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Abstract

We examine the behaviour of the nonparametric maximum like-
lihood estimator (NPMLE) for a discrete duration model with un-
observed heterogeneity and unknown duration dependence. We find
that a nonparametric specification of either the duration dependence
or unobserved heterogeneity, when the other feature of the hazard is
known to be absent, leads to estimators that are well behaved even in
modestly sized samples. In contrast, there is a large and systematic
bias in the parameters of these components when both are specified
nonparametrically, as well as a complementary bias in the coefficients
on observed heterogeneity. Furthermore, these biases diminish very
gradually as sample size increases. We find that a minor modification
of the quasilikelihood that penalizes specifications with many points
of support leads to a dramatic improvement.
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1 Introduction

Hazard models of event durations find application in many areas of applied
economics ranging from the analysis of unemployment spells to studies of
fecundity. There is now widespread acknowledgment that inference in these
models can be subject to specification error from a number of sources. One
cause is unobserved heterogeneity arising from the omission of (possibly un-
observable) variables that affect the hazard. A common antidote to this
problem is to model the unobserved heterogeneity as individual-specific ran-
dom effects. There is growing recognition, however, that inference can be
sensitive to the assumed distribution of the unobserved heterogeneity. This
issue is of particular importance when the hazard (the conditional probability
of exit) exhibits duration dependence. As in many other areas of economet-
rics, nonparametric approaches have been proposed in the absence of any
guidance from economic theory about functional form. In hazard models,
the nonparametric approach has been applied with some success to both the
specification of the baseline hazard (e.g., Ham and Rea 1987, Meyer 1990)
and the distribution of unobserved individual effects (e.g., Nickell 1979, Heck-
man and Singer 1984).

Empirical researchers increasingly take heed of these results, but com-
promises are made. For example, semiparametric models, that is models
made up of a mixture of parametric and nonparametric components, are of-
ten used. Typically, the hazard is characterized by a parametric form, but
either the duration dependence or the unobserved heterogeneity distribution
is modelled nonparametrically. While there is an obvious argument to be
flexible in both dimensions, numerical difficulties often hinder the estimation
of models with nonparametric specifications of both the baseline hazard and
the unobserved heterogeneity (e.g., Meyer 1990, Baker and Rea 1998). In
fact, largely in response to computational problems, the nonparametric esti-
mators of either component are often only partially adopted. For example,
the nonparametric maximum likelihood estimator (NPMLE) of the unob-
served heterogeneity distribution proposed by Heckman and Singer (1984)
in effect assumes that the unobserved random effects are drawn from a dis-
crete distribution with unknown support and an unknown number of mass
points. In many studies, the number of mass points is simply specified a
priori as at most two, or the search for additional mass points is abandoned
when numerical problems are encountered. Similar compromises are made in
the specification of the duration dependence. In a common nonparametric
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approach, the baseline hazard is specified as a step function. Therefore, the
width of the steps must be chosen: narrow steps will allow for very flexible
shapes for the duration dependence but may require enormous amounts of
data for reliable estimation. In practice there appears to be a trade off be-
tween widening the step (and thus imposing more parametric structure on
the duration dependence) and relaxing the specification of the unobserved
effects (e.g., Narendranathan and Stewart 1993), so researchers must decide
which of these two features to emphasize.

While particular choices may be necessitated by the realities of the data
or machine arithmetic, there is no a priori reason to believe they are without
consequence. In this paper, we attempt to provide some practical guid-
ance to their effects for a class of discrete hazard models incorporating non-
parametric specifications of unobserved heterogeneity and duration depen-
dence.

We begin by outlining a computational strategy for the NPMLE with un-
observed heterogeneity. This is a more familiar formulation of the strategy
due to Lindsay (1983) that was adapted by Heckman and Singer (1984), and
provides a systematic approach to determining the location and number of
mass points for the heterogeneity distribution. We next provide Monte Carlo
evidence on the behaviour of the NPMLE in a variety of environments. Both
the data generating process (DGP) used to construct the sample data, and
the quasi-likelihood (QL) specification used for estimation, vary across the
experiments. The latter differ by the specification of the time functions used
to model the true duration dependence. To anticipate our main results, we
find that a nonparametric specification for either the duration dependence or
unobserved heterogeneity, when the other feature of the hazard is known to
be absent, leads to estimators that are well behaved even in modestly sized
samples. However, the combination of a flexible specification for both dura-
tion dependence and unobserved heterogeneity leads to a very reliable and
systematic bias. The estimated time functions are biased toward finding pos-
itive duration dependence and the NPMLE overestimates the dispersion of
the random effects. Often both duration dependence and unobserved hetero-
geneity are of secondary interest, so it is important to emphasize that these
faults lead to a large and significant bias for the parameters on observed
heterogeneity, which we will refer to as β. It is well known that ignoring
unobserved heterogeneity, even though it is independent of observed hetero-
geneity, biases β towards zero. It is perhaps not surprising that we find the
exaggerated dispersion in the estimated heterogeneity distribution coincides
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with a bias in β away from zero. Moreover, the bias is extremely large and
goes away very slowly even as the sample grows to sizes that are enormous
by today’s standards. It appears that the poor sampling performance of
the NPMLE of unobserved heterogeneity stems almost entirely from the fact
that it finds too many “spurious” points of support. A minor modification
of the QL to include a term that penalizes specifications with many points
of support (for example, the Schwartz or Hannan-Quinn Information Crite-
rion) seems like a natural solution, and was proposed in a similiar setting
by Leroux (1992). We find that the penalized NPMLE leads to a dramatic
improvement in the sampling properties of the various estimators and a much
more reliable estimator for β.

2 A Computational Strategy

We next describe the algorithm for estimation of the NPMLE with unob-
served heterogeneity. Aside from some minor details, the algorithm is due
to Lindsay (1983) and can be found also in Heckman and Singer (1984).
Nevertheless, we suspect that many applied researchers are unaware of this
strategy, and can benefit from the more heuristic interpretation supplied here.
Our suspicion is based in introspection (we developed the algorithm indepen-
dently before finding it in the cited studies); the observation that estimation
strategies adopted by many researchers in this area are essentially ad hoc;
and, numerous conversations with researchers. Our presentation avoids the
Gateaux differential used by Heckman and Singer and replaces it with the
more familiar Kuhn-Tucker multiplier.

Assume that heterogeneity is indexed by a single parameter θ, which is
known to lie in the interval [θL, θH ]. Let Lih ≡ Lh(α, θi) denote the likeli-
hood for individual h given the heterogeneity parameter takes on the value θi,
where α ∈ <p are other parameters. Suppose that the heterogeneity param-
eter is distributed as a discrete random variable with Nθ points of support.
The loglikelihood for the individual is

lnLh ≡ ln

Nθ∑
i=1

LihPi

 (1)

where the probability weights satisfy
∑
Pi = 1 and Pi ≥ 0. The loglikelihood
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for the sample is just

lnL ≡
Nh∑
h=1

lnLh. (2)

The parameters of the heterogeneity distribution are Nθ (the number of
points of support), along with (θi, Pi; i = 1, ..., Nθ). We proceed assuming
that these parameters are functionally independent of α. Given that Nθ is
an integer, a sensible strategy is to pick a value for the number of points of
support, say N̄θ, estimate the remaining parameters and then check if the
likelihood can be increased by adding an additional point of support to the
distribution of θ.1

Suppose we have the MLE {α̂, θ̂i, P̂i; i = 1, ..., N̄θ}, conditional on the
assumption that there are N̄θ points of support. Let θ̄ be a candidate for an
additional point of support. Our approach is to consider the optimal values
of (P1, ..., PN̄θ+1), fixing α = α̂, θi = θ̂i for i = 1, ..., Nθ and θN̄θ+1 = θ̄. If
the optimal value of PN̄θ+1 = 0, then adding a point of support at θ̄ can’t
increase the sample likelihood. If this is true for all θ̄ ∈ [θL, θH ] then we
have found the NPMLE. If instead the optimal value of PN̄θ+1 > 0, then it is
possible to increase the sample likelihood by adding a point of support at θ̄.

Formally we can write the problem as

max{P1, ..., PN̄θ+1} lnL =
∑
h

ln

N̄θ+1∑
i=1

LihPi

+ λ

N̄θ+1∑
i=1

Pi − 1

+
N̄θ+1∑
j=1

µiPi.

(3)
Notice that the objective function is concave in {Pi} and the constraints
are linear, so the optimum is characterized by the Kuhn-Tucker first order
conditions

d lnL

dPi
=
∑
h

(
Lih∑
j LjhPj

)
+ λ+ µi = 0, (4)

d lnL

dλ
=
∑

Pi − 1 = 0, (5)

1While this is essentially the incremental strategy adopted in some studies in the area,
in practice it can be problematic if the location of the additional mass point is “poorly”
chosen. Our point in this section is to suggest a systematic approach to identifying the
location of additional points of support. An alternative strategy would be to estimate the
model using a grid of values for the θi over a “reasonable” range. See for example Lemieux
and MacLeod (1995).
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and
Pi ≥ 0; µi ≥ 0; µiPi = 0. (6)

It’s not possible to solve for the optimal probabilities in closed form from the
first order conditions, but we can use them to evaluate a particular candidate.
First, multiply (4) by Pi, sum over i, and use equations (5) and (6) to obtain
λ = −Nh. Substituting back into (4) we eliminate λ, and obtain

µi =
∑
h

(
1− Lih∑

j LjhPj

)
. (7)

Consider the candidate Pi = P̂i for i = 1, ..., N̄θ, and PN̄θ+1 = 0. Because the

{P̂i} maximize the likelihood for N̄θ points of support, it is easy to show that
µi will be zero for i = 1, ..., N̄θ (the right hand side of (7) is just the gradient
of the loglikelihood (2) with respect to these probabilities). If µN̄θ+1 ≥ 0 then
the first order conditions are satisfied at the candidate probabilities so the
likelihood can’t be improved by adding a point of support at θ̄. If this is true
for all θ̄ ∈ [θL, θH ] then we have found the NPMLE. If, on the other hand,
µN̄θ+1 < 0 for some choice of θ̄, then the candidate probabilities violate the
first order conditions and it is possible to increase the sample likelihood by
adding a point of support at θ̄.

Heckman and Singer (1984) show that the (negative of the) Kuhn-Tucker
multipliers given by (7) are Gateaux derivatives, and a necessary and suf-
ficient condition for the NPMLE (using our notation) is µN̄θ+1 ≥ 0 for all
θ̄ ∈ [θL, θH ]. This result suggests the following algorithm:

Step 0: Set N̄θ = 1 and P1 = 1. Choose initial values for α and θ1.

Step 1: Given the current value of N̄θ, maximize the likelihood over α and
(θi, Pi; i = 1, ..., N̄θ).

Step 2: Evaluate µN̄θ+1 for a grid of values of θ̄ ∈ [θL, θH ].
a. If µN̄θ+1 ≥ 0 for all choices of θ̄ then STOP.
b. Else, set θN̄θ+1 to the value of θ̄ that yields the smallest value for

µN̄θ+1.

Step 3: Solve (3) numerically to obtain new initial values for the probabili-
ties. Increase the value of N̄θ by 1. Return to Step 1.

In our application, the QL is concave in the parameters (α, θ), so the initial
values chosen in Step 0 can be arbitrary. The problem solved in Step 3 is
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also very well behaved; we use the reduced gradient method described in
Luenberger (1984, Ch. 11). With more than one point of support, Step 1
is the most time consuming and difficult due to the vagaries of nonlinear
estimation. We used a modified Newton-Raphson algorithm, but the finite
mixture literature often relies on the EM algorithm (see Lancaster (1990),
ch. 8). Step 2 appears to work reasonably well in practice (but see section
6.3 for a suggested improvement).

The algorithm guarantees that the likelihood will increase each time a
point of support is added. Heckman and Singer (1984) describe a strategy
for choosing [θL, θH ] in a systematic way that must include any additional
point of support that can increase the QL. We were unable to implement their
suggestion. Instead, we chose this interval implicitly so that the probability
of exit in the first period for all types was restricted to the set [ε, 1 − ε].
Initially, we set ε to 10−5, but this value was decreased adaptively if the
estimated points of support approached a boundary.

In practice, we make a few minor modifications to this algorithm to deal
with computational problems. In Step 1, we reparameterize the probabilities
using a logistic transformation to keep them in the unit simplex so that we
can use familiar and well tested algorithms for unconstrained maximization.
Unfortunately, this means that probabilities can be made small but never
set exactly to zero. So, before evaluating the Gateaux derivative we take
estimates from Step 1 and use the same code as in Step 3 to maximize the
likelihood over the N̄θ probabilities. This small detour allows us to drop
points of support with probabilities that should have been set to zero and
it lessens the possibility that in Step 2 we will add a point of support more
or less on top of one that has already been included2. Finally, if adding a
point of support in Step 3 leads us to drop one of the existing points, we do
not increase N̄θ. This situation can arise because we are not guaranteed to
obtain a global optimum in Step 1.

2It is not numerically possible to achieve a gradient of the log-likelihood that is exactly
zero, but we found that Step 2 can be sensitive to even very small errors in computing the
optimal probabilities. After a good deal of experimenting, we concluded (at least in our
implementation) that inserting an extra step to ‘polish’ the estimated probabilities had no
noticeable impact on the parameter estimates but it improved the numerical robustness
of our code. In those cases where a point of support was dropped or we achieved even a
modest increase in the loglikelihood, we returned immediately to Step 1.
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3 Related Research

Although duration data used in economic applications are always reported
in discrete units (eg., days or weeks) and are therefore integer valued, the
econometric literature is dominated by continuous-time duration models in
which the durations can take on all values on the positive real line. In par-
ticular, many theoretical and applied studies adopt the mixed proportional
hazard model (MPH). The leading special case of the MPH has an instan-
teous hazard rate of the form

λht = exp(Xhβ + f(t) + θh) (8)

where the three components in (8) represent observed heterogeneity, duration
dependence, and unobserved heterogeneity, respectively. θh is assumed to be
an i.i.d. draw from some unknown distribution that must be estimated along
with β and the parameters of the baseline hazard exp(f(t)).

Several analytical results are known for the MPH model. Invoking fairly
general assumptions, Elbers and Ridder (1982) showed that the parameters
of the MPH model are identified (but see Ridder 1990 and Ishwaran 1996),
and Heckman and Singer(1984) proved that the NPMLE is consistent. The
asymptotic distribution of the NPMLE for this model is not yet known, but
Hahn (1994) and Ishwaran (1996) show that, at least for a leading special
case, it is not

√
n consistent.3

Some Monte Carlo evidence of the sampling distribution of the NPMLE
for the MPH model is also available. Heckman and Singer (1984) reported
the results from roughly a dozen artificial samples. They considered a rich
variety of heterogeneity distributions but restricted attention to a tightly
parameterized model of duration dependence (i.e. Weibull models). They
found that the NPMLE reproduced the structural parameters fairly well but
provided an unreliable estimate of the mixing distribution. Ridder (1987)
showed that if the durations are uncensored and the baseline hazard is known
then the ML estimates of β are insensitive to misspecification of the mixing
distribution. Using a one-parameter model for f(t), he found that estimation
of the baseline hazard did not much affect this conclusion. Ridder did find,
however, that very heavy censoring (about 80%) could generate a bias in β as

3Bearse et al (1996) show how to construct a semiparametric estimator using kernel
methods that is generically

√
n consistent and asymptotically normal. Campolieti (1997)

uses a Dirichlet process prior to construct an estimator that is effectively nonparametric
but amenable to standard Bayesian inferential techniques in finite samples.
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large as 15%. More recently, Huh and Sickles (1994) compare the NPMLE
with alternatives that smooth the estimated distribution function for the
Weibull proportional hazard model. They also restrict attention to a one-
parameter model for duration dependence. They find that the NPMLE works
reasonably well although there appears to be a small sample advantage to
their alternative estimators.

The discrete duration model that we investigate in this paper has been
used by many authors. We suspect that this model should lead to estimates
with properties that are very similiar to those of the MPH. We know of no
analytical results for this model, however, and comparisons of our results with
Monte Carlo results for the MPH model can be viewed at best as suggestive.

Closely related to our discrete duration model is the literature on binary
choice. Because it is an index model, the results of Coslett (1983) can be
used to show that the regression coefficients in our discrete duration model
are identified at least up to scale, even if we allow the exit probabilites to
vary freely with duration. Cameron and Heckman (1998) provide identifi-
cation results for a general class of discrete duration models. They show
that identification is enhanced if the index varies with duration. If the index
is constant, as is the case in our model, then identification is delicate and
requires some additional structure on the transition probabilities. Because
it has a discrete factor structure, their Theorem 4 shows that our model is
identified, at least if we restrict attention to finite mixture distributions. We
have been unable to extend their results to the general case.4

Finally, there is a large statistical literature on the estimation of mixing
distributions (see Lindsay and Lesperance 1995 for a recent survey). While
relevant and suggestive, much of this literature is difficult to adapt to our
setting because it excludes the case where there are other parameters of inter-
est. In econometric applications, the main interest is often in the parameters
α that are implicit in (1). Of course, it is possible that the MLE estimates of
α may be efficient and asymptotically normal even though these properties
do not extend to the estimated mixing distribution (Van der Vaart 1996).

4We can show that if the duration dependence function is known to be constant for the
first two periods, then the model is identified for general mixtures.
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4 Sample Design

We investigated the properties of the NPMLE in a variety of settings. These
settings varied with (a) the true data generating process (DGP) for the data;
(b) the quasilikelihood (QL) used for estimation; and (c) the number of
sample observations used in estimation.

4.1 DGPs

In calibrating our DGP, we tried to choose true hazards that resembled those
typically observed in data on unemployment spells, measured in weeks. Ham
and Rea (1987) report empirical hazards of .171, .170, .098 and .066 for the
first four weeks of UI insured unemployment spells in Canada, at a time
when most spells were insured. Sider (1985) estimates that the continuation
probability out of the first month of unemployment ranged from .41 to .59
in the U.S. over the period 1969 to 1982. This implies (constant) weekly
hazards over the first month of unemployment ranging from 0.12 to 0.195.
These estimates provide some room for choice. As a benchmark, we tried to
generate hazards with the probability of exiting in the first period equal to
about .15, with about half the sample exiting by the fourth week, and that
were declining with duration.

We assumed that the probability that a given observation h in our sample
survived from time t-1 to time t, hereafter referred to as the continuation
function6, was of the logistic form, that is

Sht =
exp(zht)

1 + exp(zht)
(9)

where the index is of the form

zht = Xhβ + f(t) + θh (10)

The three terms represent observed heterogeneity, duration dependence, and
unobserved heterogeneity, respectively. We fixed the values of X across all
our simulations, but we considered 3 cases for the duration dependence and

5These estimates are constructed assuming 4.3 weeks per month. Meyer (1990) reports
that the empirical hazards for the first four weeks of insured spells in the US are .082,
.066, .056, and .061. for the period 1978-1983.

6The discrete time hazard is one minus the continuation probability.
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3 cases for the unobserved heterogeneity. For each of these nine DGPs,
we generated 100 random samples of size 5000 and stored them7. These
became the data for our NPMLE calculations. For computational reasons,
we censored observations that lasted more than forty periods; that is, we
decided to record durations of greater than 40 as incomplete durations that
lasted at least 40 periods. Figure 1 shows the average values of the hazards
obtained from each of our nine DGPs. We now discuss in turn how we chose
each of the components of (10)

4.1.1 Observed Heterogeneity

Because of computational costs, we only considered the case where observed
heterogeneity is summarized by a scalar. To ease interpretation and without
loss of generality, we set β = 1 in all our simulations. Many authors have
warned that various properties of estimators can be hidden in a design that
considers only symmetric distributions for X. Nonetheless, it is also useful to
maintain comparability with previous studies, so we followed Heckman and
Singer (1984), Ridder (1987), and Huh and Sickles (1994) and assumed that
X ∼ NID(0, σ2

x). Setting E(X) = 0 is a useful normalization that clarifies
the interpretation of the remaining parameters. The choice of σ2

x is less
obvious. The value of σ2

x determines the relative importance of observable
heterogeneity and is a key determinant in practice of not only how accurately
we can estimate β but whether or not we can distinguish duration dependence
from unobserved heterogeneity. One way to choose this parameter is to try to
match the R2 from a regression of the log of duration on X to values typically
observed. On this basis, we chose σ2

x = 0.25. This put the average R2 in
our DGP with no duration dependence and no unobserved heterogeneity at
about .08. Moreover, this value for σ2

x more or less kept the average R2 in
all of our DGPs described below in the range .05-.108.

4.1.2 Duration Dependence

We considered three forms for the true duration dependence: none, negative
duration dependence, and positive duration dependence. Setting f(t) ≡ 0

7All the random numbers were generated using IMSL routines DRNUNF and
DRNGAM. We used the multiplier 950706376 and shuffling.

8Using the data from Baker and Rea (1998), the R2 for log duration of weekly unem-
ployment spells is about .05.
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allows us to gauge the efficiency loss that comes from trying to allow for du-
ration dependence when none is present. The case where, other things equal,
the hazard is declining with duration is called negative duration dependence.
Of course, a declining hazard is equivalent to a rising continuation function,
so that in our parameterization negative duration dependence is associated
with an increasing path for f(t). We model negative duration dependence
by setting

f(t) = 1− exp(
1− t

5
) (11)

Notice that f(1) = 0. This normalization was chosen to facilitate the inter-
pretation of the heterogeneity parameter θ. The time function rises smoothly
and asymptotes to the value 1. The case of negative duration dependence
seems to be the most empirically relevant. For completeness, we also consid-
ered the case of positive duration dependence where the time function f(t)
was set equal to the negative of the right hand side of (11).

4.1.3 Unobserved Heterogeneity

We assumed that the unobserved heterogeneity parameter θh was a random
draw from a given distribution9. We considered three cases: a degenerate
distribution (that is, no unobserved heterogeneity); a discrete distribution
with two points of support; and a (translated) gamma distribution. In the
case of no unobserved heterogeneity, we simply set θh = 1.8. This value
was chosen so that the unconditional probability of exiting at time t=1 was
about .15. For the discrete distribution, we assumed that each of the two
points was equally likely. We set the mean to 1.8 and the variance to unity.
This uniquely determined the points of support at θ = 0.8 and θ = 2.8. The
gamma distribution is often used to model heterogeneity in continuous time
hazard models. In contrast to the previous choices, it has a density and the
distribution isn’t symmetric about the mean. We first tried to draw gamma
random variables from a distribution with mean 1.8 and variance 1, matching
the same two moments as in our discrete heterogeneity distribution case.
However, we were unhappy with the resulting hazard shapes. After some

9None of the estimators that we consider in this paper deal with the possibility that the
unobserved heterogeneity may be correlated with X, but it is easy to see what the conse-
quences of such correlation would be in one special case. Suppose we model unobserved
heterogeneity as θ̃ = θ+ λX, where θ is a random effect. This model can be mapped into
our setup by redefining the coefficient on X as β̃ = β + λ.
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experimentation, we first drew θ1
h from a gamma distribution with mean .5

and variance 1, and then constructed θh = θ1
h + 1.310.

4.2 Quasilikelihoods

We took as the QL the likelihood formed from (9) and (10) but with the
true duration dependence f(t) proxied by φ(t) where the assumed duration
dependence φ(t) took on one of three forms : none, a cubic polynomial in
duration, and a “nonparametric” step function.

By setting the duration dependence in the QL to zero when that is the
right thing to do, we get some idea of the value of knowing the true duration
dependence for estimating the distribution of unobserved heterogeneity. Sim-
ilarly, by ignoring duration dependence in the QL when the true DGP has
duration dependence, we get some idea of how well the duration dependence
in the true DGP can be “mopped up” by a flexible parameterization of the
unobserved heterogeneity.

Low order polynomials are often used to model duration dependence. No-
tice that neither the negative nor the positive duration dependence in our true
DGP is due to a cubic polynomial, so we can get some idea of whether or not
small errors in the parameterization of the duration dependence have large
consequences for parameter estimation. For numerical reasons, we found it
useful to normalize the time polynomial, so in the cubic case we set

φ(t) = α1
(t− 1)

10
+ α2

(t− 1)2

100
+ α3

(t− 1)3

1000
(12)

Notice that we normalize φ(1) = 0, to facilitate comparison between the
estimated and true heterogeneity parameters.

Because our DGPs yield discrete survivor data taking values from 1 to
40, we can easily specify a nonparametric model for the duration dependence
by using a step function, namely

φ(t) =
40∑
τ=2

φτDtτ (13)

10Our designs set Var(θ)/Var(βX) to 0 or 4 depending on whether or not we have
unobserved heterogeneity in the true DGP. In Section 6, we report some results where this
ratio is 1. Our results do not appear sensitive to the value of this ratio, but we had no
idea what a sensible value would be. We would like to thank a referee for bringing to our
attention that Lancaster (1979) using a continuous- time model reports a ratio of 0.5.
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where Dtτ is a dummy variable that takes on the value 1 if t = τ and zero
otherwise, and the φτ are coefficients. However, the specification (13) in-
troduces 39 new parameters and would be computationally very demanding,
especially for a Monte Carlo study. As mentioned previously, researchers of-
ten compromise on the fully nonparametric specification by restricting some
of the coefficients in the step function to be equal. We adopt this strategy and
use a step function where the coefficients φτ are unrestricted for τ = 2, .., 20,
but the remaining coefficients are grouped so that φ(t) is constant over the
intervals of length four given by τ = 21− 24, 25− 28, .., 37− 40. This specifi-
cation for duration dependence is still very flexible, but reduces the number
of parameters in φ(t) from 39 to a slightly more manageable 24.

4.3 Sample Size

We complete our design by investigating the effect of sample size on the
NPMLE. We consider 3 values for the number of observations in the sample:
500, 1000 and 5000. The experiments involving a sample size of N are con-
structed using the first N observations of the 5000 generated from the true
DGP. This means, for example, that in the experiments using a sample of
size 1000 we simply add 500 observations to those used in the experiments in-
volving a sample size of 500. This facilitates comparisons across the different
sample sizes and reduces sampling error.

In all, therefore, we have 81 experiments in our sample design constructed
from 9 DGPs, 3 specifications for the QL, and 3 sample sizes.

5 Monte Carlo Results

We organize the results in four steps. First we describe what happens in a
single sample to both the parameters and to the Gateaux derivative as we
add points of support using, respectively, table 1 and figure 2. In the second
subsection, we look at the sampling distribution of the coefficient on X (the
source of observable heterogeneity). Here the results are summarized in table
2. The third subsection summarizes the results for the ‘nuisance’ parameters,
that is, the fitted time function used to model duration dependence and
the estimated heterogeneity distribution. The last section looks beyond the
parameter estimates and compares the true and fitted hazard functions.
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5.1 A detailed look at a single sample

The example is based on a DGP that incorporates negative duration depen-
dence and a discrete distribution of unobserved heterogeneity with two points
of support. In the QL, the duration dependence is approximated by a cubic.
In table 1, for each iteration of the search algorithm presented in section 2,
we report: estimates of the parameter on the observable heterogeneity β;
the parameters of the cubic in duration (α1-α3); and, the points of support
of the distribution of unobserved heterogeneity along with their associated
probabilities (θi and Pi).

The results using a sample of size 500 are reported in the first panel.
On the first iteration we obtain an estimate of β which is far below its true
value of 1.0. The cubic in duration exhibits negative duration dependence
over the relevant range, but it lies everywhere above the true f(t) given by
(11). Note that at this point we effectively ignore unobserved heterogeneity
and observe the usual biases. The parameter on observable heterogeneity
is biased towards 0, and we overestimate the degree of negative duration
dependence in the hazard. Moreover, the magnitude of these biases is large.
The Gateaux derivative (recall that this is the negative of the KT multiplier
of Section 2) is evaluated over a grid of candidate θ’s ranging from -11.51
to 11.51. The profile of the derivative across the grid for this iteration is
reported as the solid line in panel A of figure 2. We see here a result which
is quite common across the samples. The maximum is achieved at a corner
solution: the algorithm indicates that the next point of support should be
entered at the lower boundary of the grid (-11.51). This result is reported in
the second last column of table 1. Finally, in the last column of the table we
report the value of the probability associated with the new point of support
as calculated in Step 3 of the algorithm.

In the second iteration there are marginal changes in the estimates of β
and the αi, and the estimate of the new point of support ends up at a more
extreme value than the initial guess of -11.51. The profile of the Gateaux
derivative (panel A of figure 2) is now sharply lower in the negative range of
the grid (we have suppressed its value at θ̂2 (-25.560) to maintain a reasonable
scale in the figure). The new maximum of the Gateaux derivative is located
at -0.588. Note that in this iteration the QL is “correctly specified ” in the
sense that it incorporates a distribution of heterogeneity with two points of
support. Nevertheless, the probability associated with the second point is
very small and the estimate of β is still too small.
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In contrast, in the third iteration the estimate of β is almost equal to 1.0.
Also, the weight in the distribution of unobserved heterogeneity is nearly
equally distributed across two points of support (θ1 and θ3) that are very close
to the true values, while the second point continues to have small probability.
Finally, the cubic exhibits less negative duration dependence than in earlier
iterations. It now matches the true f(t) fairly closely up to about t = 8
(about the first three-quarters of the sample) before diverging. Note that
the Gateaux derivative displays a similar profile to the previous iteration
and the suggested choice for the next point of support is again just less than
0.

In the fourth iteration the point of support at -25.56 is dropped, and
the weight in the heterogeneity distribution is re-distributed almost equally
across the remaining 3 points. This mis-specification in the QL has clear ef-
fects on the estimates of the other parameters: the estimate of β has “moved
beyond” 1.0, and the cubic now shows signs of positive duration dependence.
Similar trends are observed in the fifth and final iteration. The MLE of β
is more than 170 percent of its true value, and there is greater evidence of
positive duration dependence in the α̂i. This latter finding is not surprising
given the well known result that unobserved heterogeneity can lead to spu-
rious inference of negative duration dependence. Here, as the distribution of
unobserved heterogeneity is over parameterized, the resulting “excess” neg-
ative correlation between the hazard and time is offset by positive duration
dependence in the cubic.

In the second and third panels of table 1 and panels B and C of figure
2, we document the iterations in samples of 1000 and 5000 using the same
DGP and QL. Very similar patterns are apparent. First, the maximum of
the Gateaux derivative is often obtained at a corner solution. Second, β
is estimated with reasonable precision on the iteration for which the QL is
correctly specified.11 Note also the rough congruence in the estimates of the
αi across samples on this iteration. Third, the NPMLE leads to an over-
parameterization of the distribution of unobserved heterogeneity. Fourth,
the MLE of the cubic displays relative positive duration dependence to offset
this mis-specification.

The clear message of these examples is that in the absence of other infor-
mation, maximizing the likelihood function leads to over-parameterization

11The iteration for which the QL is correctly specified is number 3 for sample sizes 500
and 1000, and number 2 for sample size 5000.
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of the unobserved heterogeneity, and important biases in the estimates of
other parameters of the model. This tendency is not attenuated to any large
degree as sample size grows over the range typically encountered in longitu-
dinal data sets. In the next section we provide evidence that this conclusion
remains true across a wide variety of DGPs and QLs.

5.2 Sampling distribution of β

In table 2 we report the mean and standard deviation for the estimates of
β in the 81 experimental settings12. For each of our nine DGPs, we took
the 100 simulated samples and estimated β using each of the three QLs and
the three sample sizes. To show how the estimates vary as we add points of
support to the distribution of the unobserved heterogeneity, we report the
statistics at 4 values for N̂θ : N̂θ = 1; N̂θ = 2; N̂θ = N̂MLE

θ and N̂θ = N̂HQ
θ

(defined below).
The results when N̂θ = 1 allows us to judge the consequences of ignor-

ing unobserved heterogeneity whether or not that is the right thing to do.
Many researchers fix the value Nθ to 2, a priori. The results when N̂θ = 2
demonstrate the performance of this “parametric” specification. The third
column contains the descriptive statistics for the estimated β when N̂θ is
chosen according to the nonparametric MLE described in section 2. Our
fourth column is based on estimating N̂θ by the Hannan-Quinn Information
Criterion (HQIC). Information criterion are typically of the form

lnL− c p (14)

where p is the number of parameters in the model and c is a penalty function.
The Schwarz or Bayesian Information Criterion (BIC) sets c = ln(Nh)/2. The
HQIC sets c = ln(ln(Nh)). The BIC was originally proposed for a choosing
the explanatory variables in regression setting and the HQIC for determining
the order of an autoregressive model13. Leroux (1992) proposes a penalized
MLE based on (14) for pure mixture models and provides conditions under

12Our calculations were done on a Pentium 133 PC. We used a Watcom Fortran compiler.
For Step 1, we reparameterized the probabilities via a logistic transformation to constrain
them to the unit simplex. We then used repeated calls to the DFP algorithm from GQOPT
to guarantee convergence. The calculations in Table 2 took about 5 months of CPU time.

13Sin and White (1996) survey the properties of various information measures in a wide
variety of settings.
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which it will lead to a consistent estimator of the mixing distribution. Be-
cause his conditions do not apply directly to our setting, we propose using
the HQIC as an ad hoc rule whose properties deserve further exploration14.

The results in table 2 lead to the following conclusions about the estimates
of β:

First, a nonparametric specification for either duration dependence or
unobserved heterogeneity, when the other feature is known to be absent,
leads to estimates that are well behaved for all sample sizes considered.

Second, mis-specification matters. Although it is difficult to distinguish
unobserved heterogeneity from duration dependence, it is not sufficient to
model one of these features in a flexible way while ignoring the other as
suggested by some authors (e.g. Meyer 1990, Ridder 1987). This practice
can lead to significant biases.

Third, the combination of a flexible specification for both duration de-
pendence and the distribution of unobserved heterogeneity leads to a large
and systematic bias for the estimated β that declines very slowly with sample
size. It appears that the poor sampling performance stems almost entirely
from the fact that the NPMLE finds too many “spurious” points of sup-
port and overestimates the dispersion of the unobserved heterogeneity while
compensating for this mis-specification through the estimate of the dura-
tion dependence. The excessive dispersion causes the hazard to decline too
sharply with time. A flexible specification for φ(t) in the QL allows the
NPMLE to offset the effects of excessive dispersion of the unobserved hetero-
geneity on the hazard with spurious positive duration dependence. Notice
that this interaction and the resulting problems do not arise when there is
no duration dependence in either the DGP or the QL. Excessive dispersion
of the unobserved heterogeneity also leads to a large bias in the estimated β.
It is well known that ignoring heterogeneity biases the estimate of β towards
zero. We find that the NPMLE leads to an estimated β that is biased away
from zero. Moreover, this bias is so large that, for the sample sizes consid-
ered, researchers would be better off ignoring the unobserved heterogeneity
altogether.

Our fourth finding is that the problems associated with the NPMLE are
greatest when the true DGP displays negative duration dependence. Unfor-

14Using the BIC in place of the HQIC sometimes leads to the selection of models with
fewer points of support, but the statistics reported in Table 2 would be virtually identical
if we used the BIC rather than the HQIC.
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tunately, this is probably the case of greatest interest to applied researchers.
Somewhat ironically, the computational difficulties faced by applied re-

searchers have served to avoid the large biases associated with the NPMLE.
Numerical difficulties due to machine arithmetic, ad hoc algorithms for choos-
ing additional points of support that fail to guarantee a strict increase in the
likelihood, and the general difficulty in optimizing over all the parameters
in Step 2 of our computational algorithm, all tend to reduce the number of
points of support found for the heterogeneity distribution. A more defensi-
ble approach to eliminating “spurious” heterogeneity is to use an information
criterion. Our last finding is that choosing N̂θ to maximize the HQIC leads
to a dramatic improvement over the NPMLE. This is perhaps not surpris-
ing when the true DGP is discrete with only one or two points of support.
But note that we find qualitatively similar results when the true DGP has
Gamma heterogeneity. In many cases, we do almost as well in large samples
as we could if we actually knew the true value of Nθ. However, for sample
sizes of 500 or 1000, we see (at least with some DGPs) that the penalized
MLE displays a slight negative bias when the QL has either a cubic or a step
function. The HQIC in these situations is conservative in that better param-
eter estimates would have been obtained if the penalty on adding points of
support was reduced.

In figure 3, we plot a kernel density estimate of the sampling distribution
for β̂ obtained using the HQIC, for a few cases. We also plot a normal density
standardized to have the same mean and variance. To conserve space, we
restrict attention to the case where the DGP has no duration dependence, the
QL has a cubic polynomial and the sample size is 5000. Because we only have
100 draws for each experiment, these graphs provide at best a rough guide
to the unknown large sample distribution of the estimated β. Nonetheless,
it appears that in these three cases, a normal approximation to the sampling
distribution seems to work reasonably well. Unfortunately, in other cases we
find that a normal approximation is much less reliable. In smaller samples,
the β̂ obtained using the HQIC often has bimodal distribution. The second
mode appears to decline with sample size, but in several of our designs,
the second mode is still noticeable even with a sample size of 5000. The
corresponding plots for the NPMLE estimator of β (not shown) reveal that
although it is very badly biased in many cases, the sampling distribution
appears to be fairly well approximated by a normal density in large samples
for all the DGP/QL pairs in our design.

Although there is no asymptotic theory to justify it, practitioners rou-
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tinely compute and report standard errors for the NPMLE based on inverting
the Hessian. Table 3 gives the average standard errors for β̂ so obtained at
N̂θ = 1, N̂θ = 2, N̂θ = N̂MLE

θ , and N̂θ = N̂HQ
θ for the same DGPs and QL

used to construct figure 3, but using a smaller sample size of 1000. Compar-
ing to Table 2, we see that these standard errors tend to underestimate the
sampling standard deviations and these biases are particularly large for both
the NPMLE and the penalized MLE.

5.3 Sampling Distribution of Estimated Duration De-
pendence and Heterogeneity Distribution

The difficulty in estimating β is reflected in the sample estimates of the du-
ration dependence function and the distribution of unobserved heterogeneity.
To save space, we restrict attention to two representative experiments. The
sample size in each case is 1000 observations. The DGP for both cases is
identical, but the specifaction of duration dependence in the QL varies. For
each experiment, we computed the difference between the average of the fit-
ted value of φ(t) and the true time function f(t). The results are plotted
in figure 4. These plots illustrate a general result: biases in the estimated
β and the biases in the estimated duration dependence function are closely
related. Estimates of β below 1 are usually accompanied by excessively neg-
ative duration dependence. Conversely, estimates of β above 1 are usually
accompanied by positive bias in the estimated duration dependence.

For example, in panel A if figure 4 the true DGP displays negative dura-
tion dependence and a two-point heterogeneity distribution, and the QL has
a cubic time polynomial. The average estimated value of φ(t) obtained with
the penalized MLE overestimates f(t). Note from table 2 that the average
value of β in this case is 0.885. In contrast, using the NPMLE leads to an
estimated value of φ(t) that is on average below the true value. Recall that in
our parameterization, negative values of φ(t) correspond to a hazard that is
increasing with duration, so the NPMLE is biased toward positive duration
dependence. This bias in the time function matches up with a bias in β; the
average estimated value here is 1.247 (table 2).

The bias in the estimated duration dependence can have important im-
plications. For example, as noted by Heckman and Singer (1984), many
search models of unemployment predict positive duration dependence in the
unemployment hazard because an individual’s reservation wage declines the
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longer she is unemployed. The negative duration dependence found in many
studies of unemployment data therefore implies a rising reservation wage.
Heckman and Singer argue that mis-specification of unobserved heterogene-
ity may lie behind this counterintuitive result. They re-examine a sample
of unemployment spells in which many previous studies had found evidence
of negative duration dependence. Although ignoring the unobserved hetero-
geneity or trying to capture it with a tightly parameterized heterogeneity
distribution leads to estimates of negative duration dependence, they find
that the NPMLE indicates positive duration dependence in these data. Our
results suggest that this reversal in the estimated duration dependence may
be due to the small sample bias associated with the NPMLE rather than the
relaxation of an incorrect specification. More generally, our results suggest
that finding positive duration dependence is even more likely if we combine
the NPMLE with a flexible specification of the baseline hazard.

The distribution of unobserved heterogeneity is usually treated as a nui-
sance parameter and is rarely of direct interest. In part, this reflects the
belief that this distribution cannot be estimated with much precision. We
find that the NPMLE is in fact a poor estimator. It often leads to an es-
timated distribution that is incorrectly centered and tends to put to much
probability on extreme values for θ. In contrast, use of the HQIC leads to
a much more reliable estimator. In figure 5, we plot the average estimated
distribution function of unobserved heterogeneity obtained via the HQIC for
the two cases described above. The agreement between the true and aver-
age fitted cumulative distribution function is remarkably good, and it clearly
improves with sample size.

5.4 Predicted Hazards

Although the separate components of the hazard are difficult to estimate
and can be subject to large biases, particularly if we overparameterize, max-
imizing the QL virtually guarantees a close fit between the observed and
the predicted hazards. Let λt(X) denote the exit hazard at time t for an
individual with observable characteristics X. The predicted hazard is con-
structed as a weighted sum of the hazards λit(X) for an individual of type i.
The weights wit−1(X) give the probability that an individual with observable
characteristics X who has survived to time t− 1 is of type i. With discrete
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types, we have
λt(X) =

∑
i

λit(X)wit−1(X)

In figure 6, we plot the difference between the true hazard and the average of
the predicted hazards for three values of X (the observed heterogeneity). The
predicted hazards are formed using the NPMLE estimates. The three values
of X chosen are its mean, and its mean plus/minus two standard deviations.
For convenience, we restrict ourselves to the same DGP/QL pairs as in the
previous section. We see that even though the separate components of the
true hazard may be poorly estimated, the various biases are almost always
combined in a way such that the difference between the true and predicted
hazards is very small. The exceptions occur in a setting where an individual
with characteristic X is unlikely to survive in the sample for very long (e.g.,
X=-1). In such a case, the observed hazard at long durations is uninformative
and cannot impose agreement between the true and predicted hazards.

Many questions of interest to researchers depend on the structural param-
eters only through the predicted hazard. Notable examples are the expected
duration of a spell given the vector of observables X1, or the expected change
in duration if the observables are varied from X1 to X2. For such questions,
the difficulty in estimating the structural parameters is largely irrelevant if
the values of X1 and X2 are ‘well-represented’ in the sample, and we can
ignore censoring.

In practice, the predicted hazard often leads to a defective distribution
for duration (that is, it gives a non-zero probability to the event that the
spell never ends), so the expected duration is not well defined. Let 1t<T ∗
denote the indicator variable that equals 1 if the duration t is less than T ∗,
and zero otherwise. It is convenient to summarize the fitted hazard via the
estimates for the two quantities E(1t<T ∗t|X) and (1−E(1t<T ∗|X)) at various
values for T ∗. As T ∗ increases to∞, E(1t<T ∗t|X) converges to E(t|X) when
the latter exists, but it is also well behaved for most defective distributions.
(1 − E(1t<T ∗|X)) gives the probability that a spell doesn’t end before time
T ∗.

Using the parameter estimates from the first panel of Table 1 (that
is, those obtained with 500 observations), we computed E(1t<T ∗t|X) and
(1 − E(1t<T ∗|X)), at various values of X. The results are reported in Ta-
ble 4. Setting T ∗ = 41 matches the censoring point in our sample, so the
estimated quantities depend only on the predicted hazard for periods and
regressors that are observed. Although the parameter values change dramat-
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ically as we go from iteration 1 to 5 (among other things, the coefficient on
observed heterogeneity increases from .73 to 1.74), the values for the two
summaries of the predicted hazard duration barely change. Researchers may
also be interested, however, in using the structural parameters to explore
out of sample experments. For example, a researcher may want to know the
impact of a change in X on the expected duration for complete spells. With
censoring, the sample data are only partially informative and the predicted
hazard must be extrapolated beyond the observed range of the data. As a
consequence, bias in the estimated structural parameters can have important
consequences. Ham et al (1998) report that the predicted expected duration
for complete spells can be very sensitive to the number of points in the esti-
mated heterogeneity distribution15. Although we find that extrapolating the
cubic polynomial beyond the range of the data never works well, we obtain a
similiar sensitivity to the number of points of support using our example in
Table 4. In our case, the predicted distribution for duration is defective at
1 point support (so the mean duration is infinite), but duration has a finite
mean when we use the estimates from the NPMLE.

6 Some Extensions

This section contains some extensions that we have investigated but not as
intensively as in the main Monte Carlo.

6.1 Very Large Samples

The results reported in Table 2 show that estimates of β display large bi-
ases when we combine the NPMLE of the heterogeneity distribution with
a flexible duration dependence specification in the QL. However, the bias
appears to decline with sample size. In order to investigate more fully the
effect of sample size, we combined our 100 samples of 5,000 observations into
5 samples each containing 100,000 observations. To reduce computational
costs, we considered only the cases where the true DGP displays no duration

15Using data from the Slovak Republic, Ham et al (1998) estimate the impact of an
additional week’s entitlement to unemployment insurance on the expected duration of an
unemployment spell. They report that the predicted duration rises from 0.4 to 1.1 to 1.9
weeks as the number of points of support in the fitted heterogeneity distribution increases
from 1 to 2 to 3, respectively.
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dependence. Note that this implies that all the QL specifications contain the
true DGP as a special case. The results of the nine experiments are reported
in Table 5.

In those cases where the heterogeneity distribution has either one or two
points of support, the HQIC leads to exactly the same estimates as we ob-
tained by imposing a priori the true number of points of support. The biases
are negligible and the standard errors decline roughly in line with the square-
root of sample size. When the unobserved heterogeneity is drawn from a
gamma distribution, use of the HQIC leads to estimates that are very close
to the true value. If anything, however, the estimator is a bit conservative
when the QL contains either a cubic or step function in that better estimates
would have been obtained if the penalty on the number of parameters was
slightly smaller.

The NPMLE appears to be converging to the true value β = 1. However,
with a very flexible duration dependence specification in the QL, the rate of
convergence appears to be extremely slow and we still see nontrivial sampling
error even with such large samples.

6.2 Increasing the Variance of Observable Heterogene-
ity

An increase in the variance of observed heterogeneity should reduce the sam-
pling variance of β̂ and may help to distinguish the relative contributions of
duration dependence and unobserved heterogeneity. To investigate the con-
sequences of increasing σ2

x, we conducted the following experiment. It was
not feasible to consider all nine combinations of duration dependence and
unobserved heterogeneity, so we restricted attention to a DGP with nega-
tive duration dependence and a discrete heterogeneity distribution with two
points of support. We increased the variance of X, σ2

x, from 0.25 to 1.00.
To maintain comparability with the results from Section 5, we used exactly
the same draws from the heterogeneity distribution and the values of X were
simply multiplied by two. Once again, we used the specified DGP to generate
100 samples of 5,000 observations. The increase in σ2

x had some minor effects
on the distribution of observed duration: the average duration of a spell
increased by about 0.6 to 14.86, and the fraction of censored observations
increased marginally from about 19% to 21%. However, the increase in σ2

x

did have a large effect on the relative importance of observed heterogeneity:
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the average R2 from a regression of log-duration on X across the 100 samples
jumped from .071 to .228.

Table 6 summarizes the results. We see that the increase in σ2
x results

in a marginal improvement in the sampling distribution of the MLE and
penalized MLE but does not alter the substantive conclusions reached in
Section 5.

6.3 A Computational Alternative

Using the value of θ that maximizes the Gateaux derivative in Step 2b of our
algorithm, as suggested by Heckman and Singer, often leads to a corner solu-
tion; That is, the value of θ so chosen is either extremely large or extremely
small. This choice has potentially important consequences for both compu-
tational efficiency and inference. For example, an extreme point of support
may be added on the second or third iteration of our algorithm only to spend
many CPU cycles bringing it back to something in the ‘middle’ of our chosen
range. In other cases, the algorithm finds a local optimum at an extreme
value of θ but assigns it a negligible probability, so that the quasilikelihood
barely increases. Because the HQ criterion is sensitive to the order in which
points of support are added, adding a point with negligible probability on
the second iteration of our algorithm can lead the HQ criterion to settle for
too little heterogeneity. Both of these issues are nicely illustrated by our
example in Section 5.1.

Is there a better way to choose the candidate for the next point of support
in Step 2b of our algorithm? The Heckman and Singer suggestion is based
on choosing θ to maximize the slope of a linear approximation to the quasi
log-likelihood. An alternative strategy that we have developed is to choose
θ to maximize a quadratic approximation. More precisely, we can re-write
slightly the problem faced in (3) as

maxτ lnL =
∑
h

ln

(1− τ)
N̄θ∑
i=1

LihPi + τLN̄θ+1,h

 (15)

where we set {α, θi, Pi; i = 1, ..N̄θ} equal to the MLE estimates conditional
on having N̄θ points of support, and where θ is the candidate for the next
point of support. Suppose we choose τ to maximize a second order Taylor
series approximation to the right hand side of (15). Then, in Step 2b of our
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algorithm, we choose the candidate θ that yields the highest value for∑
h

(
LN̄θ+1,h∑N̄θ
i=1

LihPi
− 1)√∑

h
(

LN̄θ+1,h∑N̄θ
i=1

LihPi
− 1)2

(16)

Notice that the numerator in (16) is the Gateaux derivative. The same
terms appear in both numerator and denominator of (16), so choosing the
new point of support is only marginally more difficult than in the original
Heckman and Singer (1984) approach. Also, this alternative rule shares the
desirable property that the selected value of θ is guaranteed to increase the
likelihood function.

We found that our second order method for choosing θ was less likely
to wander off to a corner. For instance, in the three samples reported in
table 1, maximizing the Gateaux derivative lead us four times to a corner
value of -11.513. In contrast, maximizing (16) only lead us to the corner
once. Although it saved some CPU cycles, maximizing (16) did not affect
the parameter estimates. We reached exactly the same MLE conditional on
the number of points of support as reported in table 116.

To obtain a better idea of the consequences of choosing new points of sup-
port to maximize (16) rather than the Gateaux derivative, we applied this
rule to some of our experiments. To keep the computational costs down, we
considered only the case where the true DGP has two points of support and
negative duration dependence. Further, we restricted attention to the case
where the QL has a cubic polynomial. Compared to the results reported in
Table 2, we found that maximizing (16) rather than the Gateaux derivative
had some computational advantages but lead to virtually identical parame-
ter estimates. The savings in CPU time varied with sample size, but they
were consistently positive and averaged almost 10% across the three designs.
The two rules for choosing additional points of support lead to identical
NPMLE estimates of β in all cases, and to the same estimates conditional on
a given number of points of support in the vast majority of cases. In the few
cases where different local optima where reached conditional on the number
of points of support, neither rule lead to consistently higher values for the
quasilikelihood.

16The only difference is that in these examples our suggestion for choosing the new
candidate never lead us to add a point of support on one interation only to drop it on the
next.
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7 Conclusion

Our Monte Carlo results demonstrate that recent improvements in comput-
ing power, coupled with some care in designing the algorithm, make it com-
putationally feasible to combine the NPMLE estimator of the unobserved
heterogeneity distribution with a very flexible specification for duration de-
pendence. However, our results also show that this estimation strategy has
poor sampling properties.

We find that a nonparametric specification for either duration dependence
or unobserved heterogeneity, when the other feature of the hazard is known
to be absent, leads to estimators that are well behaved even in modestly
sized samples. However, the combination of a flexible specification for both
duration dependence and unobserved heterogeneity leads to very reliable and
systematic biases in each of the components of the estimated hazard. Applied
researchers often sacrifice efficiency by adding extra parameters to safeguard
against mis-specification. Our results suggest that this strategy is particu-
larly questionable in this setting. Adding superfluous parameters not only
sacrifices efficiency, it also introduces a potentially very large bias, even in
very large samples. With a flexible specification for duration dependence,
the NPMLE is biased towards finding an excessively dispersed distribution
of unobserved heterogeneity. The fit to the empirical hazard is maintained
by compensating with a positive bias to the estimated duration dependence
and a bias to the coefficient on observed heterogeneity away from zero. In
fact, we found (almost without fail) that the estimates of φ(t) and β moved
in the directions consistent with these biases each time we added a point
of support to our estimated heterogeneity distribution. On the other hand,
ignoring unobserved heterogeneity leads to a negative bias in estimated dura-
tion dependence and biases the coefficient on observed heterogeneity towards
zero.

Given the biases in the estimates of φ(t) and β associated with the
NPMLE and the behaviour of these estimates as we add points of support,
a minor modification of the quasilikelihood to include a term that penalizes
specifications with many points of support seems like a natural solution. We
find that using the Hannan-Quinn Information Criterion to choose the num-
ber of points of support leads to a dramatic improvement in the sampling
properties of the estimated components of the hazard and, in particular, for
a much more reliable estimator for β.
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Figure 1: The Empirical Hazards for the Different Specifications of the Data Generating
Process (DGP).

A) Empirical Hazard for DGP with No Heterogeneity
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B) Empirical Hazard for DGP with Two-Point Heterogeneity
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C) Empirical Hazard for DGP with Gamma Heterogeneity
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Figure 2: The Profile of the Gateaux Derivative.
Notes: The derivative is evaluated along the grid ]51.11,51.11[−∈θ .  The reported results are for
a data generating process incorporating negative duration dependence and unobserved
heterogeneity following a discrete distribution with two points of support.  In the quasi-
likelihood, duration dependence is approximated by a cubic.
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Figure 3: Kernel Density Estimates of the Sampling Distribution of β̂ .
Notes: DGP is data generating process. QL is quasi likelihood. Sample size is 5000. The
underlying estimates of β are obtained using the Hannan-Quinn Information Criterion. The solid
lines are for a normal density standardized to have the same mean and variance.
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Figure 4: Estimated Duration Dependence for Selected Specifications
Notes: DGP is data generating process. QL is quasi likelihood.  Sample size is 1000.  The
reported profiles are the deviations (by week) of the estimated duration dependence from the true
duration dependence.  MLE are maximum likelihood estimates.  HQIC are the estimates that
result from using the Hannan-Quinn Information Criterion.
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Figure 5: The Average Estimated Cumulative Distribution Function of Unobserved
Heterogeneity for Selected Specifications.
Notes: DGP is data generating process. QL is quasi likelihood. Sample size is 1000.  The
reported distribution functions are constructed from estimates using the Hannan-Quinn
Information Criterion.
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Figure 6: Predicted Hazards for Selected Specifications.
Notes: DGP is data generating process. QL is quasi likelihood. X is the value specified for the
observable heterogeneity.  Sample size is 1000.  The underlying estimates are obtained using
non-parametric maximum likelihood estimation. The reported profiles are the deviations (by
week) of the predicted hazard from the true hazard.
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Table 3:  Estimated values of E t xt T( | )*1 <  and ( ( | ))*1 1− <E t xt T

T * = 41 E t xt T( | )*1 < ( ( | ))*1 1− <E xt T

IT=1 IT=3 IT=5 True IT=1 IT=3 IT=5 True

x=1 6.46 7.02 7.24 7.26 0.41 0.39 0.39 0.37

x=0 7.17 7.02 6.94 6.83 0.16 0.17 0.17 0.18

x=-1 5.13 5.27 5.54 5.56 0.03 0.02 0.01 0.03

T * = ∞ E t xt T( | )*1 < ( ( | ))*1 1− <E xt T

IT=1 IT=3 IT=5 True IT=1 IT=3 IT=5 True

x=1 6.92 7.88 31.14 64.13 0.40 0.38 0.00 0.00

x=0 7.54 7.75 16.51 21.88 0.15 0.15 0.00 0.00

x=-1 5.25 5.49 6.16 7.33 0.02 0.01 0.00 0.00

Notes:  Estimates are obtained using the parameter values from the first panel of Table 1 (500 observations).
IT=iteration.  The statistics in the columns labeled ̀ True’ are constructed using the true parameter estimates.



Table 4:  A Summary of Estimates of the Standard Errors of β

Sample Size 1000

DGP Quasi Likelihood Initial Two
Points

MLE HQIC

DD: none
Het.: none

DD: cubic 0.074 0.114* 0.172 0.074

DD: none
Het.: discrete

DD: cubic 0.071 0.110* 0.189 0.091

DD: none
Het.: Gamma

DD: cubic 0.070 0.094 0.180 0.095

Notes:  DGP = data generating process.  DD = Duration Dependence; Het. = unobserved Heterogeneity.  The
reported statistics are the mean of the estimated standard errors of β  across 1000 samples on the indicated
iteration of the algorithm.  Initial = on the first iteration; Two Points = on the iteration in which the distribution of
unobserved heterogeneity is specified as having two points of support; MLE = the Maximum Likelihood estimate;
HQIC = the estimate using the Hannon-Quinn Information Criterion. In the column titled Two Points, means
denoted with an “* ” are calculated over less than 100 samples, as the search algorithm stopped before reaching the
the second point of support.



Table 5:  A Summary of Estimates of β  in Large Samples

Sample Size 100000

DGP Quasi Likelihood Initial Two
Points

MLE HQIC

DD: none
Het.: none

DD: none 0.997
(0.008)

0.997*
(0.009)

0.998
(0.008)

0.997
(0.008)

DD: cubic 0.996
(0.009)

0.999
(0.010)

1.008
(0.012)

0.996
(0.009)

DD: step 0.996
(0.009)

0.999
(0.010)

1.079
(0.098)

0.996
(0.009)

DD: none
Het.: discrete

DD: none 0.901
(0.008)

1.005
(0.008)

1.006
(0.008)

1.005
(0.008)

DD: cubic 0.698
(0.007)

1.004
(0.010)

1.011
(0.011)

1.004
(0.010)

DD: step 0.697
(0.007)

1.005
(0.010)

1.128
(0.110)

1.005
(0.010)

DD: none
Het.: Gamma

DD: none 0.765
(0.016)

0.979
(0.010)

0.996
(0.009)

0.996
(0.009)

DD: cubic 0.642
(0.012)

0.938
(0.010)

1.000
(0.013)

0.989
(0.012)

DD: step 0.642
(0.012)

0.938
(0.010)

1.169
(0.150)

0.989
(0.012)

Notes:  DGP = data generating process.  DD = Duration Dependence; Het. = unobserved Heterogeneity.  The
reported statistics are the mean and standard deviation of β  across 5 samples on the indicated iteration of the
algorithm.  Initial = on the first iteration; Two Points = on the iteration in which the distribution of unobserved
heterogeneity is specified as having two points of support; MLE = the Maximum Likelihood estimate; HQIC = the
estimate using the Hannon-Quinn Information Criterion. In the column titled Two Points, means denoted with an
“* ” are calculated over less than 5 samples, as the search algorithm stopped before reaching the the second point of
support.
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