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ABSTRACT

This paper deals with the analysis of structural breaks in the context of
fractionally integrated models. We assume that the break dates are unknown
and that the different sub-samples possess different intercepts, slope coefficients
and fractional orders of integration. The procedure is based on linear regression
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Two empirical applications are carried out at the end of the article.
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1. INTRODUCTION

In recent years, fractional integration has become a feasible alternative method of

modelling many macroeconomic time series. The idea behind such specification is that

the dependence between the observations, which are increasingly distant in time, can be

adequately captured in terms of a hyperbolic rate of decay rather than the exponential

rate associated to the autoregressive (AR) structure. Moreover, the nonstationary nature

of many series that is usually solved by means of first differences might also be better

described by using fractional integration.

There exist several sources that may produce fractional integration: the aggregation

of heterogeneous AR processes (Robinson, 1978; Granger, 1980); error duration models

(Parke, 1999), or regime-switching and structural break models (Diebold and Inoue,

2001). In fact, the existence of breaks may lead to spurious findings of long memory.

Lobato and Savin (1998) argue that structural breaks may be responsible for the long

memory in return volatility processes, and Engle and Smith (1999) investigated the

relationship between structural breaks and long memory using a simple model where the

data generating process consists of a mean process and a stationary error.

This paper contributes to the above-mentioned literature by proposing a simple

procedure for determining fractional integration and structural breaks in a unified

treatment. The procedure uses a grid of finite points for the fractional integration

parameters. However, unlike other methods where the time of the break is known (Gil-

Alana, 2003), we keep it unknown, and is implicitly determined in the model. A

drawback of this approach is that since it uses a grid of finite values and given the real

nature of the fractional differencing parameters, the resulting estimates for the break-

fraction and the fractional differencing parameters will be inconsistent if the true values
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of the differencing parameters are not included in the set of values chosen in the grid.

Nevertheless, this is a limitation that faces all procedures based on this type of approach.

The structure of the paper is as follows. In Section 2 we define the concept of

fractional integration and its relation with the existence of breaks. In Section 3 we

present a procedure for fractional integration and structural breaks at unknown periods of

time. Section 4 contains a small simulation study showing the performance of the

procedure described in Section 3. Two empirical applications are carried out in Section 5,

while Section 6 contains some concluding comments.

2. FRACTIONAL INTEGRATION AND STRUCTURAL BREAKS

For the purpose of the present paper, we define an I(0) process {ut, t = 0, ±1, …} as a

covariance stationary process with a spectral density that is positive and finite at the zero

frequency. In this context, we say that a time series {xt, t = 0, ±1, …} is I(d) if:

    ...,,2,1t,ux)L1( tt
d ==−        (1)

with xt = 0, t ≤ 0,1 where L is the lag operator (i.e. Lxt = xt-1) and ut is I(0). Clearly, if d =

0, xt = ut, and a ‘weakly autocorrelated’ xt is allowed for. If d > 0, the process is said to

be long memory, because of the strong association between observations widely

separated in time. Note that the polynomial in the left hand side of (1) can be expressed

in terms of its Binomial expansion, such that for all real d,
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If d is an integer value, xt will be a function of a finite number of past observations, while

if d is real, xt depends strongly upon values of the time series far away in the past. If d ∈

(0, 0.5) in (1), xt is covariance stationary and mean-reverting, with the effect of shocks

disappearing in the long run; if d ∈ [0.5, 1), the series is no longer covariance stationary

but it is still mean-reverting, while d ≥ 1 means nonstationarity and non-mean-reversion.

The implications of structural change on unit-root tests which take no account of

this possibility attracted the attention of Perron (1989), who found that the 1929 crash

and the 1973 oil price shock were a cause of non-rejection of the unit-root hypothesis,

and that when these were taken into account, a deterministic trend model was preferable.

This question was also pursued by other authors. Christiano (1992) argued that the date

of the break should be treated as unknown, and suggested that tests for a structural break

are themselves biased in favour of non-rejection. He proposed tests based on bootstrap

critical values, reaching different conclusions from Perron (1989). Similarly, Zivot and

Andrews (1992) allowed the structural break to be endogenous, finding less conclusive

evidence against unit roots than did Perron (1989). Banerjee et al. (1992) also considered

this problem, proposing sequential statistics based on the full sample, and a sequence of

regressors indexed by a ‘break’ date. Using these techniques, they failed to reject the

unit-root hypotheses in the real output in five industrialized countries (including the

United States) but found evidence of stationarity around a shifted trend for Japan.

In the context of fractional processes, there are several works which show that

neglecting occasional breaks may lead to spurious finding of long memory. Kuan and

Hsu (1998) found that the least squares estimation of the change point may suggest a

spurious change when data have long run dependence. Other studies have also

investigated the effects of structural changes on persistence. Lobato and Savin (1998)
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argue that structural breaks may be responsible for the long memory in return volatility

processes. Engle and Smith (1999) investigate the relationship between structural breaks

and long memory using a simple unit root process which occasionally changes over time.

Beran and Terrin (1996) and Bos et al. (2001) proposed Lagrange Multiplier tests for

fractional integration with breaks, while Diebold and Inoue (2001) relates long memory

with regime-switching models.

3. THE STRUCTURAL CHANGE FRACTIONALLY INTEGRATED MOD EL

To simplify matters, we consider the case of a single break, though the model can be

easily extended for multiple breaks. We suppose that yt is the observed time series,

generated by the model

btt
d

t11t T,...,1t,ux)L1(;xty 1 ==−+β+α=        (3)

,T,...,1Tt,ux)L1(;xty btt
d

t22t
2 +==−+β+α=        (4)

where the α's and the β's are the coefficients corresponding to the intercept and the linear

trend; d1 and d2 may be real values, ut is I(0) and Tb is the time of the break that is

supposed to be unknown. Note that the model in (3) and (4) can also be written as:

,T,...,1t,u)d(t~)d(1
~

y)L1( bt1t11t1t
d1 =+β+α=−        (5)

         ,T,...,1Tt,u)d(t~)d(1
~

y)L1( bt2t22t2t
d2 +=+β+α=−        (6)

where ,1)L1()d(1
~

id
it −=  and ,t)L1()d(t~ id

it −=  i = 1, 2.

[Insert Figure 1 about here]

By way of illustration, we describe in Figure 1 the behaviour of the fractional

processes (1-L)d1t and (1-L)dtt with d = 0.25, 0.50, 0.75, 1 and 1.25. It is observed that if

d < 1, the series (1-L)d1t decreases hyperbolically to zero, and becomes exactly 0 if d = 1.
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For d > 1, the second observation in t1
~

 becomes negative, and the series decreases then

hyperbolically to zero. With respect to the linear trend we see that (1-L)dtt is explosive

for d < 1, though it tends to a constant as d increases through 1; however, if d > 1 the

values tend to zero.

The idea that is behind the model in (5) and (6) is based on the least square

principle proposed by Bai and Perron (1998). First we choose a grid for the values of the

fractionally differencing parameters d1 and d2, for example, dio = 0, 0.01, 0.02, …, 1, i =

1, 2. Then, for a given partition {Tb} and given initial d1, d2-values, )d,d( )1(
o2

)1(
o1 , we

estimate the α's and the β's by minimizing the sum of squared residuals,
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Let )d,d;T(ˆ )1(
o2

)1(
o1bα  and )d,d;T(ˆ )1(

o2
)1(

o1bβ  denote the resulting estimates for

partition {Tb} and initial values )1(
o1d  and )1(

o2d . Substituting these estimated values on the

objective function, we have RSS(Tb; 
)1(

o1d , )1(
o2d ), and minimizing this expression across all

values of d1o and d2o in the grid we obtain ).d,d;T(RSSminarg)T(RSS )j(
o2

)i(
o1b}j,i{b =

Then, the estimated break date, kT̂ , is such that )T(RSSminargT̂ im...,,1ik == , where the

minimization is taken over all partitions T1, T2, …, Tm, such that Ti - Ti-1 ≥ |εT|. Then, the

regression parameter estimates are the associated least-squares estimates of the estimated
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k-partition, i.e., }),T̂({ˆˆ kii α=α }),T̂({ˆˆ
kii β=β and their corresponding differencing

parameters, }),T̂({d̂d̂ kii = for i = 1 and 2.

The statistical properties of the resulting estimators are not derived though they

should not differ much from those reported in Bai and Perron (1998) since we choose the

values in a way such that they minimize the residuals sum squares and, under the

appropriate specification, ut must follow an I(0) process. In Appendix C we show that the

model described by (3) and (4) can be expressed in a similar way as the one in Bai and

Perron (1998) satisfying the same type of assumptions as in that paper. Several Monte

Carlo experiments based on this model are provided in Section 4.

Clearly, the model can be extended to the case of multiple breaks. Thus, we can

consider the model,

,T...,,1Tt,ux)L1(;xty j1jtt
d

tjjt
j +==−+β+α= −

for j = 1, …, m+1, T0 = 0 and Tm+1 = T. Then, the parameter m is the number of changes.

The break dates (T1, …, Tm) are explicitly treated as unknown and for i = 1, …, m, we

have λi = Ti/T, with λ1 < … < λm < 1. Following the same lines as in the previous case,

for each j-partition, {T1, …Tj}, denoted {Tj}, the associated least-squares estimates of αj,

βj and the dj are obtained by minimizing the sum of squared residuals in the di-

differenced models, i.e.,

,)ty()L1( 2
ii

1m

1j

T

1Tt
t

d
j
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i β−α−−∑ ∑
+
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where )T(ˆ),T(ˆ jiji βα and )T(d̂ j  denote the resulting estimates. Substituting them in the

new objective function and denoting the sum of squared residuals as RSST(T1, …, Tm),
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the estimated break dates ( )T̂...,,T̂,T̂ m21  are obtained by: )T,...,T(RSSmin m1T)T...,,T,T( m21

where the minimization is again obtained over all partition (T1, …, Tm).

The above procedure requires the a priori determination of the number of breaks

in the time series. Following standard procedures to select the number of breaks in the

context of I(0) processes, Schwarz (1978) proposed the criterion:

/)T̂,...,T̂(RSS[ln)m(SIC m1T=  ,T/)T(lnp2)mT( *+− where p* is the number of

unknown parameters.2 The estimated number of break dates, ,m̂  is then obtained by

minimizing the above-mentioned criterion given M a fixed upper bound for m.

4. A MONTE CARLO SIMULATION STUDY

In this section we consider a data generating process given by:

btt
d

tr TtuxLxty ,...,1,)1(;15 1 ==−++=     (7)

,,...,1,)1(;510 2 TTtuxLxty btt
d

tr +==−++=     (8)

where (d1, d2) = (0.2, 0.7); (0.5, 0.5) and (0.7, 0.2); Tb = T/2, T/4, 3T/4, T/10 and 9T/10,

with sample sizes T = 200, 500, 700, 1000, 1500 and 2000 observations, and white noise

ut. We generate Gaussian series using the routines GASDEV and RAN3 of Press,

Flannery, Teukolsky and Vetterling (1986).

[Insert Figure 2 about here]

Figure 2 contains plots of simple realizations of the model given by (7) and (8)

with T = 300, Tb = 150, and (d1, d2) = (0.2, 0.7), (0.5, 0.5) and (0.7, 0.2). We observe that

if the deterministic components are included in the model (left-hand-side plots in the

figure) the structural change becomes extremely clear, with a change in both the intercept

and the slope coefficients. We also observe that the different orders of integration for
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each sub-sample (upper and lower plots) are obscured because of the presence of the

deterministic changes, and little thus can be said about them just from a simple visual

inspection of the series. The plots in the right hand side correspond to the series without

the deterministic terms. The upper plot refers to the case of d1 = 0.2 and d2 = 0.7, and a

higher degree of dependence is observed between the observations in the second sub-

sample. The lower plot refers to the opposite case, and the dependence is now higher in

the first sub-sample.

In Tables 1 – 5 we report the probabilities of correctly determining the time break

and the fractional differencing parameters in the model given by (7) and (8), using a grid

of d1, d2 values = 0, 0.1, 0.2, …, 0.8, 0.9 and 1, and values for the break T* = (T/10, T/10

+1, …, (1), .., 9T/10 – 1, 9T/10)3. We use 10,000 replications for each case.

The most noticeable thing observed from these tables is that the procedure

accuracy determines the break date in all cases, and we find zero-probabilities for all

values of d1 and d2 if T* is different from the true time of the break. Thus, the

probabilities corresponding to T* = Tb are presented exclusively in the tables. Note,

however, that this might be a consequence of the deterministic pattern describing the

equations in (7) and (8). At the end of this section we present the results for other

deterministic models, where the optimal break is not so accuracy determined.

In Tables 1 - 3 we assume that the break takes place at T/2 and consider the three

cases of stationarity for the first subsample (d1 = 0.2) and nonstationarity for the second

one (d2 = 0.7) (in Table 1); nonstationarity in both subsamples, with d being in the

boundary situation between stationarity and nonstationarity (d1 = d2 = 0.5) (Table 2); and

nonstationarity in the first subsample and stationarity in the second subsample (Table 3).

[Insert Tables 1 – 3 about here]
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The results are very similar in the three tables. Thus, if the sample size is small

(e.g. T = 200) the probability of detecting the true break along with the true parameters

for the orders of integration is very small (around 10% for the grid of values employed in

the tables). However, increasing the sample size, the probabilities also increase; they are

higher than 50% with T = 1000, and around 90% with T = 2000. Note here that these

probabilities are based on the grid employed for the orders of integration and thus, the

probabilities are smaller as we reduce the value for the increments in the ds. On the other

hand, larger increments would produce higher probabilities of detecting the true values.

Thus, for example, if we compute the procedure with (d1, d2)-values equal to 0, 0.2, 0.4,

…, 0.8 and 1, the probabilities of correctly detecting the true parameters are higher than

75% with T ≥  300 and higher than 90% with T ≥  700.

[Insert Tables 4 and 5 about here]

Next, we perform the same experiment with the break dates taking place at T/10,

T/4, 3T/4 and 9T/10, and for the same (d1, d2)-values as in the previous tables. The

results were very similar. As an illustration, we reproduce only the results for the cases of

Tb = T/4, d1 = 0.2 and d2 = 0.7 (in Table 4) and Tb = 9T/10, d1 = 0.7 and d2 = 0.2 (Table

5). We see that the probabilities are smaller. In fact, if T is very small, higher

probabilities are obtained at other (d1, d2)-combinations. However, if T > 500, the highest

probabilities are obtained at the true values. The same happens if the break occurs at Tb =

9T/10. Thus, for example, if T = 1000, the probability of correctly determining the true

model is 51.5%, and if T = 2000, it becomes 88.7%.

As mentioned above, the accuracy in the estimation of the break date in the results

presented so far might be a consequence of the coefficients used for the intercept and the
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slope in the equations in (7) and (8). Thus, in Table 6, we examine the probability of

correctly determining the break for different intercept and slope coefficients.

[Insert Table 6 about here]

We now assume that the break date takes place at T/2, with d1 = d2 = 0.5, and look

at the probability of detecting the true break date for a grid of values (T/5, T/5+1, …,

4T/5 – 1, 4T/5), using the following coefficients for the deterministic trends (α1, β1, α2,

β2) = (5.0, 1.0, 10.0, 5.0);  (0.5, 0.1, 1.0, 0.5); (0.5, -0.1, -1.0, 0.5) and (-0.5, 0.1, 1.0, -

0.5). We observe that using the coefficients in (7) and (8) the procedure correctly

determines the break at the 100% of the cases even for a sample size of T = 100.

However, reducing the magnitude of these coefficients the probabilities are very small

for small sample sizes, though, if T = 500, it reaches 100% in all cases. Note that in this

simulation we have only considered for the possible breaks 60% of the sample period.

Increasing the set of break dates the probabilities considerably reduce in some cases,

implying that, in small samples, it is important to have some a priori knowledge about

the period of the break.

5. THE EMPIRICAL WORK

Two different datasets are analysed in this section. The first one is a monthly series of

US money stock, while the second refers to the US monthly inflation rate. We choose

these series because they seem to have a single break across the sample. In fact, we

performed the procedure described in Section 3 and the evidence was in favour of a

single break.



12

5.a The US H-6 money stock

The data analyzed here is the U.S. Total Large Time Deposits (H-6 Money Stock),

monthly, seasonally adjusted, for the time period January, 1959 to August, 2004,

obtained from the Board of Governors of the Federal Reserve System. Further

information and definitions are available at: http://research.stlouisfed.

org/publications/mt/.

[Insert Figure 3 about here]

Figure 3 displays plots of the original series and its first differences, along with

their corresponding correlograms and periodograms. It is observed that the values of the

original data increase across the sample implying that the series is nonstationary. This is

substantiated by the correlogram, with values decreasing very slowly, and the

periodogram, with a large peak at the smallest frequency. If we take first differences, the

plot in the up-right side in Figure 3 shows an increasing variance with T, and we also

observe significant values in the correlogram even at some lags far away from zero. The

periodogram of the first differences still shows its highest value at the zero frequency,

which may suggest that long memory is still present in the differenced data, though this

latter result might be a consequence of the existence of a structural break in the data.

The first thing we do is to estimate the fractional differencing parameter assuming

that there are no breaks in the data. For this purpose we employ both parametric and

semiparametric methods. First we use a parametric testing approach suggested by

Robinson (1994) that is described in Appendix A.  In this approach we test:

,dd:H oo =        (9)

in a model given by:

...,2,1t,xty tt =+β+α=      (10)
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with xt given by (1).  We take do-values equal to 0, (0.02), 2, and assume first that α = β

= 0 (i.e., there are no deterministic terms), and then with α and β unknown.

The results are given in Table 7. We report the confidence intervals of those

values of do where the null hypothesis cannot be rejected at the 5% level.4 We present the

results for the two cases of no regressors and a linear trend, with white noise, AR and

Bloomfield (1973) disturbances.5 It is observed that the values are very similar

independently of the inclusion or not of deterministic trends, which might suggest that a

linear time trend is not required when modelling this series. The non-rejection values of d

are in all cases higher than 1, ranging between 1.21 and 1.58. We also display in the table

the value of d that produces the lowest statistic for each type of disturbances. This value

should be an approximation to the maximum likelihood estimate.6  We note that the

values are higher than 1.30 in all cases.

[Insert Table 7 and Figure 4 about here]

Next we perform a semiparametric method (Robinson, 1995) that is described in

Appendix B. Figure 4 displays the estimates of d across the whole range of values for the

bandwidth number m, along with the 95% interval corresponding to the I(1) hypothesis.

We see that the estimated values of d are in all cases above the I(1) interval, implying

that d is higher than 1, which is consistent with the results based on the parametric

approach.

However, the large values of d obtained from the previous results might be in large

part due to the fact that no structural breaks are taken into account. Though not reported

in the paper, we computed the residuals from the d-differenced series, for values of d

from 1.30 to 1.40 (with 0.01 increments) and in all cases, the residuals showed evidence

of a structural break, which might be producing a bias in favour of higher orders of
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integration. To illustrate this point, we include in this section a simple Monte Carlo

experiment. We consider again the model given by (7) and (8) with T = 300, Tb = 150, d1

= 0.2 and d2 = 0.7, and perform both the parametric and the semiparametric methods

described in the appendices, using 10,000 replications.

[Insert Table 8 and Figure 5 about here]

We employ first Robinson’s (1994) parametric tests for do-values = 0, (0.02), 2,

and the null hypothesis was rejected in the 100% of the cases for do < 1.02 and do > 1.14.

However, for values of do constrained between these two numbers, the rejection

probabilities were smaller than 1, and, if do = 1.04, 1.06, 1.08 and 1.10, the null

hypothesis was never rejected (see Table 8). This happens for the two cases of no

regressors and when both the intercept and the slope are included in the model. Thus,

using the tests of Robinson (1994) when the true data generating process contains a

structural break leads to spurious conclusions about the order of integration of the series.

Figure 5 displays the averaged estimates of d for each bandwidth number using the

semiparametric method. We observe that this procedure also leads to spurious

conclusions about d, finding orders of integration higher than 1 for practically all the

values of the bandwidth number m.

Next we perform the procedure described in Section 3. Initially we consider the

case of a linear time trend in both subsamples, with white noise disturbances, and the

selected model is:

)611.1()658.1(

,x)L1(;xt156.0449.1y tt
64.1

tt ε=−++=
    t  = 1, 2, …, Tb,

)724.2()971.785(

,x)L1(;xt537.2583.427y tt
37.1

tt ε=−++−=
  t = Tb + 1, …, T
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with Tb = 289, which corresponds to January 1983. Standard errors are displayed in

parenthesis. We observe that both the intercept and the slope coefficients are different for

each sub-sample. Also, the fractional differencing parameters are different in both cases,

d1 = 1.64 and d2 = 1.37. If we allow for short run dynamics and model ut in terms of an

AR(1) process, the selected model is now:

)676.0()305.2(

,483.0;)1(;050.1055.2 1
24.1

ttttttt uuuxLxty ε+==−++= −

for t = 1, 2, …, Tb = 289 (January, 1983), and

)369.2()011.677(

,075.0;)1(;545.4432.973 1
32.1

ttttttt uuuxLxty ε+==−++−= −

for t = Tb + 1, …, T. Thus, the values for the orders of integration are slightly smaller

than in the uncorrelated case though still above 1. Another remarkable thing observed in

this table is that the coefficients associated with the intercept and the linear trend are both

insignificantly different from zero. Thus, we perform the same procedure but assuming

now that there are no deterministic components. In this case, the selected models are

,T,...,2,1t,y)L1( btt
59.1 =ε=−     and      ,T,...,1Tt,y)L1( btt

09.1 +=ε=−

with uncorrelated disturbances, and

,T...,2,1t,u322.0u;uy)L1( bt1tttt
36.1 =ε+==− −

,T...,1Tt,u862.0u;uy)L1( bt1tttt
34.0 +=ε+==− −

with AR(1) ut. In these cases the break date takes place at Tb = 423, which is March,

1994. This period for the break seems to be more realistic if we look back at the plot of

the original series in Figure 3. The fractional differencing parameters substantially

change depending on how we model the I(0) disturbances. Thus, if ut is white noise, d1 =

1.59 and d2 = 1.09. However, if we model ut in terms of an AR(1) process, d1 = 1.36 and



16

d2 = 0.34. Note that in this case the order of integration for the second subsample is

smaller than 1 (d2 = 0.34). Therefore, the dependence between the observations is

captured by both the fractional differencing parameter and the AR coefficient, which is

substantially large (α = 0.862). Moreover, the results are very sensitive to the

specification of the serial correlation in the disturbance term. In order to check if they are

correlated or not, we perform a test for autocorrelation (Ljung-Box statistic at different

lags) in both residuals and the results support the existence of an AR(1) structure for the

disturbance term.

5.b The US inflation rate

Here we examine the US inflation rate by looking at the log of the first differences in the

Consumer Price Index for All Urban Consumers, monthly from January 1947 to

December 2004. The data were collected from the Federal Reserve Bank database of St.

Louis. This is a very popular time series in applications with long memory (Hassler and

Wolters, 1995; Bos et al., 2001; etc.).

[Insert Figure 6, Table 9 and Figure 7 about here]

Figure 6 displays the time series corresponding to the log of the US CPI. Table 9

reports the 95% intervals of the values of do where the null hypothesis cannot be rejected

using Robinson's (1994) tests. If a linear trend is included in the model, the values are

very similar across all type of disturbances, with the values of d ranging between 1.32

and 1.52. However, if these components are not taken into account, the non-rejection

values of d are smaller than one in some cases, ranging between 0.89 and 1.62. Note,

however, that the lowest statistics take place at d equal to or higher than 1 and, in the

context of a linear time trend, the lowest statistics are obtained at d around 1.40. Using
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the semiparametric method (Figure 7) the results are in line with the parametric ones, and

the estimated values of d are slightly below 1.5 for practically all the values of the

bandwidth number m. These results are in line with other empirical works on the US

inflation rate when no breaks are taken into account. Hassler and Wolters (1995) find

estimates of d of about 0.40 for the inflation rates, which correspond to values around

1.40 in the log prices. However, these results do not consider the possibility of a

structural break.7

If a break is taken into account the results are as follows: first we permit the

existence of deterministic trends and the break date is found in September 1982. If ut is

white noise the selected model is:

)235.0()612.4(

,)1982.(429,...,2,1,)1(;237.0842.2 01.1 SeptTtxLxty btttt ===−++= ε

)139.0()439.64(

.,...,1,)1(;216.0103.93 63.0 TTtxLxty btttt +==−++−= ε

However, if ut follows an AR(1) process, the orders of integration are smaller, and the

selected model is then

)058.0()851.15(

.318.0;)1(;083.0176.4 1
67.0

ttttttt uuuxLxty ε+==−++−= −

for t = 1, …, Tb = 429 (September, 1982), and

)022.0()093.7(

473.0;)1(;028.0812.18 1
03.0

ttttttt uuuxLxty ε+==−+−= −

for t = Tb + 1, ..., T. Moreover, the coefficients associated to the deterministic terms are

also different in both subsamples, though again they are not significant at conventional

levels. Thus, we performed the procedure without the deterministic terms. The break date
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takes place at the same period as in the previous case (September, 1982). If ut is white

noise, d1 = 1.00, while d2 = 0.43, and allowing for autocorrelated disturbances, the

selected model is

,429,...,2,1,320.0;)1( 1
67.0 ==+==− − bttttt TtuuuyL ε

.,...,1,499.0;)1( 1
03.0 TTtuuuyL bttttt +=+==− − ε

Note that, similarly to the previous application, if we allow for autoregressions, the

orders of integration reduce in both subsamples. This may be due to the competition

between the fractional differencing parameters and the AR coefficients in describing the

dependence between the observations. We also performed here a Ljung-Box test for

autocorrelation on the residuals of the estimated models. The results were a bit

ambiguous, finding evidence of autocorrelation at the 10% significance level but not at

the 5% level.

6. CONCLUSIONS

In this paper we have proposed a procedure for determining the time of structural breaks

along with the parameters associated to the models at each sub-sample. In particular, we

allow different orders of integration and different coefficients for the time trends. The

procedure is similar to the one proposed by Bai and Perron (1998) for the case of I(0)

disturbances and is based on least squares estimation of the coefficients for a grid of

finite points for the orders of integration at different periods of time. The break date is

then determined as the value that produces the lowest squared residuals. Several Monte

Carlo experiments were conducted across the paper and the results showed that the

procedure performs well if the sample size is large enough (e.g. T ≥  300). A drawback of



19

the present approach is that given the fractional nature of the fractional differencing

parameters, if the true values are not included in the grid, the resulting estimates of the

d's and the break fraction are likely to be inconsistent. This can be sorted out by using a

shorter (finer) grid, e.g. with 0.001 increments. Two empirical applications were also

performed at the end of the article. In particular we examined two monthly series

corresponding to the US money stock and inflation. In both series we observed a single

break, in March 1994 for money stock and in September 1982 for inflation. With respect

to the coefficients associated to the linear trends, they were found to be insignificantly

different from zero in all cases. This is not surprising since the orders of integration are

then capturing most of the stochastic trends of the series. For the money stock, the orders

of integration are 1.36 for the first subsample and 0.34 for the second one, and for

inflation these values are 0.67 and 0.03, implying thus in both cases nonstationarity for

the first subsamples and stationarity for the second parts of the samples.

APPENDIX A

The LM test of Robinson (1994) for testing Ho (9) in (1) and (10) is aA
T
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â  and Â  in the above expressions are obtained through the first and second derivatives of

the log-likelihood function with respect to d (see Robinson, 1994, page 1422, for further

details). I(λj) is the periodogram of ut evaluated under the null, i.e.:
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APPENDIX B

The Whittle estimate of Robinson (1995) is defined by:
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APPENDIX C

The starting point is our model in (3) and (4), which can be written as:
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Thus, the model can be expressed as

,,...,1, 1
**

jjtj
T

tt TTtuzy +=+= −δ    j = 1,2, with T0 = 0, T1 = Tb and T2 = T. That

is,

,,...,1,1
**

bt
T

tt Ttuzy =+= δ  ,,...,1,2
** TTtuzy bt
T

tt +=+= δ

which is precisely the same model as in Bai and Perron (1998) for the case of a single

break.
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ENDNOTES

1. “This convention” applies to all formulae like (1) and is usually employed in

applied work. In fact, it is a standard assumption in the empirical work on fractional

integration (see Gil-Alana and Robinson, 1997) and is made so that even within the

"stationary" region (d < 0.5) xt is actually not covariance stationary, though it may be

thought of as "asymptotically stationary" for such d. In general, this truncation is

introduced to cater for "nonstationary" values, (d ≥  0.5), where xt would otherwise blow

up.

2. Other well-known criteria are the Bayesian criterion: BIC(m) = ln [RSST(T1, …,

Tm)/T] + p* ln(T)/T, and the YIC(m) = ln [RSST(T1, …, Tm)/T] + mCT/T, where CT is any

sequence satisfying CTT-2d/k → ∞  as  T→ ∞  for some positive integer k.

3. In case of Tb = T/10 and 9T/10, we use T* = T/10 – 10,  ..., (1), ..., 9T/10 + 10.

4. These intervals were constructed as follows: First, we choose a value of d from a

grid. Then, we form the test statistic testing the null for this value. If the null is rejected

at the 5% level, we discard this value of d. Otherwise, we keep it. An interval is then

obtained after considering all the values of d in the grid.

5. The Bloomfield (1973) model is a non-parametric approach of modeling the I(0)

disturbances that produces autocorrelations decaying exponentially as in the AR(MA)

case.

6. Note that Robinson’s (1994) method is based on the LM principle and uses the

Whittle function, which is an approximation to the likelihood function

7. Similarly to the first application, the plot of the residuals of the 1.40-differenced

series showed some evidence of structural breaks.
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FIGURE 1
Illustrations of fractional processes for a constant and a linear trend
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FIGURE 2

Examples of simple realizations with deterministic trends, fractional integration and
structural breaks
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TABLE 1
Probabilities of detecting the true model with a break at T/2 and d1 = 0.50 and d2 = 0.50

d1 d2 T  =  200 500 700 1000 1500 2000
0.1 0.3 0.001 -- -- -- -- --
0.1 0.4 0.002 -- -- -- -- --
0.1 0.5 0.002 -- -- -- -- --
0.2 0.1 0.001 -- -- -- -- --
0.2 0.2 0.001 -- -- -- -- --
0.2 0.3 0.006 -- -- -- -- --
0.2 0.4 0.008 -- -- -- -- --
0.2 0.5 0.002 -- -- -- -- --
0.2 0.6 0.005 -- -- -- -- --
0.3 0.2 0.004 -- -- -- -- --
0.3 0.3 0.020 0.001 --. -- -- --
0.3 0.4 0.052 0.008 0.001 -- -- --
0.3 0.5 0.054 0.012 0.002 -- -- --
0.3 0.6 0.017 0.001 -- -- -- --
0.3 0.7 0.002 -- -- -- -- --
0.4 0.1 0.001 -- -- -- -- --
0.4 0.2 0.011 -- -- -- -- --
0.4 0.3 0.040 0.005 -- -- -- --
0.4 0.4 0.113 0.094 0.057 0.020 0.003 0.001
0.4 0.5 0.120 0.173 0.173 0.130 0.091 0.044
0.4 0.6 0.037 0.032 0.017 0.006 0.001 0.001
0.4 0.7 0.003 0.001 -- -- -- --
0.5 0.1 0.001 -- -- -- -- --
0.5 0.2 0.017 -- -- -- -- --
0.5 0.3 0.055 0.012 0.002 -- -- --
0.5 0.4 0.102 0.164 0.152 0.126 0.073 0.046
0.5 0.5 0.114 0.359 0.470 0.637 0.788 0.882
0.5 0.6 0.043 0.051 0.046 0.029 0.015 0.017
0.5 0.7 0.005 0.001 -- -- -- --
0.6 0.2 0.004 -- -- -- -- --
0.6 0.3 0.017 0.003 -- -- -- --
0.6 0.4 0.040 0.026 0.018 0.006 0.002 0.0-01
0.6 0.5 0.039 0.048 0.058 0.044 0.027 --
0.6 0.6 0.018 0.008 0.004 0.001 -- --
0.7 0.2 0.001 -- -- -- -- --
0.7 0.3 0.001 -- -- -- -- --
0.7 0.4 0.003 0.001 -- -- -- --
0.7 0.5 0.004 -- -- -- -- --
0.7 0.6 0.002 -- -- -- -- --
0.7 0.7 0.001 -- -- -- -- --
0.8 0.6 0.001 -- -- -- -- --

-- means that the probability of choosing the model is 0.
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TABLE 2

Probabilities of detecting the true model with a break at T/2 and d1 = 0.20 and d2 = 0.70

d1 d2 T  =  200 500 700 1000 1500 2000
0.1 0.3 0.004 -- -- -- -- --
0.1 0.4 0.012 -- -- -- -- --
0.1 0.5 0.066 0.006 -- -- --
0.1 0.6 0.188 0.103 0.057 0.020 0.003 --
0.1 0.7 0.225 0.205 0.179 0.147 0.099 0.048
0.1 0.8 0.078 0.038 0.022 0.006 0.001 --
0.1 0.9 0.006 0.001 -- -- -- --
0.2 0.4 0.015 -- -- -- -- --
0.2 0.5 0.048 0.007 -- -- -- --
0.2 0.6 0.097 0.153 0.140 0.113 0.070 0.035
0.2 0.7 0.097 0.355 0.484 0.632 0.781 0.917
0.2 0.8 0.048 0.057 0.048 0.036 0.018 --
0.2 0.9 0.004 0.001 -- -- -- --
0.3 0.4 0.001 -- -- -- -- --
0.3 0.5 0.012 0.001 -- -- -- --
0.3 0.6 0.032 0.023 0.010 0.007 0.004 --
0.3 0.7 0.040 0.043 0.053 0.038 0.024 --
0.3 0.8 0.015 0.006 0.005 0.001 -- --
0.3 0.9 0.002 -- -- -- -- --
0.4 0.4 0.001 -- -- -- -- --
0.4 0.5 0.001 -- -- -- -- --
0.4 0.6 0.002 0.001 -- -- -- --
0.4 0.7 0.004 -- -- -- -- --
0.4 0.8 0.001 -- -- -- -- --
0.5 0.7 0.001 -- -- -- -- --
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TABLE 3

Probabilities of detecting the true model with a break at T/2 and d1 = 0.70 and d2 = 0.20

d1 d2 T  =  200 500 700 1000 1500 2000
0.2 0.1 0.001 -- -- -- -- --
0.3 0.1 0.002 -- -- -- -- --
0.3 0.2 0.003 -- -- -- -- --
0.4 0.1 0.030 -- -- -- -- --
0.4 0.2 0.007 -- -- -- -- --
0.4 0.3 0.005 -- -- -- -- --
0.5 0.1 0.075 -- -- -- -- --
0.5 0.2 0.038 0.007 0.001 -- -- --
0.5 0.3 0.015 0.008 -- -- -- --
0.5 042 0.003 0.001 -- -- -- --
0.6 0.1 0.172 0.096 0.049 0.023 0.004 --
0.6 0.2 0.121 0.167 0.159 0.107 0.083 --
0.6 0.3 0.034 0.023 0.015 0.002 0.001 --
0.6 0.4 0.001 0.001 -- -- -- --
0.7 0.1 0.194 0.207 0.182 0.141 0.083 0.055
0.7 0.2 0.119 0.336 0.457 0.641 0.781 0.907
0.7 0.3 0.036 0.049 0.044 0.028 0.014 0.011
0.7 0.4 0.005 0.001 -- -- -- --
0.8 0.1 0.069 0.037 0.021 0.010 0.002 --
0.8 0.2 0.040 0.060 0.069 0.047 0.032 0.017
0.8 0.3 0.013 0.006 0.003 0.001 -- --
0.8 0.4 0.005 -- -- -- -- --
0.9 0.1 0.006 0.001 -- -- -- --
0.9 0.2 0.008 -- -- -- -- --
0.9 0.4 0.001 -- -- -- -- --
1.0 0.2 0.001 -- -- -- -- --
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TABLE 4

Probabilities of detecting the true model with a break at T/4 and d1 = 0.20 and d2 = 0.70

d1 d2 T  =  200 500 700 1000 1500 2000
0.1 0.1 0.012 -- -- -- -- --
0.1 0.2 0.012 -- -- -- -- --
0.1 0.3 0.048 -- -- -- -- --
0.1 0.4 0.089 0.012 0.003 -- -- --
0.1 0.5 0.118 0.038 0.016 0.003 -- --
0.1 0.6 0.182 0.176 0.148 0.091 0.054 0.022
0.1 0.7 0.138 0.232 0.212 0.212 0.174 0.160
0.1 0.8 0.102 0.074 0.065 0.040 0.015 --
0.1 0.9 0.030 0.008 0.002 -- -- --
0.1 1.0 0.004 -- -- -- -- --
0.2 0.1 0.001 -- -- -- -- --
0.2 0.2 0.005 -- -- -- -- --
0.2 0.3 0.008 -- -- -- -- --
0.2 0.4 0.019 0.004 0.001 -- -- --
0.2 0.5 0.030 0.036 0.022 0.011 -- --
0.2 0.6 0.040 0.120 0.137 0.151 0.118 0.022
0.2 0.7 0.034 0.136 0.250 0.354 0.530 0.896
0.2 0.8 0.016 0.047 0.052 0.064 0.047 --
0.2 0.9 0.006 0.003 0.004 -- -- --
0.2 1.0 0.001 -- -- -- -- --
0.3 0.2 0.001 -- -- -- -- --
0.3 0.3 0.007 -- -- -- -- --
0.3 0.4 0.004 0.001 0.001 --
0.3 0.5 0.020 0.009 0.001 0.001 --
0.3 0.6 0.020 0.044 0.027 0.021 0.014 --
0.3 0.7 0.014 0.039 0.047 0.043 0.044 --
0.3 0.8 0.009 0.014 0.010 0.008 0.003 --
0.4 0.2 0.001 0.001 -- -- -- --
0.4 0.3 0.004 -- -- -- -- --
0.4 0.5 0.003 -- -- -- -- --
0.4 0.6 0.005 -- -- -- -- --
0.4 0.7 0.006 0.003 0.001 0.001 -- --
0.4 0.8 0.004 0.003 0.001 -- -- --
0.4 0.9 0.002 -- -- -- -- --
0.4 1.0 0.001 -- -- -- -- --
0.5 0.6 0.003 -- -- -- -- --
0.5 0.7 0.001 -- -- -- -- --
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TABLE 5

Probabilities of detecting the true model with a break at 9T/10 and d1 = 0.70 and d2 = 0.20

d1 d2 T  =  200 500 700 1000 1500 2000

0.5 0.1 0.034 -- -- -- -- --

0.5 0.2 0.004 -- -- -- -- --

0.5 0.3 0.002 -- -- -- -- --

0.5 0.4 0.001 -- -- -- -- --

0.5 0.6 0.001 -- -- -- -- --

0.6 0.1 0.300 0.108 0.064 0.024 0.012 --

0.6 0.2 0.012 0.034 0.060 0.019 0.008 --

0.6 0.3 0.007 0.012 0.10 0.003 0.002 --

0.6 0.4 0.010 0.005 0.001 -- -- --

0.6 0.5 0.004 0.001 -- -- -- --

0.6 0.6 0.001 0.001 -- -- -- --

0.7 0.1 0.410 0.549 0.388 0.324 0.280 0.102

0.7 0.2 0.034 0.140 0408 0.515 0.545 0.887

0.7 0.3 0.021 0.059 0.063 0.084 0.148 0.011

0.7 0.4 0.009 0.028 0.004 0.012 -- --

0.7 0.5 0.007 0.003 -- -- -- --

0.7 0.6 0.004 -- -- -- -- --

0.7 0.7 0.002 -- -- -- -- --

0.7 0.8 0.001 -- -- -- -- --

0.8 0.1 0.118 0.046 0.026 0.010 0.003 --

0.8 0.2 0.005 0.009 0.024 0.008 0.001 --

0.8 0.3 0.001 0.002 0.003 0.001 0.001 --

0.8 0.4 0.002 0.003 -- -- -- --

0.8 0.6 0.003 -- -- -- -- --

0.8 0.8 0.001 -- -- -- -- --

0.9 0.1 0.002 -- -- -- -- --

0.9 0.4 0.002 -- -- -- -- --
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TABLE 6

Probabilities of detecting the true break fraction for different deterministic patterns

(α1, β1, α2, β2) T  =  100 T  =  150 T  =  200 T  =  250 T  =  300 T  =  500

(5.0, 1.0, 10.0, 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

(0.5, 0.1, 1.0, 5.51% 19.98% 47.12% 72.63% 95.76% 100.00%

(0.5, -1.0, -1.0, 10.92% 38.37% 62.16% 78.97% 98.21% 100.00%

(-0.5, 1.0, 1.0, - 10.99% 39.25% 63.80% 79.06% 98.36% 100.00%

FIGURE 3
Original time series and first differences, with the correlograms and periodograms
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The large sample standard error under the null hypothesis of no autocorrelation is 1/√T or roughly ±0.046.
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TABLE 7

95%-confidence intervals of the non-rejection values of d using
Robinson's (1994) procedure

Type of disturbances With no regressors With a time trend
White noise [1.34  (1.39)  1.45] [1.34  (1.39)  1.45]

AR(1) [1.24  (1.31)  1.39] [1.24  (1.31)  1.39]
AR(2) [1.35  (1.47)  1.58] [1.37  (1.47)  1.58]

Bloomfield (1) [1.21  (1.31)  1.37] [1.22  (1.32)  1.38]
Bloomfield (2) [1.32  (1.41)  1.54] [1.31  (1.40)  1.54]

FIGURE 4

Estimates of d based on a local Whittle semiparametric approach (Robinson, 1995)
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The horizontal axes corresponds to the bandwidth parameter number m, while the vertical one refers to the order
of integration

TABLE 8

Rejection probabilities of Robinson’s (1994) parametric procedure with a single

ut / do 1.00 1.02 1.04 1.06 1.08 1.10 1.12 1.14 1.16 1.18 1.20

No regressors 1.000 0.504 0.000 0.000 0.000 0.000 0.043 0.961 1.000 1.000 1.000

A linear trend 1.000 0.637 0.000 0.000 0.000 0.000 0.004 0.694 1.000 1.000 1.000
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FIGURE 5

Estimates of d based on a Whittle semiparametric approach (Robinson, 1995) with
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The horizontal axes corresponds to the bandwidth parameter number m, while the vertical one refers to the
order of integration

FIGURE 6

Log of the U.S. Consumer Price Index
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TABLE 9

95%-confidence intervals of the non-rejection values of d using
Robinson's (1994) parametric procedure

Type of disturbances With no regressors With a linear trend

White noise [0.95  (1.00)  1.05] [1.32  (1.35)  1.39]

AR(1) [1.31  (1.39)  1.49] [1.37  (1.42)  1.48]

AR(2) [0.44  (1.57)  1.62] [1.35  (1.43)  1.52]

Bloomfield (1) [0.92  (0.99)  1.08] [1.37  (1.42)  1.50]

Bloomfield (2) [0.89  (1.02)  1.11] [1.37  (1.41)  1.52]
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FIGURE 7

Estimates of d based on a local Whittle semiparametric approach (Robinson, 1995)
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The horizontal axes corresponds to the bandwidth parameter number m, while the vertical one refers to the order of
integration.


