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Abstract

Competitive search was recently introduced in monetary economics by Rocheteau and Wright

(2005). We extend their work by eliminating the restriction that the fees market makers charge

to enter a submarket must be either non-negative or identical for buyers and sellers. Without this

restriction, buyers pay a positive fee to enter the submarket they visit and nothing else when they

meet a seller. Sellers are remunerated by the market makers from the entry fees collected from

the buyers. This trading arrangement allows buyers to perfectly predict their expenses, so the

opportunity cost of holding idle money balances is eliminated.
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1 Introduction

Competitive search (price posting with directed search) is an equilibrium concept that introduces

price competition in an environment where trades take place in bilateral matches. This concept

has been widely used in labor economics, and was recently introduced into monetary economics by

Rocheteau and Wright in [4]. This comment to [4] seeks to clarify that competitive search has a

property without counterpart in non-monetary economies. Namely, when money is the medium of

exchange, competitive search tends to make payments predictable to avoid idle money balances.

There have been several formulations of competitive search. In [4], a large number of potential

market makers organize trading centers referred to as submarkets, in which, the market makers

post trading offers specifying the terms at which buyers and sellers must trade. Buyers and sellers

can only find a trading partner by entering a submarket, once in there, they randomly match in

pairs. The market makers can charge fees to buyers and sellers to enter their submarket and seek

maximum profits, but competition among market makers drives their profits to zero and leads to

ex-ante bilaterally efficient trading arrangements.1

We extend [4] by eliminating the restriction that the entry fees market makers charge must be

either non-negative or identical for buyers and sellers. Without this restriction, equilibrium trading

arrangements have the following property. As long as there is an opportunity cost of carrying

money and matching is frictional, buyers pay a positive fee to enter the submarket they visit and

nothing else when they meet a seller. Sellers are remunerated by the market makers from the entry

fees collected from the buyers. This trading arrangement allows buyers to perfectly predict their

expenses so that the opportunity cost of holding idle money balances is eliminated.2

1Equilibrium trading offers and market composition maximize the expected surplus of a buyer subject to the

expected surplus of a seller and the constraints imposed by the environment.
2The role of market makers in this model is similar to the role played by banks in [1].
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To support our equilibrium, market makers must be present organizing the trading centers where

buyers and sellers are matched in pairs and play an active role in the transfer of payments from

buyers to sellers. In standard non-monetary economies, the presence of market makers is just an

expositional device. In these economies, one can equivalently assume that submarkets are created

by market makers, or that they are implicitly created by buyers or sellers posting the trading offers

they commit to trade. In contrast, the market makers in our model play a fundamental role by

allowing buyers to carry less money balances,3 which leads to welfare-improving allocations that

otherwise would not be possible.

In summary, competitive search with submarkets organized by unrestricted market makers leads

to the counterfactual prediction that buyers should make a constant payment each period regardless

of the output they consume. Such a trading arrangement is certainly not typical of most purchases

made with money in retail markets. However, we do not view this counterfactual prediction as a

reductio-absurdum attack on using competitive search in monetary economics. Instead, we view it

as a caution that one must be careful in modelling competitive search to generate sensible results.

In particular, the presence of market makers is not an innocuous expositional device and should

be used with great care or avoided entirely. Also, we view our result as a simple extreme case

of a broader tendency in competitive search to make payments predictable to avoid idle money

balances. Even without market makers, this tendency may manifest itself in more realistic ways as

shown in [2].

The rest of the paper is organized as follows. Section 2 describes the environment where buyers

and sellers operate. Section 3 finds the competitive-search equilibrium that arises if market makers

can charge differential fees to buyers and sellers. Section 4 compares this equilibrium to the one

characterized by [4] where differential fees are absent. Section 5 concludes.

3 In the absence of market makers, buyers cannot commit to make a payment when they fail to meet a seller. So,

idle money balances are unavoidable.
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2 Environment

We use a special case of the environment advanced in [4] which we briefly summarize here. This

environment is a modified version of the framework in [3].4

In this environment, time is discrete, and the horizon is infinite. Each period consists of two

subperiods to be called day and night. There is a single non-durable good which is traded in a

frictionless and centralized market during the day, but it is traded in a decentralized market during

the night. In the day market, everybody can produce and consume the good, but at the night

market only a fraction of the population can produce the good, and the remaining fraction can

consume it. The fraction of the population that can produce at night are called sellers, and the

fraction of the population that can consume at night are called buyers. There is a continuum of

buyers and sellers. The measure of buyers is exogenous and normalized to 1, and the measure of

active sellers is endogenous and denoted nt ≥ 0. Sellers must incur a utility cost k > 0 every night

to enter the market.5

In this environment, there is a role for money to facilitate trade because at night there is a lack

of double coincidence of wants, and all traders are anonymous. Money is an intrinsically useless,

perfectly divisible, and storable asset. The money supply grows at a constant factor γ such that

Mt+1 = γMt, where Mt is the quantity of money per buyer, with the units of money called dollars.

New money is injected via lump-sum transfers to buyers when they are in the centralized market.

The instantaneous utility of a buyer at date t is:

U b(xt, yt, qt) = v(xt)− yt + u(qt); (1)

4 In [3], where trading roles are not known ex-ante, competitive search leads to a gift exchange equilibrium even if

market makers are not present.
5Following [4], the measure of potential sellers is assumed to be sufficiently large, so that in all equilibria we

consider a fraction of sellers remains inactive at night.
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where xt and yt respectively are quantities consumed and produced during the day, and qt is the

quantity consumed during the night. Likewise, the instantaneous utility of a seller is:

Us(xt, yt, qt) = v(xt)− yt − c(qt); (2)

The lifetime utilities of buyers and sellers are E
P∞

t=0 β
tUh (xt, yt, qt), for h = b and s, and β is

the one-period discount factor. We assume γ > β. The functions v, u, and c are all continuously

differentiable and increasing. The functions v and u are concave, while c is convex. Moreover,

v(0) = u(0) = c(0) = c0(0) = 0, and u0(0) =∞.

During the night, there are some agents called market makers who can open submarkets. To

find a trading partner, buyers and sellers must enter one of these submarkets. In submarket j, the

market maker charges buyers a fee Dbj
t and sellers a fee Dsj

t . These fees can be negative, in which

case the market maker pays a trader to enter the submarket. Entering a submarket j involves

a commitment to a particular trading offer
³
qjt , d

j
t

´
posted ex-ante by the market maker. These

trading offers specify that if a trading meeting occurs between a buyer and a seller, the seller will

supply qjt units of output, and the buyer will pay d
j
t dollars.

Inside each submarket, buyers and sellers are randomly matched in pairs, and goods can only

be exchanged in these matches. (The market maker cannot transfer goods directly from buyers to

sellers.) Let njt be the ratio of sellers over buyers in submarket j. The probability that a buyer

meets a seller is an increasing function of njt : α
bj
t = α(njt ). Likewise, the probability a seller meets

a buyer is αsjt = α(njt )/n
j
t . The restrictions we impose on α(njt ) are: α

0
³
njt

´
> 0, α00

³
njt

´
< 0,

α
³
njt

´
≤ min

n
1, njt

o
, α (0) = 0, and α (∞) = 1. As a result of these restrictions, the probability

that a seller meets a buyers falls with njt . For simplicity, we focus on stationary equilibria where

real allocations are constant over time. The time subscript t is omitted and we shorten t + 1 to

+1 in what follows. We also drop the superscript j denoting a submarket whenever there is no

possibility of confusion.
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2.1 The Behavior of Buyers

This subsection characterizes the optimal behavior of a buyer who plans to visit a submarket where

buyers meet sellers with probability αb. In this submarket, q units of output are exchanged for d

dollars. In addition, to enter the submarket the buyer must pay Db dollars.

A representative buyer that starts the morning with money balances mb
0 faces the following

budget constraint:

xb +mbφ = yb +mb
0φ, mb ≥ 0, (3)

where xb and yb are respectively the consumption and the production of goods during the day, mb

is the amount of money demanded, the price of the good traded during the day is normalized to 1,

and the price of money is φ. The optimal choice of
©
xb, yb,mb

ª
solves the following maximization

program:

V b(mb
0) = max

{xb,yb,mb}
v(xb)− yb + αb

h
u(q) + βV b

+1

³
mb −Db − d+ τ+1

´i
+
³
1− αb

´
βV b

+1

³
mb −Db + τ+1

´
. (4)

subject to (3) and max(Db+d,Db) ≤ mb. The buyer must carry enough money to pay the entry fee

to the submarket and the direct payment to a seller. The term τ+1 denotes the lump-sum transfer

that all buyers receive from the government the next day.

The quasi-linearity of preferences implies that

xb = x∗, (5)

where x∗ is implicitly defined by the equality v0(x∗) = 1. Also, as in [3], the quasi-linearity implies

that the value function is affine:

V b(mb
0) = v̄b +mb

0φ; (6)

7



where v̄b is independent from mb
0. Substituting (3), (5), and (6) into (4), we obtain

V b(mb
0) = v(x∗)− x∗ + β

³
v̄b −Dbφ+1 + τ+1φ+1

´
+mb

0φ

+ max
mb

½
αb
£
u(q)− βdφ+1

¤− βmbφ+1

µ
φ

βφ+1
− 1
¶¾

. (7)

In a stationary equilibrium,6 the value of money φ declines at the same rate as the quantity of

money increases. Hence, φ = γφ+1. The opportunity cost of holding money, to be denoted i, is

i =
φ

βφ+1
− 1 = γ − β

β
. (8)

Since γ > β, i is strictly positive. Therefore, (7) implies that the buyer should not carry money

balances above the maximum payment to be made, that is mb = max(Db + d,Db, 0). Defining

z ≡ βdφ+1, Z
b = βDbφ+1, and m̂b = βmbφ+1, we have that the utility of a buyer in a stationary

equilibrium satisfies:

V b(mb
0) = v(x∗)− x∗ + β

³
v̄b + τ+1φ+1

´
+mb

0φ+ αb [u(q)− z]− Zb − im̂b; (9)

where

m̂b = max(Zb + z, Zb, 0). (10)

The last three terms in (9) constitute the expected surplus of a buyer for going to the search market

for one night:

Sb = αb [u(q)− z]− Zb − im̂b. (11)

The term inside the square brackets is the consumer’s surplus in a trading match, which is the

difference between the utility from consuming q units of output and the utility value of the payment.

The last two terms are the entry fee into the submarket, and the opportunity cost of carrying money.

Notice that (9) confirms that V b is affine as long as q , d, and Db are independent from mb
0. The

next two sections confirm that this independence holds.
6Our arguments should be robust to all equilibria with a positive opportunity cost of holding money.
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2.2 The Behavior of Sellers

This subsection characterizes the optimal behavior of a seller who plans to visit a submarket with

an entry fee Ds (possibly negative). In this submarket, the seller meets a buyer with probability

αs and in a trading match the seller exchanges q units of output for d dollars.

A representative seller who starts the morning with money balancesms
0 faces a budget constraint

analogous to (3) replacing the superscript s denoting seller for b:

xs +msφ = ys +ms
0φ, ms ≥ 0. (12)

The optimal choice of {xs, ys,ms} solves the following maximization program:

V s(ms
0) = max

{xs,ys,ms}
v(xs)− ys + αs

£−c(q) + βV s
+1 (m

s −Ds + d)
¤
+ (1− αs)βV s

+1 (m
s −Ds)− k

(13)

subject to (12) and max(Ds − d,Ds) ≤ ms.

The quasi-linearity of preferences implies that xs = x∗, and V s(ms
0) = v̄s +ms

0φ. Using these

equalities and the budget constraint (12), equation (13) simplifies into:

V s(ms
0) = v(x∗)− x∗ + β

¡
v̄s −Dsφ+1

¢
+ms

0φ

+max
ms

½
αs
£−c(q) + βdφ+1

¤− βmsφ+1

µ
φ

βφ+1
− 1
¶¾
− k. (14)

Again since γ > β, the fraction φ/
¡
βφ+1

¢
is larger than one in a stationary equilibrium. Therefore,

(14) implies that the seller should not carry money balances above the maximum possible payment,

that is, ms = max(Ds,Ds − d, 0). Defining Zs = βDsφ+1, m̂
s = βmsφ+1, we have that the utility

of a seller in a stationary equilibrium satisfies

V s(ms
0) = v(x∗)− x∗ + βv̄s +ms

0φ+ αs [z − c(q)]− Zs − im̂s − k, (15)

where m̂s = max(Zs, Zs − z, 0). The last four terms in (15) constitute the expected surplus of the
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seller for being active in the search market for one night:

Ss = αs [z − c(q)]− Zs − im̂s − k. (16)

The term inside square brackets is the seller’s surplus in a trading match. The last three terms

are the entry fee into the submarket, the opportunity cost of carrying money to the search market,

and the utility cost of searching for one night. As long as Ss > 0, the seller is strictly better off by

entering the search market. If Ss < 0, the seller chooses not to enter the search market. At Ss = 0,

the seller is indifferent between entering the search market or not.

3 Competitive Search with Differential Fees

This subsection characterizes the competitive-search equilibrium along the same lines as in [4] with

the difference that we relax the assumption that market makers cannot charge differential fees to

buyers and sellers to enter their submarkets.

Let ωj =
¡
Zbj , Zsj , qj , zj , nj

¢
be the vector that characterizes an active submarket, and I be

the set of indices of the submarkets that are active. A competitive-search equilibrium is a set©
Sb, Ss, ωj

ª
j∈I that satisfies the following 5 conditions:

1. All buyers attain the same expected surplus Sb in all active submarkets.

2. All sellers attain the same expected surplus Ss in all active submarkets. This expected surplus

must be zero: Ss = 0.

3. In all submarkets, the expected ratio of sellers over buyers is equal to the actual ratio nj .

4. In all submarkets, ωj maximizes the profits of the market maker organizing j, Zbj + njZsj ,

taking Sb and Ss as given.

5. The market makers in all active submarkets earn zero profits: Zbj + njZsj = 0 for all j ∈ I.
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The motivation of these conditions of equilibrium is the following: Since all buyers are ex-

ante homogenous, their freedom to choose the submarket where they search implies that all active

submarkets must provide them with the same expected surplus (condition 1). Similarly, a perfectly

elastic supply of sellers free to enter any one of the active submarkets implies that in equilibrium

the expected surplus of a seller must be zero (condition 2). Rational expectations implies condition

3. The objective of market makers is to maximize profits. Strategically, a potential market maker

realizes that by charging fees Zbj and Zsj and by posting a trading offer
¡
qj , zj

¢
the submarket

created will either be inactive, or the ratio nj will adjust endogenously so that the buyers and sellers

visiting the submarket attain the expected surpluses Sb and Ss. Since there are many potential

market makers and a continuum of buyers and sellers, each market maker takes Sb and Ss as given

(condition 4). Finally, competition among all potential market makers drives equilibrium profits

to zero (condition 5), which does not imply that the fees paid by buyers and sellers are necessarily

zero. With the ability to charge differential fees, the market maker may impose positive fees on

buyers to finance transfers to sellers, or vice versa.

To characterize a competitive-search equilibrium, it is convenient to use a dual formulation of

condition 4. Since the profits of the market maker and the expected surpluses of buyers and sellers

are monotonic in Zb and Zs, condition 4 is equivalent to the maximization of Sb as defined in (11)

subject to Ss and the optimized profits attained by the market maker. Consequently, collecting

the equilibrium conditions 1 to 5, the vector ω in an active submarket must solve the following

maximization program (the superscript denoting that the submarket is dropped since all variables

refer to the same submarket):

Sb = max
(Zb,Zs,q,z,n)

α(n)[u(q)− z]− Zb − im̂b (17)

subject to
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α(n)

n
[z − c(q)]− Zs − im̂s = k. (18)

m̂b = max(Zb, Zb + z), (19)

m̂s = max (Zs, Zs − z, 0) , and (20)

Zb = −Zsn. (21)

In (19), we have dropped the non-negativity constraint on m̂b because the other constraints ensure

that it holds. To see this, (18) together with (20) and kn + α (n) c (q) > 0 implies that −nZs +

α (n) z > 0. This inequality, combined with (21) and (10), implies m̂b > 0. Intuitively, we see that

sellers can only be remunerated if m̂b is positive.

The difficulty in solving (17) to (21) is to keep track of the many possibilities offered by the

maximum functions in (19) and (20). To deal with this difficulty, we establish the following result:

Lemma 1 Let Sb(ω) be a function mapping the set of potential submarkets Ω onto Sb. If ω1 =

(Zb
1, Z

s
1 , q1, z1, n1) is in Ω and satisfies the constraints (18) to (21), then the vector ω2 = (Z

b
2, Z

s
2, q1, z2, n1)

with z2 = 0 and Zb
2 = −nZs

2 = kn1 + α (n1) c(q1) also satisfies the constraints (18) to (21) and

Sb(Zb
1, Z

s
1 , q1, z1, n1) ≤ Sb(Zb

2, Z
s
2 , q1, z2, n1). (22)

The inequality (22) is strict if α (n1) < 1 and z1 > 0, or α (n1) > 0 and z1 < 0.

Proof: A direct check shows that ω2 satisfies (18) to (21) if ω1 does so. Combining (11) with

(18) and (21), we obtain:

Sb(Zb, Zs, q, z, n) = α(n)[u(q)− c (q)]− nk − i
³
m̂b + nm̂s

´
. (23)

Therefore, using subscripts 1 and 2 on m̂b and m̂s to denote their values with ω1 and ω2 respectively,
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we have:

Sb(Zb
2, Z

s
2, q1, 0, n1)− Sb(Zb

1, Z
s
1, q1, z1, n1) = i

h
m̂b
1 + n1m̂

s
1 −

³
m̂b
2 + n1m̂

s
2

´i
(24)

≥ i
h
Zb
1 +max (z1, 0)− Zb

2

i
(25)

≥ i [−n1Zs
1 + α (n1) z1 − kn1 − α (n1) c (q1)] (26)

≥ 0. (27)

Equation (24) follows from (23). Inequality (25) is implied by (19) together with z2 = 0, m̂
s
1 ≥ 0,

and m̂s
2 = 0. Inequality (26) results from (21), the definition of Zb

2, and α (n1) ∈ [0, 1] . Inequality

(26) is strict if α (n1) < 1 and z1 > 0, or α (n1) > 0 and z1 < 0. Finally, (27) follows from (18) and

m̂s
1 ≥ 0¥

Since Lemma 1 applies to all vectors in Ω, including the solutions to program (17) to (21),

all submarkets active in an equilibrium where α (n) ∈ (0, 1) must have z = 0. Intuitively, as long

as α (n) ∈ (0, 1) , using the market maker to transfer money from buyers to sellers eliminates

idle money balances, so that it minimizes the opportunity cost of money holdings. If an active

submarket has α (n) = 1, then the buyer pays Zb + z for sure, and the expected remuneration of a

seller is (Zb + z)/n. Therefore, the breakdown between Zb and z is undetermined but irrelevant.

Using Lemma 1, programs (17) to (21) simplify into

max
(q,n)

α(n)[u(q)− c (q)]− kn− i [α(n)c (q) + kn] (28)

The first-order conditions that characterize q and n are:

u0(q)
c0(q)

= 1 + i (29)

α0(n)
·
u(q)

1 + i
− c(q)

¸
= k. (30)

As a necessary condition for n > 0, we assume k < u(q∗) − c(q∗), where q∗ is the solution to

u0(q∗) = c0(q∗).
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Defining welfare per period as W = α(n)[u(q) − c(q)] − nk, this system implies the following

comparative statics:

dq

di
< 0,

dn

di
< 0, and

dW

di
< 0.

An increase in inflation represents an implicit tax on the goods purchased with money. As a

result, the market responds by cutting both the number of sellers active at night and the output

they offer. Since welfare is an increasing function of both q and n, inflation implies welfare losses.

Up until now, −Zs has been assumed to be a lump-sum payment from the market maker to the

seller conditional only upon the seller’s entry into the submarket. This is a convenient simplification,

but it is not necessary to solve (17) to (21). The payment sellers receive could be randomized or

made conditional on trading with a buyer. As long as the handouts are adjusted so that sellers

receive the same expected payment, they will attain the same expected surplus. Moreover, the

optimal q and n would still be given by (29) and (30). To avoid idle money balances, the amounts

paid by buyers should be predictable, but it is not essential if the payments received by sellers are

predictable or not.

4 Equilibrium without Differential Fees

This section briefly compares the competitive-search equilibrium in the previous section with the

one characterized in [4] without the possibility of differential entry fees. If the market maker cannot

distinguish between buyers and sellers, we have that the fees charged to all traders must be the

same: Zb = Zs. This equality combined with the zero-profits constraint (21) implies7

Zb = Zs = 0. (31)

The absence of differential fees adds the extra constraint (31) to the program (17) to (21) that

7As remarked in [4], (31) also follows from Zb ≥ 0 and Zs ≥ 0.
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characterizes a competitive-search equilibrium. With this extra constraint, this program simplifies

into

max
(q,z,n)

α(n)[u(q)− z]− iz (32)

subject to

α(n)

n
[z − c(q)] = k. (33)

The welfare comparison between the equilibria that result with and without differential fees is

straightforward. In both cases, the expected surplus of sellers in equilibrium is zero, and market

makers earn zero profits. The expected surplus of buyers is the objective of the two programs we

used to characterize a competitive equilibrium. Since (32) to (33) are equivalent to (17) to (21)

with the added constraint (31), the expected surplus of buyers with differential fees must be at

least the expected surplus of buyers without them. Moreover, if α (n) < 1 and i > 0, then Lemma

1 implies that buyers are strictly better off with differential fees. In this instance, market makers

are not just an expositional device but also play a fundamental role in the economy.

The first order conditions of program (32) to (33) that characterize q and n are

u0(q)
c0(q)

= 1 +
i

α (n)
, and (34)

α0(n) [u(q)− c(q)] = k

½
1 +

·
1− α0(n)n

α(n)

¸
i

α(n)

¾
(35)

Comparing (29), (30) with (34) and (35), it is clear that if i = 0, the equilibrium values of q

and n are identical with and without differential fees, so that the two equilibria coincide at the

Friedman rule. However, if i > 0 and α (n) < 1, the quantity traded q is higher with differential

fees because the LHS of (34) is a decreasing function of q. The number of sellers n cannot be

unambiguously compared across the two equilibria without further assumptions. The welfare cost

of inflation without differential fees exceeds the welfare cost of inflation with differential fees because
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the two equilibria coincide at i = 0 but, as discussed above, welfare is lower without differential

fees if i > 0.

5 Conclusion

A positive opportunity cost of holding money implies that the trading arrangements in a competitive-

search equilibrium tend to make payments predictable to reduce the demand for money. By elimi-

nating the restriction in [4] that entry fees must be either non-negative or identical for buyers and

sellers, we show that this tendency leads to the following result. In an equilibrium with frictional

matching, buyers pay only an entry fee to the market maker, so that they know exactly the amount

of money they are going to spend in the search market. This mechanism eliminates the carrying of

idle money balances. The charging of an entry fee is atypical of most purchases made with money.

Hence, this counterfactual result acts as a caution against using market makers for formulating

competitive search in monetary economies.

The tendency towards predictable payments goes well beyond the simple trading arrangement

analyzed in this model. Even if market makers do not exist or cannot charge differential fees,

predictable payments do reduce the opportunity cost of carrying money balances. The mechanism

used to make payments predictable depends on the instruments available. For example, [2] provides

a model where there are no market makers to charge differential fees, but buyers still experience

observable idiosyncratic shocks after matching with a seller. In that model, the tendency to make

payments predictable takes the form of cross subsidies across buyer types. If preference shocks are

observable and individual rationality constraints are not binding, buyers pay again a single flat

fee in equilibrium. However, in general the smoothing of the flow of payments is not complete, so

payments increase with the quantities purchased.
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