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1 Introduction

There is a widespread belief both by investors, policy makers and academics that low

frequency trends do exist in the stock market. Traditionally these positive and negative

low frequency trends have been labelled as bull and bear markets respectively. If these

trends do exist, then it is important to extract them from the data to analyse their

properties and consider their use as inputs into investment decisions and risk assessment.

Traditional methods of identifying bull and bear markets are based on an ex post

assessment of the peaks and troughs of the price index. Formal dating algorithms based

on a set of rules for classification are found in Gonzalez, Powell, Shi, and Wilson (2005),

Lunde and Timmermann (2004) and Pagan and Sossounov (2003). Most of this work is

closely related to the dating methods used to identify turning points in the business cycle

(Bry and Boschan (1971)). A significant drawback of this approach is that a turning

point can only be identified several observations after it occurs. The latent nature of bull

and bear markets is ignored and these methods cannot be used for statistical inference

on returns or for investment decisions which require more information from the return

distribution.

For adequate risk management and investment decisions, we need a probability model

for returns and one for which the distribution of returns changes over time. For time

series that tend to be cyclical, for example, due to business cycles or bull and bear stock

markets, a popular model has been a two-state regime switching model in which the

states are latent and the mixing parameters are estimated from the available data. One

popular family is Markov-switching (MS) models for which transitions between states

are governed by a Markov chain.

Our paper investigates whether we can probabilistically identify low frequency trends

(sometimes referred to as primary trends) in a stock market index and also capture the

salient features of each phase of the market. We propose a Markov-switching struc-

ture which jointly characterizes the unobservable bull and bear market regimes for stock

returns, allows intra-regime dynamics, and provides a full description of the return dis-

tribution. This approach allows uncertainty about the market regime to be incorporated

into out-of-sample forecasts.

Hamilton (1989) applied a two-state MS model to quarterly U.S. GNP growth rates

in order to identify business cycles and estimate 1st-order Markov transition probabil-

ities associated with the expansion and recession phases of those cycles. Durland and

McCurdy (1994) extended this model to allow the transition probabilities to be a func-

tion of duration in the state and applied this duration-dependent MS model to business

cycles.

There have been many applications of regime-switching models to stock returns. For

example, Hamilton and Lin (1996) relate business cycles and stock market regimes. Cec-

chetti, Lam, and Mark (2000) and Gordon and St-Amour (2000) derive implications of
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regime-switching consumption for equity returns. Maheu and McCurdy (2000) allow

duration-dependent transition probabilities, as well duration-dependent intra-state dy-

namics for returns and volatilities. Guidolin and Timmermann (2002), Guidolin and

Timmermann (2005), Guidolin and Timmermann (2008), Perez-Quiros and Timmer-

mann (2001) and Turner, Startz, and Nelson (1989), among others, explore the implica-

tions of nonlinearities due to regimes switches for asset allocation and/or predictability

of returns.

We allow 4 latent states, two govern the bull regime and two govern the bear regime.

This structure allows for rich and time-varying intra-regime dynamics. In particular,

the model can accommodate short-term reversals (secondary trends) within each regime

of the market. For example, in the bull regime it is possible to have a series of persis-

tent negative returns (a correction), despite the fact that the expected long-run return

(primary trend) is positive in that regime. Bear markets often exhibit persistent rallies

which are subsequently reversed as investors take the opportunity to sell with the result

that the expected long-run return is still negative.

Separating short-term reversals in the market from the primary trend is an important

empirical regularity that a model must capture for it to be able to reproduce the salient

features of the market. This approach is consistent with the definition of bull and bear

markets used by Sperandeo (1990) and Chauvet and Potter (2000). It is also consistent

with the design of the Lunde and Timmermann (2004) filter to capture long-run structure

in stock prices.

Each bull and bear regime has two states. We identify the model by imposing the

long-run mean of returns to be negative in the bear market and positive in the bull

market. We also impose that the overall mean for returns be positive, while allowing

for very different dynamics in each regime. We consider several versions of the model

in which the variance dynamics are decoupled from the mean dynamics. We find that

a model in which the first and second moment are coupled provides the best fit to the

data.

A Bayesian estimation approach accounts for parameter and regime uncertainty and

provides probability statements regarding future regimes and returns. Applied to 123

years of data our model provides superior identification of trends in stock prices.

One important difference with our specification is that the richer dynamics in each

regime allow us to extract bull and bear markets in higher frequency data. As we show,

a problem with a two-state Markov-switching model applied to higher frequency data is

that it results in too many switches between the high and low return states. In other

words, it is incapable of extracting the low frequency trends in the market. In high

frequency data it is important to allow for short-term reversals in the regime of the

market.

Our model provides a realistic identification of bull and bear markets and closely
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matches the output from traditional dating algorithms. The model also provides a good

fit to the statistics of the cycle. The use of 4 states is important to the success of

our approach. Relative to a two-state model we find that market regimes are more

persistent and there is less erratic switching. According to Bayes factors, our 4-state

model of bull and bear markets is strongly favored over several alternatives including a

two-state model, and different variance dynamics.

Of primary importance is the fact that our model can tell us the probability of a

bull or bear regime in real time, unlike the dating algorithms. It can also produce out-

of-sample forecasts, something we explore in this paper. We consider several outputs

from the model to perform market timing strategies to assess the economic value of the

trends we extract from the data. In out-of-sample exercises the model provides valuable

probability statements concerning the predictive density of returns. These probability

statements are used to signal long, short and cash positions that allow an investor to

improve on a pure cash position or a buy and hold strategy.

This paper is organized as follows. The next section describes the data, Section 3 dis-

cusses existing ex post market dating algorithms. Section 4 summarizes the benchmark

model and develops our proposed specification, and estimation and model comparison

are discussed in Section 5. Section 6 presents results including parameter estimates,

probabilistic identification of bull and bear regimes, and an analysis of the economic

value of our proposed model through market timing strategies and Value-at-Risk fore-

casts. Section 7 concludes.

2 Data

We begin with 123 years of daily returns (33926 observations). The 1885-1925 daily re-

turns are from Schwert (1990). The 1926-2007 daily returns are the Center for Research

on Security Prices (CRSP) value weighted including distributions (VWRETD) index

returns for the NYSE+AMEX+NASDAQ stock exchanges. We convert daily returns to

continuously compounded returns by taking the natural logarithm of the gross return.

We construct weekly continuously compounded returns from the daily continuously com-

pounded returns by cumulating daily returns from Wednesday close to Wednesday close

of the following week. If a Wednesday is missing, we use Tuesday close. If the Tues-

day is also missing, we use Thursday. Weekly returns are scaled by 100 so they are

percentage returns. Unless otherwise indicated, henceforth returns implies continuously

compounded percentage returns. Summary statistics are shown in table 1.

4



3 Bull and Bear Dating Algorithms

Ex post sorting methods for classification of stock returns into bull and bear phases are

called dating algorithms. Such algorithms attempt to use a sequence of rules to isolate

patterns in the data. A popular algorithm is that used by Bry and Boschan (1971) to

identify turning points of business cycles. Pagan and Sossounov (2003) adapted this

algorithm to study the characteristics of bull/bear regimes in monthly stock prices.

First a criterion for identifying potential peaks and troughs is applied; then censoring

rules are used to impose minimum duration constraints on both phases and complete

cycles. Finally, an exception to the rule for the minimum length of a phase is allowed

to accommodate ’sharp movements’ in stock prices.

The Pagan and Sossounov (2003) adaptation of the Bry-Boschan (BB) algorithm can

be summarized as follows:

1. Identify the peaks and troughs by using a window of 8 months.

2. Enforce alternation of phases by deleting the lower of adjacent peaks and the higher

of adjacent troughs.

3. Eliminate phases less than 4 months unless changes exceed 20%.

4. Eliminate cycles less than 16 months.

Window width and phase duration constraints will depend on the particular series and

will obviously be different for smoothed business cycle data than for stock prices. Pagan

and Sossounov (2003) provide a detailed discussion of their choices for these constraints.

There are alternative dating algorithms or filters for identifying turning points. For

example, the Lunde and Timmermann (2004) (LT) algorithm identifies bull and bear

markets using an cumulative return threshold of 20% to locate peaks and troughs moving

forward.1 They define a binary market indicator variable It which takes the value 1 if

the stock market is in a bull state at time t and 0 if it is in a bear state. The stock price

at the end of period t is labelled Pt.

Our application of their filter can be summarized as: Use a 6-month window to locate

the initial local maximum or minimum. Suppose we have a local maximum at time t0,

in which case we set Pmax
t0

= Pt0 .

1. Define stopping-time variables associated with a bull market as

τmax(P
max
t0

, t0 | It0 = 1) = inf{t0 + τ : Pt0+τ ≥ Pmax
t0

}

τmin(P
max
t0

, t0 | It0 = 1) = inf{t0 + τ : Pt0+τ ≤ 0.8Pmax
t0

}
1Lunde and Timmermann (2004) explore alternative thresholds and also asymmetric thresholds for

switching from bull versus from bear markets. For this description we use a threshold of 20%.
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2. One of the following happen.

• If τmax < τmin, bull market continues, update the new peak value Pmax
t0+τmax

=

Pt0+τmax discard previous peak at time t0 and set It0+1 = · · · It0+τmax = 1.

Goto 2 above.

• If τmax > τmin, we find a trough at time t0 + τmin and we have been in a bear

market from t0 + 1 to t0 + τmin, It0+1 = · · · = It0+τmin
= 0. Record the value

Pmin
t0+τmin

= Pt0+τmin
and mark time t0 as one peak. Goto 1 below for bear

market.

On the other hand suppose t0 is a local minimum.

1. Bear market stopping times are

τmin(P
min
t0

, t0 | It0 = 0) = inf{t0 + τ : Pt0+τ ≤ Pmin
t0

}

τmax(P
min
t0

, t0 | It0 = 0) = inf{t0 + τ : Pt0+τ ≥ 1.2Pmin
t0

}

2. One of the following happens.

• If τmin < τmax, bear market continues, update the trough point forward,

Pmin
t0+τmin

= Pt0+τmin
discard previous trough value at time t0 and set It0+1 =

· · · = It0+τmin
= 0. Goto 1.

• If τmin > τmax we have a peak at t0 + τmax and have been in a bull market

from t0 + 1 to t0 + τmax, It0+1 = · · · = It0+τmin
= 1. Record the value

Pmax
t0+τmax

= Pt0+τmax and mark time t0 as a trough and goto 1 above for the

bull market.

This process is repeated until the last data point.

The classification into bull and bear regimes using these two filters is found in Table 2.

There are several features to note. First, the sorting of the data is broadly similar but

with important differences. For example, during the 1930s the BB approach finds many

more switches between the market phases than the LT routine does. More recently, both

identify 1987-10 as a trough but the subsequent bull phase ends in 1998-07 for LT but

2000-03 for BB. Generally, the BB filter identifies more bull and bear markets (31 and

31) than the LT filter (24 and 25). The average bear duration is 53.7 (BB) and 47.2

(LT) weeks while the average bull durations are very different, 152.4 (BB) and 217.0

(LT). In other words, the different parameters and assumptions in the filtering methods

can result in a very different classification of market phases.

Although such dating algorithms can filter the data to locate different regimes, they

cannot be used for forecasting or inference. A two-step approach which involves first

sorting the data into market regimes and then following with an econometric model
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conditional on regimes is possible. Such an approach ignores uncertainty from regime

estimation and does not allow it to be incorporated into the second step of estimation

and forecasting. In addition, since the sorting rule focuses on the first moment, it does

not characterize the full distribution of returns. The latter is required if we wish to

derive features of the regimes that are useful for measuring and forecasting risk.

Further, the dating algorithms sort returns into a particular regime with probability

zero or one. However, the data provides more information; investors may be interested

in estimated probabilities associated with the particular regimes. Such information can

be used to answer questions such as ’How likely is it that the market could turn into a

bear next month?’ or ’Are we in a bear market now or just a correction’? Probabilistic

modeling of latent states can help answer such questions.

Nevertheless, the dating algorithms are still very useful. For example, we use the

BB and LT algorithms to sort data simulated from our candidate parametric models in

order to determine whether the latter can match commonly perceived features of bull

and bear markets.

4 Models

In this section, we briefly review a benchmark two-state model, our proposed 4-state

model, and some alternative specifications of the latter used to evaluate robustness of

our best model.

4.1 Two-State Markov-Switching Model

The concept of bull and bear markets suggests cycles or trends that get reversed. Since

those regimes are not observable, as discussed in Section 1, two-state latent-variable MS

models have been applied to stock market data. A two-state 1st-order Markov model

can be written

rt|st ∼ N(µst , σ
2
st
) (4.1)

pij = P (st = j|st−1 = i) (4.2)

i = 0, 1, j = 0, 1. We impose µ0 < 0 and µ1 > 0 so that st = 0 is the bear market and

st = 1 is the bull market.

Modeling of the latent regimes, regime probabilities, and state transition probabili-

ties, allows explicit model estimation and inference. In addition, in contrast to dating

algorithms or filters, forecasts are possible. Investors can base their investment decisions

on the posterior states or the whole forecast density.
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4.2 New 4-state Model

Consider the following general K+1 state first-order Markov-switching model for returns

rt|st ∼ N(µst , σ
2
st
) (4.3)

pij = P (st = j|st−1 = i) (4.4)

i = 0, ..., K, j = 0, ..., K. We will focus on a 4-state model, K = 3. Without any

additional restrictions we cannot identify the model and relate it to market phases.

Therefore, we consider the following restrictions. First, the states st = 0, 1 are assumed

to govern the bear market; we label these states as the bear regime. The states st = 2, 3

are assumed to govern the bull market; these states are labeled the bull regime. Each

regime has 2 states which allows for positive and negative periods of price growth within

each regime. In particular

µ0 < 0 (bear negative growth), (4.5)

µ1 > 0 (bear positive growth),

µ2 < 0 (bull negative growth),

µ3 > 0 (bull positive growth).

This structure can capture short-term reversals in market trends. Each state can have

a different variance and can accommodate autoregressive heteroskedasticity. Therefore,

conditional heteroskedasticity within each regime can be captured.

Consistent with the 2 states in each regime the transition matrix is

P =


p00 p01 0 p03

p10 p11 0 0

0 0 p22 p23

p30 0 p32 p33

 (4.6)

so that each regime will tend to persist and move between positive and negative returns

but can escape to the other regime with probabilties p03 and p30.
2 The unconditional

probabilities associated with P can be solved (Hamilton (1994))

π = (A′A)−1A′e (4.7)

where A′ = [P ′ − I, ι] and e′ = [0, 0, 0, 0, 1] and ι = [1, 1, 1, 1]′.

2Note that only a negative return bear state can exit to a positive return bull state, and only a
positive return bull state can exit to a negative return bear state. This improves identification of
regimes. It implies, for example, that a bear market rally can never immediately precede a transition
into a bull market. In other words, a bear market rally that turns into a bull market is labelled a bull
market.
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Using the matrix of unconditional state probabilities given by (4.7), we impose the

following conditions on long-run returns in each regime,

E[rt|bear regime, st = 0, 1] =
π0

π0 + π1

µ0 +
π1

π0 + π1

µ1 < 0 (4.8)

E[rt|bull regime, st = 2, 3] =
π2

π2 + π3

µ2 +
π3

π2 + π3

µ3 > 0, (4.9)

along with a restriction that bull markets last longer than bear markets, π0+π1 < π2+π3.

We impose no constraint on the variances.

The equations (4.5) and (4.6), along with equations (4.8) and (4.9), serve to identify3

bull and bear regimes.4 The bull (bear) regime has a long-run positive (negative) return.

Each market regime can display short-term reversals that differ from their long-run

mean. For example, a bear regime can display a bear market rally (temporary period

of positive returns), even though its long-run expected return is negative. Similarly for

the bull market.

4.3 Other Models

Besides the 4-state model we consider several other specifications and provide model

comparisons among them. The dependencies in the variance of returns are the most

dominate feature of the data. This structure may adversely dominate dynamics of the

conditional mean. The following specifications are included to investigate this issue.

4.3.1 Restricted 4-State Model

This is identical to the 4-state model in Section 4.2 except that inside a regime the

return innovations are homoskedastic. That is, σ2
0 = σ2

1 and σ2
2 = σ2

3. In this case, the

variance within each regime is restricted to be constant although the overall variance of

returns can change over time due to switches between regimes.

4.3.2 Markov-Switching Mean and i.i.d. Variance Model

In this model the mean and variance dynamics are decoupled. This is a robustness

check to determine to what extent the variance dynamics might be driving the regime

transitions. This specification is identical to the Markov-switching model in Section 4.2

3Discrete mixture of distributions are subject to identification issues. Label switching occurs when
the states and parameters are permuted but the likelihood stays the same. Our prior restrictions avoid
this issue and identify the model. For more discussion on this see Frühwirth-Schnatter (2006).

4If the transition probabilities p30 or p03 are sufficienty small, it is possible for st to become trapped
in a bear regime (st = 0, 1) or a bull regime (st = 2, 3). This could result in most, or all, of our data
being sorted into a single regime. To remove this possibility of an absorbing state we impose the bounds
p03 > 0.01, and p30 > 0.01 which ensures a minimum of transitions between bull and bear regimes. The
Gibbs sampling approach to posterior simulation imposes each of these constraints in estimation.
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except that only the conditional mean follows the Markov chain while the variance

follows an independent i.i.d mixture. That is,

rt|st = µst + zt (4.10)

zt ∼
L∑

i=1

ηiN(0, σ2
i ) (4.11)

pij = P (st = j|st−1 = i) (4.12)

i, j = 0, ..., K,
∑L

i=1 ηi = 1 and ηi ≥ 0. For identification, σ2
1 < σ2

2 < · · · < σ2
K is imposed

along with the constraints used for the conditional mean in the previous section.

5 Estimation and Model Comparison

5.1 Estimation

In this section we discuss Bayesian estimation for the most general model introduced in

Section 4.2 assuming there are K + 1 total states, k = 0, ..., K. The other models are

estimated in a similar way with minor modifications.

There are 3 groups of parameters M = {µ0, ..., µK}, Σ = {σ2
0, ..., σ

2
K}, and the ele-

ments of the transition matrix P . Let θ = {M, Σ, P} and given data IT = {r1, ..., rT}
we augment the parameter space to include the states S = {s1, ..., sT} so that we

sample from the full posterior P (θ, S|IT ). Assuming conditionally conjugate priors

µi ∼ N(mi, n
2
i ), σ−2

i ∼ G(vi/2, si/2) and each row of P following a Dirichlet distri-

bution, allows for a Gibbs sampling approach following Chib (1996). Gibbs sampling

iterates on sampling from the following conditional densities given startup parameter

values for M , Σ and P :

• S|M, Σ, P

• M |Σ, P, S

• Σ|M,P, S

• P |M, Σ, S

Sequentially sampling from each of these conditional densities results in one iteration

of the Gibbs sampler. Dropping an initial set of draws to remove any dependence from

startup values, the remaining draws {S(j), M (j), Σ(j), P (j)}N
j=1 are collected to estimate

features of the posterior density. Simulation consistent estimates can be obtained as

sample averages of the draws. For example, the posterior mean of the state dependent
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mean and standard deviation of returns are estimated as

1

N

N∑
j=1

µ
(j)
k ,

1

N

N∑
j=1

σ
(j)
k , (5.1)

for k = 0, ..., K and are simulation consistent estimates of E[µk|IT ] and E[σk|IT ] respec-

tively.

The first sampling step of S|M, Σ, P involves a joint draw of all the states. Chib

(1996) shows that this can be done by a so-called forward and backward smoother

through the identity

p(S|θ, IT ) = p(sT |θ, IT )
T−1∏
t=1

p(st|st+1, θ, It). (5.2)

The forward pass is to compute the Hamilton (1989) filter for t = 1, ..., T

p(st = k|θ, It−1) =
K∑

l=0

p(st−1 = l|θ, It−1)plk, k = 0, ..., K, (5.3)

p(st = k|θ, It) =
p(st = k|θ, It−1)f(rt|It−1, st = k)∑K
l=0 p(st = l|θ, It−1)f(rt|It−1, st = l)

, k = 0, ..., K. (5.4)

Note that f(rt|It−1, st = k) is the normal pdf N(µk, σ
2
k). Finally, Chib (1996) has shown

that a joint draw of the states can be taken sequentially from

p(st|st+1, θ, It) ∝ p(st|θ, It)p(st+1|st, P ), (5.5)

where the first term on the right-hand side is from (5.4) and the second term is from

the transition matrix. This is the backward step and runs from t = T − 1, T − 2, ..., 1.

The draw of sT is taken according to p(sT = k|θ, IT ), k = 0, ..., K.

The second and third sampling steps are straightforward and use results from the

linear regression model. Conditional on S we select the data in regime k and let the

number of observations of st = k be denoted as Tk. Then µk|Σ, P, S ∼ N(ak, Ak),

ak = Ak

σ−2
k

∑
t∈{t|st=k}

rt + n−2
k mk

 , Ak = (σ−2
k Tk + n−2

k )−1. (5.6)

A draw of the variance is taken from

σ−2
k |M,P, S ∼ G

(Tk + vk)/2,

 ∑
t∈{t|st=k}

(rt − µk)
2 + sk

 /2

 (5.7)

Given the conjugate Dirichlet prior on each row of P , the final step is to sample
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P |M, Σ, S from the Dirichlet distribution (Geweke (2005)).

An important byproduct of Gibbs sampling is an estimate of the smoothed state

probabilties P (st|IT ) which can be estimated as

̂p(st = i|IT ) =
1

N

N∑
j=1

1st=i(S
(j)) (5.8)

for i = 0, ..., K.

At each step, if a parameter draw violates any of the prior restrictions in (4.5), (4.6),

(4.9) and (4.8), then it is discarded. For the 4-state model we set the independent priors

as

µ0 ∼ N(−2, 2)1µ0<0, µ1 ∼ N(1, 2)1µ1>0, (5.9)

µ2 ∼ N(−1, 2)1µ2<0, µ3 ∼ N(2, 2)1µ3>0, (5.10)

(p00, p01, p03) ∼ Dirichlet(0.6, 0.37, 0.03), (5.11)

(p10, p11), (p23, p22) ∼ Dirichlet(0.5, 0.5), (5.12)

(p33, p32, p30) ∼ Dirichlet(0.03, 0.27, 0.7), σ−2
i ∼ G(1/20, 1/2). (5.13)

These priors are informative but cover a wide range of empirically relevant parameter

values.

5.2 Model Comparison

If the marginal likelihood can be computed for a model it is possible to compare mod-

els based on Bayes factors. Non-nested models can be compared as well as spec-

ifications with a different number of states. Note that the Bayes factor penalizes

over-parameterized models that do not deliver improved predictions.5 For the general

Markov-switching model with K + 1 states, the marginal likelihood for model Mi is

defined as

p(r|Mi) =

∫
p(r|Mi, θ)p(θ|Mi)dθ (5.14)

which integrates out parameter uncertainty. p(θ|Mi) is the prior and

p(r|Mi, θ) =
T∏

t=1

f(rt|It−1, θ) (5.15)

5This is referred to as an Ockham’s razor effect. See Kass and Raftery (1995) for a discussion on
the benefits of Bayes factors.

12



is the likelihood which has S integrated out according to

f(rt|It−1, θ) =
K∑

k=0

f(rt|It−1, θ, st = k)p(st = k|θ, It−1). (5.16)

The term p(st = k|θ, It−1) is available from the Hamilton filter. Chib (1995) shows how

to estimate the marginal likelihood for MS models. His estimate is based on re-arranging

Bayes’ theorem as

̂p(r|Mi) =
p(r|Mi, θ

∗)p(θ∗|Mi)

p(θ∗|r,Mi)
(5.17)

where θ∗ is a point of high mass in the posterior pdf. The terms in the numerator are

directly available above while the denominator can be estimated using additional Gibbs

sampling runs.6

A log-Bayes factor between model Mi and Mj is defined as

log(BFij) = log(p(r|Mi)) − log(p(r|Mj)). (5.18)

Kass and Raftery (1995) suggest interpreting the evidence for Mi versus Mj as: not

worth more than a bare mention for 0 ≤ log(BFij) < 1; positive for 1 ≤ log(BFij) < 3;

strong for 3 ≤ log(BFij) < 5; and very strong for log(BFij) ≥ 5.

6 Results

6.1 Parameter Estimates and Implied Distributions

Model estimates for the 2-state Markov-switching model are found in Table 3. This

specification displays a negative conditional mean along with a high conditional variance

and a high conditional mean with a low conditional variance. Both regimes are highly

persistent. These results are consistent with the sorting of bull and bear regimes in

Maheu and McCurdy (2000) and Guidolin and Timmermann (2005).

Estimates for our new 4-state model are found in Table 4. Recall that states st = 0, 1

capture the bear regime while states st = 2, 3 capture the bull regime. Each regime

contains a state with a positive and a negative conditional mean. Consistent with the 2-

state model, volatility is highest in the bear regime. In particular, the highest volatility

occurs in the bear regime in state 0. This state also delivers the lowest expected return.

The highest expected return and lowest volatility is in state 3 which is part of the bull

regime.

All states are persistent with estimates of pii ranging from 0.68 to 0.97. Compared

6The integrating constant in the prior pdf is estimated by simulation.
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to the bear regime, there are more frequent switches inside the bull regime, since the

probabilities p22 and p33 are smaller than p00 and p11.

The unconditional distribution of the states is reported in Table 5. The probability of

the bear regime is π0+π1 = 0.441 while the probability of a bull regime is π2+π3 = 0.559.7

The last column of Table 6 reports posterior quantities associated with the bull and

bear market regimes. The weekly conditional means for the bear and bull regimes are

−0.04% and 0.27% respectively. The intra-regime returns for this model will exhibit

conditional heteroskedasticity. Estimates of the unconditional standard deviations are

3.08 (bear) and 1.43 (bull).

Table 6 also allows a comparison of some regime statistics for the 2-state and 4-

state models. For example, the expected duration of regimes is longer in the 4-state

model. That is, by allowing heterogeneity within a regime in our 4-state model, we

switch between bull and bear markets less frequently.

In the 2-state model, the expected return and variance are fixed within a regime.

In this case, the only source of regime variance is return innovations. In contrast, the

average variance for each regime in the 4-state model can be attributed to changes in the

conditional mean as well as to the average conditional variance of the return innovations.

For instance, the average variance of returns in the bear regime can be decomposed as

Var(rt|st = 0, 1) = Var(E[rt|st]|st = 0, 1) + E[Var(rt|st)|st = 0, 1], with a similar result

for the bull regime. For the bear phase, the mean dynamics account for a small share

2% of the total variance, while for the bull it is larger at 11%.8

The MS-2 model has identical higher order moments in each market. The MS-2

assumes normality in both markets while the MS-4 shows that the data is at odds with

this. Skewness in both markets is significantly negative in the MS-4 and has different

kurtosis levels in each regime. For instance, the bear market displays a high kurtosis of

5.39 while the bull market has a relatively lower value of 3.51.9 The bear market has

thicker tails and captures more extreme events.

The expected future return, conditional on starting in each of the four states, is

shown in Figure 1. This Figure plots, for each state i = 0., , , .3, expected future weekly

return, E[rt+h|st = i], for a range of weeks h, that is, for forecast horizons t + h. The

term structure of expected returns in each state can differ significantly, but for a long

enough forecast horizon they converge to the unconditional mean of returns.

Figures 2 and 3 provide more details on the distributional features of each state. The

first figure is the predictive densities in each of the 4 states. All states have either different

location and/or different tail shapes. Integrating the 2 states in each regime, generates

7In the following discussion, posterior quantities are computed using the average of the Gibbs sam-
pling draws. In general this will differ from the results derived from the posterior mean of the model
parameters.

8This is computed as 0.22/(0.22+9.32) and 0.22/(0.22+1.77).
9The implied unconditional skewness is -0.61 and kurtosis 7.92.
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the implied predictive densities for the bull and bear market illustrated in Figure 3. Also

included is the implied unconditional distribution of returns. As mentioned above, the

bull regime has a positive mean and more mass around 0 relative to the bear distribution

which has much thicker tails and a negative mean. The unconditional distribution is a

mixture of these 2 regime densities.

An important feature of the 4-state model relative to the 2-state version is that the

4-state model allows the realized conditional mean associated with a particular regime

to change over time. This is because a regime can have a different sequence of states

realized during different historical periods. As an example, consider Figure 4. Data

from the 4-state model is simulated; the top panel displays the cumulative return, the

second panel the realized state, and the bottom panel the average conditional return in

a bull or bear regime.10 The figure shows that the realized conditional mean assoicated

with a particular regime will be different over time. In addition, the returns will display

heteroskedasticity inside a regime. These are features that the simpler 2-state param-

eterization cannot capture. In that model all bull (bear) markets have an identical

conditional mean and conditional variance.

6.2 Model Comparisons

One can conduct formal model comparisons based on the marginal likelihoods reported

in Table 7. The constant mean and variance model performs the worst. The next model

has a constant mean but allows the variances to follow a 4-state i.i.d. mixture. Following

this are models with a 2-state versus a 4-state Markov-switching conditional mean – both

combined with a 4-state i.i.d. variance as in Section 4.3.2. In both cases, the additional

dynamics that are introduced to the conditional mean of returns provides a significant

improvement. However, these specifications are strongly dominated by their counter-

parts which allow a common 2 (and 4) state Markov chain to direct both conditional

moments. These specifications capture persistence in the conditional variance.

Note that the log-Bayes factor between the 2-state MS and the 4-state MS in the

conditional mean restricted to have only a 2-state conditional variance (Section 4.3.1)

is large at 41.3 = −13387.2 − (−13428.5). This improved fit comes when additional

conditional mean dynamics (going from 2 to 4 states) are added to the basic 2-state MS

model. The best model is the 4-state Markov-switching model. The log-Bayes factor in

support of the 4-state versus the 2-state model is 107 = −13321.5− (−13428.5). This is

very strong evidence that the 4-state specification provides a better fit to weekly returns.

The Markov-switching models specify a latent variable that directs low frequency

trends in the data. As such, the regime characteristics from the population model are

not directly comparable to the dating algorithms of Section 3. Instead we consider the

10For instance, the average conditional return for the sequence of bull states in {1, 0, 3, 2, 3, 3, 0} is
1
4µ2 + 3

4µ3.
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dating algorithm as a lens to view both the CRSP data and data simulated from our

models. Using parameter draws from the Gibbs sampler, we simulate return data from

a model and then apply both the BB and the LT dating algorithm to those simulated

returns. This is done many times11 and the average and 0.70 density intervals of these

statistics are reported in Tables 8 and 9. The tables also include the statistics from the

CRSP data and a ∗ indicates that a model’s 0.70 density interval does not contain the

CRSP statistic.

Based on these results, the 2-state model is unable to account for 6 of the data

statistics while the 4-state model cannot account for 4 for the BB dating approach. It is

not surprising that the 2-state model fails to capture the intra-regime dynamics in the

second panel of Table 8 as this is what the 4-state model is designed to do. Based on

the LT dating algorithm the MS-4 has 1 more statistic within its density interval than

the MS-2. We conclude that the 4-state model generally does as well and often better

than the 2 state model, nevertheless, there is some room for improvement. The average

bear negative return duration and the average bull positive return duration are difficult

for the models to match, producing values too low relative to the data.

The dating of the market regimes using the LT approach are found in the top panel

of Figure 5. The shaded portions under the cumulative return denote bull markets while

the white portions of the figure are the bear markets. Below this panel is the smoothed

probability of a bull market, P (st = 2|IT ) + P (st = 3|IT ) for the 4-state model. The

final plot in Figure 5 is the smoothed probability of a bull market, P (st = 1|IT ) from the

2-state model. The 4-state model produces less erratic shifts between market regimes,

closely matches the trends in prices, and generally corresponds to the dating algorithm.

The two-state model is less able to extract the low frequency trends in the market. In

high frequency data it is important to allow intra-regime dynamics, such as short-term

reversals.

Note that the success of our model should not be based on how well it matches

the results from dating algorithms. Rather this comparison is done to show that the

latent-state MS models can identify bull and bear markets with similar features to those

identified by conventional dating algorithms. Beyond that, the Markov-switching models

presented in this paper provide a superior approach to modeling stock market trends as

they deliver a full specification of returns along with latent market dynamics. Such an

approach permits out-of-sample forecasting which we turn to next.

6.3 Market Timing

To investigate the value of the model in its ability to identify and predict trends in

stock returns, we consider some simple market timing strategies based on the predictive

1110,000 simulations each of 6389 observations.
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density.

The predictive density for future returns based on current information at time t is

computed as

p(rt|It−1) =

∫
f(rt|θ, It−1)p(θ|It−1)dθ (6.1)

which involved integrating out both state and parameter uncertainty using the posterior

distribution p(θ|It−1). From the Gibbs sampling draws12 {S(j),M (j), Σ(j), P (j)}N
j=1 based

on data It−1 we approximate the predictive density as

̂p(rt|It−1) =
1

N

N∑
i=1

K∑
k=0

f(rt|θ(i), It−1, st = k)p(st = k|s(i)
t−1, θ

(i)) (6.2)

where f(rt|θ(i), It−1, st = k) follows N(µ
(i)
k , σ

2(i)
k ) and p(st = k|s(i)

t−1, θ
(i)) is the transition

probability.

Consider an investor with wealth Wt−1 who has the option to invest in a risk-free

asset yielding rf or to take a long or short position in the market. The investor takes a

long position, using the proportion αL of wealth, if the model indicates that

P (rt > rf |It−1) > CVL (6.3)

where CVL is a specified probability threshold. Next period’s wealth will be

Wt = αLWt−1
Pt

Pt−1

+ (1 − αL)(1 + rf )Wt−1 (6.4)

Analogously, the investor takes a short position, using a proportion αS of wealth if

P (rt < 0|It−1) > CVS (6.5)

where CVL is a specified probability threshold. In this case the next period wealth is

Wt = αSWt−1

(
(1 + rf ) −

Pt

Pt−1

)
+ (1 + rf )Wt−1. (6.6)

Otherwise, the investor puts all his or her wealth in the risk-free asset, in which case

wealth next period will be Wt = (1 + rf )Wt−1.

We investigate the challenging out-of-sample period of 2008. At each point in the

sample we re-estimate the model and compute the one-week-ahead predictive density

12In the full sample analysis we found no evidence of label switching. That is, our prior restrictions
were sufficient to ensure a well identified model. In order to avoid monitoring sequential model estimates
out of sample, we imposed the following restrictions consistent with the full sample estimates: σ0 >
σ1 > σ2 > σ3 and µ0 < µ2, µ1 < µ3.
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and the associated probabilities required for the above investment strategy. The weekly

risk-free rate was obtained from the website of Kenneth French. Given an initial wealth

of $100, Table 10 reports wealth at the end of 2008 for various values of αL, CVL, αS, CVS.

The bottom panel of the table reports final wealth from leaving all wealth in the risk-

free asset every period; as well as from buying and holding the market index for the full

investment horizon.

The buy and hold strategy performs particularly poorly during this period, resulting

in a loss of 40% of initial wealth; all other strategies result in better outcomes. The

most profitable approach allows for short positions to be taken. For example, taking

short positions with 80% of current wealth and long positions of 20% provides the best

performance (Sharpe ratio of 0.104) amongst those strategies that we implemented with

a return of 18%. This suggests that the model can provide effective signals concerning

the direction of the market.

In addition, we forecast out-of-sample returns using the predictive mean versus the

sample average. The model (predictive mean) achieves a mean-squared error of 17.32

versus 17.99 for the sample mean. This provides further evidence that the model is

capturing trends in the data.

6.4 Value-at-Risk

An industry standard measure of potential portfolio loss is the Value-at-Risk (VaR).

VaR(α),t is defined as the 100α percent quantile of the portfolio value or return distribu-

tion given information at time t − 1. We compute VaR(α),t from the predictive density

MS-4 model as

P (rt < VaR(α),t|It−1) = α. (6.7)

Given a correctly specified model the probability of a return of VaR(α),t or less is α.

To compute the Value-at-Risk from the MS-4 model we do the following. First, N

draws from the predictive density are taken as follows: draw θ and st−1 from the Gibbs

sampler, a future state s̃t is simulated based on P and r̃t|s̃t ∼ N(µs̃t , σ
2
s̃t
). From the

resulting draws, the r̃t with rank [Nα] is an estimate of VaR(α),t.

Figure 6 displays the conditional VaR from 2005 – 2008 predicted by the MS-4 model,

as well as that implied by the normal benchmark for α = 0.05. At each point the model

is estimated based on information up to t− 1. Similarly, the bechmark, N(0, s2), sets s2

to the sample variance using It−1. It is clear that the normal benchmark overestimates

the VaR for much of the sample and then tends to understate it in 2007-2008. The MS-4

has a very different VaR(.05),t over time becasue it takes into account the current regime.

The potential losses increase considerably after 2007 as the model identifies a move from

a bull to a bear market.
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7 Conclusion

This paper proposes a new 4-state Markov-switching model to identify bull and bear

markets in weekly stock market data. The model fully describes the return distribution

while treating bull and bear regimes as unobservable. Of the 4 latent states, two govern

the bull regime and two govern the bear regime. This allows for rich and heterogeneous

intra-regime dynamics.

The model provides a realistic identification of bull and bear markets and closely

matches the output from traditional ex post dating algorithms. The model also provides

a good fit to the statistics of the cycle. Relative to a two-state model we find that market

regimes are more persistent and there is less erratic switching. Model comparisons show

that the 4-state specification of bull and bear markets is strongly favored over several

alternatives including a two-state model, as well as various alternative specifications for

variance dynamics.

In out-of-sample exercises the model provides probability statements concerning the

predictive density of returns. These probability statements are used to signal long, short

and cash positions that allow an investor to improve on a pure cash position or a buy

and hold strategy.
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Table 1: Weekly Return Statistics (1885-2007)a

N Mean standard deviation Skewness Kurtosis J-Bb

6389 0.173 2.290 -0.50 7.3 5178∗

a Continuously compounded returns
b Jarque-Bera normality test: p-value = 0.00000

Table 2: BB and LT Dating Algorithm Turning Points

Troughs Peaks Troughs Peaks
BBa LTb BB LT BB LT BB LT

1885-04 1938-03 1938-03 1939-10 1939-10
1887-05 1940-05 1940-05 1941-09 1941-09

1887-10 1890-06 1890-06 1942-04 1942-04 1946-05 1946-05
1890-12 1890-12 1892-03 1892-03 1947-05 1947-05 1948-06
1893-07 1893-07 1895-09 1895-09 1949-06 1953-03
1896-08 1896-08 1899-09 1953-09 1957-07
1900-06 1902-09 1902-09 1957-11 1960-01
1903-10 1903-10 1906-10 1906-10 1960-09 1961-12 1961-12
1907-11 1907-11 1909-09 1962-06 1962-06 1966-02
1910-07 1912-10 1966-10 1968-12 1968-12
1914-12 1916-11 1916-11 1970-05 1970-05 1971-04
1917-12 1917-12 1919-11 1919-11 1971-11 1973-01 1973-01
1921-06 1921-06 1929-09 1929-09 1974-10 1974-10 1980-11 1980-11

1929-11 1930-04 1982-08 1982-08 1983-06
1930-12 1931-02 1984-07 1987-08 1987-08

1932-06 1932-06 1932-09 1987-10 1987-10 1998-07
1933-03 1933-07 1998-10 2000-03 2000-03
1933-10 1934-02 2002-10 2002-10 2007-10 2007-10

1935-03 1937-03 1937-03
a BB: Bry and Boschan algorithm using Pagan and Sossounov parameters
b LT: Lunde and Timmermann algorithm
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Table 3: MS Two-State Model Estimates

Mean Median Std 0.95 DI

µ0 -0.42 -0.42 0.13 (-0.68, -0.18)
µ1 0.31 0.31 0.02 ( 0.26, 0.35)
σ0 4.12 4.12 0.12 ( 3.88, 4.38)
σ1 1.57 1.57 0.02 ( 1.52, 1.62)
p00 0.94 0.94 0.01 ( 0.92, 0.96)
p11 0.99 0.99 0.002 ( 0.98, 0.99)

This table reports the posterior mean,
median, standard deviation and 0.95 density
intervals for model parameters.

Table 4: MS 4-State Model Estimates

Mean Median Std 0.95 DI

µ0 -0.78 -0.78 0.144 (-1.109, -0.515)
µ1 0.26 0.26 0.049 ( 0.162, 0.351)
µ2 -0.38 -0.33 0.225 (-1.046, -0.103)
µ3 0.70 0.70 0.069 ( 0.566, 0.836)
σ0 4.74 4.73 0.176 ( 4.417, 5.109)
σ1 2.02 2.01 0.066 ( 1.901, 2.161)
σ2 1.63 1.64 0.092 ( 1.432, 1.809)
σ3 1.05 1.05 0.062 ( 0.930, 1.173)
p00 0.89 0.89 0.021 ( 0.842, 0.925)
p01 0.08 0.08 0.018 ( 0.049, 0.119)
p03 0.03 0.03 0.007 ( 0.021, 0.049)
p10 0.03 0.03 0.006 ( 0.022, 0.046)
p11 0.97 0.97 0.006 ( 0.954, 0.978)
p22 0.68 0.70 0.091 ( 0.448, 0.816)
p23 0.32 0.30 0.091 ( 0.184, 0.553)
p30 0.01 0.01 0.002 ( 0.010, 0.018)
p32 0.22 0.21 0.053 ( 0.124, 0.330)
p33 0.77 0.77 0.053 ( 0.656, 0.864)

The posterior mean, median, standard
deviation and 0.95 density intervals for model
parameters.
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Table 5: Unconditional State Probabilites

mean 0.95 DI

π0 0.126 (0.093, 0.162)
π1 0.315 (0.225, 0.376)
π2 0.230 (0.119, 0.338)
π3 0.329 (0.242, 0.436)

The posterior mean and 0.95 density intervals
associated with the posterior distribution for π
from Equation (4.7).

Table 6: Implied Regime Statistics for MS Models

MS-2 MS-4

bear mean -0.42 -0.04
(-0.68, -0.18) (-0.126, -0.001)

bear duration 16.5 113.3
(11.9, 22.7) (69.1, 162.6)

bear standard deviation 4.12 3.08
(3.89, 4.38) (2.88, 3.34)

bear variance from Var(E[rt|st]|st = 0, 1) 0.00 0.22
(0.11, 0.38)

bear variance from E[Var(rt|st)|st = 0, 1] 17.0 9.32
(15.1, 19.2) (8.06, 10.9)

bear skewness 0 -0.40
(-0.54, -0.27)

bear kurtosus 3 5.39
(4.45,5.98)

bull mean 0.31 0.27
(0.26, 0.35) (0.21, 0.33)

bull duration 71.0 142.9
(50.6, 100.0) (100.4, 190.7)

bull standard deviation 1.57 1.43
(1.52, 1.62) (1.37, 1.50)

bull variance from Var(E[rt|st]|st = 2, 3) 0.00 0.22
(0.11, 0.36)

bull variance from E[Var(rt|st)|st = 2, 3] 2.47 1.77
(2.32, 2.63) (1.46, 2.06)

bull skewness 0 -0.42
(-0.53,-0.32)

bull kurtosus 3 3.51
(3.26,3.81)

The posterior mean and 0.95 density interval for regime statistics.
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Table 7: Log Marginal Likelihoods: Alternative Models

Model log f(Y | Model)

Constant mean with constant variance -14425.1
Constant mean with 4-state i.i.d variance -13808.6
MS 2-state mean with 4-state i.i.d. variance (4.10 with K + 1 = 2) -13698.6
MS 4-state mean with 4-state i.i.d. variance (4.10 with K + 1 = 4) -13580.4
MS 2-state mean with coupled MS 2-state variance (4.1) -13428.5
MS 4-state mean with coupled MS 4-state variance (4.3) -13321.5
MS 4-state mean with coupled MS 2-state variance (σ2

0 = σ2
1 , σ2

2 = σ2
3) -13387.2
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Table 8: Posterior bull/bear statistics by BB algorithm

CRSP MS-2 MS-4

Avg. number of bears 31 31.6 33.3
(28, 35) (30, 37)

Avg. bear duration 53.7 49.5 53.5
(42.3, 56.7) (46.2, 60.8)

Avg. bear amplitudeb -34.4 -33.2 -34.8
(-38.7, -27.7) (-40.0, -29.7)

Avg. bear returnc -0.64 -0.68 -0.66
(-0.80, -0.56) (-0.76, -0.55)

Avg. bear standard deviationd 2.44 2.71* 2.68*
(2.51, 2.93) (2.46, 2.91)

Avg. number of bulls 31 31.7 33.4
(28, 36) (30, 37)

Avg. bull duration 152.4 154.9 140.0
(129.7, 180.8) (118.5, 161.8)

Avg. bull amplitude 70.0 68.1 61.0*
(57.4, 79.0) (52.4, 69.8)

Avg. bull return 0.46 0.44 0.44
(0.41, 0.47) (0.41, 0.47)

Avg. bull standard deviation 1.95 2.00 1.99
(1.89, 2.12) (1.86, 2.12)

Avg. bear -ve return -2.27 -2.37 -2.37
(-2.59, -2.16) (-2.56, -2.18)

Avg. bear +ve return 1.65 1.72 1.63
(1.57, 1.87) (1.49, 1.76)

Avg. bear -ve return duration 2.39 2.27* 2.25*
(2.17, 2.36) (2.17, 2.34)

Avg. bear +ve return duration 1.84 1.74* 1.82
(1.66, 1.82) (1.74, 1.90)

Avg. bull -ve return -1.41 -1.35* -1.38
(-1.41, -1.29) (-1.46, -1.31)

Avg. bull +ve return 1.54 1.64* 1.54
(1.57, 1.70) (1.45, 1.63)

Avg. bull -ve return duration 1.65 1.66 1.65
(1.63, 1.69) (1.62, 1.68)

Avg. bull +ve return duration 2.77 2.43* 2.65*
(2.37, 2.49) (2.56, 2.73)

a 70% density interval
b Aggregate return over one regime
c Average return in one regime
d Return standard deviation in one regime
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Table 9: Posterior bull/bear statistics by LT Algorithm

CRSP MS-2 MS-4

Avg. number of bears 25 26.8 28.1
(21, 32) (23, 33)

Avg. bear duration 47.2 41.7 47.2
(34.0, 49.3) (38.7, 55.6)

Avg. bear amplitudeb -40.5 -39.1 -41.0
(-43.6, -34.6) (-45.6, -36.6)

Avg. bear returnc -0.86 -0.96 -0.89
(-1.11, -0.81) (-1.03, -0.75)

Avg. bear stdd 3.34 3.10* 3.13
(2.91, 3.29) (2.91, 3.36)

Avg. number of bulls 24 26.4 27.8
(21, 32) (23, 33)

Avg. bull duration 217.0 209.2 190.4
(158.5, 261.4) (145.9, 234.9)

Avg. bull amplitude 88.2 83.5 74.5*
(66.4, 100.8) (60.8, 88.1)

Avg. bull return 0.41 0.40 0.40
(0.37, 0.44) (0.36, 0.44)

Avg. bull std 2.41 2.14* 2.17*
(1.99, 2.30) (2.01, 2.34)

Avg. bear -ve return -2.70 -2.72 -2.66
(-2.94, -2.50) (-2.89, -2.44)

Avg. bear +ve return 1.86 1.83 1.71*
(1.67, 1.98) (1.58, 1.85)

Avg. bear -ve return duration 2.43 2.37 2.33
(2.26, 2.48) (2.23, 2.43)

Avg. bear +ve return duration 1.79 1.66* 1.74
(1.58, 1.73) (1.66, 1.82)

Avg. bull -ve return -1.37 -1.36 -1.39
(-1.41, -1.30) (-1.46, -1.32)

Avg. bull +ve return 1.52 1.63* 1.53
(1.57, 1.69) (1.44, 1.62)

Avg. bull -ve return duration 1.72 1.69 1.69
(1.66, 1.73) (1.65, 1.72)

Avg. bull +ve return duration 2.69 2.39* 2.59*
(2.33, 2.44) (2.51, 2.67)

a 70% density interval
b Aggregate return over one regime
c Average return in one regime
d Return standard deviation in one regime
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Table 10: Market Timing Out-of-Sample (2008)
αL CVL αS CVS WT Sharpe ratio
0.2 0.5 0.2 0.5 102.25 0.010
0.5 0.5 0.5 0.5 102.18 0.003
0.5 0.5 0.0 1.0 89.84 -0.239
1.0 0.5 0.0 1.0 78.79 -0.243
0.5 0.5 0.6 0.5 104.65 0.022
0.5 0.5 0.8 0.5 109.59 0.048
0.2 0.5 0.8 0.5 118.25 0.104

Buy&Hold 1.0 0.0 59.99 -0.244
Cash 0.0 0.0 101.86
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Figure 1: MS 4 States, Conditional Mean Dynamics: E[rt+h|st = S] versus h.
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Figure 2: MS 4 States, State Density
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Figure 3: MS 4 States, Regime Density

30



-1

-0
.7

-0
.4

-0
.1

 0
.2

 0
 1

00
 2

00
 3

00
 4

00
 5

00
 6

00
 7

00
 8

00
 9

00
 1

00
0

C
on

di
tio

na
l m

ea
n

 0 1 2 3

S
im

ul
at

ed
 s

ta
te

s

-4
0

-2
0 0 2
0

 4
0

 6
0

 8
0

 1
00

S
im

ul
at

ed
 c

um
ul

at
iv

e 
lo

g 
re

tu
rn

 *
 1

00

Figure 4: Simulated Returns, States and Average Regime Conditional Mean
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Figure 5: Cumulative Return (LT dating) & Smoothed Bull States from MS-4 and MS-2
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Figure 6: Value-at-Risk from MS-4 and Benchmark Normal distribution
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