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1 Introduction

In the textbook economics world, markets are the most efficient institution to allocate scarce

resources. They clear all the time, equalizing demand and supply, and profit opportunities

are arbitraged away. In particular, production factors are predicted to be paid the marginal

productivity of the market clearing factor. In the real world there are frictions, unobservable

characteristics, adjustment costs, erroneous expectations, and maybe discrimination; all of

which can distort the market equilibrium away from efficient allocation. This should not nec-

essarily worry us, economists, as the theory is only intended to be a stylized version of reality.

However, a systematic gap between costs (wages in our case) and benefits (productivity) can

provide information about crucial omissions from the theory.

A well-functioning labor market should perform at least two tasks: matching workers

with firms and setting wages. The ability of the labor market to allocate workers to firms

or industries with the highest productivity or the best future prospects is of particular

importance for the likely effect of trade reforms, and this has been studied extensively – see

Pavcnik (2002), Eslava et al. (2004), and Filhoz and Muendler (2006) for studies on Latin

American countries. Van Biesebroeck (2005) investigates the effectiveness of labor markets

in several African countries, including the three countries studied here, in performing this

task and finds that the reallocation mechanism is less effective than in the United States.

A second aspect of labor market efficiency is to determine a wage rate. If labor markets

function as spot markets with minimal frictions and informational asymmetries, we would

expect arbitrage to set the remuneration of characteristics at their productivity contribution.

Otherwise, workers are not provided with the proper incentives to invest in human capital

characteristics, such as schooling or tenure. While an important issue, it has not been

studied extensively, largely because of lack of suitable data. Employee surveys do not contain

information on firm level output and factor inputs necessary to calculate productivity. Data

sets on firms or plants generally lack information on all but a few basic characteristics of the

workforce.

The contribution of this paper is foremost to provide evidence for three sub-Saharan coun-

tries on the extent to which observed wage premiums for a number of worker characteristics
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are equal to the productivity premiums associated with those same characteristics. First, I

follow the methodology in Hellerstein, Neumark, and Troske (1999) and compare the two

premiums at the firm level. Here, the nature of the comparison is implicitly between the

wage bills and output levels of two firms which are identical, except that one firm has a

workforce with on average one more year of schooling, or a higher fraction of male workers,

etc. We consider five characteristics: gender, labor market experience, eduction, tenure with

the current employer, and whether a worker has followed a formal training program. As

some of the human capital characteristics are influenced by the workers, such as tenure or

training, providing workers with the correct investment incentives is crucial.

Labor market frictions are likely to be at least as important in developing countries as in

the more developed countries where most previous studies were conducted. As stressed by

Fafchamps (1997) in the introduction to a symposium on “Markets in Sub-Saharan Africa”,

one should be careful not to assume outright that markets are efficient, regardless of the

institutions required to perform their function. I estimate the model for Tanzania, Kenya,

and Zimbabwe. While all three countries are relatively poor, GDP per capita for Zimbabwe

exceeded that for Tanzania by a factor of five (during the sample period), while Kenya was

intermediately developed.

A second contribution of the paper is to estimate the firm level production function jointly

with the individual level wage equation. Using the additional information of individual

workers leads to more precise estimates, especially of the wage premiums, and to a more

accurate test. We show how to test for equality between wage and productivity premiums

in this context and implement a feasible GLS estimator. While still allowing for correlation

between the error terms in the wage equation and production function, we additionally

introduce a random effect in the wage equation that is shared by all workers with a common

employer.

The main empirical finding is that in Tanzania, the poorest country we consider, the

wage premiums deviate substantially from the corresponding productivity premiums. The

gaps between wage and productivity premiums are much smaller, and all are insignificant, in

Zimbabwe. Results for Kenya, an intermediate country in terms of level of development, are
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intermediate: equal remuneration can be rejected for some characteristics (e.g. experience),

but not for others (e.g. schooling). A test for equality of all wage and productivity premiums

on the firm level estimates yields a p-value of 1% in Tanzania, 18% in Kenya, and 64% in

Zimbabwe. Using the individual level estimates, the corresponding p-values are 0%, 1%, and

38%.

Moreover, the breakdown in correct remuneration in the two least developed countries

follows a distinct patterns. On the one hand, wage premiums exceed productivity premi-

ums for general human capital characteristics (experience and schooling). On the other

hand, salaries hardly increase for more firm-specific human capital characteristics (tenure

and training), even though these have a clear productivity effect. Equality of the returns

fails most pronouncedly for the two indicators that capture how a worker’s salary rises over

his career. Even though productivity rises more with tenure than with experience,1 salaries

rise only with experience in Tanzania and much more with experience than with tenure in

Kenya. In contrast, in Zimbabwe workers are predominantly rewarded for tenure, consistent

with the estimated productivity effects.

There are a number of important debates in development economics that would benefit

from a better understanding of the relationship between wages and productivity. First, it

is often argued that more education is a prerequisite for economic growth – see for example

Knight and Sabot (1987). However, the Tanzanian firms in this sample have, on average,

a more educated workforce, but the productivity effects of schooling fall far short of the

wage effects. At the very least, higher education does not translate automatically into

higher output. Second, the measurement of productivity growth relies explicitly on the

equality of relative wages and relative productivity. When labor growth is subtracted from

output growth, categories of workers are weighed by their wage shares – see for example

Jorgenson and Griliches (1967). If the equality between wages and productivity fails to hold

systematically in developing countries, productivity growth measures will be biased.

The remainder of the paper is organized as follows. The measurement framework to

1In some cases, productivity declines less with tenure than with experience, or productivity declines with
experience, but rises with tenure. Crucial is that, in relative terms, tenure has a more positive effect on
productivity than experience, in all three countries.
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compare the wage and productivity premiums associated with worker characteristics is in-

troduced first, in Section 2, followed by a discussion of the evidence for other regions in

Section 3. The employer-employee data and the countries included in the analysis are dis-

cussed next, in Section 4. Results at the firm and individual level are presented with some

robustness checks in Section 5 and Section 6 concludes.

2 A measurement framework

Wage and productivity premiums

The methodology we use to compare wage and productivity premiums owes a great deal

to Hellerstein et al. (1999). If labor markets are efficient, operate as a spot market, and

firms minimize costs, the wage premium of a worker should equal its productivity premium.

Barring imperfect information, any difference will be arbitraged away. Both premiums can be

identified by jointly estimating a wage equation and production function, which characterize

how wages and output depend on worker characteristics.

As an example, assume that the productivity of male workers exceeds the average pro-

ductivity of female workers by φM percent. The production function can be written as a

function of capital and both types of labor (men and women), which are assumed to be

perfect substitutes:2

Q = A f(K, LF + (1 + φM)LM).

The first order conditions for cost minimization by the firm dictate that the composition of

the firm’s labor force is adjusted such that the relative wage for both types of workers is

equalized to the relative productivity ratio:

wM

wF

=
MPM

MPF

,

2Given sufficiently detailed information on the labor force composition, this assumption can be relaxed.
In the robustness checks at the end, we allowed for imperfect substitutability between experienced and
unexperienced workers.
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or equivalently

λM ≡ wM − wF

wF

=
MPM −MPF

MPF

≡ φM . (1)

Firm level estimation

The identification of the productivity premium (φ) is necessarily done at the plant or firm

level. The wage premiums associated with worker characteristics (λ) can be estimated using

a standard wage equation derived from the Mincer (1974) model of human capital. The most

straightforward estimation strategy is to aggregate the wage equation to the firm level and

estimate it jointly with the production function – see for example Hellerstein et al. (1999).

Labor researchers have been concerned with a potential bias introduced by unobserved

worker ability in the wage equation. Productivity researchers have estimated production

functions controlling explicitly for unobserved productivity differences. Joint estimation

should to a large extent alleviate such concerns as the bias works in the same direction in

both equations. A large component of the unobservables in both equations are expected to

represent the same factors.3 Results in Hellerstein and Neumark (2004) demonstrate that

the results tend to be relatively unaffected if more sophisticated estimation strategies are

employed.

Sticking with the earlier example, we now show how one can aggregate an individual wage

equation to identify the left-hand side premium in equation (1). Define a wage equation for

the individual as

Wi = wF Fi + wMMi.

The average wage paid to women is wF —Fi is dummy that takes a value of one if individual

i is a woman—and wM to men. Summing over all workers of the firm gives

W = wF LF + wMLM LF + LM = L

3See for example Frazer (2001) where this assumption is exploited to control for unobserved ability in the
wage equation.
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= wF [L + (
wM

wF

− 1)LM ]

= wF L [1 + λM
LM

L
].

Taking logarithms and adding an additive error term, representing measurement error in the

wage and unobservable worker characteristics, gives

ln
W

L
= ln wF + ln[1 + λM

LM

L
] + η. (2)

Nonlinear least squares estimation of the firm level equation (2) produces an estimate of the

average baseline wage (wF ) and of the gender wage premium (λM). The only information

needed is the average wage and the proportion of male workers by firm.

Assuming the Cobb-Douglas functional form for the production function, it can be written

in logarithms as4

ln Q = ln A + αK ln K + αL ln L̃ + ε.

Male and female workers are aggregated in L̃, where each type of employee (LF and LM) is

multiplied by its relative productivity level (1 or 1+φM):

L̃ = LF + (1 + φM)LM

= L[1 + φM
LM

L
]. (3)

L = LF + LM is the total labor force. Substituting (3) in the production function allows

estimation of the gender productivity gap by nonlinear least squares from just the proportion

of male workers in each firm and the usual output and input variables.

Generalizing this approach to construct a wage and production equation that takes more

worker characteristics into account is limited by the data. For example, differentiating

workers by gender (M or F ), experience (Y or X – young versus high experience) and

4It is straightforward to generalize the methodology to other functional forms. Hellerstein and Neumark
(2004) demonstrate that the qualitative results are very robust to alternative specifications of the production
function.
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schooling (U or S – uneducated versus high schooling), creates eight categories of workers:

inexperienced, educated males, etc. Given that we observe a maximum of ten workers

in each firm, the proportion of each category in the firm’s workforce would be estimated

extremely inaccurately. Furthermore, it would be entirely impossible to look at any further

characteristics or at characteristics that divide the workforce more finely.

Making three assumptions for each characteristic, or rather three sets of assumptions,

avoids this type of dimensional problem. For example, if we assume that the relative number

of male to female workers, the relative productivity, and the relative wage by gender are all

invariant to changes in other characteristics, we can use the full workforce to estimate the

gender premiums. In effect, this is an independence of irrelevant alternatives assumption on

the relative number of workers and the wage and productivity returns for each characteristic.

In the previous example with three characteristics, this boils down to:

equal proportions:
LMY S

LFY S

=
LMXS

LFXS

=
LMY U

LFY U

=
LMXU

LFXU

,

equal productivity:
φMY S

φFY S

=
φMXS

φFXS

=
φMY U

φFY U

=
φMXU

φFXU

, (4)

equal wage premium:
λMY S

λFY S

=
λMXS

λFXS

=
λMY U

λFY U

=
λMXU

λFXU

,

and similarly for young versus experienced workers and for uneducated versus highly ed-

ucated workers. This allows the simplification of the labor aggregate in the production

function from eight terms, one for each worker category, to three multiplicative factors, one

for each characteristic:

L̃ = LFY S + (1 + φFXS)LFXS + (1 + φMY S)LMY S + ... + (1 + φMXU)LMXU

= L [1 + φM
LM

L
] [1 + φX

LX

L
] [1 + φS

LS

L
], (5)

and similarly in the wage equation. One can proceed in the same fashion to add further

characteristics to (5). These assumptions cannot be tested, or they would not have been

necessary. In the small sample of employees we observe at each firm, some ratios will ob-

viously not be equal, but this can readily arise if only a limited number of employees is
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sampled.

The baseline model constructed so far is

ln
W

L
= λ0 +

K∑
k=1

ln(1 + λk
Lk

L
) + η (6)

ln Q = α0 + αK ln K + αL[ln L +
K∑

k=1

ln(1 + φk
Lk

L
)] + ε (7)

where λ0 is the base salary (in the previous example, for a female, inexperienced, uneducated

worker), λk is the wage premium and φk the productivity premium associated with char-

acteristic k (k ∈ K). Equations (6) and (7) are estimated jointly with Zellner’s seemingly

unrelated regression estimator, allowing for correlation between the two error terms.

Individual level estimation

While the previous approach allows identification of the wage and productivity premiums,

it does not use all available information on the wage side. We do observe salaries and

characteristics for a sample of individual workers at each firm. Rather than aggregating the

wage equation to the firm level, we can also estimate a Mincer wage equation jointly with

the production function. Estimating with a much larger number of observations, e.g. for

Tanzania with 520 individuals instead of 113 firms, is likely to yield more precise estimates

of the wage premiums.

As productivity can only be estimated at the firm level and the productivity premiums

associated with each characteristic are still restricted as in (4), we still use the same set of

worker characteristics as before. The Mincer wage regression assumes additive separability

of the returns to different characteristics, which is very similar to the equal wage premium

assumptions in (4). We follow the usual practice and estimate the wage equation in loga-

rithms:

ln Wi = ω0 +
K∑

k=1

ωkX
k
i + ηi.

The i subscript indexes individuals and the variable Xk
i is a dummy for characteristic k (k ∈
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K), for example the gender dummy Mi. This specification assumes that if a female worker has

a salary of wF , the salary for a male worker with otherwise equivalent characteristics would

be wF exp(ωM). Expressed differently, the baseline salary for a worker with all characteristics

dummies equal to zero is exp(ω0), while a worker with characteristic Xk switched from zero

to one has a salary equal to exp(ω0 + ωk).

The equality in percentage terms of the productivity and wage premiums associated with

gender, as in equation (1), now boils down to

exp(ωM)− 1 ≡ wM − wF

wF

=
MPM −MPF

MPF

≡ φM .

Expressed differently, for each the characteristics k, we want to test whether

ωk = ln(1 + φk). (8)

The individual wage equation is now estimated jointly with the firm level production

function. As in the previous set-up, we still allow the errors in the two equations to be

correlated. In addition, we allow for a random effect in the wage equation to take into

account that errors for employees at the same firm are likely to be correlated. We implement

the feasible GLS transformation as in Wooldridge (2000) (p. 450) and jointly estimate the

transformed wage equation with the production function. Because not all firms have the

same number of employees sampled, we have to correct for the unbalancedness of our panel.

As long as we assume that the reason for unbalancedness is random, not too unlikely for

our application, the adjustments are straightforward. All variables in the wage equation are

transformed according to

x∗
ij = xij − λjx̄.j with λj = 1−

√√√√ s2
e

s2
e + Njs2

f

,

with i indexing individuals and j firms. s2
e is the estimate of the standard error of the full

residual combining individual errors and the random firm effect, which itself has an estimated
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standard error of s2
f . Nj is the number of employees sampled at firm j.5

3 Evidence from other regions

Matched employer-employee data sets contain the necessary information to compare wage

and productivity premiums, but their limited availability has lead to only a small number of

previous studies.6 From the observed employees, one can estimate average values of worker

characteristics for each employer. Hellerstein et al. (1999) pioneered the approach, jointly

estimating a plant level wage equation with a production function using U.S. administrative

record information. They test for equality of the wage and productivity premiums associated

with a number of characteristics and only find a statistically significant discrepancy for the

gender dummy: women are only 16% less productive than their male co-workers, but paid

45% less.

The bulk of the evidence for developed countries points towards equal wage and productiv-

ity returns for various worker characteristics. Using more recent 1990 U.S. data, Hellerstein

and Neumark (2004) confirms that the wage gap between males and females exceeds the pro-

ductivity gap. In contrast, the lower wages for blacks is in line with productivity estimates

and even though attaining ‘some college’ education only attracts a 43% wage premium while

productivity is 67% higher, the difference is not statistically significant. Similar work for

France in Prez-Duarte, Crepon, and Deniau (2001) and for Israel in Hellerstein and Neu-

mark (1999) finds no gender discrimination. In a study for Norway, Haegeland and Klette

(1999) also finds that wage premiums for gender and eduction are in line with productivity

premiums.

The only characteristics in those studies for which the wage premium differs significantly

from the productivity premium is age in France, older workers are overpaid, while engineers

are underpaid in Israel. For Norwegian workers with 8 to 15 years of experience, the pro-

ductivity premium exceeds the wage premium, while the opposite is true for workers with

5How to estimate the different standard errors is elaborated on in Wooldridge (1999) (p. 260–261).
6A conference symposium in the Monthly Labor Review (July 1998) provides an overview of sources; see

also the book by Haltiwanger et al. (1999).
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more than 15 years of experience.

Dearden, Reed, and Van Reenen (2006) focus on the effects of training using an indus-

try level data set covering the U.K. manufacturing sector. They separately estimate wage

equations and production functions and find that the productivity effect of training sub-

stantially exceeds the wage effect, but no formal test is presented. They conclude that the

usual approach in the literature of quantifying the benefits of training by looking at wages

underestimates the impact. Another finding is that aggregation to the industry magnifies

the effect of training, potentially due to externalities.

The only similar study in a developing country, Jones (2001) estimates a firm level produc-

tion function jointly with an individual level wage equations for Ghana. However, no details

are given regarding the assumptions on the variance-covariance matrix when the individual

and firm level data is combined.7 She finds that women are 42% to 62% less productive,

depending on the specification, and paid 12% to 15% less. No formal test is reported, but

the standard errors are fairly large. Her focus is on the premiums associated with an extra

year of schooling, which are estimated similarly in the production function and the wage

equation: both are around 7%. When discrete levels of education attainment are used, the

results are ambiguous. The differences in point estimates are large, but the education co-

efficients in the production function are estimated imprecisely and none of the formal tests

finds a statistically significant difference.8

Bigsten et al. (2000) gauge the link between wages and productivity indirectly, similar to

the U.K. analysis. First, they estimate the returns to education in five sub-Saharan countries

using a wage equation. Then, they separately estimate the production function, including

lagged levels of education as a proxy for human capital. They find that the implied rate

of return to human capital is very low, in particular it is only a fraction of the return to

physical capital.

7We contacted the author to obtain further information, but did not receive a response.
8Many differences are large in absolute value—five of the eight estimated differentials exceed 20%—but

the direction of the difference varies by schooling level.
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4 Data

Countries

The three countries included in the sample are middle-sized former British colonies in East

Africa that obtained independence in the early 1960s.9 The World Bank classifies all three

as low income, even though they differ substantially by level of development. One way to

see this is from GDP per capita, which stood at $477 (in PPP) in Tanzania, less than half of

the $1092 attained in Kenya, and only slightly more than one fifth of the GDP per capita of

Zimbabwe—all figures are for 1991 and reported in Table 1. The differences are smaller on the

United Nations’ human development index, which also takes education and life expectancy

into account, but the order is the same. In the most recent ranking, Tanzania occupies the

151st (or 22nd last) place with 0.440, putting it in the ”low development” category. Kenya

and Zimbabwe rank rather closely at places 134 and 128, with a score of 0.513 and 0.551,

near the bottom of the ”medium development” group.10

[Table 1 approximately here]

The different development levels of the countries is also reflected in the share of workers

employed in industry.11 Only 4.7% of all employment in Tanzania is in industry, while it is

almost twice as high in Zimbabwe (8.6%) and intermediate in Kenya (7.3%). In Tanzania,

the transition from agriculture to other sectors had only just begun: agriculture comprised

almost half the workforce at the end of the 1990s. In Kenya, the transformation was in

full swing: the employment share of agriculture declined from 42% in 1975 to 27.5% by

the sample period. Zimbabwe, on the other hand, has seen a stable 18.5% of its workforce

employed in agriculture for the last 25 years.

9Unfortunately, only three countries could be included in the analysis due to data constraints. A partial
analysis was possible with data from Cameroon (almost as developed as Zimbabwe) and Burundi (even
less developed than Tanzania), but the sample size is smaller, some variables (e.g. capital) are measured
less accurately, and other variables (e.g. training in Burundi) are missing. Results for these countries are in
between the extremes of Tanzania and Zimbabwe. The failure of the equality between wage and productivity
premiums to hold is much more pronounced in Burundi than in Cameroon: the p-values for the joint test,
corresponding to the first joint test in Table 3, were respectively 0.03 and 0.22.

10Norway tops the human development ranking with a score of 0.942.
11Manufacturing employment that corresponds to manufacturing value added was not available for Tan-

zania in 1991.
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Given that Zimbabwe is much more advanced in its industrial transformation, it is not

surprising that it far surpasses the other two countries in GDP per capita. The difference in

labor productivity in industry is even more stark. While industry workers in Kenya produce

twice as much as Tanzanian workers, Zimbabwe’s output per worker outstrips Tanzania by a

factor of 7 and Kenya by a factor of 4. It underscores the importance of developing a strong

manufacturing sector. World Bank (2000) statistics also show that manufacturing workers

in Tanzania earn 3.5 times more on average than agricultural workers, while the ratio stands

at 5.7 in Kenya and even 9.9 in Zimbabwe.

Infrastructure statistics confirm the different levels of development of the three countries.

Zimbabwe had 22km of paved highways per 1000 km2 of land, while the corresponding

numbers for Kenya and Tanzania were 15km and 4km. The same ranking is preserved in

kilometers of railroad by area, at respectively eight, five, and four kilometers, or airports per

million inhabitants, 1.4 in Zimbabwe, 0.6 in Kenya and 0.3 in Tanzania. In fact, almost any

conceivable statistic that one expects to be correlated with development produces the same

ranking: access to clean water, telephone penetration, school enrollments, infant mortality,

etc.12

The three countries also differ substantially in their exposure to international trade. Man-

ufacturing exports as a fraction of domestic production is almost three times higher in

Zimbabwe than in Tanzania, 23.6% versus 8.8%, but almost as high in Kenya. On the im-

port side, we see that only in Zimbabwe domestic production accounts for half of the total

domestic consumption. In the other two countries, approximately three quarters of all man-

ufacturers consumed are imported. This aggregate trade exposure is reflected in the export

participation rate for the firms in the sample. The differences are even more pronounced,

with firms in Zimbabwe more than five times as likely to export than Tanzanian firms. The

importance of the manufacturing sector in the three countries is well illustrated by the share

of total export earnings accounted for by the manufacturing sector. This rises from a mere

6.1% in Tanzania, to 20.9% in Kenya, and a full 40.5% in Zimbabwe.

12Only life expectancy at birth gives a reverse ranking, but this is due to the staggering HIV infection
rate, affecting one third of the adult population in Zimbabwe and almost one sixth in Kenya.
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Firms and workers

In 1991, Tanzania and Kenya each counted approximately 25 million inhabitants, while

Zimbabwe only had 10 million. The manufacturing sector, which we focus on, is more

evenly sized because of its greater importance in Zimbabwe. All countries count between

126,000 and 188,000 manufacturing workers. A stratified sample of manufacturing firms in

three consecutive years, provides the micro data used in the analysis.13 Approximately 200

firms were surveyed each year in each country, covering four broadly defined manufacturing

sectors: food, textile and clothing, wood and furniture, metal and equipment. A maximum

of 10 employees per firm were interviewed each year. While firms could be linked over time

as a panel, this was not possible for the workers. Because questions on training were not

asked in the third year, we only use the first two years in the analysis.

The resulting sample is an unbalanced panel of firms with, on average, 110 to 183 ob-

servations per year in each country. In the first year, the firms employed 19,383 to 58,108

workers and 619 to 1206 of them were interviewed. A large part of the manufacturing sector

is covered by this sample. The value added produced by the sample firms makes up 31% of

manufacturing GDP in Tanzania, 17% in Kenya, and 26% in Zimbabwe. The share of all

manufacturing workers that are employed by firms included in the sample is substantially

lower in the first two countries; a result of the higher productivity levels achieved by larger

firms.

The differences between the countries described earlier are equally apparent when we

compare the firms in the sample. The median firm in Tanzania achieves only 38% of the

labor productivity level of the median firm in Kenya, while labor productivity in Zimbabwe is

42% higher than in Kenya. Total factor productivity numbers, taken from Van Biesebroeck

(2005), show similar differences when capital intensity is taken into account. The median

firm in Kenya is twice as productive as in Tanzania, but achieves only two thirds of the

productivity level of the median firm in Zimbabwe. The salary differences between the

13The data was collected between 1991 and 1995 by three different research teams, coordinated by the
Regional Program of Enterprise Development at the World Bank. Firms were sampled to give (the firm
of) each manufacturing worker equal probability to be included in the sample—an implicit stratification by
employment size.
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countries match the labor productivity differences rather well. Workers in Tanzania earn

27.4% of the average salary in Zimbabwe, while the median labor productivity of their

employers stands at 26.8%. Salaries in Kenya, on average $120 (in 1991 USD), are slightly

lower than one would predict from the relative labor productivity, which would imply a

salary of approximately $140. The statistics for the sample confirm that Zimbabwe is by far

the most developed country of the three, while Tanzania is lagging far behind.

The remainder of Table 1 provides averages and standard errors for the variables used

in the analysis. Workers in Zimbabwe work on average in larger firms, are slightly older,

stay longer with the same firm and are more likely to receive (or choose to enroll in) formal

training once they are employed. The sample of workers in Kenya is even more dominated

by males than in the other countries. In Tanzania, workers receive the lowest salaries,

but paradoxically they have the highest years of schooling. How these characteristics are

rewarded is analyzed in the next section.

5 Results

The discussion of the estimation results is organized in the same three subsections as the

earlier discussion of the measurement framework. This is followed by a discussion of a some

robustness checks and an analysis of the importance of trade exposure.

Wage and productivity premiums

Information on productivity is only available at the firm level and, hence, the identification of

the productivity premiums necessarily exploits between-firm variation. For wages, we have

the option to exploit only between-firm variation as well, in which case individual wages

have to be aggregated to the firm level. Alternatively we can incorporate the information

contained in the individual wages in the estimation. We will employ both strategies, but first

we look at the wage equation in isolation to verify whether the estimated wage premiums for

worker characteristics differ in important ways when we limit identification to between-firm

or within-firm variation.14

14The working paper version, Van Biesebroeck (2003), shows additional results for the individual level wage
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Individual wage regressions with least squares capture both variation within and between

firms; results for the three countries are in the columns labeled “total” in Table 2. For

example, the positive salary premium for male workers can be the result of men receiving

on average higher salaries than women within a given firm or men can be disproportionately

employed in firms that pay higher salaries, a between effect, even without differential pay

by gender. In the columns labeled “within” and “between”, we separate the two effects.

Within estimates are obtained using the standard fixed effects estimator (including firm-

year fixed effects) and between estimates are obtain by averaging all variables by firm-year

and estimating with least squares.

All five characteristics are measured as dummy variables. Experience is coded as one if a

worker attained more labor market experience than the median (interviewed) worker for the

country, and tenure is defined similarly. The schooling dummy takes on a value of one if the

worker has at least attended secondary school, but not necessarily finished it. The training

dummy is switched on for workers who completed a formal training program (excluding

on-the-job training) after they finished their formal education or apprenticeship.

[Table 2 approximately here]

The main message from Table 2 is that in all but two cases the between estimates are of

the same sign as the total estimates and in most cases even the magnitudes are very similar.

The only two instances where the signs do not correspond, tenure in Tanzania and gender in

Zimbabwe, the between coefficient is estimated extremely imprecisely and not significantly

different from zero (the t-values are 0.46 and 0.78). One pattern to note is that for Zimbabwe

four of the five between estimates exceed the total estimates, with the reverse being true for

the within estimates. At least for Zimbabwe, identifying wage premiums from between-firm

variation tends to overestimate the unconditional premiums in a sample of workers.

The magnitudes of the wage premiums for different characteristics seem reasonable. Male

workers earn substantially more, but a gender wage premium of 10.5% to 28.6% is not

unreasonably large. In the first two countries, the pay differential by gender is larger between

equation. A full survey of the returns to education estimated from Mincer wage regressions in sub-Saharan
Africa is in Appleton, Hoddinott, and Mackinnon (1996).
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firms than within, while in Zimbabwe the between estimate surprisingly turns negative. Only

in Zimbabwe are female workers concentrated in higher paying, larger firms. Experience and

schooling premiums are estimated surprisingly similar in the three countries, especially the

wage gradient within firms. Differences are more pronounced for tenure and training: for

both variables, workers in Zimbabwe are rewarded more generously than in the other two

countries. The tenure premium in Zimbabwe is exclusively driven by the between effect,

indicating that salaries do not really increase with tenure, but firms that pay higher salaries

have lower worker attrition.

Firm level estimation

The SUR estimation results for equations (6) and (7) by country, with discretely measured

worker characteristics, are in Table 3.15. Larger firms tend to pay higher salaries, in line

with evidence for many African countries in Mazumdar and Mazaheri (2002), although the

effect is small in Tanzania. The capital and labor elasticities in the Cobb-Douglas production

function are estimated similarly in the three countries, with labor somewhat more important

in Zimbabwe and the capital coefficient highest in Kenya. Returns to scale are moderately

increasing in each country. The sum of the two input coefficients ranges from 1.041 to 1.141,

in line with results for the manufacturing sector in other developing countries, as surveyed

in Tybout (2000).

[Table 3 approximately here]

Consistent with the results for the individual wage data in Table 2, we find the highest

wage premium for males in Tanzania and the estimate in Kenya is approximately 10% lower.

However, these salary gaps fall far short of the higher productivity realized by firms that

employ a high percentage of male workers. The extremely high point estimates on the male

dummy in the production function imply that raising the fraction of males by one standard

deviation would raise output by 32% in Tanzania, by 40% in Kenya, but only by 2% in

Zimbabwe. Given that wage premiums for males are below the corresponding productivity

15In each specification, hours worked and time, industry, and location dummies are added as controls in
both the wage equation and production function.
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premiums, it suggests that men are underpaid, although none of the differences is statistically

significant. These estimates are somewhat misleading though, because the majority of firms

in the sample employ only male workers. The choice not to employ any female workers is

undoubtedly related to the line of work a firm carries out. The productivity premium by

gender is also estimated extremely imprecisely and in the following we will mostly disregard

the gender variable.16

The wage premiums associated with experience are not estimated very precisely either,

except in Tanzania, but the point estimates again correspond well to the between results

in Table 2; only the return to experience in Zimbabwe is estimated rather low. Salaries

rise substantially with experience in Tanzania and Kenya, but not in Zimbabwe, where

education is rewarded higher than in the other two countries. The impact of experience

in the production function follows a peculiar pattern: the relative size of the productivity

premiums in the three countries is exactly the opposite of the wage premiums ranking. In the

country where salaries are most responsive to experience, Tanzania, the productivity of firms

drop with the experience/age of the workforce. The country that rewards experience the

least, Zimbabwe, is the only one where experience is associated with a positive productivity

effect. The gap between the wage and productivity premium associated with experience

is more than 50% larger in Kenya than in Zimbabwe, and the gap in Tanzania is almost

three times as large as in Zimbabwe. For Tanzania we can reject equality between the two

premiums at the 1% significance level and for Kenya at the 10% level.

For schooling, the size of the productivity premiums follows the same pattern between

countries as the wage premiums: highest in Zimbabwe, lowest in Kenya, and intermediate in

Tanzania. Still, in the two least developed economies, educated workers are able to secure a

wage premium that far outstrips the productivity contribution of education. In Zimbabwe,

on the other hand, the difference goes the other way. Similarly as for experience, the gap

between the wage and productivity premium associated with schooling is by far the largest

in Tanzania and Kenya.

16Including occupation controls lowers the gender premiums somewhat, but it also affects the premiums
for the other characteristics. We follow the convention in the literature by not controlling for occupation,
which is surely endogenous.
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The tenure variable, which measures whether an employee has stayed more than the

median number of years with his current employer, is associated with particularly large

salary increases in Zimbabwe (47%). In the other two countries, salaries do not rise with

tenure, only with experience. Strikingly, in each country the productivity effect of tenure

largely exceeds that of experience. The same is true for the training dummy. In the two

least developed countries, workers that receive training are not paid a higher salary, even

though training has a large (but imprecisely estimated) effect on productivity. In Zimbabwe,

the wage premium for workers marginally exceeds the productivity effect.

Combined with the higher wage premium for tenure than for experience, the compensation

pattern in Zimbabwe is likely to help reduce worker turnover, especially of those valuable

employees that received training. This is borne out by a cursory look at the correlation

between training and tenure at the individual level. Controlling for experience, workers with

a longer tenure are more likely to have completed a training program. On average, workers

that have completed training were employed for half a year longer at their current employer.

The relationship is particularly strong in Zimbabwe, but hardly noticeable in Kenya.

A joint test for the hypothesis that for the four variables that determine the level of

human capital in a firm (experience, schooling, tenure, and training) wage premiums equal

productivity premiums is rejected for Tanzania at the 1% significance level. For Kenya, it

can only be rejected if we are willing to tolerate a 23% significance level. The hypothesis

can never be rejected for Zimbabwe as the p-value is 73%. The tests follow the same pattern

if we include the male dummy, with the p-value somewhat lower for Kenya and even higher

for Zimbabwe.

Performing separate tests for the firm-specific aspects of human capital (tenure and train-

ing) and general human capital (experience and schooling) points to the general characteris-

tics driving the correlation between equality of returns and development level of the country.

Firms in all three countries are rewarding firm-specific characteristics more closely in pro-

portion to the productivity gains they bring. The p-values on these joint tests are always

high, although it should be noted that the effects are estimated especially imprecisely for

Tanzania and Kenya.
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In contrast, the differences between countries are especially stark for general human capital

characteristics. The p-value is 0.00 for Tanzania, 0.15 for Kenya, and 0.72 for Zimbabwe.

Grouping characteristics differently—schooling and training (learning), on the one hand,

and experience and tenure (over time), on the other—points again to the importance of

experience. The underlying tendency is for salaries to increase over time with experience

in Tanzania and Kenya and with tenure in Zimbabwe, while productivity is more closely

related to tenure than to experience in each country.

Even at the firm level, coefficients on the worker characteristics are estimated more pre-

cisely in the wage equation than in the production function, although the R2 tends to be

higher in the latter. Comparing the different countries, standard errors are somewhat larger

for Zimbabwe than for Kenya or Tanzania. However, the coefficient estimates also tend to

be larger (in absolute value) for Zimbabwe, with the exception of the male and training

dummies even uniformly so. While the average t-statistic in the wage equation is somewhat

higher in Tanzania (1.93) and Kenya (1.56) than in Zimbabwe (1.48), the average t-statistic

in the production function is highest in Zimbabwe (1.26) than in Tanzania (1.00) or Kenya

(0.92). Only for the male dummy is the t-statistic in Zimbabwe below those in the other two

countries. There is thus no evidence that the higher p-values for Zimbabwe are simply due

to more imprecisely estimated coefficients.

Individual level estimation

While the joint tests at the bottom of Table 3 for the results at the firm level showed a clear

pattern, many of the wage and productivity premiums were estimated imprecisely. Incor-

porating the information on individual employees avoids aggregation of the wage equation

and is likely to improve precision, especially for the wage premiums. The estimation results

using the wage equation at the individual level with the methodology outlined previously,

are in Table 4. The increase in precision is very large for all coefficients in the wage equation:

on average, standard errors have decreased by a factor of three. The production function

coefficients are estimated more precisely as well, especially in Tanzania. While all firms were

treated identically in the firm level estimation, the current results implicitly weigh firms by

the number of employees that are sampled, which partly explains the nonnegligible changes
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in the point estimates both equations.

[Table 4 approximately here]

The labor and capital coefficients have changed the least; only the results for Tanzania

are somewhat closer to those for Kenya and Zimbabwe. In the wage equation, all premiums

are now estimated positively, in line with our priors. While most of the point estimates

for Tanzania and Zimbabwe are slightly lower in absolute value than before, the estimates

for Kenya are slightly higher for most coefficients. With only a couple of exceptions the

returns to worker characteristics in the production function are estimated lower than before

in absolute value. The relative position of the countries, however, is by and large unchanged.

The average size of (the absolute value of) the gap between wage and productivity premi-

ums in Tanzania went from 61.2% for the firm level results to 49.3% for the individual results,

from 67.6% to 22.7% in Kenya, and from 26.0% to 24.1% in Zimbabwe. Even though the

absolute value of the differences declined, the standard errors declined even more, resulting

in more of the gaps being significantly different from zero. The same joint tests as before

yield almost uniformly lower p-values, see the results at the bottom of Table 4.

The rejection of equality of the wage and productivity premiums for Tanzania is as strong

as before, but not solely due to experience anymore. The t-statistic associated with the

‘excess return’ to experience is now 10.5, but the ‘excess return’ to schooling now also

yields a t-statistic of 6.1. Moreover, the direction of the differences are the same as before:

experience and schooling are over-rewarded, while tenure and training are under-rewarded,

although not significantly so. The same is true for Kenya, but less pronouncedly. Only one

general human capital characteristic is clearly over-rewarded, experience, and only training

receives a salary premium below the productivity effect, although the gap is not statistically

significant.

Results for Zimbabwe are by and large similar as before, although the standard errors in

the wage equation are somewhat higher than in the other two countries. The average size of

the gap between wage and productivity premiums is still the lowest of the three countries, at

least if we exclude gender, but the lower precision makes the tests less powerful in Zimbabwe.
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In contrast with the other two countries, the only two characteristics for which the gap is

more than 10% are schooling and tenure, and both are rewarded below their contribution to

productivity.

Robustness checks

The working paper version of the paper contains a number of sensitivity analyses that demon-

strate the robustness of the results—see Van Biesebroeck (2003) for details. First, the find-

ings are very similar using continuous measures (years) of experience, tenure, and schooling.

In the two least developed countries, workers are still estimated to secure substantial pay

increases over their career, which are not matched by any discernible productivity effect.

The wage return to schooling also exceeds its effect on productivity in each country, but

the extent differs widely. As before, the ‘excess returns’ (the gap between the salary and

productivity premiums) for experience and schooling are highest in Tanzania, at respectively

4.8% per year of labor market experience and 6.0% per year of education; and the gaps are

sizeable in Kenya as well, at 2.8% and 3.3%. In Zimbabwe, the gaps are only 0.3% and 1.2%,

and formal statistical tests do not reject equality of the returns (p-values are 0.81 and 0.75).

In the two least developed countries, equality of the returns to experience can be firmly

rejected, even at a 1% significance level. The same holds for schooling in Tanzania (albeit

only at a 10% significance level), but not in Kenya.

Second, given that the rejection of equality between wage and productivity premiums in

Tanzania and Kenya is to a large extent driven by the experience premiums, we have re-

estimated the model relaxing the assumption that workers with high and low experience are

perfect substitutes. We introduce two separate labor aggregates (L̃X and L̃Y ) in the model;

each is adjusted by multiplicative factors to control for the other worker characteristics—

as in equation (5).17 To be as flexible as possible on the production side, we adopted a

C.E.S. specification, which allows not only the weight on each labor aggregate, but also the

elasticity of substitution between the two aggregates to be determined by the data. This

17Data limitations force us to still use the entire workforce to estimate the fraction of male workers, highly
educated workers, etc. In principle, it is possible to let the ratio of male workers as well as the wage and
productivity premiums associated with gender vary by experience category.
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requires a modification in the test for equality between the two premiums, but we refer to

Van Biesebroeck (2003) (Section 7.2) for details. The results are qualitatively similar to the

results in Table 3, which assume perfect substitutability. This is not surprising given that

the estimates for the elasticity of substitution between young and experienced workers are

relatively high: 3.0 for Kenya, 6.3 for Tanzania, and infinity for Zimbabwe. The p-value on

the joint test for Kenya is even lower than in Table 3.

Third, even though we did not observe the entire workforce for most firms, we could

proceed with the estimation by using the sample of observed employees to estimate the

fraction of male, educated, etc. workers at each firm. While these are estimated quantities,

we have treated them as the true means. Van Biesebroeck (2003) reports results from

two Monte Carlo exercises that investigate how sensitive the findings are to the noise that

enters the estimation procedure in this way. A first exercise repeatedly samples for each

firm a different sample of employees from the hypothetical workforce (as implied by the

estimated means) and proceeds with the estimation as before. A second exercise uses Bayes’

law (based on the estimated means) to assign probabilities to randomly generated values

for each characteristic. These probabilities are then used as weights in the SUR regression

where each firm is assigned randomly generated average characteristics.

For both exercises, the average p-values are slightly below the p-values for Tanzania

and Kenya in Table 3, rejecting equality strongly. In the second exercise, the p-value for

Zimbabwe is much reduced, although it remains more than twice as high as the one for Kenya.

Given that on average a smaller fraction of each firm’s workforce is sampled in Zimbabwe,

it was expected that sampling would introduce greater variation for Zimbabwe. Still, the

qualitative finding that ‘the likelihood of rejecting equality between wage and productivity

premiums is decreasing with the level of development’ still applies.

Trade exposure

In addition to the differences between countries, there are bound to be differences between

individual firms within each country. One crucial distinction between firms is to what ex-

tent they are exposed to competition from foreign firms. Firms that operate in a highly

competitive product environment might also have to compete harder on the labor market to
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attract good employees. To export successfully, firms need a high quality product, possibly

requiring more highly skilled workers. To survive in an industry facing a lot of import com-

petition, producing efficiently is crucial and investments in human capital might be one way

to achieve process innovations. In any case, strong competition in the output market will

make it harder to offer wage premiums for worker characteristics that do not contribute to

productivity.

Results in Table 5 are for two sub-samples that pool firms from all countries, but separate

firms that face international competition from those that do not. Firms ‘exposed to trade’

are those that exported, or that indicated that the main source of competition they faced

was from (i) imported goods, from (ii) local production by foreign or multinational firms, or

from (iii) foreign firms on export markets.18

[Table 5 approximately here]

Results using the firm level estimator are reported in the first two columns of Table 5.

To conserve space, the ‘excess returns’, the difference between the wage and productivity

premiums, are reported directly. The pattern is clearcut. Firms that face international

competition reward characteristics more in line with the productivity contributions they

make. The average gap between wage and productivity premiums, even excluding the male

premium, is 58.2% for firms that do not face international competition and 45.4% for firms

that do. Even though the standard errors are somewhat smaller for the latter firms, the tests

indicate that rejection of equality is more likely for firms not facing international competition.

The comparable average gap for the results with the individual level estimator, reported

in the last two columns of Table 5, is 39.5% for domestically oriented firms and 25.1% for

firms competing with foreigners. The tests for equality are not very different for the two

samples, although p-values are always lower for the domestically oriented firms. This is

mostly due to the much smaller gap for experience for firms exposed to trade. Using either

estimation method, firms competing with foreigners are especially likely to equate wage to

productivity premiums for the firm-specific characteristics, tenure and training. Given that

18Alternative answers to the question asking about the main source of competition were (iv) none, or (v)
domestic firms producing locally.
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these are controlled by the employee and can be adjusted over one’s career, incentives will

be more appropriate for employees of these firms. While the results in Table 5 are somewhat

sensitive to the controls included and to the way the samples are divided, it does provide

some evidence for the importance of competition.

6 Conclusions

A couple of findings are worth reiterating. First, wage premiums for a number of character-

istics do not always match productivity contributions and this failure is more pronounced

for some countries than for other. Second, a lot of attention in the development literature

is devoted to education. Rightfully so, because the returns in higher salary and output

are important and we only capture a fraction of them in this analysis. It is nevertheless

of concern that the wage increases associated with more education significantly exceed the

productivity gains they bring in the least developed countries. On the other hand, it should

be stressed that the returns to education—privately and to the employers—are highest in

the most developed country. Third, a crucial aspect of remuneration is the trade-off between

paying workers for general experience versus firm-specific tenure. This mirrors a similar

trade-off between pre-employment education and subsequent training. In Tanzania, and to

a lesser extent in Kenya, general skills (experience and schooling) are rewarded relatively

more than firm-specific skills (tenure and training). In Zimbabwe, wage premiums match the

productivity gains that are associated with them more closely, and interestingly, the returns

to firm-specific investments are higher than in the other countries. Fourth, we offer some

suggestive evidence that firms facing higher product market competition are more likely to

reward characteristics in line with their productivity contribution.
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Table 1: Summary statistics

Tanzania Kenya Zimbabwe

Population 26.3m 24.3m 10.0m
% employed in industry 4.9% 7.3% 8.6%
Manufacturing workersa 126312 177738 187937

GDP/capita (PPP) 477 1092 2201
VA/employee in industry (USD) 983 1705 7049
Median LP in sampleb 38 100 142
Median TFP in sampleb 54 100 143
Monthly wage in sample (USD) 55.9 (58.6) 117.0 (322.2) 203.3 (261.3)

Exports as % of domestic prod.b 8.8% 23.5% 23.6%
Imports as % of domestic cons. 76.9% 73.3% 50.3%
Manufacturing exports as % of total 6.1% 20.9% 40.5%
Export participation in the sample 9% 22% 49%

Share of manuf. GDP covered 0.31 0.17 0.26
Share of manuf. labor force covered 0.15 0.12 0.31

Number of firms 113 183 110
Workers per firm 97.3 89.8 269.8
Workers interviewed per firm 4.6 6.2 5.5
Male (%) 0.79 (0.40) 0.87 (0.34) 0.84 (0.36)
Age (years) 35.3 (10.5) 34.1 (9.4) 37.0 (10.4)
Experience (years) 16.4 (10.4) 16.1 (9.8) 19.9 (10.8)
Schooling (years) 12.4 (4.8) 11.5 (3.8) 11.0 (3.6)
Tenure (years) 7.8 (6.9) 7.9 (7.2) 10.3 (8.2)
Received training (%) 0.09 (0.29) 0.12 (0.32) 0.21 (0.41)

Source: World Bank (2000) and own calculations for the sample statistics.
Notes: Data is for 1991 for aggregate statistics and for first year of interviews for sample statistics.
a UNIDO; b relative to Kenya, see Van Biesebroeck (2005); c trade statistics are for 1993.
The trade share are for manufacturing only and manufacturing sales is assumed to be
double of value added.
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Table 2: Mincer wage regressions at the individual level with discrete characteristics

The dependent variable is the logarithm of the individual hourly wage rate
Tanzania Kenya Zimbabwe

total within between total within between total within between

Male 0.286 0.302 0.328 0.105 0.089 0.294 0.109 0.108 -0.153
(0.044) ( 0.038) (0.120) (0.043) (0.042) (0.103) (0.063) (0.061) (0.196)

Experience 0.212 0.202 0.309 0.245 0.247 0.196 0.224 0.242 0.206
(0.040) (0.034) (0.110) (0.033) (0.032) (0.084) (0.054) (0.051) (0.189)

Schooling 0.412 0.417 0.583 0.405 0.390 0.317 0.450 0.389 0.879
(0.039) (0.035) (0.101) (0.030) (0.030) (0.070) (0.051) (0.048) (0.178)

Tenure 0.082 0.102 -0.047 0.061 0.093 0.059 0.073 0.002 0.406
(0.040) (0.036) (0.107) (0.033) (0.033) (0.084) (0.052) (0.051) (0.157)

Training 0.042 -0.007 0.047 0.095 0.099 0.096 0.173 0.175 0.270
(0.061) (0.056) (0.141) (0.044) (0.043) (0.095) (0.057) (0.060) (0.137)

Obs. 1215 1215 266 2180 2180 375 1162 1162 213
R2 0.210 0.206 0.274 0.272 0.099 0.467 0.246 0.062 0.441

All characteristics are dummy variables. Male and training are coded as one for yes and zero for no.
The other variables are one if the value is higher than the median for the country and zero otherwise.
Total: OLS regression, controls include hours worked, firm size (log-employment), and year, sector, and
location dummies. Within: Fixed effects estimator controlling for hours worked and year and firm dummies.
Between: OLS regression with variables averaged by firm (by year if applicable); same controls as in ‘total’.
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Table 3: A market efficiency test: production function and wage equation at the firm level

Tanzania Kenya Zimbabwe

Dependent variable: wage output wage output wage output

Labor 0.035 0.781 0.136 0.851 0.200 0.901
(.025) (.082) (.020) (.070) (.035) (.068)

Capital 0.260 0.290 0.228
(.041) (.039) (.040)

Male 0.537 1.386 0.422 2.186 -0.137 0.062
(.235) (1.32) (.211) (1.59) (.182) (.313)

Experience 0.308 -0.404 0.193 -0.205 0.119 0.349
(.147) (.229) (.126) (.233) (.221) (.357)

Schooling 0.717 0.162 0.467 0.077 1.289 1.764
(.175) (.401) (.133) (.270) (.463) (.781)

Tenure -0.075 -0.249 0.063 0.366 0.470 0.801
(.104) (.271) (.115) (.407) (.246) (.410)

Received training -0.074 0.700 0.029 0.560 0.295 0.231
(.157) (.810) (.125) (.476) (.195) (.254)

Test for equality of coefficients in both equations (p-values):
Joint test (all 5 characteristics) 0.01 0.18 0.64
Joint test—without male 0.01 0.23 0.73
Joint test—general HC 0.00 0.15 0.72
Joint test—firm-specific HC 0.55 0.42 0.73
Joint test—learning 0.29 0.28 0.42
Joint test—over time 0.00 0.21 0.79
Observations 266 375 213
R2 0.27 0.71 0.41 0.80 0.45 0.87

Controls added to both the wage equation and the production function are hours worked
and year, industry, and location dummies. Estimation is with SUR. Experience and
schooling are grouped as general human capital (HC) characteristics, with tenure and
training grouped as firm-specific human capital. ‘learning’ combines schooling and
training and ‘over time’ combines experience and tenure.
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Table 4: A market efficiency test: firm level production function and individual wage equation

Tanzania Kenya Zimbabwe

Dependent variable: wage output wage output wage output

Labor 0.057 0.864 0.074 0.701 0.208 0.850
(.024) (.035) (.018) (.029) (.022) (.028)

Capital 0.238 0.326 0.262
(.047) (.019) (.017)

Male 0.340 0.878 0.089 0.117 0.115 0.217
(.052) (.431) (.045) (.267) (.068) (.178)

Experience 0.237 -0.639 0.283 -0.238 0.271 0.347
(.047) (.069) (.039) (.152) (.064) (.186)

Schooling 0.503 -0.289 0.470 0.268 0.567 1.109
(.054) (.121) (.039) (.194) (.068) (.313)

Tenure 0.080 0.099 0.104 0.067 0.203 0.592
(.046) (.174) (.036) (.214) (.219) (.193)

Received training 0.039 0.281 0.104 0.453 0.177 0.079
(.069) (.273) (.048) (.290) (.069) (.112)

Test for equality of coefficients in both equations (p-values):
Joint test (all 5 characteristics) 0.00 0.01 0.67
Joint test—without male 0.00 0.01 0.59
Joint test—general HC 0.00 0.02 0.52
Joint test—firm-specific HC 0.63 0.40 0.41
Joint test—learning 0.00 0.19 0.36
Joint test—over time 0.00 0.00 0.48
Observations 1215 266 2180 375 1162 213
R2 0.74 0.73 0.44 0.75 0.32 0.83

Controls added to both the wage equation and the production function are as before:
hours worked and year, industry, and location dummies. Estimation is with SUR.
The production function is at the firm level, while the wage equation is at the
individual level and has first been transformed to allow for a random firm effect.
Groupings of characteristics for the joint tests are the same as in Table 3.
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Table 5: Estimation on separate samples by trade exposure (pooling firms from all countries)

Firm level estimation Individual level estimation

Trade exposure? No Yes No Yes

Male -1.377 -0.278 -0.318 -1.703
(1.47) (.272) (.312) (.544)

Experience 1.054 0.560 0.773 0.251
(.489) (.323) (.113) (.128)

Schooling 0.404 0.586 0.488 0.497
(.251) (.297) (.150) (.151)

Tenure 0.447 -0.531 0.276 -0.216
(.234) (.811) (.195) (.233)

Received training -0.423 0.138 -0.050 0.041
(.552) (.297) (.222) (.158)

Test for equality of coefficients in both equations (p-values):
Joint test—without male 0.00 0.20 0.00 0.01
Joint test—general HC 0.04 0.06 0.00 0.01
Joint test—firm-specific HC 0.14 0.72 0.14 0.99
Observations 395 289 1988 1279

Same estimation as in Table 3, first two columns, and Table 4, last two columns. Firms
from all three countries are pooled; additional controls now include country-specific time,
location, and industry dummies. The reported coefficients and standard errors are for the
difference between the wage and productivity premiums, i.e. the ‘excess return’ for each
characteristic. Groupings of characteristics for the joint tests are the same as in Table 3.
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