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Abstract

We consider a model of oligopolistic firms that have private information

about their cost structure. Prior to competing in the market a competitive ad-

vantage, i.e., a cost reducing technology, is allocated to a subset of the firms by

means of a multi-object auction. After the auction either all bids or only the

prices to be paid are revealed to all firms. This provides an opportunity for sig-

naling. Whether there exists an equilibrium in which bids perfectly identify the

bidders’ costs generally depends on the type and fierceness of the market com-

petition, the specific auction format, and the bid announcement policy.
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1 Introduction

The analysis of a selling mechanism such as an auction is often reduced to a one-

stage game where buyers do not meet again in the future. There are, however, a lot

of situations where the outcome of an auction crucially affects further interactions

among buyers. For instance, buyers might be firms that bid in an auction in order

to gain access to a new market or the right to use a new technology that gives them

a competitive advantage. If the firms taking part in the auction are at the same time

also rivals in the market for their products, the behavior in the auction is certainly in-

fluenced by the expected outcome of future market interactions and vice versa. The

auction might not only have an impact on later stages because it changes the market

environment by allocating competitive advantages, but also because it might change

the informational structure. When firms have private information about demand or

cost parameters, participating in the auction can to some extent reveal this informa-

tion to rivals. In particular, firms might use their bids as signals.

In this paper we analyze a two-stage model of an oligopoly where firms have pri-

vate information about their costs of production. In the first stage firms bid in a

multi-object auction to win access to a cost reducing technology that is limited to a

subset of the firms. In the second stage firms then compete in the market. We con-

sider three types of sealed-bid auction rules: the all-pay auction where all bidders

are asked to pay their bid, the discriminatory auction where only the winners pay

their bid, and the uniform-price auction where the winners all pay the highest losing

bid. Do firms in this situation actually use the auction in the first stage as a signaling

device to such an extent that bids perfectly identify costs? In order to answer this

question we will explore under what circumstances this game has a fully separating

equilibrium.

There are several possible applications for our model. As an example for the dis-

criminatory and uniform-price auction, consider an outside innovator who employs

one of the two auction rules to sell to firms a limited number of licenses for using a

cost reducing innovation.1 Regarding the all-pay format, we can, e.g., interpret bid-

ding in such an auction as lobbying activities by firms that try to convince politi-

1Although often used in practice, selling licenses through an auction similar to the ones we con-

sider in this paper is in most cases not the optimal mechanism for the innovator. For the case of a

Cournot oligopoly with complete information, Giebe and Wolfstetter (2008) find that the innovator’s

revenue is maximized by a combination of a license auction with royalty contracts (for both losers and

winners).
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cians to grant them (rather than their competitors) subsidies.2 Especially in situa-

tions where firms disclose their expenses in a lobbying register, using those bids as

signals is possible. Similarly, a research and development race among firms can be

modeled as an all-pay auction.

An important factor affecting the existence of a separating equilibrium is the type

of competition in the second stage. In a setting where firms, using a linear technol-

ogy, produce differentiated products sold to a market with linear demand, we con-

sider both the Cournot model where firms choose quantities as well as the Bertrand

model where firms set prices. In both cases the value of winning the auction is higher

for low-cost firms. The signaling incentive, however, differs. Under Cournot competi-

tion firms aim at understating their costs in order to appear stronger and gain a larger

market share. The opposite is true under Bertrand competition. Here, firms prefer

to overstate their costs in order for their rivals to set higher prices. In both cases this

signaling incentive is strongest for low-cost firms. Hence, under Bertrand competi-

tion, firms who would bid highest in the absence of signaling, have also the strongest

incentive to reduce their bid for signaling purposes. Therefore, the existence of a sep-

arating equilibrium is in general more problematic under Bertrand competition than

under Cournot competition where the two effects point into the same direction.

The differences in terms of signaling incentives between the two types of compe-

tition have been well known. For example, Gal-Or (1986) studies a model where firms

with privately known costs choose the amount of information to be revealed before

entering the market competition stage. Gal-Or (1986) finds that in the Bertrand case

firms choose to reveal no information at all, whereas in the Cournot model they fully

reveal their marginal costs. Ziv (1993) studies pure (costly) signaling in a Cournot

market with privately known costs. There, rather than bidding for an object with

intrinsic value, firms simply burn money in order to signal their strength which is

observed by all competitors. Under Bertrand competition such a separating equilib-

rium is impossible.

Of course, the existence of a separating equilibrium also depends on how strong

signaling incentives are. This depends, in turn, on how much information firms can

infer from the auction. The auctioneer might disclose all or only some of the firms’

bids. In this paper we concentrate on the cases where either all bids are revealed, or

where the amount each firm has to pay is announced. For the all-pay auction there

2Lobbying is generally thought to be well represented by an all-pay auction. See, e.g., Baye,

Kovenock, and de Vries (1993).
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is, of course, no difference among those two possibilities. For the discriminatory

auction, announcing the prices to be paid means that only the winners’ bids are dis-

closed, while the highest losing bid alone is revealed in the uniform-price auction. In

general, we find that if the auction reveals less information, there are more situations

where a separating equilibrium is possible under Bertrand competition.

For the existence of a separating equilibrium it is also important that the pay-

ment rules allow for credible signals, i.e., the firms that actually send a signal must

also pay accordingly. This is the case in the all-pay auction with all bids revealed and

the discriminatory auction with only the winning bids revealed. In those cases the

separating equilibrium is likely to exist. When all bids are announced in a discrim-

inatory auction, however, bids from firms with high costs that are pretty sure that

they do not have to pay anything are for this reason not very credible. Consequently,

a separating equilibrium exists under those circumstances only as a special case.

Closely related to our model is Das Varma (2003) where a cost reducing innova-

tion is allocated among oligopolists through a first-price auction. The amount by

which costs are reduced varies among firms and is private information, resulting in

an incentive to signal. Das Varma (2003) finds that in the case of Cournot competition

there is a unique equilibrium where bids fully reveal all private information, whereas

in the Bertrand case such an equilibrium may fail to exist. In a related model, Goeree

(2003) extends the analysis of the Cournot case to second-price and English auctions.

In contrast to those authors we assume in this paper that the cost reduction is

common knowledge and identical for all firms. Instead, it is ex ante costs that are

private information. An important consequence of this is that not only the private in-

formation of winners, but also that of losers is relevant for the second stage. An auc-

tion of a cost-reducing innovation to Bertrand competitors with private ex ante costs

is also studied by Moldovanu and Sela (2003). Yet by assuming that costs always be-

come common knowledge after the auction, they exclude any signaling effects from

their model.3 Katzman and Rhodes-Kropf (2008) consider an auction among firms

with private costs as well. In their model, what is allocated through the auction is

access to a duopoly with an incumbent firm. Hence, unlike in our model, signals are

sent to an outsider rather than to the other bidders. Note that we keep our analy-

sis of the auction stage in Section 3 at a fairly general level, so that, as we show in

Subsection 3.5, it also covers several of the models discussed above.

3Similarly, signaling effects are also excluded from the model of Jehiel and Moldovanu (2000) who,

as an example for a more general case, analyze an auction of a privately known cost reduction to

Cournot competitors.
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The literature has, so far, almost exclusively focused on single-object auctions.

One of the rare exceptions is Katsenos (2008) who compares simultaneous and se-

quential auctions for selling two licenses that grant access to a duopoly to firms with

private costs. In this paper, we analyze multi-object auctions while allowing for the

number of winners to be any number smaller than the number of firms. Not only

seems the case of multiple winners relevant for applications, such as an innovator

selling more than one license, but we also find that the existence of a separating equi-

librium on some occasions crucially depends on the number of winners.

The paper is organized as follows. In Section 2 we present the main assumptions

of the model. In Section 3 we develop a general framework for analyzing the bidding

behavior in the first stage without having the second stage modeled explicitly, yet.

Our specific model of the second stage is then presented in Section 4. In Section 5

we analyze the existence of a separating equilibrium when the auctioneer reveals all

bids whereas in Section 6 we consider the case where the prices paid are disclosed.

We gather conclusions in Section 7, followed by an appendix containing proofs.

2 The Model

There are n firms that compete in a product market. Firms are all identical except

for a firm specific cost parameter c i . We assume that the lower c i , the lower are

firm i ’s variable costs. For example, if firms have linear technologies, c i are the con-

stant marginal costs of firm i . The cost parameter c i is private information of firm

i . It is common knowledge that c1, c2, . . . , cn are realizations of the random variables

C1,C2, . . . ,Cn which are independently and identically distributed according to F on

the interval
�

c , c
�

. The distribution F is twice continuously differentiable, having a

strictly positive density f := F ′. We assume limc↓c F ′′(c ) ∈ R and limc↑c F ′′(c ) ∈ R. In

addition, there exists some new technology the use of which generates a competitive

advantage. Yet only k < n firms are allowed to use this technology, access to it being

sold through a sealed-bid auction.

The timing of the game is as follows. In the first stage firms submit their bids and

the auctioneer determines the k winners of the auction. In addition to the identities

of the winners, the auctioneer also publicly reveals the values of a subset of the bids

according to a commonly known announcement rule. Then, all firms enter into the

second stage of the game where they compete in the product market. When choosing

their action in the second stage, firms update their beliefs about their competitors’
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cost parameters according to what they learn from the auctioneer’s announcement

in the first stage.

We focus on separating equilibria, i.e., on equilibria where a firm’s bidding strat-

egy prescribes a different amount for each type. As equilibrium concept we adopt the

symmetric perfect Bayesian Nash equilibrium, where symmetric means that ex ante

all firms use the same equilibrium bidding strategy. In order to find an equilibrium of

the whole game, we typically solve for the Bayesian Nash equilibrium of the market

interaction in the second stage given the beliefs firms might hold after having played

the first stage. From this we obtain the expected payoffs of firms when they choose

their bid in the first stage.

Whether or not a firm wins the auction and gains access to the new technology

typically depends on the ranking of the firms in terms of their cost parameters. Also,

whose bids the auctioneer reveals depends on that ranking. Hence, in the course of

its decision-making, firm i has to form expectations about the ranking (and values)

of the cost parameters of its rivals. The following definitions will therefore be of great

use throughout the paper. Define C −i := {C1,C2, . . . ,Cn}\C i to be the set of cost pa-

rameters of the competitors of firm i . Let Z i
1,Z i

2, . . . ,Z i
n−1 be a rearrangement of all

C j ∈ C
−i so that Z i

1 ≤ Z i
2 ≤ · · · ≤ Z i

n−1. Consequently, Zi : =
�

Z i
1,Z i

2, . . . ,Z i
n−1

�

is the

vector of order statistics of the cost parameters of firm i ’s rivals. Note that because

C1,C2, . . . ,Cn are independently and identically distributed, we can drop superscript

i in the following statements. The joint density of the order statistics Z is

g 1,2,...,n−1(z) = (n −1)! f (z 1) f (z 2) . . . f (z n−1)

if c ≤ z 1 ≤ z 2 ≤ · · · ≤ z n−1 ≤ c and 0 otherwise. Furthermore, the density and the

distribution function of the k th order statistic Zk are

g k (z k ) =
(n −1)!

(k −1)! (n −1−k )!
F (z k )

k−1 (1− F (z k ))
n−1−k f (z k )

and

Gk (z k ) =

n−1
∑

h=k

�

n −1

h

�

F (z k )
h (1− F (z k ))

n−1−h .

See, e.g., David and Nagaraja (2003) for a derivation of these results.

Some of the results we will obtain in the course of the paper require an additional

assumption concerning the distribution function F . More precisely, we will some-
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times assume the density f to be logconcave.4 As shown by An (1998), logconcavity

of f (c ) implies logconcavity of F (c ) as well as 1− F (c )which in turn implies

d

d c

�

F (c )

f (c )

�

≥ 0 and
d

d c
E [C |C < c ]≤ 1 (1)

as well as
d

d c

�

1− F (c )

f (c )

�

≤ 0 and
d

d c
E [C |C > c ]≤ 1. (2)

Moreover, one can easily verify that logconcavity of f (c ) also results in logconcavity

of g k (c )which, of course, implies logconcavity of Gk (c ) and 1−Gk (c ).

3 A Framework for Signaling in Auctions

In this section we analyze the bidding behavior in the auction conducted in the first

stage in a fairly general framework. Most notably, we postpone the formulation of

an explicit model of the product market in the second stage to the next section. In-

stead, we summarize the outcome of the second stage by two functions, πW and πL ,

that represent the profit a firm expects to earn at the beginning of the second stage,

depending on whether it belongs to the winners or to the losers of the auction. Of

course, these expected profits crucially depend on the beliefs firms hold about their

rivals’ costs.

As we have mentioned above, the auctioneer, after having received all the bids,

publicly reveals a subset of them. In doing so, the auctioneer follows an announce-

ment rule that specifies which bids are to be revealed depending on the order of the

bids. For example, this rule could be to announce the highest bid. As we focus on

separating equilibria, revealing bids is equivalent to revealing costs, since in equilib-

rium a firm’s cost parameter can directly be inferred from its bid. Thus, through the

auctioneer’s announcement all firms learn the realization and the rank of a subset of

all cost parameters. We denote this set of information about cost parameters by I .

Having learnt I in the auction stage, firms update their beliefs concerning their

4There are many widely used distributions that have this property. Among them are the uniform

distribution, the power distribution with an exponent> 1, the beta distribution with both parameters

≥ 1, the normal, exponential, extreme value, and logistic distribution. Of course, the last few distri-

butions do not fit our model since they have infinite support. Note, however, that logconcavity is pre-

served when constructing a new distribution by truncating the support of one of those distributions.

See Bagnoli and Bergstrom (2005) for a more detailed list and a proof of the truncation property.
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competitors’ cost parameters accordingly. As a result, firm i expects that the (or-

dered) vector of its rivals’ costs is ζi := E [Zi |I ]. In addition, firm i ’s choice of action

for the second stage also depends on how its own type is perceived by the other firms.

Let ξi := E [C i |I ] denote the cost parameter i ’s competitors believe firm i to have.5

We assume that for each firm i the expected profit in the second stage can be

expressed as a function of the realization of i ’s costs, of the costs i ’s rivals expect

it to have, and of the costs i expects its rivals to have. Therefore, with the above

definitions at hand, we denote by πW (c i ,ξi ,ζi ) the expected profit of firm i if it has

won the auction. Similarly, let πL(c i ,ξi ,ζi ) denote the expected profit of firm i if it

has lost the auction.

We assume that πW (c i ,ξi ,ζi )>πL(c i ,ξi ,ζi ) and that both functions are differen-

tiable in all of their arguments. Further, we assume

∂

∂ c i

�

πW (c i , c i , zi )−πL(c i , c i , zi )
�

≤ 0 ∀c i , (3)

i.e., under complete information, a low-cost firm benefits more from winning the

auction than a high-cost firm. Therefore, in the absence of any signaling effects, we

would expect a low-cost firm to be willing to pay more for winning the auction. That

is why we will in general look for a separating equilibrium where the firms with the

lowest cost parameters win the auction.6

3.1 A Direct Mechanism

For the derivation of equilibrium bidding in various auction formats, it is useful, as a

first step, to analyze a corresponding direct mechanism where firms, instead of plac-

ing a bid, are asked to report their types to the auctioneer. In our setting, such a

mechanism consists of three components: an allocation rule choosing the winners

among firms, a payment rule specifying the amount each firm has to pay, and an an-

5Note that with this definition of beliefs we assume that beliefs depend solely on the commonly

known information setI and not on any private information. In doing so we exclude some announce-

ment rules from our framework, as we further discuss below in Subsection 3.3.
6In fact, assumption (3) only requires the benefit from winning the auction to be monotone

in types. For example, suppose there is an oligopoly where each firm i has constant and positive

marginal cost s i ∈
�

s , s
�

. By winning the auction a firm gains access to a superior technology exhibit-

ing marginal cost s ∗ < s . Hence, the benefit from winning is, in contrast to (3), increasing in s i and

we would expect the firms with the highest cost parameters s i to win the auction. However, as none

of our results in this section will rely on the assumption that lower c i correspond to lower costs, this

model perfectly fits our framework if we redefine firm i ’s type as c i := s + s − s i .
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nouncement rule for the auctioneer. As for the allocation rule, we focus on the class

of direct mechanisms that select the k firms with the lowest reported costs as win-

ners. Regarding the payment rule we take the following notational shortcut. Instead

of defining a function that fixes a payment for each firm depending on all reports, we

simply let m̂ (x ) denote the expected payment by a firm that reports to be of type x

while all its rivals report their true types. Let I denote the announcement rule where

I is a function returning a subset of the reports depending on their order. From now

on, we will refer to such a direct mechanism as 〈m̂ , I 〉.

A direct mechanism that has an equilibrium where all firms choose to report their

type truthfully is called incentive compatible. An incentive compatible direct mech-

anism 〈m̂ , I 〉must therefore ensure that no firm has an incentive to unilaterally de-

viate from the truth-telling equilibrium. Consider the point of view of firm i that

reports type x while all other firms report their true type. Let z denote the realization

of Zi . In this case, the auctioneer’s announcement will depend on x and z, such that

we write the announcement as I (x , z). The information set I contains the value of

I (x , z) combined with knowledge about the exact functional form of I . Consequently,

given a specific announcement rule I , the beliefs relevant for firm i ’s expected profits

are also functions of x and z, such that we can write ξi = ξ(x , z) and ζi= ζ(x , z). Now,

define the expected second stage profit of firm i conditional on the order statistic Z i
k

as

Πt (c i ,x , z k ) := E
�

πt (c i ,ξ(x , Zi ),ζ(x , Zi )) |Z i
k
= z k

�

=
∫ z k

c

. . .

∫ z k

z k−2

∫ c

z k

. . .

∫ c

z n−2

πt (c i ,ξ(x , z),ζ(x , z))
g 1,...,n−1(z)

g k (z k )
d z n−1 . . . d z k+1d z k−1 . . . d z 1

for t =W, L. Since Zi follows the same distribution for all i , we will from now on drop

superscript i . When all other firms play according to the truth-telling equilibrium

strategy, the expected payoff of firm i that has cost parameter c and reports to have

cost parameter x is

U (c ,x ) :=−m̂ (x )+ (1−Gk (x ))E
�

πW (c ,ξ(x , Z),ζ(x , Z)) |Zk > x
�

+Gk (x )E
�

πL(c ,ξ(x , Z),ζ(x , Z)) |Zk < x
�

=−m̂ (x )+

∫ c

x

ΠW (c ,x , z k )g k (z k )d z k +

∫ x

c

ΠL(c ,x , z k )g k (z k )d z k . (4)
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The following lemma identifies incentive compatible direct mechanisms.7

Lemma 1. The direct mechanism 〈m̂ , I 〉 is incentive compatible if, ∀c ,x ∈
�

c , c
�

,

m̂ (c ) = m̂ (c )+

∫ c

c

�

ΠW (y , y , y )−ΠL(y , y , y )
�

g k (y )d y

−

∫ c

c

∫ c

y

ΠW ′
2
(y , y , z k )g k (z k )d z k d y −

∫ c

c

∫ y

c

ΠL′
2
(y , y , z k )g k (z k )d z k d y (IC1)

and

U ′′
12
(c ,x ) =−
�

ΠW ′
1
(c ,x ,x )−ΠL′

1
(c ,x ,x )
�

g k (x )

+

∫ c

x

ΠW ′′
12
(c ,x , z k )g k (z k )d z k +

∫ x

c

ΠL′′
12
(c ,x , z k )g k (z k )d z k ≥ 0. (IC2)

Moreover, if 〈m̂ , I 〉 is incentive compatible, then (IC1) holds and U ′′
12
(c , c )≥ 0.

Proof. The the direct mechanism 〈m̂ , I 〉 is incentive compatible if and only if

c ∈ arg max
x

U (c ,x ) ∀c ∈
�

c , c
�

. (5)

Sufficient for (5) is the first order condition

U ′
2
(c , c ) = 0 (6)

together with the condition that

U ′
2
(c ,x )≥ (≤)0 ∀x < (>)c ; c ,x ∈

�

c , c
�

. (7)

Integrating (6) from c to c on both sides and rearranging, we obtain (IC1). Because

of (6) we have

U ′
2
(c ,x ) =

∫ c

x

U ′′
12
(y ,x )d y .

Hence, U ′′
12
(c ,x )≥ 0 ∀c ,x ∈

�

c , c
�

is sufficient for (7) which is stated in (IC2).

7For a function H of multiple variables, we use H ′i to denote the partial derivative with respect to

the i th argument. Similarly, H ′′i j denotes the mixed partial derivative with respect to the i th and j th

argument.
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On the other hand, (6) and U ′′
22
(c , c ) ≤ 0 are necessary for (5). Taking the deriva-

tive of (6) on both sides, we receive U ′′
12
(c , c ) +U ′′

22
(c , c ) = 0 such that U ′′

22
(c , c ) ≤ 0 is

equivalent to U ′′
12
(c , c )≥ 0.

In general, it does not seem plausible to assume that firms can be forced to take

part in the auction stage. Hence, we are interested in direct mechanisms where firms

voluntarily choose to participate. Such mechanisms are often referred to as being

individually rational. A mechanism is individually rational for a firm if its expected

equilibrium payoff U (c , c ) is higher than the payoff it would earn when not partici-

pating. In our model, the value of a firm’s outside option is simply its expected profit

in the second stage without having access to the cost reducing technology. Hence,

in contrast to standard models in mechanism design theory, firm i ’s outside option

does crucially depend on the beliefs firms hold about the types of their competitors

when firm i is not participating.

Let us introduce a firm’s option not to participate as follows. Instead of reporting

a type in
�

c , c
�

each firm can also report type κ> c in order to let the auctioneer know

that it abstains from taking part in the direct mechanism. If firm i has reported κ, it

is never selected as a winner and is not asked to pay anything. As for the announce-

ment of a subset of all reports, the auctioneer continues to apply rule I . Depending

on the specific form of I , i ’s opponents might or might not observe that i has refused

to participate. Yet in both cases firms must have beliefs about what costs a firm has

that has reported κ. Since not participating lies outside the equilibrium path, beliefs

concerning this event are not restricted by a perfect Bayesian equilibrium. As the

following lemma shows, sufficient conditions for a mechanism to be individually ra-

tional are that the expected payment by a firm with cost parameter c is zero and that

firms treat a firm that reports κ as if it reports c .

Lemma 2. LetI κ denote the set of information firms learn through the auction if firm

i does not participate. The incentive compatible direct mechanism 〈m̂ , I 〉 is individu-

ally rational if m̂ (c ) = 0 and (out-of-equilibrium) beliefs are

E [C i |I
κ] = ξ(c , z) and E [Zi |I κ] = ζ(c , z). (8)

Proof. With beliefs (8) and m̂ (c ) = 0, the expected payoff of a firm with costs c is the

same regardless whether it participates or not. Therefore, a firm with costs c will not

refuse to participate. All other types of firms could, by reporting c instead of their true
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type, achieve the same payoff as if they did not participate. But since the mechanism

is incentive compatible, they are better off participating and reporting truthfully.

As we will frequently refer to incentive compatible and individually rational direct

mechanisms throughout this paper, it is useful to simplify the exposition by defining

m (c ) :=

∫ c

c

�

ΠW (y , y , y )−ΠL(y , y , y )
�

g k (y )d y

−

∫ c

c

∫ c

y

ΠW ′
2
(y , y , z k )g k (z k )d z k d y −

∫ c

c

∫ y

c

ΠL′
2
(y , y , z k )g k (z k )d z k d y . (9)

Observe that by Lemmata 1 and 2, the direct mechanism 〈m , I 〉 is incentive compat-

ible if (IC2) while it is individually rational under beliefs (8).

3.2 Equilibrium Bidding in some Standard Auctions

In the following, we derive the equilibrium bidding strategies for three well-known

auction formats: the all-pay auction, the discriminatory auction, and the uniform-

price auction. In all three auctions access to the new technology is awarded to the k

highest bidders. The auctions differ, however, in terms of their payment rules. In the

all-pay auction, each firm has to pay its bid, regardless whether it has won or lost. In

both of the other formats, losers do not pay anything. The winners of a discrimina-

tory auction have to pay their bid, whereas in the uniform-price auction the winners

all must pay the highest losing bid.

In a separating equilibrium, firms bid according to a strictly monotone strategy

β :
�

c , c
�

→ R+. Suppose an auction has a separating equilibrium with a strictly de-

creasing β . Thanks to the revelation principle, such an auction is equivalent to an

incentive compatible direct mechanism 〈m̂ , I 〉. Therefore, we can easily derive such

equilibrium strategies for the three auctions by making use of the results of the pre-

ceding subsection.

Proposition 1. Consider m (c ) as defined in (9) and suppose firms’ out-of-equilibrium

beliefs are represented by (8). Define

βA(c ) :=m (c ) , βD(c ) :=
m (c )

1−Gk (c )
, and βU (c ) :=−

m ′(c )

g k (c )
(10)

12



where βA , βD , and βU denote bidding strategies for the all-pay, the discriminatory,

and the uniform-price auction. For T = A, D,U the following result holds: if (IC2) and

β ′
T
(c ) < 0, there exists an individually rational separating equilibrium of the auction

format T where a firm with cost parameter c bids the amount βT (c ). Provided the

auctioneer uses the same announcement rule I , all three auction formats are revenue

equivalent.

Proof. First note that for a separating equilibrium to exist, bidding strategies have to

be strictly monotone so that firms can infer types from revealed bids. If equilibrium

bidding strategies are strictly decreasing, all three auction formats choose the firms

with the lowest costs as the winners. Since type c never wins the auction, its expected

payment in the discriminatory and the uniform-price auction is zero. In order to

be sure that individual rationality is fulfilled also in the all-pay auction, we consider

only the equilibrium where type c bids zero. Hence, given an announcement rule I ,

all three auctions are equivalent to an incentive compatible direct mechanism 〈m̂ , I 〉

with m̂ (c ) = 0. Incentive compatibility implies (IC1) such that we have m̂ (c ) =m (c ).

Together with (IC2) this is also sufficient for incentive compatibility. The expected

payments by the firms and therefore also the expected revenue for the auctioneer are

the same in all three auctions. Expected payment of type c has to equal m (c ) in all

three auction formats, i.e.

m (c ) = βA(c ) = (1−Gk (c ))βD(c ) =

∫ c

c

βU (y )g k (y )d c .

This can be rearranged to yield (10). With beliefs (8), all three auctions are individu-

ally rational.

There are a few things worth noting concerning the uniqueness of equilibrium

strategies. First, since losers do not pay anything in the discriminatory and uniform-

price auction, we must have m̂ (c ) = 0 in those two cases. Hence, the incentive com-

patible m̂ and therefore also the strictly decreasing equilibrium strategies βD and

βU are unique. Furthermore, under beliefs (8) the discriminatory and uniform-price

auction are individually rational. On the other hand, for the all-pay auction, m̂ (c )

is not necessarily zero and hence the equilibrium strategy is not unique. Yet with

out-of-equilibrium beliefs (8), βA defined in Proposition 1 corresponds to the unique

individually rational equilibrium with a strictly decreasing strategy.

According to Proposition 1, two conditions have to be fulfilled in order for a sep-
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arating equilibrium to exist for a specific auction format. First, (IC2) must hold to

ensure incentive compatibility of the corresponding direct mechanism. Second, the

equilibrium bidding strategy needs to be strictly decreasing so that types can be in-

ferred from bids. While the first condition is, of course, the same for all auction for-

mats, the second condition differs.

Corollary 1. Given the same announcement rule is used in all three auction formats,

β ′
U
(c )< 0 ⇒ β ′

D
(c )< 0 ⇒ β ′

A
(c )< 0.

Consequently, if the uniform-price auction has a separating equilibrium, the same is

true for the discriminatory auction which in turn implies that the all-pay auction has

a separating equilibrium.

Proof. Note that βD(c ) =

∫ c

c
βU (z k )g k (z k )d z k

1−Gk (c )
= E
�

βU (Zk ) |Zk > c
�

. Therefore β ′
U
(c ) < 0

implies β ′
D
(c )< 0. Since d

d c
(1−Gk (c ))< 0, β ′

D
(c )< 0 implies β ′

A
(c )< 0.

This very useful result suggests that there can, e.g., be situations where the all-

pay auction has a separating equilibrium while the other two auction formats do not.

Since βD(c ) = E
�

βU (Zk ) |Zk > c
�

, the discriminatory and the uniform-price auction

are closely related. Note, however, that β ′
D
(c ) < 0 does not imply β ′

U
(c ) < 0 so that

existence of a separating equilibrium in the uniform-price auction does not follow

from existence of a separating equilibrium in the discriminatory auction.

3.3 Announcement Rules

So far, we have not specified what rule the auctioneer follows when announcing a

subset of the bids. We have just assumed this announcement to affect the firms’

beliefs through revealing information I about cost parameters which we have de-

scribed by an announcement rule I for the corresponding direct mechanism. Of

course, there are many possibilities when choosing a bid announcement policy. In

the following, we focus on the cases where either all bids are revealed or where the

amount each bidder must pay is announced. For the auction formats we examine,

this corresponds to three different announcement rules I .

Suppose the auctioneer publicly reveals all bids so that, in a separating equilib-

rium, the cost parameters of all firms become commonly known. We denote this
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announcement rule by I ab . Beliefs hence simply become

ξab (x , z) = x and ζab (x , z) = z, (11)

so that firms act under complete information in the second stage.

Let us turn to the case where the prices paid by the bidders become publicly

known after the auction. Of course, this makes no difference for the all-pay auc-

tion. For the discriminatory auction, however, revealing the prices paid means that

the auctioneer announces the winning bids only. In a separating equilibrium with

decreasing bidding strategies, the k lowest costs become common knowledge which

we denote by I w b . Concerning the rest of the cost parameters firms merely know that

they are higher than the k th lowest cost parameter. Thus, beliefs are

ξw b (x , z) =

(

x for x < z k

E [C i |C i > z k ] for x > z k

(12)

and

ζw b (x , z) =







E [Z |Z1 = z 1,Z2 = z 2, ...,Zk−1 = z k−1] for x < z k−1

E [Z |Z1 = z 1,Z2 = z 2, ...,Zk−1 = z k−1,Zk > x ] for z k−1 < x < z k

E [Z |Z1 = z 1,Z2 = z 2, ...,Zk = z k ] for x > z k .

(13)

Revealing the prices paid in a uniform-price auction corresponds to the an-

nouncement rule where only the highest losing bid is revealed. Consequently, in

an equilibrium in decreasing strategies, only the (k +1)th lowest cost parameter be-

comes publicly known which we denote by I hl b . Recalling we assumed that firms all

know the identities of the winners, we obtain for the beliefs under rule I hl b

ξhl b (x , z) =







E [C i |C i < z k ] for x < z k

x for z k < x < z k+1

E [C i |C i > z k+1] for x > z k+1

(14)

and

ζhl b (x , z) =







E [Z |Zk = z k ] for x < z k

E [Z |Zk < x <Zk+1] for z k < x < z k+1

E [Z |Zk+1 = z k+1] for x > z k+1.

(15)

The three announcement rules we have just defined all have a fundamental prop-
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erty in common: the revealed reports alone would allow a firm to determine whether

it belongs to the winners or the losers of the auction.8 Most importantly, this property

implies that beliefs are independent of any private information. Hence, two firms i

and j will hold exactly the same beliefs concerning the costs ch for all h 6= i , j when

they enter the second stage. One reason why we restrict our analysis to announce-

ment rules that exhibit this property is that it allows for a closed form solution to our

model of the second stage we present in Section 4. As an example where this prop-

erty does not hold, consider the situation that arises when the auctioneer does not

announce any bids at all. Of course, also in this case, we would still want to assume

that each firm learns whether it has won access to the new technology. If the truth-

telling firm i has won (lost), it will form beliefs about its competitors conditional on

Zk > c i (Zk < c i ). Therefore, firms will hold differing beliefs about their competitors,

as for each firm i beliefs ξi and ζi depend on its privately known cost parameter c i .

3.4 The Signaling Effect

In order to analyze how signaling affects the equilibrium behavior of firms, it is use-

ful to compare our results to the case where signaling is not possible. Suppose, as a

benchmark case, that all cost parameters are directly revealed to firms at the begin-

ning of the second stage. In this case, the type x firm i might pretend to be has no

effect on ΠW and ΠL . Using (9), the expected payment by a firm in this benchmark

case simplifies to

m b (c ) :=

∫ c

c

�

ΠW (y , y , y )−ΠL(y , y , y )
�

g k (y )d y .

This allows us to decompose the expected payment into a non-signaling and a sig-

naling part, i.e.,

m (c ) =m b (c )+m s (c )

where the signaling component is given by

m s (c ) :=−

∫ c

c

∫ c

y

ΠW ′
2
(y , y , z k )g k (z k )d z k d y −

∫ c

c

∫ y

c

ΠL′
2
(y , y , z k )g k (z k )d z k d y .

8This is the case if at least either the k th or the (k +1)th lowest cost parameter becomes publicly

known.
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While m b (c ) is clearly positive, the sign of the signaling effect m s (c ) depends on the

model of the second stage. Depending on the kind of interaction among firms after

the auction, signaling might increase or decrease bids and expected payments. Note

that we will drop the superscripts W and L in the following. The direction of the

signaling effect depends, of course, on the sign of

Π′
2
(c ,x , z k ) = E

�

∂

∂ x
π(c ,ξ(x , Z),ζ(x , Z)) |Zk = z k

�

,

i.e., on the sign of

∂

∂ x
π(c ,ξ(x , z),ζ(x , z)) =

∂ π(c ,ξ,ζ)

∂ ξ

∂ ξ(x , z)

∂ x
+

n−1
∑

j=1

∂ π(c ,ξ,ζ)

∂ ζj

∂ ζj (x , z)

∂ x
.

Hence, there are two effects through which signaling has an impact on firm i ’s be-

havior. The first effect stems from the way firm i wants to be perceived by its com-

petitors, i.e.
∂ π(c ,ξ,ζ)

∂ ξ
. The second effect is due to

∂ π(c ,ξ,ζ)

∂ ζj
, the influence of the expected

cost parameters of firm i ’s competitors on expected profits. The strength of those

effects depends on how the signal firm i sends is reflected in the beliefs, i.e., on the

announcement rule.

As we have seen in Subsection 3.3, if the auctioneer announces all bids, we have
∂ ξ(x ,z)

∂ x
= 1 and

∂ ζj (x ,z)

∂ x
= 0 for all j . In this case, there is only the first effect. If

∂ π(c ,ξ,ζ)

∂ ξ
>

0, as, e.g., in a Bertrand oligopoly, firm i prefers to be thought of as having high costs.

The signaling effect therefore reduces bids and expected payments of firms. On the

other hand, if
∂ π(c ,ξ,ζ)

∂ ξ
< 0, as, e.g., in a Cournot oligopoly, firm i wants to pretend to

have lower costs than it actually has, such that the signaling effect increases bids and

payments.

Looking at the other two announcement rules we consider in Subsection 3.3, we

find that in both cases
∂ ξ(x ,z)

∂ x
> 0 and, for some j ,

∂ ζj (x ,z)

∂ x
> 0 for a certain range of x . If

firm i ’s bid is actually announced by the auctioneer, this will not only affect ξ but also

ζ. Consider, e.g., a discriminatory auction with the winning bids being announced.

In the event that firm i pretending to be of type x just wins with the k th highest bid,

it will be generally believed that the losers must have cost parameters higher than x .

This is how the second effect comes into play. Its direction depends on how i ’s profit

depends on the cost parameters of i ’s competitors. If
∂ π(c ,ξ,ζ)

∂ ζj
> 0, as in an oligopoly

market where goods are substitutes, the second effect reduces bids and payments.
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By contrast, if
∂ π(c ,ξ,ζ)

∂ ζj
< 0, as in an oligopoly with firms producing complements,

bids and payments are increased.

3.5 Relation to the Literature

Before moving on to the next section where we develop our model for the market

interaction in the second stage, let us digress for a moment in order to demonstrate

how our framework accommodates several interesting examples from the literature.

3.5.1 Katzman and Rhodes-Kropf (2008)

Katzman and Rhodes-Kropf (2008) construct a model where n firms with privately

known marginal costs c i bid in an auction in order to win access to a duopoly with an

incumbent monopolist. Hence, in our framework, we have k = 1 and πL(c ,ξ,ζ) = 0.

Moreover, the winner’s expected duopoly profit is independent of the other bidders’

types, i.e. πW (c ,ξ,ζ) = π̃(c ,ξ). The authors compare a first-price and second-price

auction where the winner’s bid is revealed to an English auction where the second

highest bid is revealed. In our terminology the equilibrium of these auctions corre-

sponds to the strategies βw b
D

, βw b
U

, and βhl b
U

.

Note that when the winning bid is announced, we have ΠW (c ,x , z 1) = π̃(c ,x ) if

x < z 1. Therefore, (IC1) simplifies to

m̂ (c ) = m̂ (c )+

∫ c

c

π̃(y , y )g 1(y )d y −

∫ c

c

∫ c

y

π̃′
2
(y , y )g 1(z 1)d z 1d y

= m̂ (c ∗)+

∫ c ∗

c

¦

π̃(y , y )g 1(y )− π̂
′
2
(y , y )
�

1−G1(y )
�
©

d y

where c ∗ ∈
�

c , c
�

. Katzman and Rhodes-Kropf (2008) endogenize bidder participa-

tion where c ∗ is the highest cost type that participates. With m̂ (c ∗) = 0 instead of

m̂ (c ) = 0 we can apply Proposition 1 in order to find

βw b
U
(c ) = π̃(c , c )− π̃′

2
(c , c )

1−G1(c )

g 1(c )
.

Since 1−G1(z 1) = (1− F (z 1))
n−1, this is exactly the second-price auction equilibrium

Katzman and Rhodes-Kropf (2008) find (Theorem 3, p. 68). Their first-price auction

equilibrium can be obtained in a very similar way.
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With the second highest bid revealed we have ΠW (c ,x , z 1) = π̃(c , E [C i |C i < z 1]) if

x < z 1. Therefore,

βhl b
U
(c ) = π̃(c , E [C i |C i < c ])

which corresponds exactly to the English auction equilibrium strategy Katzman and

Rhodes-Kropf (2008) find (see Theorem 4 on p. 70).

3.5.2 Das Varma (2003) and Goeree (2003)

Both Das Varma (2003) and Goeree (2003) study bidding in a first-price auction

through which single access (k = 1) to a cost reducing innovation is sold. Follow-

ing the auction, the winning bid is disclosed. Bidding in this auction are n firms that

compete in a market afterwards. All firms have constant marginal costs s . If firm i

wins the auction, its marginal costs are reduced by θ i . θ i is private information and

drawn from F̃ on
�

θ ,θ
�

, whereas all other parameters of the model are commonly

known.

Let c i := s−θ i and, accordingly, F (c ) := 1−F̃ (s−c ). Since only the type of the win-

ner is relevant for the second stage, we have πW (c ,ξ,ζ) = π̃W (c ,ξ) and πL(c ,ξ,ζ) =

π̃L(ζ1). The winning bid being revealed in turn implies ΠW (c ,x , z 1) = π̃
W (c ,x ) as well

as ΠL(c ,x , z 1) = π̃
L(z 1). From Proposition 1 we have

βw b
D
(c ) =

1

1−G1(c )

∫ c

c

¦�

π̃W (y , y )− π̃L(y )
�

g 1(y )− π̃
W ′
2
(y , y )
�

1−G1(y )
�
©

d y .

Using the fact that 1−G1(c ) = F̃ (s − c )n−1 and performing a change of variable we

obtain

βw b
D
(θ ) =

∫ θ

θ

(

π̃W (s − t , s − t )− π̃L(s − t )

−π̃W ′
2
(s − t , s − t )

F̃ (t )

(n −1) f̃ (t )

«

(n −1) F̃ (t )n−2 f̃ (t )

F̃ (θ )n−1
d t .

Taking their slightly different definition of π̃W and π̃L into account, this is exactly the

first-price auction equilibrium Das Varma (2003) and Goeree (2003) find (see Propo-

sition 2 on p. 28 and Proposition 4 on p. 356, respectively).

In addition, Goeree (2003) also looks at two other auction formats. While his

second-price auction fits our framework very well, the English auction he consid-
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ers does not. The reason for this is that Goeree (2003), in contrast to Katzman and

Rhodes-Kropf (2008), assumes the winning bid of the English auction to be revealed

which induces the equilibrium strategy to differ from the ones we consider in Propo-

sition 1.

3.5.3 Ziv (1993)

Ziv (1993) analyzes a model of n = 2 firms with privately known marginal costs c i

and c j competing in a Cournot duopoly. Before playing the Cournot game both firms

signal their type through publicly burning money. In our framework this corresponds

to the all-pay auction with all bids revealed. Furthermore, we have πW (c i ,ξab ,ζab ) =

πL(c i ,ξab ,ζab ) =π(c i ,x , c j ) such that

β ab
A
(c i ) =−

∫ c

c i

E
�

π′
2
(y , y ,C j )
�

d y

which corresponds to the equilibrium strategy (13) in Ziv (1993) when substituting

the Cournot profit for π and engaging in some rearranging.

An additional example that fits our framework is the simultaneous auction model

of Katsenos (2008) where k = 2 licenses granting access to an oligopoly market are

sold to n > 2 firms through a discriminatory auction. With the winning bids being

revealed, firms are using the auction to signal about their privately known marginal

costs.

Apart from Ziv (1993), in all the models we have discussed above only the pri-

vate information of the winners of the auction is relevant for the second stage. Of

course, in Ziv (1993) all private information is relevant, but since nothing can be

won in the auction there is no distinction between winners and losers. In contrast

to that, our model exhibits both of these features: all private information is relevant

and the auction stage is used to sell objects with an actual intrinsic value. More-

over, our framework allows for analyzing multi-object auctions, whereas Katzman

and Rhodes-Kropf (2008), Das Varma (2003), and Goeree (2003) focus on k = 1.
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4 The Second Stage

After having kept the second stage quite general when developing the framework for

the auction stage, we now describe a specific model of the market competition in the

second stage. Having explicit solutions for πW and πL at hand enables us to explore

under what circumstances separating equilibria arise in auctions among competi-

tors.

The production technology of the firms exhibits constant marginal costs and no

fixed costs. Marginal costs differ among firms and are private information. For firm i ,

marginal costs are described by the cost parameter c i . The technological innovation

sold through the auction reduces marginal costs by a constant amount ǫ.

We will consider two forms of competition: either firms choose quantities simul-

taneously (Cournot competition) or they set prices simultaneously (Bertrand com-

petition). In both cases each firm faces a linear demand for its product. The inverse

demand is given by

p i = a −qi −d
∑

j 6=i

qj (16)

where d ∈ (0, 1] and where p i and qi denote the price and the quantity of firm i ’s

product. The parameter d captures the degree of differentiation between the prod-

ucts of the firms. In particular, if d = 1, firms all produce a homogeneous good and if

d → 0, all firms would become monopolists. We generally assume

a > ã := c +(n −1)
�

c − c + ǫ
�

. (17)

Moreover, in the case of Bertrand competition we make the additional assumption

d <
2a − c

2a − c + ã
. (18)

These restrictions on parameters guarantee that all firms will supply a strictly positive

quantity of their product in the second stage, regardless of the realization of marginal

costs and of the allocation of the cost reducing technology.

Consider first a situation where no firm has access to the cost reducing technol-

ogy. Furthermore, assume that firms all have learned the same information I about

the realization of all marginal costs. In the case of Cournot competition, each firm

i chooses its production quantity qi in order to maximize its expected profits. Let

qi :
�

c , c
�

→R+ denote the equilibrium strategy of firm i . In the Bayesian Nash equi-
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librium we must have

qi (c i ) = arg max
q






a −q −d
∑

j 6=i

E [qj (C j ) |I ]− c i






q ∀i and c i ∈

�

c , c
�

. (19)

Solving for this equilibrium, we can derive firm i ’s expected profit when there are no

cost reductions. Now, suppose that k of the firms have in the first stage gained access

to the new technology which simply means that the marginal costs of k out of the

n firms are reduced by the commonly known amount ǫ. Distinguishing between a

firm i that has won and a firm i that has lost in the first stage and adapting the above

result for the case without cost reductions accordingly, we readily obtain the profit

firm i expects to earn in the second stage.9

Lemma 3. Under Cournot competition the expected profit of firm i that has won and

lost the auction, respectively, is

πW (c i ,ξi ,ζi ) =






γ0+γ1

n−1
∑

j=1

ζi
j
−γ2ξ

i −
1

2
c i +

�

1

2
+γ2− (k −1)γ1

�

ǫ







2

and

πL(c i ,ξi ,ζi ) =






γ0+γ1

n−1
∑

j=1

ζi
j
−γ2ξ

i −
1

2
c i −kγ1ǫ







2

where γ0 := (4−2d )a

2(4−d 2(n−1)+2d (n−2))
, γ1 := 2d

2(4−d 2(n−1)+2d (n−2))
, and γ2 := d 2(n−1)

2(4−d 2(n−1)+2d (n−2))
.

Proof. See Appendix A.1.

A property of expected profits important for our analysis is of course the signaling

incentive it provides for a firm. Since πt ′
2 (c ,ξ,ζ) = −2γ2

p

πt (c ,ξ,ζ) < 0 for t =W, L,

a firm would like to pretend to be stronger than it actually is. That way, this firm

can induce its competitors to supply a lower quantity and therefore obtain a higher

market share.

Let us turn to the case of Bertrand competition. Here, each firm chooses the price

p i of its product in order to maximize its expected profit. Let Q i

�

p i ,
∑

j 6=i
p j

�

denote

the demand for the product of firm i that corresponds to the inverse demand (16).

9For two firms with ǫ = 0 and d = 1, this result is identical to (4) in Ziv (1993).
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Again, consider first the case without the cost reducing technology. Denoting firm i ’s

equilibrium strategy by p i :
�

c , c
�

→R+, the Bayesian Nash equilibrium requires

p i (c i ) = arg max
p

§

E

�

Q i

�

p ,
∑

j 6=i
p j (C j )
�
�

�

�I

�

−p

ª

�

p − c i

�

∀i and c i ∈
�

c , c
�

. (20)

Returning to the situation where k firms have their marginal costs reduced by ǫ, this

implies the following for the expected profit of firm i .

Lemma 4. Under Bertrand competition the expected profit of firm i that has won and

lost the auction, respectively, is

πW (c i ,ξi ,ζi ) =






δ0+δ1

n−1
∑

j=1

ζi
j
+δ2ξ

i −
1

2
c i +

�

1

2
−δ2− (k −1)δ1

�

ǫ







2

and

πL(c i ,ξi ,ζi ) =






δ0+δ1

n−1
∑

j=1

ζi
j
+δ2ξ

i −
1

2
c i −kδ1ǫ







2

where δ0 := (1−d )a

2(1−d )+d (n−1)
, δ1 := 2d (1−2d+d n )

2(2−3d+2d n )(2−3d+d n )
, and δ2 := d 2(n−1)

2(2−3d+2d n )(2−3d+d n )
.

Proof. See Appendix A.2.

Comparing Lemmata 3 and 4, we find the structure of expected profits to be very

similar. The crucial difference lies in the signaling incentive. In the Bertrand market,

as πt ′
2 (c ,ξ,ζ) = 2δ2

p

πt (c ,ξ,ζ)> 0 for t =W, L, a firm prefers to appear weaker than

it is, so that its competitors set higher prices leaving a higher market share for the

firm in question.

5 Revealing All Bids

Having presented our model for the second stage in the preceding section, we are

now ready to study the full model. We begin, in this section, with the case where the

auctioneer announces all bids at the end of the first stage. In the subsequent section

we will then turn to the situation where the amount to be paid by each bidder is

revealed.
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Suppose the auctioneer reveals all bids after the auction, so that firms will, in

equilibrium, have full information about all cost parameters when they enter the sec-

ond stage. Consequently, with firms holding beliefs ξab and ζab defined in (11), we

have

Πt (c ,x , z k ) = E
�

πt (c ,x , Z) |Zk = z k

�

for t =W, L. (21)

Using Lemmata 3 and 4 together with Lemma 1, we find the following.

Proposition 2. Under Cournot competition, the direct mechanism



m , I ab
�

is incen-

tive compatible. Under Bertrand competition,



m , I ab
�

is incentive compatible if and

only if n = 2 and

�

1

2
−δ2+δ1

�

ǫ f (c )−δ2 ≥ 0 for all c ∈
�

c , c
�

. (22)

Proof. Under Cournot competition, we have

ΠW ′
1
(c ,x ,x )−ΠL′

1
(c ,x ,x ) = E
�

πW ′
1
(c ,x , Z)−πL′

1
(c ,x , Z) |Zk = x
�

=−

�

1

2
+γ2+γ1

�

ǫ

and

Πt ′′
12
(c ,x , z k ) = γ2 for t =W, L.

(IC2) therefore simplifies to

�

1

2
+γ2+γ1

�

ǫg k (x )+γ2 ≥ 0 (23)

implying that the direct mechanism with expected payment m defined by (9) is in-

centive compatible.

For the case of Bertrand competition, we can simply use (23) and replace γ1 by δ1

and γ2 by −δ2. Hence, we obtain

U ′′
12
(c ,x ) =

�

1

2
−δ2+δ1

�

ǫg k (x )−δ2.

Now note that, g k (c ) = 0 for k > 1 and g k (c ) = 0 for k < n −1. Consequently, if n > 2,

there are always some c close enough to c or c (or both) for which U ′′
12
(c , c ) is strictly

negative. Hence, n = 2 is necessary for the direct mechanism to be incentive com-
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patible. Incentive compatibility thus requires (22). As U ′′
12
(c ,x )≥ 0 ∀c ,x is equivalent

to U ′′
12
(c , c )≥ 0 ∀c , (22) and n = 2 are also sufficient for incentive compatibility.

Intuitively, in auctions where the highest bidders win and without signaling pos-

sibilities, we would expect the firms with the lowest costs to bid the highest amount

since ∂

∂ c

�

πW (c ,ξ,ζ)−πL(c ,ξ,ζ)
�

< 0 for both the Cournot and the Bertrand model.

Taking signaling into account, firms want to appear stronger under Cournot com-

petition where π′
2
(c ,ξ,ζ) < 0, while they pretend to have high costs in the Bertrand

case because of π′
2
(c ,ξ,ζ)> 0. Since under Cournot (Bertrand) competition we have

π′′
12
(c ,ξ,ζ) > 0 (π′′

12
(c ,ξ,ζ) < 0), the signaling incentive is in both cases strongest

for the low-cost types. In the Cournot case, the signaling effect thus goes into the

same direction as the first effect: low-cost firms increase their already higher bids

by more than high-cost firms. Under Bertrand competition, however, the signaling

effect works into the opposite direction. Firms with low costs reduce their bids by

more than firms with high costs, so that it becomes unclear which types will submit

the highest bids. As Proposition 2 shows, for n > 2 the two opposing effects prevent

incentive compatible mechanisms that choose firms with the lowest costs as winners

from existing. In addition, the following corollary shows that separating equilibria

are, in fact, impossible for all auctions where the highest bidders win.

Corollary 2. Consider auctions where the highest bidders win and all bids are re-

vealed. For Bertrand competition and n > 2, there does not exist any auction mecha-

nism that has a separating equilibrium.

Proof. In a separating equilibrium, firms are able to directly infer types from bids.

Hence, (continuous) equilibrium bidding strategies have to be either strictly decreas-

ing or strictly increasing. For strictly decreasing strategies, the corresponding direct

mechanism is



m , I ab
�

. Under Bertrand competition and n > 2, Proposition 2 shows

that



m , I ab
�

can never be incentive compatible. For strictly increasing strategies the

corresponding direct mechanism is similar to



m , I ab
�

but with the allocation rule

choosing the firms with the highest costs as winners. Note that in terms of firm i ’s

objective (4), the difference between



m , I ab
�

and this alternative direct mechanism

is just that W and L are interchanged and k is replaced by n−k . With those changes,

Lemma 1 continues to hold. Accordingly, the direct mechanism choosing the firms
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with the highest costs as winners is incentive compatible only if

−
�

ΠL′
1
(c , c , c )−ΠW ′

1
(c , c , c )
�

g n−k (c )

+

∫ c

c

ΠL′′
12
(c , c , z n−k )g n−k (z n−k )d z n−k +

∫ c

c

ΠW ′′
12
(c , c , z n−k )g n−k (z n−k )d z n−k ≥ 0.

Under Bertrand competition, this simplifies to

−

�

1

2
−δ2+δ1

�

ǫg n−k (c )−δ2 ≥ 0

which is clearly violated.

As under Bertrand competition separating equilibria might only exist as a special

case, we will focus on Cournot competition for the rest of this section. For the three

auction formats we have introduced in Subsection 3.2 equilibrium bidding strategies

are given in Proposition 1. From Proposition 2 we know that the corresponding direct

mechanism is incentive compatible under Cournot competition. In order to make

sure that such a separating equilibrium actually exists for each auction, we are left to

verify that equilibrium strategies βA , βD , and βU are strictly decreasing in c .

As we show below expected payment m (c ) is strictly decreasing in c under Cour-

not competition. With each firm having to pay its bid, the all-pay auction therefore

has a separating equilibrium. In a discriminatory or a uniform-price auction, losers

are not asked to pay anything. But with all bids being announced, the losers’ bids still

work as a signaling device. Especially for firms with very high costs that are almost

sure that they will not be among the winners, the credibility of signals becomes ques-

tionable. Not surprisingly, existence of a separating equilibrium is ensured only in a

special case.

Proposition 3. Suppose all bids are announced and there is Cournot competition in

the second stage. Then, the all-pay auction generally has a separating equilibrium

where firms bid according toβA . For the discriminatory and the uniform-price auction

a separating equilibrium where firms bid according to βD and βU , respectively, exists

only if k = n −1. If, in addition to k = n −1, F (c ) is logconcave and F (c )n−1 is convex,

then both auction formats have such a separating equilibrium.

Proof. See Appendix A.3.
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According to Proposition 3, there generally is a separating equilibrium for Cour-

not competitors bidding in an all-pay auction. In the example of lobbying for sub-

sidies, firms hence increase their lobbying expenses in order to signal their strength,

given that those expenses are disclosed. The all-pay auction even has a separating

equilibrium if ǫ = 0, i.e., if there is no cost reduction for the winners. In this case,

bidding in the all-pay auction corresponds exactly to the truth-telling equilibrium of

Ziv (1993). Our result therefore extends Ziv’s finding to a Cournot market with more

than two firms and heterogeneous goods.

For the discriminatory and the uniform-price auction credible signaling leading

to a complete separation of types is only possible if there is only one loser. The reason

for this is that if k < n − 1, g k (c )→ 0 as c → c : for a firm with very high costs win-

ning probability and expected payment are virtually unchanged when such a firm

increases its bid in order to signal lower costs. Because of the incentive to deviate for

high-cost firms bids cannot serve as credible signals. Avoiding this problem by set-

ting k = n − 1 is not enough to guarantee the existence of a separating equilibrium.

Proposition 3 provides a sufficient condition requiring the distribution function F to

be logconcave but not "too concave". Of course, the credibility problem of losing bids

is mitigated if the auctioneer refrains from revealing all losing bids. As we find in the

next section, this lets separating equilibria become possible also for discriminatory

and uniform-price auctions where k < n −1.

6 Revealing the Prices Paid

The auctioneer publicly announcing the amount each firm has to pay has different

implications for the three auction formats. In the discriminatory auction the win-

ning bids are revealed, whereas in the uniform-price auction the highest losing bid

is announced. In an all-pay auction, announcing the prices to be paid is, of course,

equivalent to revealing all bids which is the topic of Section 5. Hence, we exclusively

focus in this section on the discriminatory and the uniform-price auction, treating

each of the two formats separately.

As we have seen in Section 4, a firm’s expected profits πW and πL do not actually

depend on the elements of ζ but only on their sum. In the following it is therefore

useful to define S(x , z) :=
∑n−1

j=1
ζj (x , z) and to write πt (c ,ξ(x , z),S(x , z)) rather than

πt (c ,ξ(x , z),ζ(x , z)) for t =W, L.
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6.1 The Discriminatory Auction

For the discriminatory auction, revealing the prices paid is equivalent to announc-

ing all winning bids. The auction corresponds therefore to the direct mechanism



m , I w b
�

. Using the slightly changed notation with S instead of ζ, we have, for t =

W, L,

Πt (c ,x , z k ) = E
�

πt (c ,ξw b (x , Z),Sw b (x , Z)) |Zk = z k

�

with ξw b (x , z) given in (12) and

Sw b (x , z) =







S I (z1,...,k−1) for x < z k−1

S I I (x , z1,...,k−1) for z k−1 < x < z k

S I I I (z1,...,k ) for z k < x

where

S I (z1,...,k−1) :=
∑k−1

j=1
z j +(n −k )E [C |C > z k−1]

S I I (x , z1,...,k−1) :=
∑k−1

j=1
z j +(n −k )E [C |C > x ]

S I I I (z1,...,k ) :=
∑k

j=1
z j +(n −k −1)E [C |C > z k ]

Note that in the case firm i belongs to the winners, i.e., i expects to receive ΠW , we

have x < z k . Similarly, for ΠL there is x > z k . Therefore,

ΠL(c ,x , z k ) = E
�

πL(c , E [C |C >Zk ],S
I I I (Z1,...,k )) |Zk = z k

�

and

ΠW (c ,x , z k ) =
∫ z k

x

∫ z k−1

c

. . .

∫ z k−1

z k−3

πW (c ,x ,S I (z1,...,k−1))
g 1,...,k (z1,...,k )

g k (z k )
d z k−2 . . . d z 1d z k−1

+

∫ x

c

∫ z k−1

c

. . .

∫ z k−1

z k−3

πW (c ,x ,S I I (x , z1,...,k−1))
g 1,...,k (z1,...,k )

g k (z k )
d z k−2 . . .d z 1d z k−1
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or

ΠW (c ,x , z k ) = Pr[x <Zk−1,Zk = z k ]E
�

πW (c ,x ,S I (Z1,...,k−1)) |x <Zk−1,Zk = z k

�

+Pr[Zk−1 < x ,Zk = z k ]E
�

πW (c ,x ,S I I (x , Z1,...,k−1)) |Zk−1 < x ,Zk = z k

�

. (24)

Employing the results of Lemmata 3 and 4, Lemma 1 implies the following.

Proposition 4. Under Cournot competition, the direct mechanism



m , I w b
�

is incen-

tive compatible. Under Bertrand competition,



m , I w b
�

is incentive compatible if and

only if k = 1 and

�

1

2
−δ2+δ1

�

ǫ−δ2 (E [C |C > c ]− c )−δ2

1− F (c )

(n −1) f (c )
≥ 0 (25)

for all c ∈
�

c , c
�

.

Proof. See Appendix A.4.

As in the case where all bids are revealed, under Cournot competition separating

equilibria are generally possible. In addition, revealing less information opens up the

possibility of a separating equilibrium in the case where there is a single winner even

under Bertrand competition. Indeed, k = 1 corresponds to the mechanism with the

least information revealed among all direct mechanisms



m , I w b
�

.

In addition to the corresponding direct mechanism being incentive compatible,

the bidding strategy βD has to be strictly decreasing in order for the discriminatory

auction to have a separating equilibrium. Checking this second condition represents

our next task. At this point, we impose the additional assumption that the density f

is logconcave which enables us to obtain the following result.

Proposition 5. Suppose f is logconcave. Under Cournot competition, there exists an

a ∗ ∈R such that the discriminatory auction with the winners’ bids revealed has a sep-

arating equilibrium where firms bid according to βD if the market size a ≥ a ∗. Under

Bertrand competition and with k = 1, there is a d ∗ ∈ (0, 1] so that given ǫ > 0 such a

separating equilibrium exists for all d ≤ d ∗.

Proof. See Appendix A.5.

Revealing only the winning bids in a discriminatory auction eliminates the prob-

lem of noncredible signaling through losing bids that have no costly consequences
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for the senders. At the same time, however, an other issue arises because of what we

identified as the second signaling effect in Subsection 3.4. Consider the event that

firm i submits the lowest winning bid while pretending to have costs x . Increasing x

leads to an increase in the costs that losing firms are generally believed to have which

in turn increases i ’s expected profits. This effect therefore provides an incentive to re-

duce bids. The incentive is strongest for low-cost firms and hence increases the slope

of the bidding strategyβD . Under Cournot competition both the value of winning the

auction and the first signaling effect support a decreasing βD . According to Proposi-

tion 5, a sufficiently big market is enough to ensure that the second signaling effect

does not dominate the other two effects.10

Under Bertrand competition and k = 1, there is a separating equilibrium if the

goods are sufficiently heterogeneous, i.e., if competition among firms is not too

fierce. When the heterogeneity of goods is increased winning the auctions gains in

importance relative to the signaling incentives, such that from some point on a sep-

arating equilibrium exists. Interestingly, as we show in Appendix A.5, β ′
D
< 0 implies

that condition (25) is fulfilled. Hence, it generally cannot be the case that



m , I w b
�

fails to be incentive compatible although βD is strictly decreasing.

6.2 The Uniform-price Auction

In the uniform-price auction, announcing the prices winners have to pay means that

the highest losing bid is revealed. Accordingly, again using the slightly different no-

tation with S instead of ζ, we have, for t =W, L,

Πt (c ,x , z k ) = E
�

πt (c ,ξhl b (x , Z),Shl b (x , Z)) |Zk = z k

�

where ξhl b (x , z) is given in (14) and

Shl b (x , z) =







S I (z k ) for x < z k

S I I (x ) for z k < x < z k+1

S I I I (z k+1) for z k+1 < x .

10Note that this result for the case of Cournot competition also holds for ǫ = 0. Even if winning a

discriminatory auction with the winners’ bids revealed does not provide a direct advantage, firms still

participate, exclusively using their bids for signaling.
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with

S I (z k ) := (k −1)E [C |C < z k ]+ z k +(n −k −1)E [C |C > z k ] ,

S I I (x ) := k E [C |C < x ]+ (n −k −1)E [C |C > x ] ,

S I I I (z k+1) := k E [C |C < z k+1]+ z k+1+(n −k −2)E [C |C > z k+1] .

Note that for ΠW we have always x < z k and for ΠL there is x > z k . Therefore,

ΠW (c ,x , z k ) =π
W (c , E [C |C < z k ],S

I (z k ))

and

ΠL(c ,x , z k ) =

∫ c

x

πL(c ,x ,S I I (x ))
g k ,k+1(z k , z k+1)

g k (z k )
d z k+1

+

∫ x

z k

πL(c , E [C |C > z k+1],S
I I I (z k+1))

g k ,k+1(z k , z k+1)

g k (z k )
d z k+1.

Combining Lemmata 3 and 4 with Lemma 1 one more time, we find the following.

Proposition 6. Under Cournot competition, the direct mechanism



m , I hl b
�

is incen-

tive compatible. Under Bertrand competition,



m , I hl b
�

is incentive compatible if and

only if

�

1

2
−δ2+δ1

�

ǫ−δ2 (c − E [C |C < c ])

−δ2 (E [C |C > c ]− c )
n −k −1

k

F (c )

1− F (c )
−δ2

F (c )

k f (c )
≥ 0 (26)

for all c ∈
�

c , c
�

.

Proof. See Appendix A.6.

Like for the other two announcement rules, the corresponding direct mecha-

nism continues to be incentive compatible under Cournot competition when just the

highest losing bid of the auction is revealed. Under Bertrand competition, revealing

only one cost parameter confines the signaling effect enough for the corresponding

direct mechanism to become incentive compatible for all k and n , given condition

(26) holds.
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Figure 1: Existence of a separating equilibrium for the uniform-price auction under

Cournot competition with uniformly distributed costs.

In order for a separating equilibrium to exist for the uniform-price auction with

the highest losing bid revealed, the corresponding equilibrium bidding strategy

must, of course, be a strictly decreasing function. As the one bid that is announced

does not directly involve any costs to the submitting bidder, the problem of noncred-

ible signals is also present in this auction, although its impact is less grave than when

all bids are revealed.

Proposition 7. Suppose ǫ > 0. Then, under both Cournot and Bertrand competition,

there exists a d ∗ ∈ (0, 1] such that for all d ≤ d ∗ the uniform-price auction with the

highest losing bid revealed has a separating equilibrium where firms bid according to

βU .

Proof. See Appendix A.7.

For both types of competition, incentives stemming from the possibility of us-

ing bids as signals might prevent a complete separation of types. For sufficiently

heterogenous goods, however, the benefit from winning the cost reduction domi-

nates those counteractive effects, such that there is a separating equilibrium for the

uniform-price auction under both Cournot as well as Bertrand competition.

As an example, suppose there are n = 6 firms with marginal costs that are uni-

formly distributed on [1, 2]. Moreover, let a = 12 and either k = 1 or k = 5. For the
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k = 1
β′ < 0

ε
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k = 5
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Figure 2: Existence of a separating equilibrium for the uniform-price auction under

Bertrand competition with uniformly distributed costs.

case of Cournot competition Figure 1 displays the combinations of the remaining

free parameters d and ǫ that allow for a separating equilibrium. At all points that

lie to the left of the solid line corresponding to k = 1 and k = 5, respectively, we

have β ′
U
(c )< 0 implying that the uniform-price auction has a separating equilibrium

where firms bid according to βU . The dotted lines represent an increase of the mar-

ket size to a = 16. Observe that increasing the number of winners enlarges the set

of points supporting a separating equilibrium, whereas increasing the market sizes

reduces this set.

Figure 2 illustrates the example under Bertrand competition. Here, points where

β ′
U
(c ) < 0 again have to lie to the left of the solid lines. In addition, for a separating

equilibrium to exist, condition (26) must be met which is the case for points above

(and left of) the dashed lines. Recall that for the case of Bertrand competition we

have made the additional assumption (18). Points in the d -ǫ-plane consistent with

this assumption lie to the left of the dash-dotted line. Interestingly, for this uniform

example, assumption (18) is sufficient to ensure β ′
U
(c ) < 0. The dotted lines again

represent the situation when a = 16. Increasing the market size relaxes the restriction

on parameters because of assumption (18) whereas it leaves the requirement for the

corresponding direct mechanism to be incentive compatible unchanged.

Under Cournot and under Bertrand competition, existence of the separating
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equilibrium requires competition among firms to be not too fierce. This can also be

formulated as the need for a large enough cost reduction ǫ. Both, decreasing d and

increasing ǫ, let the advantage for a firm when winning the auction increase com-

pared to the signaling incentives.

7 Conclusion

We study the behavior of bidders in an auction who, after the auction, form an oligo-

poly and compete to sell their products. Bidders are firms that have private infor-

mation about their cost structure and take part in the auction in order to win a cost

reducing technology. As bids may be observed in the auction process, they can also

be used to send signals. We examine three different auction formats. Given the same

announcement policy is applied, in a separating equilibrium all three formats are

revenue equivalent. However, whether a separating equilibrium actually exists de-

pends among other things also on which type of auction is used.

Under Cournot competition, the all-pay auction with all bids revealed and the

discriminatory auction with the winning bids revealed both have a fully separating

equilibrium, the sole restriction in the latter auction format being that the market

size has to be big enough (assuming the probability density is logconcave). The rea-

son for a complete separation of types to arise very generally in those cases is that

the firms whose signals are actually observed by their rivals are exactly the firms that

have to pay their bid. This way, bids can serve as credible signals. In the uniform-

price auction where the price winners have to pay is announced, i.e., where the high-

est losing bid is revealed, the single firm that actually sends a signal, does not pay

anything. In this case, as an additional condition, the benefit from winning the auc-

tion has to be sufficiently high (relative to the benefit from signaling) in order for a

separating equilibrium to arise. If all bids of a discriminatory or a uniform-price auc-

tion are revealed, the problem of noncredible signals becomes more grave, so that

separating equilibria only exist in the special case where the auction has only one

loser.

Bertrand competition in the second stage constitutes an additional obstacle for

the existence of a separating equilibrium. Here, the low-cost firms that profit most

from winning the cost reduction are at the same time also the firms with the strongest

signaling incentive to reduce their bids in order to understate their costs. Conse-

quently, if all bids are disclosed, separating equilibria are generally impossible when
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there are more than two firms involved. Revealing less information reduces the

weight of the signaling incentive and opens up the possibility of a separating equilib-

rium under Bertrand competition. If there is only one winner in the discriminatory

auction (i.e., if it is a first-price auction) and if only this winning bid is revealed, then

a separating equilibrium might exist. The same is true for all uniform-price auctions

where only the highest losing bid is revealed. In both cases, it is important that the

incentive to win the auction because of its intrinsic value outweighs the counterac-

tive signaling effect. This is generally the case if competition among firms is, thanks

to product differentiation, not too fierce, or, alternatively, if the cost reduction is rel-

atively big.

A Appendix

A.1 Proof of Lemma 3

The first order condition to (19) yields

qi (c i ) =
1

2






a −d
∑

j 6=i

E [qj (C j ) |I ]− c i






. (A1)

Taking expectations and summing over all i 6= h we obtain

∑

i 6=h

E [qi (C i ) |I ] =
1

2






(n −1)a −d
∑

i 6=h

∑

j 6=i

E [qj (C j ) |I ]−
∑

i 6=h

E [C i |I ]







which is equivalent to

∑

i 6=h

E [qi (C i ) |I ] =
1

2






(n −1)a − (n −2)d

∑

j 6=h

E [qj (C j ) |I ]

− (n −1)d E [qh(Ch) |I ]−
∑

i 6=h

E [C i |I ]



 .

35



After substituting expectations of (A1) for E [qh(Ch) |I ] this can be rearranged to

∑

j 6=i

E [qj (C j ) |I ] = 4γ







2−d

2
(n −1)a −
∑

j 6=i

E [C j |I ]+ (n −1)
d

2
E [C i |I ]






(A2)

where γ := 1

2(4−d 2(n−1)+2d (n−2))
> 0. Substituting (A2) into (A1) and making some fur-

ther rearrangements we finally obtain the quantity firm i chooses in equilibrium:

qi (c i ) = (4−2d )γa +2dγ
∑

j 6=i

E [C j |I ]−d 2 (n −1)γE [C i |I ]−
1

2
c i .

Let γ0 := (4−2d )γa , γ1 := 2dγ, and γ2 := d 2 (n −1)γ. Recall that E [C i |I ] = ξ
i and

note
∑

j 6=i
E [C j |I ] =
∑n−1

j=1
E [Z j |I ] =
∑n−1

j=1
ζi

j
. Thus, the expected profit of firm i in

the second stage amounts to

π(c i ,ξi ,ζi ) =q (c i )
2 =






γ0+γ1

n−1
∑

j=1

ζi
j
−γ2ξ

i −
1

2
c i







2

. (A3)

In case firm i belongs to the winners of the auction its marginal costs are reduced

by ǫ, i.e., we have to replace ξi and c i by ξi − ǫ and c i − ǫ. In this case also k − 1 of

i ’s competitors have access to the new technology such that
∑n−1

j=1
ζi

j
is reduced by

(k −1)ǫ. On the other hand, if firm i does not win, k of its competitors use the new

technology. Accordingly, we simply replace
∑n−1

j=1
ζi

j
by
∑n−1

j=1
ζi

j
−kǫ.

A.2 Proof of Lemma 4

Summing the inverse demand (16) over all i 6= h and rearranging we obtain

∑

i 6=h

p i = (n −1)a −d (n −1)qh − (d (n −2)+1)
∑

i 6=h

qi .

Substituting this result into (16) and solving for qi yields the demand for the good

produced by firm i :

qi =
1−d

(1−d )(1+d (n−1))
a + d

(1−d )(1+d (n−1))

∑

j 6=i

p j −
1−d+d (n−1)

(1−d )(1+d (n−1))
p i .
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When we substitute the above result for Q i

�

p i ,
∑

j 6=i
p j

�

, (20) becomes

p i (c i ) = arg max
p i







1−d

1−d+d (n−1)
a + d

1−d+d (n−1)

∑

j 6=i

E [p j (C j ) |I ]−p i







�

p i − c i

�

.

The first order condition yields

p i (c i ) =α+λ
∑

j 6=i

E [p j (C j ) |I ]+
1

2
c i (A4)

where α := 1−d

2(1−d+d (n−1))
a and λ := d

2(1−d+d (n−1))
. Taking expectations and summing

over all i 6= h gives

∑

i 6=h

E [p i (C i ) |I ] = (n −1)α+λ (n −1)E [ph(Ch) |I ]

+λ (n −2)
∑

i 6=h

E [p i (C i ) |I ]+
1

2

∑

i 6=h

E [C i |I ].

Substituting for E [ph(Ch)|I ] and then using the result for
∑

i 6=h
E [p i (C i )|I ] together

with (A4) we obtain after some rearranging the price firm i sets in equilibrium:

p i (c i ) =
1

1−λ (n −1)
α+

λ

2 (1+λ) (1−λ (n −1))

∑

j 6=i

E [C j |I ]

+
λ2 (n −1)

2 (1+λ) (1−λ (n −1))
E [C i |I ]+

1

2
c i .

Let δ0 := 1

1−λ(n−1)
α, δ1 := λ

2(1+λ)(1−λ(n−1))
, and δ2 := λ2(n−1)

2(1+λ)(1−λ(n−1))
. Again, recall that

E [C i |I ] = ξ
i and
∑

j 6=i
E [C j |I ] =
∑n−1

j=1
ζi

j
. For the expected profits of firm i we have

π(c i ,ξi ,ζi ) =
�

p i (c i )− c i

�2
=






δ0+δ1

n−1
∑

j=1

ζi
j
+δ2ξ

i −
1

2
c i







2

. (A5)

The distinction between a firm i that has won or lost the auction is identical to that

under Cournot competition.

37



A.3 Proof of Proposition 3

We start with the all-pay auction. The corresponding equilibrium strategy is βA(c ) =

m (c ), as we know from Proposition 1. We have to show that β ′
A
(c )< 0 under Cournot

competition. From (9) in combination with (21) and Lemma 3 we obtain, after some

simplifications and rearranging,

m ′(c ) =−E
�

πW (c , c , Z)−πL(c , c , Z) |Zk = c
�

g k (c )

−2γ2

�

E
hp

πL(c , c , Z)
i

+

�

1

2
+γ2+γ1

�

ǫ (1−Gk (c ))

�

(A6)

where we have used the facts that

p

πW (c ,x , Z) =
p

πL(c ,x , Z)+

�

1

2
+γ2+γ1

�

ǫ

and
∫ c

c

E [H (Z) |Zk = z k ] g k (z k )d z k = E [H (Z)] for any function H .

Hence, we clearly have β ′
A
(c ) =m ′(c )< 0.

Now, consider the equilibrium strategies for the discriminatory and the uniform-

price auction given in Proposition 1. Again, those strategies must be strictly decreas-

ing in a separating equilibrium. Recall m (c ) = 0 and note that

βD(c ) = lim
c→c

m (c )

1−Gk (c )
= lim

c→c
−

m ′(c )

g k (c )
= βU (c ).

Observe using (A6) that −∞ < m ′(c ) < 0. However, g k (c ) = 0 if k < n − 1. Hence,

in that case, βD(c ) = βU (c )→∞ and bidding strategies cannot be strictly decreasing

everywhere. For a separating equilibrium, k = n −1 is therefore necessary.

Let k = n − 1. We will next derive sufficient conditions for β ′
U
(c ) < 0. Due to

Corollary 1 these conditions also imply β ′
D
(c )< 0. From (A6) we obtain

βU (c ) =−
m ′(c )

g n−1(c )
=λ1(c )+λ2(c )+λ3(c ).
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where

λ1(c ) := E
�

πW (c , c , Z)−πL(c , c , Z) |Zn−1 = c
�

λ2(c ) := 2γ2E
hp

πL(c , c , Z)
i 1

g n−1(c )

λ3(c ) := 2γ2

�

1

2
+γ2+γ1

�

ǫ
1−Gn−1(c )

g n−1(c )

Sufficient for β ′
U
(c )< 0 is λ′

i
(c )< 0 for i = 1, 2, 3. Consider first λ1(c )where we have

λ1(c ) = 2

�

1

2
+γ2+γ1

�

ǫE
hp

πL(c , c , Z) |Zn−1 = c
i

+

�

1

2
+γ2+γ1

�2

ǫ2

where

E
hp

πL(c , c , Z) |Zn−1 = c
i

= γ1 (n −2)E [C |C < c ]−

�

1

2
+γ2−γ1

�

c +γ0−kγ1ǫ.

Hence, λ′
1
(c )< 0 if and only if

γ1 (n −2)
d E [C |C < c ]

d c
−

�

1

2
+γ2−γ1

�

< 0.

When we assume F do be logconcave, this condition is fulfilled, because of (1) and
1

2
+γ2−γ1 (n −1)> 0. Consider λ2(c ) and note that

∂

∂ c
E
hp

πL(c , c , Z)
i

=δ2−
1

2
< 0.

Therefore, g ′
n−1
(c )≥ 0 is sufficient forλ′

2
(c )< 0. Moreover, g ′

n−1
(c )≥ 0 ensuresλ′

3
(c )<

0 as well. Obviously, convexity of Gn−1(c ) = F (c )n−1 is equivalent to g ′
n−1
(c )≥ 0.

A.4 Proof of Proposition 4

Consider first the case of Cournot competition. We have

ΠW ′
1
(c ,x ,x )−ΠL′

1
(c ,x ,x ) = E
�

πW ′
1
(c ,x ,S I I (x , Z1,...,k−1)) |Zk−1 < x ,Zk = x

�

− E
�

πL′
1
(c , E [C |C >Zk ],S

I I I (Z1,...,k )) |Zk = x
�
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which implies

ΠW ′
1
(c ,x ,x )−ΠL′

1
(c ,x ,x ) =

− E
h
p

πW (c ,x ,S I I (x , Z1,...,k−1))−
p

πL(c , E [C |C >Zk ],S I I I (Z1,...,k )) |Zk = x
i

such that

ΠW ′
1
(c ,x ,x )−ΠL′

1
(c ,x ,x ) =−
�

γ1+γ2

�

(E [C |C > x ]−x )−

�

1

2
+γ2+γ1

�

ǫ.

Moreover, ΠL′′
12
(c ,x , z k ) = 0 and

ΠW ′′
12
(c ,x , z k ) = Pr[x <Zk−1,Zk = z k ]E [π

W ′′
12
(c ,x ,S I (Z1,...,k−1)) |x <Zk−1,Zk = z k ]

+Pr[Zk−1 < x ,Zk = z k ]E [π
W ′′
12
(c ,x ,S I I (x , Z1,...,k−1)) |Zk−1 < x ,Zk = z k ]+

Pr[Zk−1 < x ,Zk = z k ]E [π
W ′′
13
(c ,x ,S I I (x , Z1,...,k−1))S

I I ′
1
(x , Z1,...,k−1))|Zk−1 < x ,Zk = z k ]

which implies

ΠW ′′
12
(c ,x , z k ) = γ2−Pr[Zk−1 < x ,Zk = z k ]γ1 (n −k )

∂ E [C |C > x ]

∂ x
.

Thus,

U ′′
12
(c ,x ) =

�

1

2
+γ2+γ1

�

ǫg k (x )+
�

γ1+γ2

�

(E [C |C > x ]−x ) g k (x )

+

∫ c

x

γ2 g k (z k )d z k −

∫ c

x

Pr[Zk−1 < x ,Zk = z k ]γ1 (n −k )
∂ E [C |C > x ]

∂ x
g k (z k )d z k .

Carrying out the integrals yields

U ′′
12
(c ,x ) =

�

1

2
+γ2+γ1

�

ǫg k (x )+
�

γ1+γ2

�

(E [C |C > x ]−x ) g k (x )

+γ2 (1−Gk (x ))−γ1 (Gk−1(x )−Gk (x )) (n −k )
∂ E [C |C > x ]

∂ x

since

∫ c

x

Pr[Zk−1 < x ,Zk = z k ]g k (z k )d z k = Pr[Zk−1 < x <Zk ] =Gk−1(x )−Gk (x ).
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Using the fact that

Gk−1(c )−Gk (c ) = g k (c )
1− F (c )

(n −k ) f (c )
(A7)

and
∂ E [C |C > c ]

∂ c
= (E [C |C > c ]− c )

f (c )

1− F (c )
(A8)

we obtain

U ′′
12
(c ,x ) =

�

1

2
+γ2+γ1

�

ǫg k (x )+γ2 (E [C |C > x ]−x ) g k (x )+γ2 (1−Gk (x )) . (A9)

Clearly, U ′′
12
(c ,x ) ≥ 0, i.e., (IC2) is fulfilled implying that under Cournot competition

the direct mechanism



m , I w b
�

generally is incentive compatible.

Now, consider the case of Bertrand competition. Replace γ1 by δ1 and γ2 by −δ2

in (A9) in order to obtain

U ′′
12
(c ,x ) =

�

1

2
−δ2+δ1

�

ǫg k (x )−δ2 (E [C |C > x ]−x ) g k (x )−δ2 (1−Gk (x )) .

If k > 1, we have U ′′
12
(c , c )< 0 as c → c . Hence, k = 1 is necessary for incentive com-

patibility. With k = 1, the necessary condition U ′′
12
(c , c )≥ 0 from Lemma 1 simplifies

to
�

1

2
−δ2+δ1

�

ǫ−δ2 (E [C |C > c ]− c )−δ2

1− F (c )

(n −1) f (c )
≥ 0

since 1−G1(z )

g 1(z )
=

1−F (z )

(n−1) f (z )
. This condition also implies (IC2).

A.5 Proof of Proposition 5

In order for the discriminatory auction with the winning bids revealed to have a sepa-

rating equilibrium, the corresponding equilibrium bidding strategy has to be strictly

decreasing. As it is more convenient analytically, we will in the following work with

strategy βU rather than βD . Recall from Corollary 1 that β ′
U
(c ) < 0 always implies

β ′
D
(c ) < 0. As a first step, we prove the following lemma concerning the equilibrium

bidding strategy of the uniform-price auction where the winning bids are revealed

which we denote by βw b
U
(c ).
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Lemma A1. Under Cournot competition, equilibrium strategy βw b
U
(c ) can be simpli-

fied as follows:

βw b
U
(c ) =

1−Gk−1(c )

g k (c )
2γ2Ω

I (c )

+2

�

γ2 {E [C |C > c ]− c }+γ2

1− F (c )

(n −k ) f (c )
+

�

1

2
+γ2+γ1

�

ǫ

�

ΩI I (c )

−

�

�

γ1+γ2

�

{E [C |C > c ]− c }+

�

1

2
+γ2+γ1

�

ǫ

�2

(A10)

where

ΩI (c ) := γ0+γ1E
�

S I (Z1,...,k−1) |c <Zk−1

�

−γ2c −
1

2
c +

�

1

2
+γ2− (k −1)γ1

�

ǫ

and

ΩI I (c ) := γ0+γ1 {(k −1)E [C |C < c ]+ (n −k )E [C |C > c ]}

−γ2c −
1

2
c +

�

1

2
+γ2− (k −1)γ1

�

ǫ.

If f (c ) is logconcave, then dΩI (c )

d c
< 0 as well as dΩI I (c )

d c
< 0.

Proof. Since with only the winning bids revealed ΠL′
2
(c , c , z k ) = 0, we have

βw b
U
(c ) = ΠW (c , c , c )−ΠL(c , c , c )−

1

g k (c )

∫ c

c

ΠW ′
2
(c , c , z k )g k (z k )d z k .

Starting with

ΠW (c , c , c )−ΠL(c , c , c ) = E
�

πW (c , c ,S I I (c , Z1,...,k−1))

−πL(c , E [C |C >Zk ],S
I I I (Z1,...,k )) |Zk = c

�

we find, after plugging in profits under Cournot competition and engaging in some
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rearranging,

ΠW (c , c , c )−ΠL(c , c , c ) = 2

�

�

γ1+γ2

�

{E [C |C > c ]− c }+

�

1

2
+γ2+γ1

�

ǫ

�

ΩI I (c )

−

�

�

γ1+γ2

�

{E [C |C > c ]− c }+

�

1

2
+γ2+γ1

�

ǫ

�2

where ΩI I (c ) is defined in Lemma A1. From (24) we find, using the fact that

S I (z1,...,k−2,x ) =S I I (x , z1,...,k−2,x ),

ΠW ′
2
(c ,x , z k ) = Pr[x <Zk−1,Zk = z k ]E

�

πW ′
2
(c ,x ,S I (Z1,...,k−1)) |x <Zk−1,Zk = z k

�

+Pr[Zk−1 < x ,Zk = z k ]E
�

πW ′
2
(c ,x ,S I I (x , Z1,...,k−1))

+πW ′
3
(c ,x ,S I I (x , Z1,...,k−1))S

I I ′
1
(x , Z1,...,k−1) |Zk−1 < x ,Zk = z k

�

such that

∫ c

c

ΠW ′
2
(c , c , z k )g k (z k )d z k = Pr[c <Zk−1]E

�

πW ′
2
(c , c ,S I (Z1,...,k−1)) |c <Zk−1

�

+Pr[Zk−1 < c <Zk ]E
�

πW ′
2
(c , c ,S I I (c , Z1,...,k−1))

+πW ′
3
(c , c ,S I I (c , Z1,...,k−1))S

I I ′
1
(c , Z1,...,k−1) |Zk−1 < c <Zk

�

.

Plugging in Cournot profits and rearranging we obtain

∫ c

c

ΠW ′
2
(c , c , z k )g k (z k )d z k =− (1−Gk−1(c ))2γ2Ω

I (c )

− (Gk−1(c )−Gk (c ))2

�

γ2−γ1 (n −k )
d E [C |C > c ]

d c

�

ΩI I (c )

where ΩI (c ) is defined in Lemma A1. Hence, using (A7) and (A8), we finally obtain

(A10).

Assuming f to be logconcave, we immediately find

dΩI I (c )

d c
≤ γ1 (n −1)−γ2−

1

2
< 0.
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We are left to show that dΩI (c )

d c
< 0 as well. Due to the law of iterated expectations

E
�

S I (Z1,...,k−1) |c <Zk−1

�

= E
h

∑n−1

j=1
Z j |c <Zk−1

i

= E
h

∑k−2

j=1
Z j |c <Zk−1

i

+(n −k +1)E [C |C > c ] .

Note that

(1−Gk−1(c ))E
h

∑k−2

j=1
Z j |c <Zk−1

i

= (1−Gk−2(c ))E
h

∑k−2

j=1
Z j |c <Zk−2

i

+(Gk−2(c )−Gk−1(c ))E
h

∑k−2

j=1
Z j |Zk−2 < c <Zk−1

i

= (1−Gk−2(c ))E
h

∑k−3

j=1
Z j |c <Zk−2

i

+(1−Gk−2(c ))E [Zk−2 |c <Zk−2]

+ (Gk−2(c )−Gk−1(c )) (k −2)E [C |C < c ]

=

k−2
∑

s=1

{(1−Gs (c ))E [Zs |c <Zs ]+ (Gs (c )−Gs+1(c ))s E [C |C < c ]}

and therefore

E
h

∑k−2

j=1
Z j |c <Zk−1

i

=

k−2
∑

s=1

ωs (c )

where

ωs (c ) :=
1−Gs (c )

1−Gk−1(c )
E [Zs |Zs > c ]+

Gs (c )−Gk−1(c )

1−Gk−1(c )
E [C |C < c ] .

Taking the derivative, we have

ω′
s
(c ) =

1−Gs (c )

1−Gk−1(c )

d E [Zs |Zs > c ]

d c
+

Gs (c )−Gk−1(c )

1−Gk−1(c )

d E [C |C < c ]

d c

+
d

d c

�

1−Gs (c )

1−Gk−1(c )

�

(E [Zs |Zs > c ]− E [C |C < c ]) .

From Theorem 3.3 in Nanda and Shaked (2001) follows d

d c

�

1−Gs (c )

1−Gk−1(c )

�

≤ 0 for s < k−1.

Consequently, for logconcave f ,ω′
s
(c )≤ 1, and therefore

dΩI (c )

d c
≤ γ1 (n −1)−γ2−

1

2
< 0.

We are now ready to prove the proposition, separately looking at the Cournot and
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the Bertrand case.

A.5.1 Cournot competition

According to Proposition 4 the corresponding direct mechanism generally is incen-

tive compatible under Cournot competition. The discriminatory auction therefore

has a separating equilibrium if d

d c
βw b

U
(c )< 0. From (A10) we obtain

dβw b
U
(c )

d c
=H1(c )

dΩI (c )

d c
+H2(c )

dΩI I (c )

d c
+

d H1(c )

d c
ΩI (c )+

d H2(c )

d c
ΩI I (c )+

d H3(c )

d c

where

H1(c ) := 2γ2

1−Gk−1(c )

g k (c )
,

H2(c ) := 2

�

γ2 {E [C |C > c ]− c }+γ2

1− F (c )

(n −k ) f (c )
+

�

1

2
+γ2+γ1

�

ǫ

�

,

H3(c ) := −

�

�

γ1+γ2

�

{E [C |C > c ]− c }+

�

1

2
+γ2+γ1

�

ǫ

�2

.

For logconcave f , Lemma A1 implies H1(c )
dΩI (c )

d c
+H2(c )

dΩI I (c )

d c
< 0 for all c ∈

�

c , c
�

.

Moreover, logconcavity of f also implies logconcavity of 1−Gk−1(c ) which, together

with the fact that
g k−1(c )

g k (c )
= k−1

n−k

1−F (c )

F (c )
is decreasing in c , implies that

1−Gk−1(c )

g k (c )
is decreas-

ing in c . Consequently, for logconcave f , d H1(c )

d c
≤ 0 and d H2(c )

d c
≤ 0 but d H3(c )

d c
≥ 0. Now,

note that both ΩI and ΩI I are increasing in γ0 while H1, H2, and H3 are unaffected

by a change in γ0. γ0 is in turn increasing in a . Logconcavity of f does not rule out
d H1(c )

d c
=

d H2(c )

d c
= 0. But note that d H2(c )

d c
= 0 implies d H3(c )

d c
= 0. Hence, there exists an a ∗

such that for all a ≥ a ∗

−
d H1(c )

d c
ΩI (c )−

d H2(c )

d c
ΩI I (c )≥

d H3(c )

d c
.

This condition is sufficient for d

d c
βw b

U
(c ) < 0 and therefore implies the existence of a

separating equilibrium.

A.5.2 Bertrand competition

From Proposition 4 we know that under Bertrand competition a separating equilib-

rium is possible only if k = 1. By adapting (A10) to the Bertrand case and setting
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k = 1, we obtain

dβw b
U
(c )

d c
= H̃2(c )

d Ω̃I I (c )

d c
+

d H̃2(c )

d c
Ω̃I I (c )+

d H̃3(c )

d c

where

Ω̃I I (c ) :=δ0+δ1 (n −1)E [C |C > c ]+δ2c −
1

2
c +

�

1

2
−δ2

�

ǫ,

H̃2(c ) := 2

�

−δ2 {E [C |C > c ]− c }−δ2

1− F (c )

(n −1) f (c )
+

�

1

2
−δ2+δ1

�

ǫ

�

,

H̃3(c ) := −

�

(δ1−δ2){E [C |C > c ]− c }+

�

1

2
−δ2+δ1

�

ǫ

�2

.

Assuming f to be logconcave and observing that δ1−δ2 > 0, we find

d Ω̃I I (c )

d c
≤δ1 (n −1)+δ2−

1

2
< 0,

d H̃2(c )

d c
= 2δ2

n

1− d E [C |C>c ]

d c
− d

d c

�

1−F (c )

f (c )

�

1

n−1

o

> 0,

d H̃3(c )

d c
= 2
�

(δ1−δ2){E [C |C > c ]− c }+
¦

1

2
−δ2+δ1

©

ǫ
�

(δ1−δ2)
¦

1− d E [C |C>c ]

d c

©

> 0.

Now, note that since d H̃2(c )

d c
Ω̃I I (c )+ d H̃3(c )

d c
> 0 and d Ω̃I I (c )

d c
< 0,

dβw b
U (c )

d c
< 0 implies H̃2(c )>

0. In turn, H̃2(c )> 0 implies (25). Thus,
dβw b

U (c )

d c
< 0 also implies that the corresponding

direct mechanism is incentive compatible.
dβw b

U (c )

d c
< 0 is therefore sufficient for the

separating equilibrium to exist.

Suppose d = 0 and hence δ1 =δ2 = 0. In this case, we have d Ω̃I I (c )

d c
< 0 and H̃2(c ) =

ǫ whereas d H̃2(c )

d c
=

d H̃3(c )

d c
= 0. Given ǫ > 0, this clearly implies

dβw b
U (c )

d c
< 0. With

dβw b
U (c )

d c

being continuous in d , we conclude that there exists a d ∗ ∈ (0, 1] such that
dβw b

U (c )

d c
< 0

for all c ∈
�

c , c
�

if d ≤ d ∗.

A.6 Proof of Proposition 6

Consider first the case of Cournot competition. We find

ΠW ′
1
(c ,x ,x )−ΠL′

1
(c ,x ,x ) =πW ′

1
(c , E [C |C < x ],S I (x ))−πL′

1
(c ,x ,S I I (x ))

=−
�

γ1+γ2

�

(x − E [C |C < x ])−

�

1

2
+γ2+γ1

�

ǫ
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and

ΠW ′′
12
(c ,x , z k ) = 0

as well as

ΠL′′
12
(c ,x , z k ) =−
¦

πL′
1
(c ,x ,S I I (x ))−πL′

1
(c , E [C |C > x ],S I I I (x ))

© g k ,k+1(z k ,x )

g k (z k )

+
¦

πL′′
12
(c ,x ,S I I (x ))+πL′′

13
(c ,x ,S I I (x ))S I I ′(x )

©

∫ c

x

g k ,k+1(z k , z k+1)

g k (z k )
d z k+1

which implies

∫ x

c

ΠL′′
12
(c ,x , z k )g k (z k )d z k =

−
¦

πL′
1
(c ,x ,S I I (x ))−πL′

1
(c , E [C |C > x ],S I I I (x ))

©

g k+1(x )

+
¦

πL′′
12
(c ,x ,S I I (x ))+πL′′

13
(c ,x ,S I I (x ))S I I ′(x )

©

(Gk (x )−Gk+1(x )) .

In turn, this yields

∫ x

c

ΠL′′
12
(c ,x , z k )g k (z k )d z k =

�

γ1+γ2

�

(E [C |C > x ]−x ) g k+1(x )

+
¦

γ2−γ1S I I ′(x )
©

(Gk (x )−Gk+1(x )) .

Thus,

U ′′
12
(c ,x ) =

�

1

2
+γ2+γ1

�

ǫg k (x )+
�

γ1+γ2

�

(x − E [C |C < x ]) g k (x )

+
�

γ1+γ2

�

(E [C |C > x ]−x ) g k+1(x )+
¦

γ2−γ1S I I ′(x )
©

(Gk (x )−Gk+1(x )) . (A11)

Consider the following useful fact about order statistics:

Gk (c )−Gk+1(c ) = g k (c )
F (c )

k f (c )
= g k+1(c )

1− F (c )

(n −k −1) f (c )
. (A12)

Moreover, since

S I I ′(c ) = k
∂ E [C |C < c ]

∂ c
+(n −k −1)

∂ E [C |C > c ]

∂ c
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and because of
∂ E [C |C < c ]

∂ c
= (c − E [C |C < c ])

f (c )

F (c )

and (A8), (A11) simplifies to

U ′′
12
(c ,x ) =

�

1

2
+γ2+γ1

�

ǫg k (x )+γ2 (x − E [C |C < x ]) g k (x )

+γ2 (E [C |C > x ]−x ) g k+1(x )+γ2 (Gk (x )−Gk+1(x )) . (A13)

Clearly, U ′′
12
(c ,x ) ≥ 0, i.e., (IC2) holds. Hence, the direct mechanism




m , I hl b
�

is in-

centive compatible under Cournot competition.

Now, consider the case of Bertrand competition. Again, we replace γ1 by δ1 and

γ2 by −δ2 in (A13) in order to obtain

U ′′
12
(c ,x ) =

�

1

2
−δ2+δ1

�

ǫg k (x )−δ2 (x − E [C |C < x ]) g k (x )

−δ2 (E [C |C > x ]−x ) g k+1(x )−δ2 (Gk (x )−Gk+1(x )) .

Hence, dividing by g k (c ) and making use of (A12), the necessary condition U ′′
12
(c , c )≥

0 for incentive compatibility of



m , I hl b
�

simplifies to

�

1

2
−δ2+δ1

�

ǫ−δ2 (c − E [C |C < c ])

−δ2 (E [C |C > c ]− c )
n −k −1

k

F (c )

1− F (c )
−δ2

F (c )

k f (c )
≥ 0.

Again, this condition is also equivalent to (IC2).

A.7 Proof of Proposition 7

We begin this proof with a lemma that shows some implications of the assumptions

on F we have made at the beginning of Section 2.

Lemma A2. The assumptions f (c ) > 0 and f ′(c ) ∈ R for all c ∈
�

c , c
�

imply that, for

all c ∈
�

c , c
�

,

F (c )

f (c )
∈R+,

1− F (c )

f (c )
∈R+,

d

d c

�

F (c )

f (c )

�

∈R,
d

d c

�

1− F (c )

f (c )

�

∈R,
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d E [C |C < c ]

d c
∈R+,

d E [C |C > c ]

d c
∈R+, (A14)

and
d 2E [C |C > c ]

d c 2
∈R. (A15)

Proof. Obviously, f (c )> 0 implies F (c )

f (c )
∈R+ and 1−F (c )

f (c )
∈R+. Moreover, from

d

d c

�

F (c )

f (c )

�

= 1−
F (c )

f (c )

f ′ (c )

f (c )
and

d

d c

�

1− F (c )

f (c )

�

=−1−
1− F (c )

f (c )

f ′ (c )

f (c )

we see that f ′(c )∈R implies d

d c

�

F (c )

f (c )

�

∈R and d

d c

�

1−F (c )

f (c )

�

∈R.

Let us turn to (A14). Observe that, using integration by parts, one can show

E [C |C < c ] = c −

∫ c

c
F (z )d z

F (c )
and E [C |C > c ] = c +

∫ c

c
(1− F (z ))d z

1− F (c )
.

Hence,

d E [C |C < c ]

d c
=

∫ c

c
F (z )d z

F (c )2
f (c ) and

d E [C |C > c ]

d c
=

∫ c

c
(1− F (z ))d z

(1− F (c ))2
f (c ).

Clearly, d E [C |C<c ]

d c
∈ R+ for all c ∈

�

c , c
�

and d E [C |C>c ]

d c
∈ R+ for all c ∈

�

c , c
�

. But what

about c → c and c → c , respectively? Applying l’Hôpital’s rule we find

lim
c→c

d E [C |C < c ]

d c
= f (c ) lim

c→c

F (c )

2F (c ) f (c )
=

1

2

and

lim
c→c

d E [C |C > c ]

d c
= f (c ) lim

c→c

− (1− F (c ))

−2 (1− F (c )) f (c )
=

1

2
(A16)

such that (A14) indeed holds for all c ∈
�

c , c
�

. Now, consider

d 2E [C |C > c ]

d c 2
=

2 f (c )
∫ c

c
(1− F (z ))d z − (1− F (c ))2

(1− F (c ))3
f (c )+

d E [C |C > c ]

d c

f ′(c )

f (c )
.

We immediately see that f (c ) > 0 and f ′(c ) ∈ R imply d 2E [C |C>c ]

d c 2 ∈ R for all c ∈
�

c , c
�

.
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Applying l’Hôpital’s rule and making use of (A16), we obtain

lim
c→c

d 2E [C |C > c ]

d c 2
= f (c ) lim

c→c

2 f ′(c )
∫ c

c
(1− F (z ))d z

−3 (1− F (c ))2 f (c )
+

1

2

f ′(c )

f (c )
=

1

6

f ′(c )

f (c )

which completes the proof of (A15).

Let us first focus on the case of Cournot competition. In this case it can be shown

that if the highest losing bid is revealed, equilibrium bidding in the uniform-price

auction takes the following form:

βU (c ) = 2

�

γ2ρ1(c )+

�

1

2
+γ2+γ1

�

ǫ

�

p

πL
�

c , c ,S I I (c )
�

+ρ2(c )
2−ρ3(c )

2 n −k −1

k

F (c ) (1− F (c ))

f (c )2

where

ρ1(c ) := c − E [C |C < c ]+

�

(n −k −1)
d E [C |C > c ]

d c
+1

�

F (c )

k f (c )
,

ρ2(c ) :=
�

γ1+γ2

�

(c − E [C |C < c ])+

�

1

2
+γ2+γ1

�

ǫ,

ρ3(c ) :=
�

γ1+γ2

� d E [C |C > c ]

d c
.

Hence, we have

β ′
U
(c ) = 2γ2ρ

′
1
(c )
p

πL
�

c , c ,S I I (c )
�

+2

�

γ2ρ1(c )+

�

1

2
+γ2+γ1

�

ǫ

�

∂

∂ c

p

πL
�

c , c ,S I I (c )
�

+2ρ2(c )ρ
′
2
(c )

−2ρ3(c )ρ
′
3
(c )

n −k −1

k

F (c ) (1− F (c ))

f (c )2
−ρ3(c )

2 n −k −1

k

d

d c

�

F (c )

f (c )

1− F (c )

f (c )

�

.

Noting that

ρ′
1
(c ) = 1− d E [C |C<c ]

d c
+
�

(n −k −1) d 2E [C |C>c ]

d c 2

�

F (c )

k f (c )

+
�

(n −k −1) d E [C |C>c ]

d c
+1
�

d

d c

�

F (c )

k f (c )

�

,

ρ′
2
(c ) =
�

γ1+γ2

�
�

1− d E [C |C<c ]

d c

�

, ρ′
3
(c ) =
�

γ1+γ2

� d 2E [C |C>c ]

d c 2 ,
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and
∂

∂ c

p

πL
�

c , c ,S I I (c )
�

=−
�

1

2
+γ2−γ1

�

k d E [C |C<c ]

d c
+(n −k −1) d E [C |C>c ]

d c

��

,

we find that Lemma A2 implies β ′
U
(c )∈R for all c ∈

�

c , c
�

. Furthermore, observe that

β ′
U
(c ) is continuous in γ0, γ1, and γ2. As γ0, γ1, and γ2 are continuous in d , β ′

U
(c ) is

also continuous in d .

Now consider the case of Bertrand competition. We can simply reuse the results

for the Cournot case by replacing γ0, γ1, and γ2 with δ0, δ1, and −δ2, respectively.

Similarly, we obtain that β ′
U
(c )∈R and that β ′

U
(c ) is continuous in d .

Setting d = 0 implies γ1 = γ2 = δ1 = δ2 = 0. Consequently, under both Cournot

and Bertrand competition we have β ′
U
(c ) =− 1

2
ǫ if d = 0. Because β ′

U
(c ) is finite and

continuous in d , we conclude that, given ǫ > 0, there exists a d ∗ ∈ (0, 1] such that for

all d ≤ d ∗, β ′
U
(c )< 0.

According to Proposition 6, β ′
U
(c ) < 0 is enough to guarantee the existence of a

separating equilibrium for the case of Cournot competition. Yet under Bertrand com-

petition, in addition to β ′
U
(c ) < 0, (26) must also hold. Using (A8), (26) is equivalent

to

¦

1

2
−δ2+δ1

©

ǫ−δ2 (c − E [C |C < c ])−δ2

�

(n −k −1) d E [C |C>c ]

d c
+1
�

F (c )

k f (c )
≥ 0.

From Lemma A2, the LHS of this inequality is bigger than−∞ for all c ∈
�

c , c
�

. More-

over, it is continuous in d . For d = 0, (26) is equivalent to requiring ǫ ≥ 0. Conse-

quently, there is a d ∗ ∈ (0, 1] such that (26) is fulfilled for all d ≤ d ∗.

References

AN, M. Y. (1998): “Logconcavity versus Logconvexity: A Complete Characterization,”

Journal of Economic Theory, 80(2), 350–369.

BAGNOLI, M. AND T. BERGSTROM (2005): “Log-concave probability and its applica-

tions,” Economic Theory, 26(2), 445–469.

BAYE, M. R., D. KOVENOCK, AND C. G. DE VRIES (1993): “Rigging the Lobbying Process:

An Application of the All-Pay Auction,” The American Economic Review, 83(1), 289–

294.

DAS VARMA, G. (2003): “Bidding for a process innovation under alternative modes of

competition,” International Journal of Industrial Organization, 21(1), 15–37.

51



DAVID, H. AND H. NAGARAJA (2003): Order Statistics, Third Edition, Wiley.

GAL-OR, E. (1986): “Information Transmission–Cournot and Bertrand Equilibria,”

The Review of Economic Studies, 53(1), 85–92.

GIEBE, T. AND E. WOLFSTETTER (2008): “License auctions with royalty contracts for

(winners and) losers,” Games and Economic Behavior, 63(1), 91–106.

GOEREE, J. K. (2003): “Bidding for the future: signaling in auctions with an aftermar-

ket,” Journal of Economic Theory, 108(2), 345–364.

JEHIEL, P. AND B. MOLDOVANU (2000): “Auctions with Downstream Interaction among

Buyers,” The RAND Journal of Economics, 31(4), 768–791.

KATSENOS, G. (2008): “Simultaneous and Sequential Auctions of Oligopoly Licen-

ses,” Working Paper, University of Hannover, available at http://www.wiwi.

uni-hannover.de/mik/download/katsenos/SqcAuct-OligLic.pdf.

KATZMAN, B. AND M. RHODES-KROPF (2008): “The Consequences of Information Re-

vealed in Auctions,” Applied Economics Research Bulletin, Special Issue I (Auc-

tions), 53–87.

MOLDOVANU, B. AND A. SELA (2003): “Patent licensing to Bertrand competitors,” Inter-

national Journal of Industrial Organization, 21(1), 1–13.

NANDA, A. AND M. SHAKED (2001): “The Hazard Rate and the Reversed Hazard Rate

Orders, with Applications to Order Statistics,” Annals of the Institute of Statistical

Mathematics, 53(4), 853–864.

ZIV, A. (1993): “Information Sharing in Oligopoly: The Truth-Telling Problem,” The

RAND Journal of Economics, 24(3), 455–465.

52


