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ABSTRACT

This paper deals with the presence of long range dependence at the long run
and the cyclical frequencies in macroeconomic time series. We use a procedure
that allows us to test unit roots with fractional orders of integration in raw time
series. The tests are applied to an extended version of Nelson and Plosser’s
(1982) dataset, and the results show that, though the classic unit root
hypothesis cannot be rejected in most of the series, fractional degrees of
integration at both the zero and the cyclical frequencies are plausible alternatives
in some cases. Additionally, the root at the zero frequency seems to be more
important than the cyclical one for all series, implying that shocks affecting the
long run are more persistent than those affecting the cyclical part. The results
are consistent with the empirical fact observed in many macroeconomic series
that the long-term evolution is nonstationary, while the cyclical component is
stationary.
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[.  Introduction

Modelling macroeconomic time series is an area esfearch that has been widely
investigated during the last twenty years. Manyarg use a decomposition of the series
into a seasonal movement, representing the persiitetuation of the series over the
seasons, a trend movement, dealing with the longewolution, the business cycle
movement, and an erratic component. With respetitédong run behaviour, unit root
models have been widely employed. However, the natit approach is merely one of
the many models that can produce, via differencatgtionary series. In fact, it can be
viewed as a particular case of a much more gerdask of models called I(d) (or
fractionally integrated), where d can be any reainber. These models assume that
taking the d-difference of the data, the resultisgries are 1(0). For empirical
applications of I(d) models see, for example, tlpgrs of Diebold and Rudebusch
(1989), Balillie (1996) and Gil-Alana and Robinsd®97). The latter authors examined
an extended version of Nelson and Plosser's (18823set in terms of I(d) statistical
models, and they came to the conclusion that fraati models may be plausible
alternatives to the classical (1) representatfonshese series.

The 1(d) models can be interpreted as processésanviipectral density function
that is unbounded at the origin but positive amitdi at any other frequency. In other
words, though they are useful to describe the tgedes dependence between the
observations, they do not take into account thesipdgy of long memory at, for
example, the cyclical frequencies.

The present paper extends earlier work by adogtingdelling approach which,

instead of considering exclusively the componefdctihg the long-run frequency, also



takes into account the cyclical structure. Usinglaage structure that involves
simultaneously the zero and the cyclical frequesjciee can solve at least to some extent
the problem of misspecification that may arise wehpect to these two frequencies. We
show that our proposed method represents an apgealbernative to the increasingly
popular ARIMA (ARFIMA) specificationsilt is also consistent with the widely adopted
practice of modelling many economic series as temmonents, namely a secular or
growth component and a cyclical one. The formesuaged in most cases to be
nonstationary, is thought to be driven by growtbtdes, such as capital accumulation,
population growth and technology improvements, sthihe latter, assumed to be
covariance stationary, is generally associated Wittdamental factors which are the
primary cause of movements in the series.

The article is structured as follows: Section Isci#es the model of interest and
its implications in terms of economic policy angmhing. Section Ill briefly describes
the procedure that allows us to test the modelSdntion IV we include some Monte
Carlo simulations, examining the size and the popr@perties of the tests in finite
samples. In Section V we apply the tests to annebete version of Nelson and Plosser’s

(1982) dataset.

Il.  The statistical model

We assume that {xt = 1, 2, ..., T} is the observed time series, gatezl by the model:
—_1\91 - 2ydp , — _
@-L)™t @-2coswL+L%)"4 % = ug, t= 12,.., (1)
where L is the lag operator (Lx x.; for all t), w is a given real number,ig 1(0), and d

and d can be real numbers. We first consider the casshvdh= 0. Then, if ¢ > 0, the

process is said to be long memory at the long rurem frequency, also termed ‘strong



dependent’, because of the strong association betwbservations widely separated in
time. Note that the first polynomial in the leftdthside of (1) can be expressed in terms

of its Binomial expansion, such that for all regl d

a-L)% = i(?lj(—l)iu =1-d,L +&21_1)|_2 - . (2)

i=0
This type of process was introduced by Granger@12881) and Hosking (1981) and it
was theoretically justified in terms of aggregatimn Robinson (1978), Granger (1980)
and more recently, in terms of the duration of &sday Parke (1999). The differencing
parameter gplays a crucial role from both economic and dtiaa$ viewpoints. Thus, if
d O (0, 0.5), the series is covariance stationary anedan-reverting, having
autocovariances which decay much more slowly thaee of an ARMA process, in fact,
so slowly as to be non-summable; ifld [0.5, 1), the series is no longer stationary but i
is still mean-reverting, with the effect of the ske disappearing in the long run; while d
> 1 means nonstationarity and non-mean-reversias.ttierefore crucial to examine if
d; is smaller than or equal to or larger than 1. W nonsider the case of ¢ 0 and d

> 0. The process is then said to be long memotigeatyclical part. It was examined by
Gray et al. (1989, 1994), and they showed thaséhnes is stationary ificos wl< 1 and

d <0.50 orificos wl =1 and d < 0.25. They also showed that the sepolyhomial in

(1) can be expressed in terms of the Gegenbaugngoial C, , , such that, callingt =

COS W,
Q-2uL+ 172 = X Cja L), (3)
J:

for all d, # 0, where
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wherel (x) represents the Gamma function and a truncatiinbe required in (3) to
make the polynomial operational. When=d1, we say that the process contains a unit
root cycle, and its performance in the context adcroeconomic time series was

examined by Bierens (2001).

lll.  The testing procedure
Robinson (1994) considers a model of the form:
Vi = B'z + X% t=1,2, .., (4)
where y is a given raw time series; 8 a (kx1) vector of exogenous variabl@sis a
(kx1) vector of unknown parameters; and the regvassrrors x are of form as in (1).
The null hypothesis is
H: d=(dh, d) = (cho, Gho) = (5)
where d, and d, may be real values and thus, equation (1) becomes:
L-L)%0 @ - 2coswlL + L?)92 x =y, t= 12... (6)
Clearly, d, corresponds to the order of integration at the sequency, while g refers
to the degree of integration affecting the cycligait. Additionally, we can take w = w
21ir, r =2, ..., T/2, where r means the number ofquer required to complete the whole
cycle?
We next describe the test statistic. Based g1t5) the differenced series is given
by:

G = @-L)%0 @-2coswL+L?)920 y, - B's, (7)



J dy, 2\do
>5(@-L)"0 L -2coswlL + L7)"<0 v,

t=1 t=1

. T 1
5~(1an)

with s = (1- 1)%0 (@ - 2coswL + L2)920 z, and it is assumed to have spectral
density:

o2
f(A;1) = — 9(A;1), -mT<A < m,
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where the scalao® is known and g is a function of known form, whidepends on
frequencyA and the unknown (gx1) parameter veatounless g is a completely known
function (e.g., g= 1, as when wis white noise), we have to estimate the nuisance

parameter, for example byr = argmin o?(r), where T is a suitable subset of the
T

ot

RY Euclidean space, and

o T-1 _ '
a?(r) = X 9(sin) La(s), with
s=1
T . 2 2
1a(Ag) = 272T) Y2 36,78 ¢ A =7”S.
t=1

Note that the tests are purely parametric, reqgigpecific assumptions regarding the
short memory specification of.uThus, for example, ifus an AR process of form:

@(L)u; = &, then, g Jp(e™[?, with 0® = V(g), so that the AR coefficients are a function

of 1.
The test statistic, which is derived via Lagrangeltilier principle, adopts the
form:
R=_LaAla, )
o



where T is the sample size, and

*

&= ZrSY0We0 D0 67 =0%® = 2 a0 D IO
A 0 2
S()\s) = _Iogg()\s’-[)
ot
A= %{gws)ws)' - TUO)EA) (ZE0)E0) | isé(xsw(xs)']
Zsing
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WO =W ), WA W) =log

W, (A,) = log| 2 (cos\, - cosw)|;

and the summation on * in the above expressionsesA [1 M where M = {: -TIt< A <
A DO (Pk-An P+ A1), k=1, 2, ..., s} such thaty, k = 1, 2, ..., s are the distinct poles
of Y(A) on (41, ). Based on K (5), Robinson (1994) established that, under terta

regularity conditions:

A

R-g x5, a Too 9)
Thus, we are in a classical large-sample testihgatson. A test of (5) will reject K
against the alternative Hd # d, if R > X5., Where Prob g7 >)(§,a|Ho) = q.
Moreover the test is efficient in the Pitman seagainst local departures from the null,
that is, if the test is directed against local adepas of the form: kK 8 = 3T*2 ford# 0,
the limit distribution is ay> (v )with a non-centrality parameter v, that is optiraatier

Gaussianity of u
There exist other procedures for estimating andinggsthe fractionally
differenced parameters. Ooms (1997) proposedtiestsd on seasonal fractional models.

Also, Hosoya (1997) established the limit theory lflang memory processes with the



singularities not restricted at the zero frequenayd proposed a set of quasi log-
likelihood statistics to be applied to raw timeisgr As in other standard large-sample
testing situations, Wald and LR test statisticsragdractional alternatives will have the

same null and local limit theory as the LM testfkobinson (1994).

IV. A Monte Carlo simulation study
The first thing we do is to compute finite-sampiigical values of the version of the tests
of Robinson (1994) described in Section Ill. We gyae Gaussian series obtained by the
routines GASDEV and RAN3 of Press, Flannery, Teslkpland Vetterling (1986), with
10,000 replications of each case, and compute rti@rieal distribution of the tests for
sample sizes T = 100, 200, 300, 500 and 1000 amdnab sizes of 10%, 5% and 1%.
Note that the empirical distribution is numericalhyariant to the orders of integration,
since the test statistic is computed based on tik differenced model, which is
supposed to be 1(0). However, it will take differsample values for each,vgince this
parameter appears in the specification of the dedistic, via@,(A). We computed the
test statistic given bﬁ in (8), testing | (5) in a model given by (1) with white noisg u
w =w, and values of r=3, 4, 5,6, 7 and 8.

(Insert Table 1 about here)

We observe that the finite-sample critical valuleghdly vary across r. If T = 100,

they are greater than those corresponding toythelistribution, however, increasing the
sample size, they approximate (non-monotonicallyXhe standard values of thg?

distribution, and, if T = 1000 the values are velgse to they?-distribution in all cases.

Table 2 examines the size and the power propesfidse tests. We assume that the true



model is given by (1) withid= d» = 1, white noise ¢yw = w;, and r = 6. The choice of r
is arbitrary. We tried other values of r and thguits were very similar to those reported
in the table. The alternatives are in all casestifsaal of form as in (6), with g, b, =
0.50 (0.25), 1.50, with r still equal to 6. That vee try all possible combinations from
(0.50, 0.50) to (1.50, 1.50) with 0.25 incrementBhe rejection frequencies
corresponding tod, = tbo = 1 will then indicate the sizes of the tests. Tibeninal size
is 5%, 10,000 replications were used in each casd, we compute the rejection
probabilities based on both the asymptotic andittite sample critical values.

(Insert Tables 2 and 3 about here)

We see that the sizes of the asymptotic testsnaadl cases too large though they
approximate to the nominal value of 5% with T. Tager size of the asymptotic tests is
also associated with some superior rejection freges relative to the finite sample
tests. However, we observe that even if the sasipkeis 100, the rejection probabilities
are relatively high for both tests, exceeding 0.50Practically all cases. Increasing the
sample size, the rejection frequencies become higinel if T = 300, they are close to 1
for all types of alternatives.

In the following table, we examine if the tests se@sitive to the choice of r. Table

3 reports the rejection frequenciesl%)fin (8), testing the null of two unit roots (i.€y,
=dyo=1)forvaluesr=3,4,5,7,8and 9, in a tmnuedel where g = o =1 and r = 6.
We see that if T = 100, the rejection probabilites low with r = 4 and 5. If T = 200, the
values are around 0.750 with r = 5, and if T = 30@y are practically 1 for all r. Thus,
we can conclude by saying that, though there isesbmas toward small r in small
samples, the tests have enough power to detecbthect choice of r, especially if T is

large.



V. The analysis of Nelson and Plosser’s (1982) dagéds

The extended version of the annual data set oftdenr US macroeconomic variables
analysed by Nelson and Plosser (1982) ends in 19B8. starting date is 1860 for
consumer price index and industrial production; 8% velocity; 1871 for stock prices;

1889 for GNP deflator and money stock; 1890 for leyment and unemployment rate;
1900 for bond yield, real wages and wages; and I80%ominal and real GNP and

GNP per capita. As Nelson and Plosser (1982),eaiés except the bond yield (interest
rate) are transformed to natural logarithms.

Gil-Alana and Robinson (1997) examined exactlysame dataset. However, they
exclusively concentrated on the zero frequency diddnot pay any attention to the
possible cyclical structure underlying the serf&stoss Tables 1 and 2 in that paper the
authors displayed the first fourteen sample autetations of the original series and
their first differences. In the latter table, thaytained significant values, especially at lag
1, but also values with some slow decay and/oricgicbscillation in some cases, which
could be indicative not only of fractional integomt but also of some cyclical
dependence.

Denoting each of the series by we employ throughout the model given by (4)

and (1) with z = (1,t), t= 1, (0, 0) otherwise. Thus, under,H5), the model becomes:
Y, =06, + it +x, t=12.. (10)
1-1L)%0 @-2coswL+L%)920 x, = uy,, t = 12 .., (11)
and if &, = 0, the model reduces to the case of long memeciusively at the long run

or zero frequency. We consider separately the cafdy = . = 0 a priori, (i.e.,
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including no regressors in the undifferenced médie)); 3o unknown and; = 0 a priori,
(i.e., with an intercept), angb and3; unknown (with an intercept and with a linear time

trend), and assume that w =w2rr, r indicating the number of time periods perleyc

We computed the statistie given by (8) for values;dand d, = 0, (0.01), 2, and r
=2, ..., T/2, assuming that is white noise. In other words, for each r, we pate the
test statistic for all possible combinations efathd d, with 0.01 increments. We do not
report, however, the results for all statisticspudph it was obtained that the null
hypothesis (5) was rejected for all values gfahd 4, if r was smaller than 4 or higher
than 7, implying that if a cyclical component isegent, its periodicity is constrained
between these two years. This is consistent wétethpirical findings in Canova (1998),
Burnside (1998), King and Rebelo (1999) and otlieas cycles occur between 3 and 8
years.

(Insert Figure 1 about here)

Figure 1 displays the {g d,,) combinations where H5) cannot be rejected at the
5% significance level, with r = 6 arfth = 31 = 0. We see in this figure that the results
substantially vary across the series. Thus, fomgte, starting with consumer prices, we
see that the non-rejection values are constraisteliden 0.9 and 1.3 forgdand between
0 and 0.40 for §. For GNP deflator, industrial production, S&P50@damoney stock,
di, still ranges between 0.75 and 1.5 whilg @ now between 0 and 0.70. There are
three series (interest rates, unemployment andciwglpwith d, around the unit root,
and with d, widely varying from 0 to 1.2 (interest rate); frahto 1.5 (unemployment),
and from O to 2 in case of velocity.

(Insert Figure 2 about here)
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For the remaining six series, (employment, wagesl, wages, and nominal, real
and real per capita GNP), the results (not repprexie less conclusive, obtaining two
unconnected sets of non-rejection values for eacies This may be an indication of
model misspecification. Thus, we also performed tdss, including an intercept, and
with an intercept and a linear time trenthe results for these series were simildooth
cases, and we display in Figure 2 those correspgridi the case of an intercépthe
results were here much more conclusive, with the-negection values of ;g and d,
forming a single compact set for each series. Fages, nominal, real and real per capita
GNP, d, moves between 0.80 and 1.75, wit chnging between 0 and 0.50. For real
wages and employment, the unit root at the zerquiacy is excluded in favour of
higher orders of integration, with granging between 1.05 and 1.75 ang lwktween 0
and 0.5. However, for these two series the intdraeps found to be statistically
insignificant across all non-rejected models, ahdst in what follows, we rely for
employment and real wages on the results bas¢d andp; = 0. Also, it is important to
note here that, with respect to the cyclical fremye the null hypothesis cannot be
rejected in any series withgk= 0. However, this case is in many cases “leswlgleon-
rejected” (in the sense that they display lowemajptgs) than with positive values af,d

Table 4 shows, for each series, the values;padd d, that produce the lowest
statistics across the d’s, for a given r = 6 n@ndp, = 0 a priori in case of the eight
series presented in Figure 1, plus employment ealdwages, anfly unknown ang; =0
for the remaining four series in Figure 2. Theséues should approximate to the
maximum likelihood estimatesWe observe that, only for CPI and money stogk,isl
higher than 1. It is exactly 1 for stock pricesd d@nis strictly below 1 (and thus showing

mean reversion) for the remaining series. With eespo the cyclical component, the

12



values are exactly O for half of the series (nomin@al, real per capita GNP, GNP
deflator, CPI, stock prices and employment), aredhighest values are obtained in the
cases of interest rate,{(d= 0.07), industrial production index (0.08) anceoployment
(0.11). Of particular interest is the case of themaployment rate: it presents the lowest
degree of integration at the zero frequengy £d0.84) and the highest one at the cyclical
frequency (g, = 0.11). The results presented across this sestiow little evidence of
fractional integration in the Nelson and Plossefl®82) dataset. Thus, the null
hypothesis of a unit root (i.e.,& 1, & = 0) is practically never rejected, though
fractional degrees of integration at both the zmerd the cyclical frequencies seem to be
plausible alternatives in some of the series.

(Insert Tables 4 and 5 about here)

Table 5 reports the first 20 impulse responsesémh of the selected models in
Table 4. These values were obtained through theddgnomials in (2) and (3), noting
that % in (1) can be expressed as

x = (L-L)"% @-2coswL+L%)™ %2y, t= 12.,
and thus,
X = [§ aijj(E bij]ut = § Cjl—j, (12)
j=0 j=0 j=0

where the care obtained using all the linear combinationthantwo polynomials above.
Note, however, that since we have a single innomatierm, we cannot use the
interpretation based on a zero-cyclical frequenegothposition with different shocks,
but it allows us to examine the effect that a shbak on the system. As expected, all
series are highly persistent, though all excemelunf them (CPI, stock prices and money

stock) present mean reverting behaviour, with shatitkappearing in the very long run.

13



We observe that even 20 periods after the initiack, 90% of the effect remains in most
of the series; 75% in case of velocity and realesagnd around 50% for unemployment
and industrial production index.

(Insert Figure 3 about here)

In spite of the fact that we cannot separate thectf from zero and the cyclical
frequencies in terms of the impulse responses sugcase a unique innovation term, we
can still consider, ceteris paribus, each of tHects separately. Figure 3 displays the
plots of the impulse responses for the joint effegtand for each component @nd b)
separately, for a 50-period horizon, in the foutesewith a potential fractional degree of
cyclical behaviour: unemployment rate, industriabquction index, interest rate and
velocity). It is observed that the effect of thatstnary cyclical frequency is very small
compared with the long-term evolution, and it beesmegligible 10 periods after the
shock.

The tests were also performed allowing autocomdlatisturbances. In particular,
we use AR(1) and AR(2) processes, and the reswdte practically the same as those
reported here for the case of white noiséAttempting to summarize the conclusions, we
are left with the impression that the I(1) hypotkemdvocated by Nelson and Plosser
(1982) cannot statistically be rejected in mosthef series, though for some of them the
zero and the cyclical frequencies have a compaooigong memory behaviour. Also, the
order of integration seems to be higher at the lnmgor zero frequency than at the
cyclical one, implying that shocks affecting thenf@r component are more persistent
than those affecting the cyclical part. For theozé&equency, these values fluctuate
around the unit root in all series, being posstiher than 1 for CPl and money stock.

For the cyclical part, dranges between 0 and 0.5 for most of the sengslying that

14



cycles are stationary. These values are in somesdaor close to 0, and the highest
values are obtained for unemployment, industri@dpction index, interest rate and

velocity.

VI. Concluding comments

In this paper we have presented a procedure foulsineously consider roots with
integer and fractional orders of integration at fibveg run and the cyclical frequencies.
The tests are very general and allow us to congidgrarticular cases the situations of
unit roots either at zero or at the cyclical comgus. However, unlike other procedures,
they have standard null and local limit distribugo A simulation study was conducted to
examine the size and the power properties of thts tm finite samples, the results
showing that they behave relatively well even veithall sample sizes.

The tests were applied to an extended version dfddeand Plosser’'s (1982)
dataset. These series were also examined by Cndt&Rathman (1994) and Gil-Alana
and Robinson (1997). However, in these two pagersatithors exclusively concentrate
on the long run or zero frequency and do not payaitention to the cyclical structure
underlying the series. Using our approach, thelt®substantially vary across the series.
However, a common pattern is obtained for all a#nth with values of @ ranging
around 1 and 4 constrained to be O or slightly above. Thus, weiobevidence of long
memory with respect to the long run frequency ded en some cases with respect to the
cyclical frequency, though the root at the zeraqiiency seems to present a higher
degree of integration, with shocks persisting ferev

It should also be important to stress that thetemee of unit roots in most of the

series implies a stochastic trend and thus, theemoah be alternatively written in the
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form of an orthogonal zero-cyclical frequency deposition with an ARMA cycle,

which does not exhibit long memory, especiallyhnde series with,d equal to or close

to 0. This specification is not nested in the mopledsented here, but it might be an
alternative way of modelling its behaviour. Finaltile issue of data mining is another
worry for economists when looking at time seriesdals. There are so many possible
models that may be relevant and so many modellir@ces that econometricians are
almost sure to find something purely by data miniagr this reason, sequential testing
and other procedures based on information critarea widely distrusted, and model
averaging methods have become very popular. Thusjght also be worthwhile to

broaden the class of models under considerationadddess the data mining problem,
along with other issues (e.g., structural brealshgi averaging approaches. Work in

these directions is now under progress.
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Notes

1. We define an 1(0) process as a covariance statfgorocess with spectral density
function that is positive and finite at any freqogmon the spectrum.

2. Note that if r = 1, the cyclical part reducesatol(d) process, with the singularity
occurring exclusively at the long run or zero frenoy.

3. These conditions are very mild, and impose aingate difference assumption on
W, which is substantially weaker than Gaussianity.

4. In fact, the inclusion of a linear time trend wiamsind to be insignificant in
practically all cases. Note that the tests areuatatl under the null, which is I(0) and
thus, standard t-tests apply.

5. Note that Robinson’s (1994) procedure is basethenWhittle function, which is

an approximation to the likelihood function.
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TABLE 1

Finite sample critical values

a% T/ 3 4 5 6 7 8
100 5.47 4.04 4.36 4.60 4.26 4.24
200 4.87 4.03 4.16 4.54 4.23 4.10
10% 300 4.05 4.19 4.22 4.27 4.40 4.46
500 4.79 4.39 4.24 4.56 4.54 4.65
1000 4.63 4.61 4.65 4.60 4.68 4.61
100 6.78 5.70 5.83 6.22 5.84 5.63
200 6.17 5.48 5.09 5.60 5.61 5.50
5% 300 5.16 5.27 5.35 5.34 5.36 5.45
500 6.04 5.44 5.46 5.69 5.65 5.75
1000 5.93 5.96 5.97 5.94 5.90 6.00
100 9.35 9.19 9.22 11.16 8.71 9.09
200 8.88 8.95 7.93 9.22 9.84 9.43
1% 300 7.62 9.64 7.86 7.34 8.19 8.45
500 10.32 9.10 8.76 9.66 8.95 10.27
1000 9.24 9.32 9.19 9.19 9.17 9.22

10,000 replications were used in each case. Thieatrvalues corresponding to th,e% —distribution are
4.605, 5.991 and 9.210 at the 10%, 5% and 1% gignife levels respectively.
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TABLE 2
Rejection frequencies against fractionally integraed alternatives

d d, T = 100 T = 200 T = 300

FSCV ASCV FSCV ASCV FSCV ASCV
0.50 0.50 1.000 1.000 1.000 1.000 1.000 1.00
0.50 0.75 0.992 0.999 1.000 1.000 1.000 1.00
0.50 1.00 0.987 0.998 1.000 1.000 1.000 1.00
0.50 1.25 0.992 0.999 1.000 1.000 1.000 1.00
0.50 1.50 0.991 0.999 1.000 1.000 1.000 1.00
0.75 0.50 1.000 1.000 1.000 1.000 1.000 1.00
0.75 0.75 0.776 0.790 0.998 0.999 1.000 1.00
0.75 1.00 0.564 0.534 0.887 0.876 0.999 1.00
0.75 1.25 0.580 0.560 0.973 0.973 0.997 1.00
0.75 1.50 0.589 0.623 1.000 1.000 0.943 0.95
1.00 0.50 1.000 1.000 1.000 1.000 1.000 1.00
1.00 0.75 0.690 0.678 0.954 0.966 0.997 0.99
1.00 1.00 0.050 0.060 0.050 0.056 0.050 0.05
1.00 1.25 0.311 0.345 0.380 0.460 0.444 0.49
1.00 1.50 0.576 0.657 0.999 0.999 0.999 1.00
1.25 0.50 1.000 1.000 1.000 1.000 1.000 1.00
1.25 0.75 0.834 0.876 1.000 1.000 1.000 1.00
1.25 1.00 0.354 0.355 0.798 0.808 1.000 1.00
1.25 1.25 0.674 0.786 0.999 1.000 1.000 1.00
1.25 1.50 0.994 0.999 1.000 1.000 1.000 1.00
1.50 0.50 1.000 1.000 1.000 1.000 1.000 1.00
1.50 0.75 0.970 0.989 1.000 1.000 1.000 1.00
1.50 1.00 0.889 0.923 1.000 1.000 1.000 1.00
1.50 1.25 0.997 0.999 1.000 1.000 1.000 1.00
1.50 1.50 1.000 1.000 1.000 1.000 1.000 1.00

O O O O O O O O O O O O N U O 0O O 0o o o o o o o o

FSCV means finite-sample critical values and ASE#érs to the asymptotic values. In bold, the sizhe test.
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TABLE 3

Rejection frequencies against misspecification in r

; T = 100 T = 200 T = 300
FSCV ASCV FSCV ASCV FSCV ASCV

3 1.000 1.000 1.000 1.000 1.000 1.000
4 0.050 0.049 0.034 0.030 0.110 0.100
5 0.019 0.016 0.780 0.750 0.990 0.978
7 1.000 0.979 1.000 1.000 1.000 1.000
8 1.000 1.000 1.000 1.000 1.000 1.000
9 1.000 1.000 1.000 1.000 1.000 1.000

FSCV means finite-sample critical values, whileQA&refers to the asymptotic values.
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FIGURE 1

Non-rejection values of d and d, for an extended version of Nelson and Plosser'sq82) dataset
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FIGURE 2

Non-rejection values of d and d; for an extended version of Nelson and Plosser'sq82) dataset
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TABLE 4

Values of d, and d,, that produce the lowest statistics across;c&nd d,

Series do (O-frequency) gk (Cyclical frequency Test statistic

CONSUMER PRICE INDEX 1.06 0.00 0.31115

STOCK PRICES S&P 1.00 0.00 0.00952
GNP DEFLATOR 0.96 0.00 0.00097
INDUSTRIAL PRODUCTION 0.85 0.08 0.00277
MONEY STOCK 1.07 0.01 0.00039
INTEREST RATE (BOND YIELD) 0.99 0.07 0.00100
UNEMPLOYMENT RATE 0.84 0.11 0.00195
VELOCITY 0.92 0.06 0.00289
EMPLOYMENT 0.97 0.00 0.00835
NOMINAL GNP 0.97 0.00 0.02335
WAGES 0.95 0.01 0.00039

REAL WAGES 0.93 0.02 0.00279

REAL GNP 0.97 0.00 0.01968

REAL PER CAPITA GNP 0.97 0.00 0.02220
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TABLE 5

Impulse response functions for each of the Nelsomd Plosser’s (1982) dataset

CPI SP DEF IPI MON| BY UNE| VEL| EMP| NOM| WAG| RWG| REA] CAPR
0 [ 1.000] 1.000f 1.000 1.00p 1.000 1.000 1.000 1.000 1,000 1/00000 | 1.000| 1.00Q0 1.00
1 ]1.059| 1.000f 0.959 0.93p 1.080 1.060 0.949 0.980 0/970 00/9P.959 | 0.950{ 0.97¢0 0.97
2 11091 1.000f 0.940 0.81Fy 1.133 1.021 0.816 0.910 0955 O0[99030 | 0.906| 0.955 0.95
3 | 1.113]| 1.000f 0.928 0.722 1.132 0.969 0.696 0.844 00945 0[94308 | 0.871| 0.945 0.94
4 | 1.130| 1.0000 091§ 0.678 1.149 0947 0.644 0.813 0/938 0{988395 | 0.852| 0.93§ 0.93
5 ] 1143 1.000f 0.911 0.679p 1.17 0.9%9 0.653 0.815 0,933 0(98388 | 0.844| 0.933 0.93
6 | 1.155| 1.000f 0.90% 0.692 1.183 0.984 0.680 0.8326 0,928 0[9P8384 | 0.841| 0.92§ 0.92
7 | 1.165] 1.000f 0.900 0.688 1.197 0.994 0.680 0.825 0924 0924879 | 0.836]| 0.924 0.92
8 [ 1.173] 1.000f 0.895 0.662 1.206 0.984 0.647 0.808 0921 0[921872 | 0.825| 0.921 0.92
9 | 1181 1.000f 0.891 0.63p 1.233 0.965 0.605 0.786 0,917 0[90865 | 0.814| 0.917 0.91
10| 1.188| 1.000 0.888 0.613 1.221 0.9%5 0.584 0.y73 0/915 50,90.860 | 0.807] 0.91% 0.91
11| 1.195| 1.000 0.88% 0.61p 1229 0961 0591 0.y74 0/912 2090.857 | 0.804| 0.912 0.91
12| 1.201] 1.000 0.882 0.623 1.238 0.9y4 0.07 0.y81 0/910 0090.855 | 0.803| 0.910 0.91
13| 1.206| 1.000 0.879 0.622 1.246 0980 0.608 0.y81 0/908 80,90.852 | 0.800/ 0.908 0.90
141 1.212] 1.000 0.87¢ 0.60f 1.251 0.9y4 0.589 0.y71 0/906 60,90.848 | 0.794| 0.906 0.90
15| 1.216| 1.000 0.874 0.588 1.256 0.962 0.563 0.y58 0/904 40.90.844 | 0.788] 0.904 0.90
16| 1.221| 1.000 0.872 0578 1.261 0.9%6 0.550 0.y50 0/902 20,90.841 | 0.783] 0.902 0.90
17| 1.225| 1.000 0.870 0.58D 1.266 0.960 0.556 0.y51 0/901 10/90.839 | 0.781] 0.901 0.90
18| 1.229| 1.000 0.868 0586 1.292 0.9¢9 0.567 0.y55 0/899 90,89.838 | 0.780| 0.899 0.89
19| 1.233] 1.000 0.866 0.58p 1.248 0.9Y3 0.569 0.y56 0/898 80,89.836 | 0.779| 0.898 0.89
20| 1.237| 1.0000 0.864 0.57p 1.282 0.969 0.555 0.y49 0/897 7089.834 | 0.775| 0.897 0.89

N 00 O F NN 5O 0o © NN o ¥ &S W Ww W ot

CPI: Consumer price index; SP: Stock prices; DEFPGflator; IPI: Industrial production index; MONtoney stock;
BY: Bond Yield; UNE: Unemployment rate; VEL: VelociEMP: Employment; NOM: Nominal GNP; WAG: Wages;
REW: Real wages; REA: Real GNP; CAP: Real GNP per capita
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FIGURE 3

Impulse response functions
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