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ABSTRACT

This paper deals with the analysis of structural breaks in the context of
fractionally integrated models. We assume that the break dates are unknown
and that the different sub-samples possess different intercepts, slope coefficients
and fractional orders of integration. The procedure is based on linear regression
models using a grid of values for the fractional differencing parameters and least
squares estimation. Several Monte Carlo experiments conducted across the
paper show that the procedure performs well if the sample size is large enough.
Two empirical applications are carried out at the end of the article.
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1. INTRODUCTION

In recent years, fractional integration has becanéeasible alternative method of
modelling many macroeconomic time series. The higand such specification is that
the dependence between the observations, whicimeemasingly distant in time, can be
adequately captured in terms of a hyperbolic rdtdezay rather than the exponential
rate associated to the autoregressive (AR) streicdoreover, the nonstationary nature
of many series that is usually solved by meangrsf flifferences might also be better
described by using fractional integration.

There exist several sources that may produce drzadtintegration: the aggregation
of heterogeneous AR processes (Robinson, 1978;08rah980); error duration models
(Parke, 1999), or regime-switching and structunaak models (Diebold and Inoue,
2001). In fact, the existence of breaks may leadpuarious findings of long memory.
Lobato and Savin (1998) argue that structural tweaky be responsible for the long
memory in return volatility processes, and Englel &mith (1999) investigated the
relationship between structural breaks and long amgrasing a simple model where the
data generating process consists of a mean prandss stationary error.

This paper contributes to the above-mentionedalitee by proposing a simple
procedure for determining fractional integrationdastructural breaks in a unified
treatment. The procedure uses a grid of finite fgoilor the fractional integration
parameters. However, unlike other methods wherditie of the break is known (Gil-
Alana, 2003), we keep it unknown, and is implicitletermined in the model. A
drawback of this approach is that since it usesddf finite values and given the real
nature of the fractional differencing parametehg tesulting estimates for the break-

fraction and the fractional differencing parametsitt be inconsistent if the true values



of the differencing parameters are not includedhm set of values chosen in the grid.
Nevertheless, this is a limitation that faces adigedures based on this type of approach.

The structure of the paper is as follows. In Sec2owe define the concept of
fractional integration and its relation with theist&nce of breaks. In Section 3 we
present a procedure for fractional integration sindctural breaks at unknown periods of
time. Section 4 contains a small simulation stutipvang the performance of the
procedure described in Section 3. Two empiricaliegfons are carried out in Section 5,

while Section 6 contains some concluding comments.

2. FRACTIONAL INTEGRATION AND STRUCTURAL BREAKS
For the purpose of the present paper, we defingGarprocess {y t = 0,1, ...} as a
covariance stationary process with a spectral tdetigat is positive and finite at the zero
frequency. In this context, we say that a timeesefx, t = 0,1, ...} is I(d) if:

@a-L%, =u, t=12.., (1)
with x; = 0, t< 0 where L is the lag operator (i.e.lxX.1) and uis I(0). Clearly, if d =
0, %X = u, and a ‘weakly autocorrelated; is allowed for. If d > 0, the process is said to
be long memory, because of the strong associatemveen observations widely

separated in time. Note that the polynomial inldfehand side of (1) can be expressed

in terms of its Binomial expansion, such that fibreal d,
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and (1) can be written as:
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If d is an integer value, xill be a function of a finite number of past obs#ions, while
if d is real, x depends strongly upon values of the time serieaviay in the past. If d
(0, 0.5) in (1), xis covariance stationary and mean-reverting, with effect of shocks
disappearing in the long run; iffd [0.5, 1), the series is no longer covariance @tatiy
but it is still mean-reverting, while ® 1 means nonstationarity and non-mean-reversion.
The implications of structural change on unit-rtests which take no account of
this possibility attracted the attention of Per{@®89), who found that the 1929 crash
and the 1973 oil price shock were a cause of nmtiien of the unit-root hypothesis,
and that when these were taken into account, andigiistic trend model was preferable.
This question was also pursued by other authorsstizno (1992) argued that the date
of the break should be treated as unknown, andestigd that tests for a structural break
are themselves biased in favour of non-rejectiom.prbposed tests based on bootstrap
critical values, reaching different conclusionsnfré#erron (1989). Similarly, Zivot and
Andrews (1992) allowed the structural break to bdogenous, finding less conclusive
evidence against unit roots than did Perron (19B8herjee et al. (1992) also considered
this problem, proposing sequential statistics basethe full sample, and a sequence of
regressors indexed by a ‘break’ date. Using theshniques, they failed to reject the
unit-root hypotheses in the real output in five usttialized countries (including the
United States) but found evidence of stationanibuad a shifted trend for Japan.

In the context of fractional processes, there aweml works which show that
neglecting occasional breaks may lead to spuriowiniy of long memory. Kuan and
Hsu (1998) found that the least squares estimaifaiine change point may suggest a
spurious change when data have long run dependedtteer studies have also

investigated the effects of structural changes ersigtence. Lobato and Savin (1998)



argue that structural breaks may be responsibl¢hfotfong memory in return volatility
processes. Engle and Smith (1999) investigateala¢éionship between structural breaks
and long memory using a simple unit root procesghlvbccasionally changes over time.
Beran and Terrin (1996) and Bos et al. (2001) psedoLagrange Multiplier tests for
fractional integration with breaks, while Diebolddalnoue (2001) relates long memory

with regime-switching models.

3. THE STRUCTURAL CHANGE FRACTIONALLY INTEGRATED MOD EL
To simplify matters, we consider the case of alsirfmeak, though the model can be
easily extended for multiple breaks. We supposeé yhas the observed time series,
generated by the model
y, =0, +Bt+x; @-L)x, =u, t=21.T, (3)
y, =0, +B,t +x,; @-L)%x, =u, t=T,+1..T, (4)
where thea's and thgd's are the coefficients corresponding to the imgr@and the linear

trend; d and d may be real values, is 1(0) and T is the time of the break that is

supposed to be unknown. Note that the model iau8)(4) can also be written as:

Q- L)%y, = a,1(d) + B G@d) +u, t=1..,T, (5)

Q- L)%y, = a,1(d,) + B, L) +u, t=T,+L..T, (6)

where1(d) = 1 -L)* Landt(d) =@ - L)%t i=1,?2
[Insert Figure 1 about here]
By way of illustration, we describe in Figure 1 thehaviour of the fractional

processes (1-f; and (1-LJt; with d = 0.25, 0.50, 0.75, 1 and 1.25. It is obedrthat if

d < 1, the series (1-F; decreases hyperbolically to zero, and becomeglgxaif d = 1.



For d > 1, the second observationinbecomes negative, and the series decreases then

hyperbolically to zero. With respect to the linéend we see that (1-1) is explosive
for d < 1, though it tends to a constant as d emes through 1; however, if d > 1 the
values tend to zero.

The idea that is behind the model in (5) and (6pased on the least square
principle proposed by Bai and Perron (1998). Rirstchoose a grid for the values of the
fractionally differencing parameters dnd d, for example, g =0, 0.01, 0.02, ..., 1,i=

1, 2. Then, for a given partition {J and given initial d, d-values, (d,d%), we

estimate the's and thg's by minimizing the sum of squared residuals,

I N O N
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w.r.t.{aq,a2,B1,B2}
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Let 6(T,; d®,d®) and B(T,;d®,d? ) denote the resulting estimates for
partition {Ty} and initial valuesd) anddS). Substituting these estimated values on the
objective function, we have RSS(TdY, df), and minimizing this expression across all
values of g and d, in the grid we obtainRSKT,) = argmin, , RSST,;dy ,d%)).
Then, the estimated break dafg, is such thaﬁ'k = argmin_, . RSYT, )where the

minimization is taken over all partitiong,TT,, ..., Ty, such that T- Ti.; = [€T|. Then, the

regression parameter estimates are the assocgtstdsiquares estimates of the estimated



k-partition, i.e., 4, = di({fk}), f&i = fﬂi ({T’k}), and their corresponding differencing

parameters.(AJIi = ai ({fk PDori=1and 2.

The statistical properties of the resulting estoratare not derived though they
should not differ much from those reported in Bail &erron (1998) since we choose the
values in a way such that they minimize the redslsam squares and, under the
appropriate specification; must follow an 1(0) process. In Appendix C we shibat the
model described by (3) and (4) can be expressadsimilar way as the one in Bai and
Perron (1998) satisfying the same type of assumgtas in that paper. Several Monte
Carlo experiments based on this model are proviu&sction 4.

Clearly, the model can be extended to the caseuttipie breaks. Thus, we can
consider the model,

yo=o, +Bt+x; @-L)% =u, t=T,+1L...T,
forj=1,...,m+1, =0 and |1 = T. Then, the parameter m is the number of cheinge
The break dates (T..., Ty are explicitly treated as unknown and for i =.1, m, we
haved; = Ti/T, with A3 < ... <Ay < 1. Following the same lines as in the previcase¢
for each j-partition, {T, ...T;}, denoted {T}, the associated least-squares estimates, of
B; and the dare obtained by minimizing the sum of squareddiesds in the d

differenced models, i.e.,

m+1 T]

D, 2 @-L)%y, — o - B

=1 =T+
where &, (T)), Bi (T, ) and (Aj(Tj ) denote the resulting estimates. Substituting threthe

new objective function and denoting the sum of sgdiaesiduals as R$8 1, ..., Tn),



.....

where the minimization is again obtained over attiion (Ty, ..., Tn).
The above procedure requires the a priori detertioimaf the number of breaks
in the time series. Following standard proceducesetect the number of breaks in the

context of 1(0) processes, Schwarz (1978) proposdle criterion:
SIC(m) = IN[RSS(Ty... T)/  (T—m) +2p In(T)/ T,where p is the number of
unknown parametefsThe estimated number of break datés, is then obtained by

minimizing the above-mentioned criterion given Nx@d upper bound for m.

4. A MONTE CARLO SIMULATION STUDY

In this section we consider a data generating gogesen by:
ye =5+ 1t +x; (-LD%x =u, t=1.T, (7)

vy =10+5t + %; (@1-L)%2x =u, t=Ty+1..T, (8)
where (d, &) = (0.2, 0.7); (0.5, 0.5) and (0.7, 0.2); T T/2, T/4, 3T/4, T/10 and 9T/10,
with sample sizes T = 200, 500, 700, 1000, 1500221 observations, and white noise
W. We generate Gaussian series using the routineSDEX and RAN3 of Press,
Flannery, Teukolsky and Vetterling (1986).
[Insert Figure 2 about here]

Figure 2 contains plots of simple realizations fué tnodel given by (7) and (8)
with T = 300, T, = 150, and (d &) = (0.2, 0.7), (0.5, 0.5) and (0.7, 0.2). We oledhat
if the deterministic components are included in thedel (left-hand-side plots in the
figure) the structural change becomes extremebrclgith a change in both the intercept

and the slope coefficients. We also observe thatdifferent orders of integration for



each sub-sample (upper and lower plots) are obddueeause of the presence of the
deterministic changes, and little thus can be shiout them just from a simple visual
inspection of the series. The plots in the rightdhaide correspond to the series without
the deterministic terms. The upper plot refershio ¢ase of d= 0.2 and d= 0.7, and a
higher degree of dependence is observed betweeabgervations in the second sub-
sample. The lower plot refers to the opposite casd,the dependence is now higher in
the first sub-sample.

In Tables 1 — 5 we report the probabilities of eotly determining the time break
and the fractional differencing parameters in tteset given by (7) and (8), using a grid
of dy, dp values = 0, 0.1, 0.2, ..., 0.8, 0.9 and 1, and \safaethe break T= (T/10, T/10
+1, ..., (1), .., 9T/10 — 1, 9T/1D)We use 10,000 replications for each case.

The most noticeable thing observed from these saldethat the procedure
accuracy determines the break date in all caseswanfind zero-probabilities for all
values of d and d if T  is different from the true time of the break. Thuke
probabilities corresponding to' = T, are presented exclusively in the tables. Note,
however, that this might be a consequence of thermeistic pattern describing the
equations in (7) and (8). At the end of this settiwe present the results for other
deterministic models, where the optimal break issmoaccuracy determined.

In Tables 1 - 3 we assume that the break takee pia€/2 and consider the three
cases of stationarity for the first subsample<£d®.2) and nonstationarity for the second
one (¢ = 0.7) (in Table 1); nonstationarity in both subgdes, with d being in the
boundary situation between stationarity and noiustatity (. = ¢ = 0.5) (Table 2); and
nonstationarity in the first subsample and statibyan the second subsample (Table 3).

[Insert Tables 1 — 3 about here]



The results are very similar in the three tabldsusT if the sample size is small
(e.g. T = 200) the probability of detecting theetforeak along with the true parameters
for the orders of integration is very small (arodri®so for the grid of values employed in
the tables). However, increasing the sample sieeptobabilities also increase; they are
higher than 50% with T = 1000, and around 90% Witk 2000. Note here that these
probabilities are based on the grid employed fer dhders of integration and thus, the
probabilities are smaller as we reduce the valu¢h® increments in the ds. On the other
hand, larger increments would produce higher pritiiab of detecting the true values.
Thus, for example, if we compute the procedure \idth d;)-values equal to 0, 0.2, 0.4,
..., 0.8 and 1, the probabilities of correctly detagtthe true parameters are higher than
75% with T> 300 and higher than 90% with=T 700.

[Insert Tables 4 and 5 about here]

Next, we perform the same experiment with the biatles taking place at T/10,
T/4, 3T/4 and 9T/10, and for the samae, (db)-values as in the previous tables. The
results were very similar. As an illustration, veproduce only the results for the cases of
Tpb=T/4,d =0.2 and d= 0.7 (in Table 4) andpl= 9T/10,d = 0.7 and d= 0.2 (Table
5). We see that the probabilities are smaller. dot,fif T is very small, higher
probabilities are obtained at othe,(d)-combinations. However, if T > 500, the highest
probabilities are obtained at the true values. Sdmae happens if the break occurs gt T
9T/10. Thus, for example, if T = 1000, the probi&pibf correctly determining the true
model is 51.5%, and if T = 2000, it becomes 88.7%.

As mentioned above, the accuracy in the estimatidhe break date in the results

presented so far might be a consequence of théaeets used for the intercept and the
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slope in the equations in (7) and (8). Thus, inlda&) we examine the probability of
correctly determining the break for different irttept and slope coefficients.
[Insert Table 6 about here]

We now assume that the break date takes plac awith d = d, = 0.5, and look
at the probability of detecting the true break datea grid of values (T/5, T/5+1, ...,
4T/5 — 1, 4T/5), using the following coefficientsr fthe deterministic trendsiy B, oo,

B2) = (5.0, 1.0, 10.0, 5.0); (0.5, 0.1, 1.0, 0.§);5( -0.1, -1.0, 0.5) and (-0.5, 0.1, 1.0, -
0.5). We observe that using the coefficients in &Agd (8) the procedure correctly
determines the break at the 100% of the cases farea sample size of T = 100.
However, reducing the magnitude of these coeffisighe probabilities are very small
for small sample sizes, though, if T = 500, it tez&100% in all cases. Note that in this
simulation we have only considered for the possiitkaks 60% of the sample period.
Increasing the set of break dates the probabilitm@ssiderably reduce in some cases,
implying that, in small samples, it is importantiiave some a priori knowledge about

the period of the break.

5. THE EMPIRICAL WORK

Two different datasets are analysed in this seciitwe first one is a monthly series of
US money stock, while the second refers to the Wathly inflation rate. We choose
these series because they seem to have a singlke bceoss the sample. In fact, we
performed the procedure described in Section 3thadevidence was in favour of a

single break.

11



5.a The US H-6 money stock

The data analyzed here is the U.S. Total Large Teeosits (H-6 Money Stock),
monthly, seasonally adjusted, for the time peri@hudry, 1959 to August, 2004,
obtained from the Board of Governors of the FeddRalserve System. Further

information and definitons are available at: http://research.stlouisfed.

org/publications/mt/

[Insert Figure 3 about here]

Figure 3 displays plots of the original series #@sdfirst differences, along with
their corresponding correlograms and periodogradims.observed that the values of the
original data increase across the sample implyhag the series is nonstationary. This is
substantiated by the correlogram, with values aetng very slowly, and the
periodogram, with a large peak at the smallestuieegy. If we take first differences, the
plot in the up-right side in Figure 3 shows an @aging variance with T, and we also
observe significant values in the correlogram eatesome lags far away from zero. The
periodogram of the first differences still shows liighest value at the zero frequency,
which may suggest that long memory is still preserthe differenced data, though this
latter result might be a consequence of the exdsteha structural break in the data.

The first thing we do is to estimate the fractiodiflerencing parameter assuming
that there are no breaks in the data. For thisqae&rpwve employ both parametric and
semiparametric methods. First we use a paramedsting approach suggested by
Robinson (1994) that is described in Appendix A.this approach we test:

H,:d=d, 9
in a model given by:

y, = a +pt +x, t=12.. (20)

12



with x; given by (1). We take.évalues equal to 0, (0.02), 2, and assume firgtdhap
=0 (i.e., there are no deterministic terms), drahtwitha andp unknown.

The results are given in Table 7. We report thefidence intervals of those
values of g where the null hypothesis cannot be rejectedea&h level We present the
results for the two cases of no regressors andeaditrend, with white noise, AR and
Bloomfield (1973) disturbancés.lt is observed that the values are very similar
independently of the inclusion or not of determiisrends, which might suggest that a
linear time trend is not required when modellinig geries. The non-rejection values of d
are in all cases higher than 1, ranging betweeh dn2 1.58. We also display in the table
the value of d that produces the lowest statisticeaich type of disturbances. This value
should be an approximation to the maximum likelihasstimate. We note that the
values are higher than 1.30 in all cases.

[Insert Table 7 and Figure 4 about here]

Next we perform a semiparametric method (Robind®35) that is described in
Appendix B. Figure 4 displays the estimates of s« the whole range of values for the
bandwidth number m, along with the 95% intervalresponding to the 1(1) hypothesis.
We see that the estimated values of d are in akabove the I(1) interval, implying
that d is higher than 1, which is consistent witle results based on the parametric
approach.

However, the large values of d obtained from trevimus results might be in large
part due to the fact that no structural breakstaen into account. Though not reported
in the paper, we computed the residuals from thikffdrenced series, for values of d
from 1.30 to 1.40 (with 0.01 increments) and incalses, the residuals showed evidence

of a structural break, which might be producingiashin favour of higher orders of
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integration. To illustrate this point, we include ihis section a simple Monte Carlo
experiment. We consider again the model given bygd (8) with T = 300, J= 150, d
= 0.2 and d = 0.7, and perform both the parametric and theigaametric methods
described in the appendices, using 10,000 repdicsti
[Insert Table 8 and Figure 5 about here]

We employ first Robinson’s (1994) parametric tdstsd,-values = 0, (0.02), 2,
and the null hypothesis was rejected in the 100%h®tases for,k 1.02 and g> 1.14.
However, for values of {dconstrained between these two numbers, the refecti
probabilities were smaller than 1, and,  d 1.04, 1.06, 1.08 and 1.10, the null
hypothesis was never rejected (see Table 8). Tappdns for the two cases of no
regressors and when both the intercept and thes dlop included in the model. Thus,
using the tests of Robinson (1994) when the true danerating process contains a
structural break leads to spurious conclusions athmuorder of integration of the series.
Figure 5 displays the averaged estimates of d &wh éandwidth number using the
semiparametric method. We observe that this praeedalso leads to spurious
conclusions about d, finding orders of integratitogher than 1 for practically all the
values of the bandwidth number m.

Next we perform the procedure described in SecBommitially we consider the
case of a linear time trend in both subsampled) witite noise disturbances, and the

selected model is:

Y = 1449 + 0156t + xi; (L- L)%, = g,
(L659 (161

t=12 ..,

yp = —427583+ 2537t + x;  A-L)%7x = g,
(785971  (2724)

t=Tp+1,...,T

14



with Ty = 289, which corresponds to January 1983. Standeats are displayed in
parenthesis. We observe that both the intercepttandlope coefficients are different for
each sub-sample. Also, the fractional differenqgiagameters are different in both cases,
d; = 1.64 and g= 1.37. If we allow for short run dynamics and rabd in terms of an

AR(1) process, the selected model is now:

Vi = 2055+ 1050t + %; (-L)'%%% =u; u = 0483u_; + &,
(2305 (0.676)

fort=1, 2, ..., T =289 (January, 1983), and

Vi = 973432 + 4545t + x; (1-L)¥%% =u; u = 00754 + &,
(677011 (2369

fort =Ty + 1, ..., T. Thus, the values for the orders of gnation are slightly smaller
than in the uncorrelated case though still abov&nbther remarkable thing observed in
this table is that the coefficients associated withintercept and the linear trend are both
insignificantly different from zero. Thus, we pemnfo the same procedure but assuming
now that there are no deterministic componentghiBicase, the selected models are

Q-0)%, =g, t=122..T,, and @-L),=¢, t=T,+1..T,

with uncorrelated disturbances, and

Q-L)Y0y, = u; Uy = 0322upg + g, t=12..T,

A-L)%%, =u; u = 0862up_y + &, t=Ty+1..T,

with AR(1) u. In these cases the break date takes placg at4R3, which is March,
1994. This period for the break seems to be makstie if we look back at the plot of
the original series in Figure 3. The fractionalfeliéncing parameters substantially

change depending on how we model the [(0) distud&snThus, if yis white noise, gd=

1.59 and d= 1.09. However, if we model in terms of an AR(1) process, d 1.36 and

15



d> = 0.34. Note that in this case the order of iraéign for the second subsample is
smaller than 1 (d= 0.34). Therefore, the dependence between thergdfons is
captured by both the fractional differencing pareenand the AR coefficient, which is
substantially large of = 0.862). Moreover, the results are very sensitige the
specification of the serial correlation in the disiance term. In order to check if they are
correlated or not, we perform a test for autocatreh (Ljung-Box statistic at different
lags) in both residuals and the results supporetigtence of an AR(1) structure for the

disturbance term.

5.b The US inflation rate
Here we examine the US inflation rate by lookingh&t log of the first differences in the
Consumer Price Index for All Urban Consumers, migntttom January 1947 to
December 2004. The data were collected from thefa¢dReserve Bank database of St.
Louis. This is a very popular time series in amtigns with long memory (Hassler and
Wolters, 1995; Bos et al., 2001; etc.).

[Insert Figure 6, Table 9 and Figure 7 about here]

Figure 6 displays the time series correspondintpedog of the US CPI. Table 9
reports the 95% intervals of the values gfuhere the null hypothesis cannot be rejected
using Robinson's (1994) tests. If a linear trench@uded in the model, the values are
very similar across all type of disturbances, witk values of d ranging between 1.32
and 1.52. However, if these components are nontaki® account, the non-rejection
values of d are smaller than one in some casegingmetween 0.89 and 1.62. Note,
however, that the lowest statistics take place ataal to or higher than 1 and, in the

context of a linear time trend, the lowest statsstre obtained at d around 1.40. Using

16



the semiparametric method (Figure 7) the resuéisraline with the parametric ones, and
the estimated values of d are slightly below 1.6 goactically all the values of the
bandwidth number m. These results are in line wither empirical works on the US
inflation rate when no breaks are taken into actodassler and Wolters (1995) find
estimates of d of about 0.40 for the inflation satehich correspond to values around
1.40 in the log prices. However, these results db consider the possibility of a
structural break.

If a break is taken into account the results ardodews: first we permit the
existence of deterministic trends and the break dafound in September 1982. Kis

white noise the selected model is:

V= 2842+ 0237t + %, (@-L)%%% =g, t=12..T,= 429(Sept.1982),
(4612 (0235

Vi = -93103+ 0216t + x; @1-L)%3% =g, t=Ty+1..T.
(64.439 (0.139

However, if y follows an AR(1) process, the orders of integrateme smaller, and the

selected model is then

i = —4176+ 0083 + x%; (@L- L)O'67xt =l; U = 0318y + &.
@5.85) (0.058

fort=1, .., Tp = 429 (September, 1982), and

v =18812- 0028 + X%; (@L-L)9%8x =u; u = 04734 + &
(7093 (0.022

fort=Ty+ 1, ..., T. Moreover, the coefficients associatethe deterministic terms are
also different in both subsamples, though agaiy #re not significant at conventional

levels. Thus, we performed the procedure withoetdéterministic terms. The break date
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takes place at the same period as in the previass (September, 1982). If ig white
noise, d = 1.00, while d = 0.43, and allowing for autocorrelated disturlemcthe

selected model is
@-1)%7y =u; w = 03200 + &, t=1 2,...T, =429

@-1)%By =u; u = 0499 + &, t=Ty+1,..T.

Note that, similarly to the previous applicatioh,we allow for autoregressions, the
orders of integration reduce in both subsampless ey be due to the competition
between the fractional differencing parameters thedAR coefficients in describing the
dependence between the observations. We also pedohere a Ljung-Box test for
autocorrelation on the residuals of the estimatendets. The results were a bit
ambiguous, finding evidence of autocorrelationha 10% significance level but not at

the 5% level.

6. CONCLUSIONS

In this paper we have proposed a procedure formetang the time of structural breaks
along with the parameters associated to the madadach sub-sample. In particular, we
allow different orders of integration and differesdefficients for the time trends. The
procedure is similar to the one proposed by Bai Radon (1998) for the case of 1(0)
disturbances and is based on least squares estin@tithe coefficients for a grid of
finite points for the orders of integration at difént periods of time. The break date is
then determined as the value that produces thestosgiared residuals. Several Monte
Carlo experiments were conducted across the papebrttee results showed that the

procedure performs well if the sample size is lageugh (e.g. B 300). A drawback of
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the present approach is that given the fractiorsline of the fractional differencing
parameters, if the true values are not includethéngrid, the resulting estimates of the
d's and the break fraction are likely to be incsiesit. This can be sorted out by using a
shorter (finer) grid, e.g. with 0.001 incrementsvol empirical applications were also
performed at the end of the article. In particwee examined two monthly series
corresponding to the US money stock and inflatlarboth series we observed a single
break, in March 1994 for money stock and in Sepwmil®82 for inflation. With respect
to the coefficients associated to the linear tretidsy were found to be insignificantly
different from zero in all cases. This is not sigipg since the orders of integration are
then capturing most of the stochastic trends ok#rees. For the money stock, the orders
of integration are 1.36 for the first subsample @84 for the second one, and for
inflation these values are 0.67 and 0.03, implytimgs in both cases nonstationarity for

the first subsamples and stationarity for the sdqmarts of the samples.

APPENDIX A
12
The LM test of Robinson (1994) for testing ) in (1) and (10) isf = %A‘l’zé,
ag
where T is the sample size and:
T_
a= 20 s pUpa;DtIu 6F = o¥h) = TS gD ()
j=1 j=1
-1
~ 2 T-1 ~ T-1 . R T-1_
A= ?[ S WA - z l//(ﬁj)f(ﬂj)'X(Z 5(/1,-)5(/1;)'} x X E(A,)w(ﬁj)}
]=1 ]=1 J=1
A . 0 . 277 | . .
¢(4)) = log Zsm%‘; £(Aj) = Elogg(ﬁj;r); Ay = T; T = argmlnaz(r).

a and A in the above expressions are obtained througfirdtend second derivatives of
the log-likelihood function with respect to d (deebinson, 1994, page 1422, for further

details). 1)) is the periodogram of; evaluated under the null, i.e.:

19



. d 5 51 I d d
U =Q-DOw% - Aw B=[t§lvwwt'j Twd - L%y w=Q0-bea,

and g is a known function related to the spectralenstty of

2
U f(A0%1) = g—ﬂg(/];r), -m< A <

APPENDIX B
The Whittle estimate of Robinson (1995) is defined by:

d =argming (Iog C(d) -2d % E log 4; ) for
j=1

dO(-1/2 ,1/2); C(d) :% 5 1(A)) A%, A= 2nj, ? - 0,where m is a bandwidth
j=1

number.

APPENDIX C

The starting point is our model in (3) and (4), eéhcan be written as:
@-D%y = ;-4 + BA- 0% +u,  t=1.,T,
A-L)%2y, = a,0- L)% + B@A-L)%2t +u, t=Ty+1..,T.
We call

J = a-0%y,  t =1..T,
Cla-u%y o= Ter T )

a4 = @B &= (@B 7=t

L..Tp oo - L)%t
41T ) la-0f% ot

,_,.
1
_l_\

Ty
T+l T )

£ - -0t
a-0%y ot

Thus, the model can be expressed as
Vi =76 +u, t=T+l..T, j=12,with§=0,T,=Tyand B =T. That
is,
* *T * *T
Ve =% O + U, t=1..Tpy, ¥ = % O + W, t =T,+1 .., T,
which is precisely the same model as in Bai andoReft998) for the case of a single

break.
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ENDNOTES

1. “This convention” applies to all formulae like)(and is usually employed in
applied work. In fact, it is a standard assumpiiorthe empirical work on fractional
integration (see Gil-Alana and Robinson, 1997) @ndnade so that even within the
"stationary"” region (d < 0.5)xs actually not covariance stationary, though #ynbe
thought of as "asymptotically stationary” for sudh In general, this truncation is
introduced to cater for "nonstationary” valuesx(®.5), where xwould otherwise blow
up.

2.  Other well-known criteria are the Bayesian ciatier BIC(m) = In [RS$(T, ...,
Tm)/T] + p In(T)/T, and the YIC(m) = In [RS&T4, ..., Tm)/T] + mC/T, where G is any
sequence satisfyingrC 2%
3. Incase of = T/10 and 9T/10, we use ¥ T/10 — 10, ..., (1), ..., 9T/10 + 10.

4, These intervals were constructed as follows:tFive choose a value of d from a

— o0 as - oo for some positive integer k.

grid. Then, we form the test statistic testing mid for this value. If the null is rejected
at the 5% level, we discard this value of d. Otheewwe keep it. An interval is then
obtained after considering all the values of dchim grid.

5.  The Bloomfield (1973) model is a non-parametppraach of modeling the 1(0)

disturbances that produces autocorrelations degagxponentially as in the AR(MA)

case.

6. Note that Robinson’s (1994) method is based enlLid principle and uses the
Whittle function, which is an approximation to tikeelihood function

7.  Similarly to the first application, the plot ofehresiduals of the 1.40-differenced

series showed some evidence of structural breaks.
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FIGURE 1

lllustrations of fractional processes for a constanand a linear trend
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FIGURE 2

Examples of simple realizations with deterministidrends, fractional integration and
structural breaks
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TABLE 1

Probabilities of detecting the true model with a brak at T/2 and d,= 0.50 and d = 0.50

d; d; T = 200 500 700 1000 1500 2000
0.1 0.3 0.001 -- -- -- -- --

0.1 0.4 0.002 -- -- -- -- --

0.1 0.5 0.002 -- -- -- -- --

0.2 0.1 0.001 -- -- -- -- --

0.2 0.2 0.001 -- -- -- -- --

0.2 0.3 0.006 -- -- -- -- --

0.2 0.4 0.008 -- -- -- -- --

0.2 0.5 0.002 -- -- -- -- --

0.2 0.6 0.005 -- -- -- -- --

0.3 0.2 0.004 -- -- -- -- --

0.3 0.3 0.020 0.001 - -- -- --

0.3 0.4 0.052 0.008 0.001 -- -- --
0.3 0.5 0.054 0.012 0.002 -- -- --
0.3 0.6 0.017 0.001 -- -- -- --

0.3 0.7 0.002 -- -- -- -- --

0.4 0.1 0.001 -- -- -- -- --

0.4 0.2 0.011 -- -- -- -- --

0.4 0.3 0.040 0.005 -- -- -- --

0.4 0.4 0.113 0.094 0.057 0.020 0.003 0.001
0.4 0.5 0.120 0.173 0.173 0.130 0.091 0.044
0.4 0.6 0.037 0.032 0.017 0.006 0.001 0.001
0.4 0.7 0.003 0.001 -- -- -- --

0.5 0.1 0.001 -- -- -- -- --

0.5 0.2 0.017 -- -- -- -- --

0.5 0.3 0.055 0.012 0.002 -- -- --
0.5 0.4 0.102 0.164 0.152 0.126 0.073 0.046
0.5 0.5 0.114 0.359 0.470 0.637 0.788 0.882
0.5 0.6 0.043 0.051 0.046 0.029 0.015 0.017
0.5 0.7 0.005 0.001 -- -- -- --

0.6 0.2 0.004 -- -- -- -- --

0.6 0.3 0.017 0.003 -- -- -- --

0.6 0.4 0.040 0.026 0.018 0.006 0.002 0.0-01
0.6 0.5 0.039 0.048 0.058 0.044 0.027 --
0.6 0.6 0.018 0.008 0.004 0.001 -- --
0.7 0.2 0.001 -- -- -- -- --

0.7 0.3 0.001 -- -- -- -- --

0.7 0.4 0.003 0.001 -- -- -- --

0.7 0.5 0.004 -- -- -- -- --

0.7 0.6 0.002 -- -- -- -- --

0.7 0.7 0.001 -- -- -- -- --

0.8 0.6 0.001 -- -- -- -- --

-- means that the probability of choosing the masi€l.
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TABLE 2

Probabilities of detecting the true model with a brak at T/2 and d,=0.20 and d = 0.70

d; d; T = 200 500 700 1000 1500 2000
0.1 0.3 0.004 -- -- -- -- --

0.1 0.4 0.012 -- -- -- -- --

0.1 0.5 0.066 0.006 -- -- --

0.1 0.6 0.188 0.103 0.057 0.020 0.003 --
0.1 0.7 0.225 0.205 0.179 0.147 0.099 0.048
0.1 0.8 0.078 0.038 0.022 0.006 0.001 --
0.1 0.9 0.006 0.001 -- -- -- --

0.2 0.4 0.015 -- -- -- -- --

0.2 0.5 0.048 0.007 -- -- -- --

0.2 0.6 0.097 0.153 0.140 0.113 0.070 0.035
0.2 0.7 0.097 0.355 0.484 0.632 0.781 0.917
0.2 0.8 0.048 0.057 0.048 0.036 0.018 --
0.2 0.9 0.004 0.001 -- -- -- --

0.3 0.4 0.001 -- -- -- -- --

0.3 0.5 0.012 0.001 - - -- --

0.3 0.6 0.032 0.023 0.010 0.007 0.004 -
0.3 0.7 0.040 0.043 0.053 0.038 0.024 --
0.3 0.8 0.015 0.006 0.005 0.001 -- --
0.3 0.9 0.002 -- -- -- -- --

0.4 0.4 0.001 -- -- -- -- --

0.4 0.5 0.001 -- -- -- -- --

04 0.6 0.002 0.001 -- -- -- --

0.4 0.7 0.004 -- -- -- -- --

0.4 0.8 0.001 -- -- -- -- --

0.5 0.7 0.001 -- -- -- -- --
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TABLE 3

Probabilities of detecting the true model with a brak at T/2 and d,=0.70 and d = 0.20

d d- T = 20( 50C 70C 100C¢ 150¢ 200¢
0.2 0.1 0.001 -- -- -- -- --
0.2 0.1 0.00:z -- -- -- -- --
0.2 0.2 0.00: -- -- -- -- --
0.4 0.1 0.03( == == == == ==
0.4 0.2 0.005 == == == -- --
0.4 0.2 0.00¢ == == == -- --
0.5 0.1 0.07¢ -- -- -- -- --
0.5 0.2 0.03¢ 0.00; 0.001 -- -- --
0.5 0.2 0.01¢ 0.00¢ -- -- -- --
0.5 04z 0.00¢ 0.001 == == == ==
0.€ 0.1 0.177 0.09¢ 0.04¢ 0.02¢ 0.00¢ --
0.€ 0.2 0.121 0.167 0.15¢ 0.105% 0.08¢ --
0.€ 0.2 0.03¢ 0.02¢ 0.01¢ 0.002 0.001 --
0.€ 0.4 0.001 0.001 -- -- -- --
0.7 0.1 0.19¢ 0.20; 0.182 0.141 0.08¢ 0.05¢
0.7 0.2 0.11¢ 0.33¢ 0.45; 0.641 0.781 0.90;
0.7 0.2 0.03¢ 0.04¢ 0.04¢ 0.02¢ 0.01¢ 0.011
0.7 0.4 0.00¢ 0.001 == == -- --
0.8 0.1 0.06¢ 0.03; 0.021 0.01C 0.00z --
0.8 0.2 0.04( 0.06( 0.06¢ 0.04; 0.03:z 0.01:
0.8 0.2 0.01: 0.00¢ 0.00: 0.001 -- -
0.8 0.4 0.00¢ == == == == ==
0.6 0.1 0.00¢ 0.001 == == -- --
0.6 0.2 0.00¢ == == == -- --
0.6 0.4 0.001 -- -- -- -- --
1.C 0.2 0.001 -- -- -- -- --
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TABLE 4

Probabilities of detecting the true model with a brak at T/4 and d,=0.20 and d = 0.70

d; d; T = 200 500 700 1000 1500 2000
0.1 0.1 0.012 -- -- -- -- --

0.1 0.2 0.012 -- -- -- -- --

0.1 0.3 0.048 -- -- -- -- --

0.1 0.4 0.089 0.012 0.003 -- -- --
0.1 0.5 0.118 0.038 0.016 0.003 -- --
0.1 0.6 0.182 0.176 0.148 0.091 0.054 0.022
0.1 0.7 0.138 0.232 0.212 0.212 0.174 0.160
0.1 0.8 0.102 0.074 0.065 0.040 0.015 --
0.1 0.9 0.030 0.008 0.002 -- -- --
0.1 1.0 0.004 -- -- -- -- --

0.2 0.1 0.001 -- -- -- -- --

0.2 0.2 0.005 -- -- -- -- --

0.2 0.3 0.008 -- -- -- -- --

0.2 0.4 0.019 0.004 0.001 -- -- --
0.2 0.5 0.030 0.036 0.022 0.011 -- --
0.2 0.6 0.040 0.120 0.137 0.151 0.118 0.022
0.2 0.7 0.034 0.136 0.250 0.354 0.530 0.896
0.2 0.8 0.016 0.047 0.052 0.064 0.047 --
0.2 0.9 0.006 0.003 0.004 -- -- --
0.2 1.0 0.001 -- -- -- -- --

0.3 0.2 0.001 -- -- -- -- --

0.3 0.3 0.007 -- -- -- -- --

0.3 0.4 0.004 0.001 0.001 --

0.3 0.5 0.020 0.009 0.001 0.001 --
0.3 0.6 0.020 0.044 0.027 0.021 0.014 --
0.3 0.7 0.014 0.039 0.047 0.043 0.044 --
0.3 0.8 0.009 0.014 0.010 0.008 0.003 --
0.4 0.2 0.001 0.001 -- -- -- --
0.4 0.3 0.004 -- -- -- -- --

0.4 0.5 0.003 -- -- -- -- --

0.4 0.6 0.005 -- -- -- -- --

0.4 0.7 0.006 0.003 0.001 0.001 -- --
0.4 0.8 0.004 0.003 0.001 -- -- --
0.4 0.9 0.002 -- -- -- -- --

0.4 1.0 0.001 -- -- -- -- --

0.5 0.6 0.003 -- -- -- -- --

0.5 0.7 0.001 -- -- -- -- --
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TABLE 5

Probabilities of detecting the true model with a brak at 9T/10 and d=0.70 and d = 0.20

d; d; T = 200 500 700 1000 1500 2000
0.5 0.1 0.034 - - - - -

0.5 0.2 0.004 -- -- -- -- --

0.5 0.3 0.002 - - - - -

0.5 0.4 0.001 -- -- -- -- --

0.5 0.6 0.001 - - - - -

0.6 0.1 0.300 0.108 0.064 0.024 0.012 --
0.6 0.2 0.012 0.034 0.060 0.019 0.008 --
0.6 0.3 0.007 0.012 0.10 0.003 0.002 --
0.6 0.4 0.010 0.005 0.001 - - -
0.6 0.5 0.004 0.001 -- -- -- --

0.6 0.6 0.001 0.001 - - -- --

0.7 0.1 0.410 0.549 0.388 0.324 0.280 0.102
0.7 0.2 0.034 0.140 0408 0.515 0.545 0.887
0.7 0.3 0.021 0.059 0.063 0.084 0.148 0.011
0.7 0.4 0.009 0.028 0.004 0.012 -- --
0.7 0.5 0.007 0.003 -- -- -- --

0.7 0.6 0.004 - - - - -

0.7 0.7 0.002 -- -- -- -- --

0.7 0.8 0.001 - - - - -

0.8 0.1 0.118 0.046 0.026 0.010 0.003 --
0.8 0.2 0.005 0.009 0.024 0.008 0.001 -
0.8 0.3 0.001 0.002 0.003 0.001 0.001 --
0.8 0.4 0.002 0.003 -- -- -- --

0.8 0.6 0.003 -- -- -- -- --

0.8 0.8 0.001 - - - - -

0.9 0.1 0.002 -- -- -- -- --

0.9 0.4 0.002 - - - - -
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TABLE 6

Probabilities of detecting the true break fraction br different deterministic patterns

(0, Ba, 02, B2) T = 100 T = 150 T = 200 T = 250 T = 300 T580
(5.0, 1.0, 10.0, 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
(0.5,0.1, 1.0, 5.51% 19.98% 47.12% 72.63% 95.76% 100.00%
(0.5, -1.0, -1.0, 10.92% 38.37% 62.16% 78.97% 98.21% 6.
(-0.5,1.0,1.0, - 10.99% 39.25% 63.80% 79.06% 98.36% .Qm36
FIGURE 3

Original time series and first differences, with the correlograms andperiodograms
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The large sample standard error under the null tygsis of no autocorrelation isvIl or roughly+0.046.
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TABLE 7
95%-confidence intervals of the non-rejection valug of d using
Pnhinenn'e (100/M\ nracadir

Typeof disturbance With noregressotr | With a timetrenc
White noise [1.34 (1.39) 1.4f |[1.34 (1.39) 1.4¢
AR(1) [1.24 (1.31) 1.3¢ [[1.24 (1.31) 1.3¢

AR(2) [1.35 (1.47) 1.5¢ |[1.37 (1.47) 1.5¢
Bloomfield (1. [1.21 (1.31) 1.3° |[1.22 (1.32) 1.3¢
Bloomfield (2 [1.32 (1.41) 1.5« |[1.31 (1.40) 1.5¢

FIGURE 4

Estimates of d based on a local Whittlsemiparametric approach (Robinson, 199!

1 T/2

The horizontal axes corresponds to the bandwidthrpeter number m, while the vertical one referhéorder
of integration

TABLE 8
Rejection probabilities of Robinson’s (1994) paramteic procedure with a single
U / do 1.0C] 1.0z 104£)10€|1.0€|1.2C|1.12]1.14]1.1€|1.1€| 1.2C

No regressol | 1.00(|0.504|0.00(|0.00(| 0.00(|0.00(|0.04:]0.961|1.00(| 1.00(| 1.00C

A linear trenc | 1.00(| 0.637]0.00(|0.00(|0.00(] 0.00(| 0.004] 0.694]1.00(| 1.00( 1.00C(
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FIGURE 5
Estimates of d based on a Whittlisemiparametric approach (Robinson, 1995) wil
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The horizontal axes corresponds to the bandwidthrpater number m, while the vertical one referthéo
order of integration

FIGURE 6

Log of the U.S. Consumer Price Index
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TABLE 9

95%-confidence intervals of the non-rejection valug of d using
Robinson's (1994) parametric procedur

Type of disturbances | With no regressors| With a linear trend
White noise [0.95 (1.00) 1.05] [1.32 (1.35) 1.39]
AR(1) [1.31 (1.39) 1.49]| [1.37 (1.42) 1.48]
AR(2) [0.44 (1.57) 1.62]| [1.35 (1.43) 1.52]
Bloomfield (1) [0.92 (0.99) 1.08]| [1.37 (1.42)5D]
Bloomfield (2) [0.89 (1.02) 1.11]| [1.37 (1.41)52]
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FIGURE 7

Estimates of d based on a local Whittle semiparamet approach (Robinson, 1995)
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0
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The horizontal axes corresponds to the bandwidthrpaeter number m, while the vertical one referthéoorder of
integration.
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