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ABSTRACT

This paper deals with the presence of long range dependence at the long run
and the cyclical frequencies in macroeconomic time series. We use a procedure
that allows us to test unit roots with fractional orders of integration in raw time
series. The tests are applied to an extended version of Nelson and Plosser’s
(1982) dataset, and the results show that, though the classic unit root
hypothesis cannot be rejected in most of the series, fractional degrees of
integration at both the zero and the cyclical frequencies are plausible alternatives
in some cases. Additionally, the root at the zero frequency seems to be more
important than the cyclical one for all series, implying that shocks affecting the
long run are more persistent than those affecting the cyclical part. The results
are consistent with the empirical fact observed in many macroeconomic series
that the long-term evolution is nonstationary, while the cyclical component is
stationary.
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I. Introduction

Modelling macroeconomic time series is an area of research that has been widely

investigated during the last twenty years. Many authors use a decomposition of the series

into a seasonal movement, representing the persistent fluctuation of the series over the

seasons, a trend movement, dealing with the long-run evolution, the business cycle

movement, and an erratic component. With respect to the long run behaviour, unit root

models have been widely employed. However, the unit root approach is merely one of

the many models that can produce, via differencing, stationary series. In fact, it can be

viewed as a particular case of a much more general class of models called I(d) (or

fractionally integrated), where d can be any real number. These models assume that

taking the d-difference of the data, the resulting series are I(0).1 For empirical

applications of I(d) models see, for example, the papers of Diebold and Rudebusch

(1989), Baillie (1996) and Gil-Alana and Robinson (1997). The latter authors examined

an extended version of Nelson and Plosser’s (1982) dataset in terms of I(d) statistical

models, and they came to the conclusion that fractional models may be plausible

alternatives to the classical I(1) representations for these series.

The I(d) models can be interpreted as processes with a spectral density function

that is unbounded at the origin but positive and finite at any other frequency. In other

words, though they are useful to describe the time series dependence between the

observations, they do not take into account the possibility of long memory at, for

example, the cyclical frequencies.

The present paper extends earlier work by adopting a modelling approach which,

instead of considering exclusively the component affecting the long-run frequency, also
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takes into account the cyclical structure. Using a large structure that involves

simultaneously the zero and the cyclical frequencies, we can solve at least to some extent

the problem of misspecification that may arise with respect to these two frequencies. We

show that our proposed method represents an appealing alternative to the increasingly

popular ARIMA (ARFIMA) specifications. It is also consistent with the widely adopted

practice of modelling many economic series as two components, namely a secular or

growth component and a cyclical one. The former, assumed in most cases to be

nonstationary, is thought to be driven by growth factors, such as capital accumulation,

population growth and technology improvements, whilst the latter, assumed to be

covariance stationary, is generally associated with fundamental factors which are the

primary cause of movements in the series.

The article is structured as follows: Section II describes the model of interest and

its implications in terms of economic policy and planning. Section III briefly describes

the procedure that allows us to test the model. In Section IV we include some Monte

Carlo simulations, examining the size and the power properties of the tests in finite

samples. In Section V we apply the tests to an extended version of Nelson and Plosser’s

(1982) dataset.

II. The statistical model

We assume that {xt, t = 1, 2, …, T} is the observed time series, generated by the model:

    ,..,2,1,)cos21()1( 221 ==+−− tuxLLwL tt
dd       (1)

where L is the lag operator (Lxt = xt-1 for all t), w is a given real number, ut is I(0), and d1

and d2 can be real numbers. We first consider the case when d2 = 0. Then, if d1 > 0, the

process is said to be long memory at the long run or zero frequency, also termed ‘strong
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dependent’, because of the strong association between observations widely separated in

time. Note that the first polynomial in the left-hand-side of (1) can be expressed in terms

of its Binomial expansion, such that for all real d1,
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This type of process was introduced by Granger (1980, 1981) and Hosking (1981) and it

was theoretically justified in terms of aggregation by Robinson (1978), Granger (1980)

and more recently, in terms of the duration of shocks by Parke (1999). The differencing

parameter d1 plays a crucial role from both economic and statistical viewpoints. Thus, if

d1 ∈ (0, 0.5), the series is covariance stationary and mean-reverting, having

autocovariances which decay much more slowly than those of an ARMA process, in fact,

so slowly as to be non-summable; if d1 ∈ [0.5, 1), the series is no longer stationary but it

is still mean-reverting, with the effect of the shocks disappearing in the long run; while d1

≥  1 means nonstationarity and non-mean-reversion. It is therefore crucial to examine if

d1 is smaller than or equal to or larger than 1. We now consider the case of d1 = 0 and d2

> 0. The process is then said to be long memory at the cyclical part. It was examined by

Gray et al. (1989, 1994), and they showed that the series is stationary if cos w < 1 and

d < 0.50 or if cos w = 1 and d < 0.25. They also showed that the second polynomial in

(1) can be expressed in terms of the Gegenbauer polynomial ,C
2d,j  such that, calling µ =

cos w,
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for all d2 ≠ 0, where
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where Γ(x) represents the Gamma function and a truncation will be required in (3) to

make the polynomial operational. When d2 = 1, we say that the process contains a unit

root cycle, and its performance in the context of macroeconomic time series was

examined by Bierens (2001).

III. The testing procedure

Robinson (1994) considers a model of the form:

,...,2,1' =+= txzy ttt β                  (4)

where yt is a given raw time series; zt is a (kx1) vector of exogenous variables; β is a

(kx1) vector of unknown parameters; and the regression errors xt are of form as in (1).

The null hypothesis is

         Ho:   d ≡ (d1, d2,)
’ = (d1o, d2o)

’ ≡ do              (5)

where d1o and d2o may be real values and thus, equation (1) becomes:

....,2,1,)cos21()1( 221 ==+−− tuxLLwL tt
odod    (6)

Clearly, d1o corresponds to the order of integration at the zero frequency, while d2o refers

to the degree of integration affecting the cyclical part. Additionally, we can take w = wr =

2π/r, r = 2, … , T/2, where r means the number of periods required to complete the whole

cycle.2

We next describe the test statistic. Based on Ho (5), the differenced series is given

by:

,'ˆ)cos21()1(ˆ 221
tt

odod
t syLLwLu β−+−−= (7)
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where the scalar σ2 is known and g is a function of known form, which depends on

frequency λ and the unknown (qx1) parameter vector τ. Unless g is a completely known

function (e.g., g ≡ 1, as when ut is white noise), we have to estimate the nuisance

parameter τ, for example by )(minargˆ 2
* τστ τ T∈

= , where T* is a suitable subset of the

Rq Euclidean space, and
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Note that the tests are purely parametric, requiring specific assumptions regarding the

short memory specification of ut. Thus, for example, if ut is an AR process of form:

φ(L)ut = εt, then, g = |φ(eiλ)|-2, with σ2 = V(εt), so that the AR coefficients are a function

of τ.

The test statistic, which is derived via Lagrange Multiplier principle, adopts the

form:

,ˆˆ'ˆ
ˆ
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where T is the sample size, and
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and the summation on * in the above expressions is over λ ∈ M where M = {λ: -π < λ <

π, λ ∉ (ρk - λ1, ρk + λ1), k = 1, 2, …, s} such that ρk, k = 1, 2, …, s are the distinct poles

of ψ(λ) on (-π, π]. Based on Ho (5), Robinson (1994) established that, under certain

regularity conditions:3

.,ˆ 2
2 ∞→→ TasR d χ (9)

Thus, we are in a classical large-sample testing situation. A test of (5) will reject Ho

against the alternative Ha: d ≠ do if R̂  > 2
,2 αχ , where Prob ( 2

2χ  > oH2
,2 αχ ) = α.

Moreover the test is efficient in the Pitman sense against local departures from the null,

that is, if the test is directed against local departures of the form: Ha: θ = δT-1/2, for δ ≠ 0,

the limit distribution is a ),(2
2 vχ  with a non-centrality parameter v, that is optimal under

Gaussianity of ut.

There exist other procedures for estimating and testing the fractionally

differenced parameters. Ooms (1997) proposed tests based on seasonal fractional models.

Also, Hosoya (1997) established the limit theory for long memory processes with the
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singularities not restricted at the zero frequency, and proposed a set of quasi log-

likelihood statistics to be applied to raw time series. As in other standard large-sample

testing situations, Wald and LR test statistics against fractional alternatives will have the

same null and local limit theory as the LM tests of Robinson (1994).

IV. A Monte Carlo simulation study

The first thing we do is to compute finite-sample critical values of the version of the tests

of Robinson (1994) described in Section III. We generate Gaussian series obtained by the

routines GASDEV and RAN3 of Press, Flannery, Teukolsky and Vetterling (1986), with

10,000 replications of each case, and compute the empirical distribution of the tests for

sample sizes T = 100, 200, 300, 500 and 1000 and nominal sizes of 10%, 5% and 1%.

Note that the empirical distribution is numerically invariant to the orders of integration,

since the test statistic is computed based on the null differenced model, which is

supposed to be I(0). However, it will take different sample values for each wr, since this

parameter appears in the specification of the test statistic, via ψ2(λ). We computed the

test statistic given by R̂  in (8), testing Ho (5) in a model given by (1) with white noise ut,

w = wr, and values of r = 3, 4, 5, 6, 7 and 8.

(Insert Table 1 about here)

We observe that the finite-sample critical values slightly vary across r. If T = 100,

they are greater than those corresponding to the 2
2χ  distribution, however, increasing the

sample size, they approximate (non-monotonically) to the standard values of the 22χ

distribution, and, if T = 1000 the values are very close to the 2
2χ -distribution in all cases.

Table 2 examines the size and the power properties of the tests. We assume that the true
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model is given by (1) with d1 = d2 = 1, white noise ut, w = wr, and r = 6. The choice of r

is arbitrary. We tried other values of r and the results were very similar to those reported

in the table. The alternatives are in all cases fractional of form as in (6), with d1o, d2o =

0.50 (0.25), 1.50, with r still equal to 6. That is, we try all possible combinations from

(0.50, 0.50) to (1.50, 1.50) with 0.25 increments. The rejection frequencies

corresponding to d1o, = d2o = 1 will then indicate the sizes of the tests. The nominal size

is 5%, 10,000 replications were used in each case, and we compute the rejection

probabilities based on both the asymptotic and the finite sample critical values.

(Insert Tables 2 and 3 about here)

We see that the sizes of the asymptotic tests are in all cases too large though they

approximate to the nominal value of 5% with T. The larger size of the asymptotic tests is

also associated with some superior rejection frequencies relative to the finite sample

tests. However, we observe that even if the sample size is 100, the rejection probabilities

are relatively high for both tests, exceeding 0.500 in practically all cases. Increasing the

sample size, the rejection frequencies become higher, and if T = 300, they are close to 1

for all types of alternatives.

In the following table, we examine if the tests are sensitive to the choice of r. Table

3 reports the rejection frequencies of R̂  in (8), testing the null of two unit roots (i.e., d1o,

= d2o = 1) for values r = 3, 4, 5, 7, 8 and 9, in a true model where d1o = d2o = 1 and r = 6.

We see that if T = 100, the rejection probabilities are low with r = 4 and 5. If T = 200, the

values are around 0.750 with r = 5, and if T = 300, they are practically 1 for all r. Thus,

we can conclude by saying that, though there is some bias toward small r in small

samples, the tests have enough power to detect the correct choice of r, especially if T is

large.
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V. The analysis of Nelson and Plosser’s (1982) dataset

The extended version of the annual data set of fourteen US macroeconomic variables

analysed by Nelson and Plosser (1982) ends in 1988. The starting date is 1860 for

consumer price index and industrial production; 1869 for velocity; 1871 for stock prices;

1889 for GNP deflator and money stock; 1890 for employment and unemployment rate;

1900 for bond yield, real wages and wages; and 1909 for nominal and real GNP and

GNP per capita. As Nelson and Plosser (1982), all series except the bond yield (interest

rate) are transformed to natural logarithms.

Gil-Alana and Robinson (1997) examined exactly the same dataset. However, they

exclusively concentrated on the zero frequency and did not pay any attention to the

possible cyclical structure underlying the series. Across Tables 1 and 2 in that paper the

authors displayed the first fourteen sample autocorrelations of the original series and

their first differences. In the latter table, they obtained significant values, especially at lag

1, but also values with some slow decay and/or cyclical oscillation in some cases, which

could be indicative not only of fractional integration but also of some cyclical

dependence.

Denoting each of the series by yt, we employ throughout the model given by (4)

and (1) with zt  = (1,t)’, t ≥ 1, (0, 0)’ otherwise. Thus, under Ho (5), the model becomes:

...,2,1,10 =++= txty tt ββ        (10)

....,,2,1,)cos21()1( 221 ==+−− tuxLLwL tt
odod          (11)

and if d2o = 0, the model reduces to the case of long memory exclusively at the long run

or zero frequency. We consider separately the cases of β0 = β1 = 0 a priori, (i.e.,
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including no regressors in the undifferenced model (10)); β0 unknown and β1 = 0 a priori,

(i.e., with an intercept), and β0 and β1 unknown (with an intercept and with a linear time

trend), and assume that w = wr = 2π/r, r indicating the number of time periods per cycle.

We computed the statistic R̂  given by (8) for values d1o and d2o = 0, (0.01), 2, and r

= 2, …, T/2, assuming that ut is white noise. In other words, for each r, we compute the

test statistic for all possible combinations of d1 and d2, with 0.01 increments. We do not

report, however, the results for all statistics, though it was obtained that the null

hypothesis (5) was rejected for all values of d1o and d2o if r was smaller than 4 or higher

than 7, implying that if a cyclical component is present, its periodicity is constrained

between these two years. This is consistent with the empirical findings in Canova (1998),

Burnside (1998), King and Rebelo (1999) and others that cycles occur between 3 and 8

years.

(Insert Figure 1 about here)

Figure 1 displays the (d1o, d2o) combinations where Ho (5) cannot be rejected at the

5% significance level, with r = 6 and β0 = β1 = 0. We see in this figure that the results

substantially vary across the series. Thus, for example, starting with consumer prices, we

see that the non-rejection values are constrained between 0.9 and 1.3 for d1o and between

0 and 0.40 for d2o. For GNP deflator, industrial production, S&P500 and money stock,

d1o still ranges between 0.75 and 1.5 while d2o is now between 0 and 0.70. There are

three series (interest rates, unemployment and velocity), with d1o around the unit root,

and with d2o widely varying from 0 to 1.2 (interest rate); from 0 to 1.5 (unemployment),

and from 0 to 2 in case of velocity.

(Insert Figure 2 about here)
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For the remaining six series, (employment, wages, real wages, and nominal, real

and real per capita GNP), the results (not reported) were less conclusive, obtaining two

unconnected sets of non-rejection values for each series. This may be an indication of

model misspecification. Thus, we also performed the tests, including an intercept, and

with an intercept and a linear time trend.  The results for these series were similar in both

cases, and we display in Figure 2 those corresponding to the case of an intercept.4 The

results were here much more conclusive, with the non-rejection values of d1o and d2o

forming a single compact set for each series. For wages, nominal, real and real per capita

GNP, d1o moves between 0.80 and 1.75, with d2o ranging between 0 and 0.50. For real

wages and employment, the unit root at the zero frequency is excluded in favour of

higher orders of integration, with d1o ranging between 1.05 and 1.75 and d2o between 0

and 0.5. However, for these two series the intercept was found to be statistically

insignificant across all non-rejected models, and thus, in what follows, we rely for

employment and real wages on the results based on β0 and β1 = 0. Also, it is important to

note here that, with respect to the cyclical frequency, the null hypothesis cannot be

rejected in any series with d2o = 0. However, this case is in many cases “less clearly non-

rejected” (in the sense that they display lower p-values) than with positive values of d2o.

Table 4 shows, for each series, the values of d1o and d2o that produce the lowest

statistics across the d’s, for a given r = 6 and β0 and β1 = 0 a priori in case of the eight

series presented in Figure 1, plus employment and real wages, and β0 unknown and β1 = 0

for the remaining four series in Figure 2. These values should approximate to the

maximum likelihood estimates.5 We observe that, only for CPI and money stock, d1o is

higher than 1. It is exactly 1 for stock prices, and it is strictly below 1 (and thus showing

mean reversion) for the remaining series. With respect to the cyclical component, the
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values are exactly 0 for half of the series (nominal, real, real per capita GNP, GNP

deflator, CPI, stock prices and employment), and the highest values are obtained in the

cases of interest rate (d2o = 0.07), industrial production index (0.08) and unemployment

(0.11). Of particular interest is the case of the unemployment rate: it presents the lowest

degree of integration at the zero frequency (d1o = 0.84) and the highest one at the cyclical

frequency (d2o = 0.11). The results presented across this section show little evidence of

fractional integration in the Nelson and Plosser’s (1982) dataset. Thus, the null

hypothesis of a unit root (i.e., d1 = 1, d2 = 0) is practically never rejected, though

fractional degrees of integration at both the zero and the cyclical frequencies seem to be

plausible alternatives in some of the series.

(Insert Tables 4 and 5 about here)

Table 5 reports the first 20 impulse responses for each of the selected models in

Table 4. These values were obtained through the lag polynomials in (2) and (3), noting

that xt in (1) can be expressed as

,..,2,1,)cos21()1( 221 =+−−= −− tuLLwLx t
dd

t
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where the cj are obtained using all the linear combinations in the two polynomials above.

Note, however, that since we have a single innovation term, we cannot use the

interpretation based on a zero-cyclical frequency decomposition with different shocks,

but it allows us to examine the effect that a shock has on the system. As expected, all

series are highly persistent, though all except three of them (CPI, stock prices and money

stock) present mean reverting behaviour, with shocks disappearing in the very long run.
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We observe that even 20 periods after the initial shock, 90% of the effect remains in most

of the series; 75% in case of velocity and real wages, and around 50% for unemployment

and industrial production index.

(Insert Figure 3 about here)

In spite of the fact that we cannot separate the effects from zero and the cyclical

frequencies in terms of the impulse responses since we use a unique innovation term, we

can still consider, ceteris paribus, each of the effects separately. Figure 3 displays the

plots of the impulse responses for the joint effect (cj) and for each component (aj and bj)

separately, for a 50-period horizon, in the four series with a potential fractional degree of

cyclical behaviour: unemployment rate, industrial production index, interest rate and

velocity). It is observed that the effect of the stationary cyclical frequency is very small

compared with the long-term evolution, and it becomes negligible 10 periods after the

shock.

The tests were also performed allowing autocorrelated disturbances. In particular,

we use AR(1) and AR(2) processes, and the results were practically the same as those

reported here for the case of white noise ut. Attempting to summarize the conclusions, we

are left with the impression that the I(1) hypothesis advocated by Nelson and Plosser

(1982) cannot statistically be rejected in most of the series, though for some of them the

zero and the cyclical frequencies have a component of long memory behaviour. Also, the

order of integration seems to be higher at the long run or zero frequency than at the

cyclical one, implying that shocks affecting the former component are more persistent

than those affecting the cyclical part. For the zero frequency, these values fluctuate

around the unit root in all series, being possibly higher than 1 for CPI and money stock.

For the cyclical part, d2 ranges between 0 and 0.5 for most of the series, implying that
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cycles are stationary. These values are in some cases 0 or close to 0, and the highest

values are obtained for unemployment, industrial production index, interest rate and

velocity.

VI. Concluding comments

In this paper we have presented a procedure for simultaneously consider roots with

integer and fractional orders of integration at the long run and the cyclical frequencies.

The tests are very general and allow us to consider as particular cases the situations of

unit roots either at zero or at the cyclical components. However, unlike other procedures,

they have standard null and local limit distributions. A simulation study was conducted to

examine the size and the power properties of the tests in finite samples, the results

showing that they behave relatively well even with small sample sizes.

The tests were applied to an extended version of Nelson and Plosser’s (1982)

dataset. These series were also examined by Crato and Rothman (1994) and Gil-Alana

and Robinson (1997). However, in these two papers the authors exclusively concentrate

on the long run or zero frequency and do not pay any attention to the cyclical structure

underlying the series.  Using our approach, the results substantially vary across the series.

However, a common pattern is obtained for all of them, with values of d1o ranging

around 1 and d2o constrained to be 0 or slightly above. Thus, we obtain evidence of long

memory with respect to the long run frequency and also in some cases with respect to the

cyclical frequency, though the root at the zero frequency seems to present a higher

degree of integration, with shocks persisting forever.

It should also be important to stress that the existence of unit roots in most of the

series implies a stochastic trend and thus, the model can be alternatively written in the
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form of an orthogonal zero-cyclical frequency decomposition with an ARMA cycle,

which does not exhibit long memory, especially in those series with d2o equal to or close

to 0. This specification is not nested in the model presented here, but it might be an

alternative way of modelling its behaviour. Finally, the issue of data mining is another

worry for economists when looking at time series models. There are so many possible

models that may be relevant and so many modelling choices that econometricians are

almost sure to find something purely by data mining. For this reason, sequential testing

and other procedures based on information criteria are widely distrusted, and model

averaging methods have become very popular. Thus, it might also be worthwhile to

broaden the class of models under consideration and address the data mining problem,

along with other issues (e.g., structural breaks) using averaging approaches. Work in

these directions is now under progress.
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Notes

1. We define an I(0) process as a covariance stationary process with spectral density

function that is positive and finite at any frequency on the spectrum.

2. Note that if r = 1, the cyclical part reduces to an I(d) process, with the singularity

occurring exclusively at the long run or zero frequency.

3. These conditions are very mild, and impose a martingale difference assumption on

ut, which is substantially weaker than Gaussianity.

4. In fact, the inclusion of a linear time trend was found to be insignificant in

practically all cases. Note that the tests are evaluated under the null, which is I(0) and

thus, standard t-tests apply.

5. Note that Robinson’s (1994) procedure is based on the Whittle function, which is

an approximation to the likelihood function.
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TABLE 1

Finite sample critical values

α% T  /  r 3 4 5 6 7 8

100 5.47 4.04 4.36 4.60 4.26 4.24

200 4.87 4.03 4.16 4.54 4.23 4.10

300 4.05 4.19 4.22 4.27 4.40 4.46

500 4.79 4.39 4.24 4.56 4.54 4.65

10%

1000 4.63 4.61 4.65 4.60 4.68 4.61

100 6.78 5.70 5.83 6.22 5.84 5.63

200 6.17 5.48 5.09 5.60 5.61 5.50

300 5.16 5.27 5.35 5.34 5.36 5.45

500 6.04 5.44 5.46 5.69 5.65 5.75

5%

1000 5.93 5.96 5.97 5.94 5.90 6.00

100 9.35 9.19 9.22 11.16 8.71 9.09

200 8.88 8.95 7.93 9.22 9.84 9.43

300 7.62 9.64 7.86 7.34 8.19 8.45

500 10.32 9.10 8.76 9.66 8.95 10.27

1%

1000 9.24 9.32 9.19 9.19 9.17 9.22

10,000 replications were used in each case. The critical values corresponding to the −2
2χ distribution are

4.605, 5.991 and 9.210 at the 10%, 5% and 1% significance levels respectively.
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TABLE 2

Rejection frequencies against fractionally integrated alternatives

T  =  100 T  =  200 T  =  300
d1 d2

FSCV ASCV FSCV ASCV FSCV ASCV

0.50 0.50 1.000 1.000 1.000 1.000 1.000 1.000

0.50 0.75 0.992 0.999 1.000 1.000 1.000 1.000

0.50 1.00 0.987 0.998 1.000 1.000 1.000 1.000

0.50 1.25 0.992 0.999 1.000 1.000 1.000 1.000

0.50 1.50 0.991 0.999 1.000 1.000 1.000 1.000

0.75 0.50 1.000 1.000 1.000 1.000 1.000 1.000

0.75 0.75 0.776 0.790 0.998 0.999 1.000 1.000

0.75 1.00 0.564 0.534 0.887 0.876 0.999 1.000

0.75 1.25 0.580 0.560 0.973 0.973 0.997 1.000

0.75 1.50 0.589 0.623 1.000 1.000 0.943 0.956

1.00 0.50 1.000 1.000 1.000 1.000 1.000 1.000

1.00 0.75 0.690 0.678 0.954 0.966 0.997 0.999

1.00 1.00 0.050 0.060 0.050 0.056 0.050 0.052

1.00 1.25 0.311 0.345 0.380 0.460 0.444 0.490

1.00 1.50 0.576 0.657 0.999 0.999 0.999 1.000

1.25 0.50 1.000 1.000 1.000 1.000 1.000 1.000

1.25 0.75 0.834 0.876 1.000 1.000 1.000 1.000

1.25 1.00 0.354 0.355 0.798 0.808 1.000 1.000

1.25 1.25 0.674 0.786 0.999 1.000 1.000 1.000

1.25 1.50 0.994 0.999 1.000 1.000 1.000 1.000

1.50 0.50 1.000 1.000 1.000 1.000 1.000 1.000

1.50 0.75 0.970 0.989 1.000 1.000 1.000 1.000

1.50 1.00 0.889 0.923 1.000 1.000 1.000 1.000

1.50 1.25 0.997 0.999 1.000 1.000 1.000 1.000

1.50 1.50 1.000 1.000 1.000 1.000 1.000 1.000
FSCV means finite-sample critical values and ASCV refers to the asymptotic values. In bold, the size of the test.
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TABLE 3

Rejection frequencies against misspecification in r

T  =  100 T  =  200 T  =  300
r

FSCV ASCV FSCV ASCV FSCV ASCV

3 1.000 1.000 1.000 1.000 1.000 1.000

4 0.050 0.049 0.034 0.030 0.110 0.100

5 0.019 0.016 0.780 0.750 0.990 0.978

7 1.000 0.979 1.000 1.000 1.000 1.000

8 1.000 1.000 1.000 1.000 1.000 1.000

9 1.000 1.000 1.000 1.000 1.000 1.000

 FSCV means finite-sample critical values, while ASCV refers to the asymptotic values.



23

FIGURE 1

Non-rejection values of d1 and d2 for an extended version of Nelson and Plosser’s (1982) dataset

CONSUMER PRICE INDEX STOCK PRICES S&P 500

GNP DEFLATOR INDUSTRIAL PRODUCTION

MONEY STOCK INTEREST RATE (BOND YIELD)

UNEMPLOYMENT RATE VELOCITY

d1 refers to the order of integration at the zero frequency, while d2 corresponds to the cyclical component.
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FIGURE 2

Non-rejection values of d1 and d2 for an extended version of Nelson and Plosser’s (1982) dataset

EMPLOYMENT NOMINAL GNP

WAGES REAL WAGES

REAL GNP REAL PER CAPITA GNP

d1 refers to the order of integration at the zero frequency, while d2 corresponds to the cyclical component.
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TABLE 4

Values of d1o and d2o that produce the lowest statistics across d1 and d2

Series d1o (0-frequency) d2o (Cyclical frequency) Test statistic

CONSUMER PRICE INDEX 1.06 0.00 0.31115

STOCK PRICES S&P 1.00 0.00 0.00952

GNP DEFLATOR 0.96 0.00 0.00097

INDUSTRIAL PRODUCTION 0.85 0.08 0.00277

MONEY STOCK 1.07 0.01 0.00039

INTEREST RATE (BOND YIELD) 0.99 0.07 0.00100

UNEMPLOYMENT RATE 0.84 0.11 0.00195

VELOCITY 0.92 0.06 0.00289

EMPLOYMENT 0.97 0.00 0.00835

NOMINAL GNP 0.97 0.00 0.02335

WAGES 0.95 0.01 0.00039

REAL WAGES 0.93 0.02 0.00279

REAL GNP 0.97 0.00 0.01968

REAL PER CAPITA GNP 0.97 0.00 0.02220
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TABLE 5

Impulse response functions for each of the Nelson and Plosser’s (1982) dataset

CPI SP DEF IPI MON BY UNE VEL EMP NOM WAG RWG REA CAP

0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.0001.000 1.000 1.000 1.000

1 1.059 1.000 0.959 0.930 1.080 1.060 0..949 0.980 0.970 0.970 0.959 0.950 0.970 0.970

2 1.091 1.000 0.940 0.817 1.113 1.021 0.816 0.910 0.955 0.9550.930 0.906 0.955 0.955

3 1.113 1.000 0.928 0.722 1.132 0.969 0.696 0.844 0.945 0.9450.908 0.871 0.945 0.945

4 1.130 1.000 0.918 0.678 1.149 0.947 0.644 0.813 0.938 0.9380.895 0.852 0.938 0.938

5 1.143 1.000 0.911 0.679 1.167 0.959 0.653 0.815 0.933 0.9330.888 0.844 0.933 0.933

6 1.155 1.000 0.905 0.692 1.183 0.984 0.680 0.826 0.928 0.9280.884 0.841 0.928 0.928

7 1.165 1.000 0.900 0.688 1.197 0.994 0.680 0.825 0.924 0.9240.879 0.836 0.924 0.924

8 1.173 1.000 0.895 0.662 1.206 0.984 0.647 0.808 0.921 0.9210.872 0.825 0.921 0.921

9 1.181 1.000 0.891 0.630 1.213 0.965 0.605 0.786 0.917 0.9170.865 0.814 0.917 0.917

10 1.188 1.000 0.888 0.613 1.221 0.955 0.584 0.773 0.915 0.915 0.860 0.807 0.915 0.915

11 1.195 1.000 0.885 0.615 1.229 0.961 0.591 0.774 0.912 0.912 0.857 0.804 0.912 0.912

12 1.201 1.000 0.882 0.623 1.238 0.974 0.607 0.781 0.910 0.910 0.855 0.803 0.910 0.910

13 1.206 1.000 0.879 0.622 1.246 0.980 0.608 0.781 0.908 0.908 0.852 0.800 0.908 0.908

14 1.212 1.000 0.876 0.607 1.251 0.974 0.589 0.771 0.906 0.906 0.848 0.794 0.906 0.906

15 1.216 1.000 0.874 0.588 1.256 0.962 0.563 0.758 0.904 0.904 0.844 0.788 0.904 0.904

16 1.221 1.000 0.872 0.578 1.261 0.956 0.550 0.750 0.902 0.902 0.841 0.783 0.902 0.902

17 1.225 1.000 0.870 0.580 1.266 0.960 0.556 0.751 0.901 0.901 0.839 0.781 0.901 0.901

18 1.229 1.000 0.868 0.586 1.272 0.969 0.567 0.755 0.899 0.899 0.838 0.780 0.899 0.899

19 1.233 1.000 0.866 0.585 1.278 0.973 0.569 0.756 0.898 0.898 0.836 0.779 0.898 0.898

20 1.237 1.000 0.864 0.575 1.282 0.969 0.555 0.749 0.897 0.897 0.834 0.775 0.897 0.897
CPI: Consumer price index;  SP: Stock prices; DEF: GNP deflator; IPI: Industrial production index; MON: Money stock;
BY: Bond Yield; UNE: Unemployment rate; VEL: Velocity; EMP: Employment; NOM: Nominal GNP; WAG: Wages;
REW: Real wages; REA: Real GNP; CAP: Real GNP per capita.
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FIGURE 3

Impulse response functions
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