and , respectively, and following Goulder et al. (1999), we 

adopt a value of 0.4 for both labor and profit taxes, t

u
LLε c

LLε

L and tπ; our assumptions imply  = 0.15.
Lt

MEC 17 We 

consider cases when revenue changes are neutralized by adjusting either the labor tax or public spending 

(see the formulas in the Appendix). In the latter case, for illustration we assume the efficiency gain from 

public spending is zero (i.e., the social value per dollar of spending is a dollar); more generally, the net 

welfare gain from fiscal interactions is less/greater than in the revenue-neutral case if the marginal 

efficiency gain from public spending is less/greater than .
Lt

MEC 18

 The (compensated) elasticity of gasoline with respect to the price of leisure can be decomposed as 

follows (see Appendix): 

(3.9)  Ic
GL

c
LLGI

c
GL

,ηεηη +=

where  is the expenditure elasticity for gasoline and  is the gasoline-leisure cross-price elasticity 

for given disposable income. The first component on the right in (3.9) reflects the allocation of extra 

income to gasoline following increased work effort in response to a compensated increase in the 

household wage; the second component reflects possible changes in the marginal utility from passenger 

travel relative to the marginal utility of other consumption goods, as leisure falls. To the extent that 

gasoline or driving is a necessity good, or  < 0, gasoline will be a relative complement for leisure. 

GIη Ic
GL

,η

Ic
GL

,η

                                                 
17 These labor supply elasticities are broadly consistent with those in the empirical labor literature (Blundell and 
MaCurdy 1999, Fuchs et al. 1998) and represent an average over males and females, hours worked, and participation 
elasticities; they are also representative of assumptions in tax simulation models and in revenue forecasting by the 
Congressional Research Service. The uncompensated elasticity is positive, despite the zero or slightly negative 
hours worked elasticity for males, because the female participation elasticity is significantly positive. We believe our 
chosen labor supply elasticities are conservative; evidence from other sources—for example, international 
comparisons of tax rates and hours worked—suggest much larger responses (Prescott 2006). 
 
18 If government spending were set optimally, the value to households per extra dollar of spending would equal 
1+ . In this case it does not matter whether additional revenue (at the margin) is spent or used to reduce 
taxes.  

Lt
MEC
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Estimates of income elasticities (which approximate expenditure elasticities) for mileage and 

gasoline are positive but below unity; Parry and Small (2005) assume a mileage expenditure elasticity of 

0.6. A priori, the sign of  is not clear; commuting trips will increase as people work more, but leisure 

trips will decline. West and Williams (2005) directly obtain the gasoline-leisure cross-price elasticity 

from econometrically estimating an “almost ideal demand system” with household data. Their results 

suggest  < 0, and averaging across results for households of different sizes implies that θ

Ic
GL

,η

Ic
GL

,η G is 

approximately 0.2. More empirical studies are clearly required to pin down the gasoline-leisure cross-

price elasticity with more confidence; we err on the side of caution and adopt the higher value, θG = 0.6. 

 

3.6. Welfare Costs 

 Figure 5 shows marginal and total welfare costs under alternative revenue uses for different 

policies; comparing with Figure 3(b) and (d) indicates the impact of fiscal interactions.  

Under the revenue-neutral carbon tax, the net gain from the revenue-recycling and tax-interaction 

effects further reduces the intercept of the marginal welfare cost curve from −$181 to −$318 per ton; for 

the 10 percent emissions reduction there is an overall welfare gain of $7.8 billion, of which fiscal 

interactions contribute $4.3 billion. In contrast, fiscal interactions increase the overall costs of emissions 

permits (relative to the cost of the emissions tax in Figure 3); at a 10 percent emissions reduction there is 

now a (very small) net cost of $0.2 billion, compared with a net gain of $3.5 billion when fiscal 

interactions are ignored. 

 Again, welfare gains are greatest under the mileage tax, amounting to a striking $28.3 billion for 

a 10 percent emissions reduction! The contribution of fiscal interactions is $11.9 billion; this is larger than 

for the carbon tax because a higher tax equivalent is required to reduce emissions by the same amount 

under the mileage tax. Costs for the fuel economy standard are slightly larger with fiscal interactions as 

there is no revenue-recycling effect to counteract the (small) tax-interaction effect. 

 Finally, when revenues finance public spending that has a social value per dollar equal to a dollar, 

fiscal interactions now raise policy costs in all cases as there is a revenue-recycling effect to counteract 

the costly tax-interaction effect. Nonetheless, the qualitative ranking of policy costs remains the same, 

and the total costs of the tax policies are still negative over a significant range of emissions reductions. 

 

4. Further Issues 

Although there appears to be a solid case on pure efficiency grounds for higher (revenue-neutral) 

taxes on automobile fuel or use (or their permit equivalents), there are some additional issues that merit 

consideration. 
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One is household equity; gasoline taxes are generally regressive, though less so when a measure 

of lifetime rather than annual income is used (Poterba 1989). However, a full distributional analysis also 

needs to account for automatic indexing of income tax thresholds and benefits in response to an increase 

in the consumer price level, externality benefits (e.g., from reduced congestion and accidents) that accrue 

disproportionately to motorists, and government recycling of extra revenues.19  

If, even after allowing for these counteracting factors, poor households still suffer 

disproportionately, should this hold up action to combat global warming? My own view is no, because 

distributional issues are probably better addressed through adjustments to the broader tax and benefit 

system rather than attempting to incorporate (contentious) equity weights into the welfare assessment of 

automobile policies.20 An objection to this view is that even if low-income households as a group are 

roughly compensated though broader policy adjustments, those low-income households that use 

automobiles more intensively than others still suffer. This is really a philosophical issue of whether 

household preferences should be taken into account in the design of policies aimed at ensuring an 

acceptable living standard for low-income people. Another objection is that in practice governments may 

not make the broader adjustments needed to fully compensate low-income families; however, as noted 

earlier, equity concerns have played some role in the allocation of nongrandfathered permits in existing 

climate bills (though to date the concern has been with higher electricity prices rather than higher gasoline 

prices). 

 Another issue beyond our scope is the relation of our analysis to theoretical literature in public 

finance that pays closer attention to the role of commodity taxes in optimal tax systems. A widely cited 

paper by Atkinson and Stiglitz (1976) showed that the revenue-raising case for commodity taxes 

disappears if (a) leisure is weakly separable from all consumption goods in utility, (b) households have 

identical preferences, and (c) the government chooses the set of marginal income tax rates so as to 

minimize the equity-weighted deadweight costs of the tax system. Although these conditions sound 

restrictive, the basic point is that there might be scope for adjusting the existing income tax system so as 

to offset, in part, the revenue-raising case for higher automobile taxation.  

On the other hand, by omitting distortions in the capital market and ignoring various tax 

exemptions and deductions, our analysis may significantly understate the welfare gains from revenue-

neutral gasoline and mileage taxes. Bovenberg and Goulder (1997) find that higher gasoline prices have 

                                                 
19 Automatic indexing may not fully compensate low-income households if (a) their gasoline budget share is greater 
than that for the average household (the average share is used in updating the Consumer Price Index) and (b) their 
taxable income over and above deductions and exemptions, plus benefits, is well below their disposable income. 
 
20 That is, recycling of tax revenues might be tilted in favor of lower-income groups; the efficiency implications of 
this primarily depend on the labor force participation elasticity for this group relative to that for all households.  
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little impact in the capital market because passenger travel is essentially a consumption rather than 

investment good. To the extent revenue recycling lowers taxes on capital and the resulting efficiency 

gains exceed those from cutting labor taxes, however, the welfare gains from revenue-neutral automobile 

taxes are greater than estimated above. And this effect is reinforced to the extent that lowering income 

taxes also reduces the bias in favor of tax-preferred spending, such as owner-occupied housing and 

employer-provided medical insurance (Parry and Bento 2000).  

Even though the case for taxation of auto fuel or use seems fairly robust to these broader 

considerations, the scope for reducing greenhouse gases given current automobile technologies is limited, 

as reflected in the modest size of the gasoline demand elasticity. Greater emissions reductions over the 

longer term depend on whether alternative technologies, such as plug-in hybrid or hydrogen fuel cell 

vehicles, become commercially viable. And the potential benefits from such technologies, if successfully 

developed, are large if they could be deployed in China and other industrializing countries before their 

transportation infrastructure becomes heavily dependent on conventional fuels. So it is not a matter of just 

implementing emissions mitigation policies for U.S. automobiles. These policies need to be supplemented 

with inducements for basic research into alternative automotive technologies; such technology-push 

policies have been the centerpiece of the Bush administration’s response to global warming, though 

whether the overall technology budget and its allocation among alternative research areas are the most 

efficient remains an open question.  

 Finally, although prior distortions are important to integrate into welfare assessments of controls 

on auto emissions, what about policies affecting other sectors, particularly electricity generation? Carbon 

policies would have the added benefit of reducing local air emissions from power plants; however, 

according to Burtraw et al. (2003), the externality benefits under a carbon tax amount to around $12 per 

ton of reduced carbon, which is small relative to noncarbon externality benefits from autos, estimated 

above at $181 per ton. On the other hand, although electricity is effectively an input into all consumption 

goods and is therefore probably best viewed as an average leisure substitute, there are other reasons why 

fiscal interactions are also significant for carbon policy in the power sector. In particular, base load or 

inframarginal production is often from carbon-intensive coal plants while marginal production is often 

from natural gas plants, which are cleaner. This means that a portion of abatement costs and carbon tax 

payments (or permit rents) comes at the expense of inframarginal rents rather than being fully passed 

forward into higher peak-period prices, implying a smaller tax-interaction effect. Parry (2005), for 

example, estimated that reducing power plant emissions by 10 percent under revenue-neutral permits 

produces a net benefit of $0.5 billion (excluding climate benefits) rather than a cost, as the revenue-

recycling effect dominates the tax-interaction effect.  
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Appendix 

 
Deriving Equation (2.2) 

In Figure 1, the welfare cost of the gasoline reduction induced by the new tax is rectangle bcgf 
less rectangle decb plus triangle abc. Thus the cost is 
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Substituting (A2) and zZG /=  in (A1) gives 
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Differentiating (A3) with respect to Z∆  gives (2.2). 
 
 
Deriving (3.4) 
 From the Slutsky equation 

(A4) G
I
L

p
L

p
L

G

c

G ∂
∂

−
∂
∂

=
∂
∂

 

where  denotes the income-coefficient on labor supply. We assume  and IL ∂∂ / G
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constant.  varies because the first-order income effect from an incremental increase in the fuel 
price, G, falls with successive increases in the fuel price. Thus: 
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where  is fuel consumption, averaged across that before and after the price increase. 
Applying Slutsky symmetry, factoring out  and substituting  gives 
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From the Slutsky equation 
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Using (A7) to substitute out for IL ∂∂ /  in (A6), approximating  by  since 2/0 GG ∆− 0G G∆  is 
relatively small, and using  gives CG ztp =∆
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where  ,  and  are defined in the text, and u and c denote uncompensated and compensated 

effects. Factoring out  gives 
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where Gθ  is defined in the text. Multiplying this expression by Lt tMEC
L
)1( +− , and noting, from (3.1), 
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Deriving (3.5) 
 The increase in gasoline price is GdGdpzt GC ∆= )/(  or, substituting GGη  and  zZG /=

(A10) 00 /
1

GGG
C pzZ

Zt
η

∆
=  

Subtracting (3.2) from (3.4), substituting (A10) and zZG /∆=∆  gives 
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Differentiating with respect to Z∆  and adding MCTAX, we obtain (3.5).  
 
Deriving (3.6) 
 The tax-interaction effect under emissions permits is different from that under the emissions tax 
because of the income effect on labor supply from the recycling of firm rents  in profit 
income to households. Thus, analogous to (A5), the change in labor supply is 
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Since  is small relative to  we approximate by assuming  2/G∆ 2/0 GG ∆−

(A13) 
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≈  

Following the derivation of (3.4) using (A13) instead of (A5), and a revenue-recycling effect of 
 in place of (3.2) yields (3.6). 

LtGC MECGtZtt }{ ∆−π

 
Deriving (3.7) 
 This is obtained by following the same steps as in the derivation of (3.5) using β/Ct  in place of 

, as a higher fuel tax equivalent is need to reduce emissions by a given amount when fuel economy is 
held fixed.  

Ct

 
Deriving (3.8) 
 As discussed in the text, the fuel tax equivalent under this policy is )}1)(1/{( rtC −− β . And 
following Goulder et al.’s (1999) analysis of performance standards, we can write the tax-interaction 
effect as  
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This differs from (3.4) because of the higher fuel tax equivalent and also because the loss of household 
surplus from the policy is simply the Harberger triangle in the fuel market, since there is no first-order 
income effect from a fuel price increase. Following the derivation of (3.5), using (A14) in place of (A4), 
and replacing the revenue-recycling effect by 

LtG MECGt ⋅∆− gives (3.8). 
 
Deriving (3.9) 
 We can separate the compensated coefficient of gasoline with respect to the price of leisure into a 
component with disposable income fixed and another component reflecting the effect of higher labor 
income as follows: 
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Multiplying by  and using GtL /)1( − LtI L )1( −=  gives (3.9), where  is the 
expenditure elasticity for gasoline (equivalent to the income elasticity with labor supply fixed).  

GIIGGI /)/( ∂∂=η
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Figures 

 

Figure 1. Welfare Effects of the Gasoline Tax 
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Figure 2. Welfare Cost of Fuel-Economy Standard and Mileage Tax 
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Figure 3. Marginal and Total Costs of Reducing Emissions with Preexisting Externalities 
(for 2004) 
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(b) Marginal cost: externalities
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(c) Total cost: no externalities
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(d) Total cost: externalities
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Figure 4. Welfare Effect of the Labor Tax 
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Figure 5. Costs of Reducing Gasoline Emissions with Fiscal Interactions and Externalities 
(for 2004) 
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(b) Marginal cost: increase spen.
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(c) Total cost: rev. neutral
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(d) Total cost: increase spen.
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