
Directed Search On the Job and the Wage Ladder∗

Alain Delacroix
Department of Economics

Purdue University

(delacroixa@mgmt.purdue.edu)

Shouyong Shi
Department of Economics

University of Toronto

(shouyong@economics.utoronto.ca)

2003

Abstract

In this paper we characterize the equilibrium in a labor market where employed workers
search on the job and firms direct the search by announcing wages and employment probabil-
ities for the applicants. All workers/jobs are homogeneous and free entry of firms determines
the number of jobs. The equilibrium features a wage ladder, with a finite number of rungs.
Workers on each particular rung of the ladder choose (optimally) to apply to only the jobs at
one level above their current wage, despite that they observe all higher wage offers. Workers
choose not to leap several rungs at a time on the wage ladder because the jobs at one level
above their current wage provide a significantly higher employment probability, and hence a
higher expected surplus, than the jobs at two or more levels above. The wage ladder has the
following properties: (i) The gap between two adjacent rungs on the ladder becomes smaller
and smaller as wage increases; (ii) A worker’s quit rate decreases with wage; (iii) A worker’s
wage, on average, increases with the employment duration; (iv) The average length of time
an unemployed worker will take to return to his previous wage increases with that wage; (v)
The density of offer wages decreases with wage; (vi) The density of employed wages can be
decreasing, increasing, or hump-shaped. The directed search framework replicates empirical
regularities on the wage path of workers and the distribution of offer and employed wages that
undirected search cannot.
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1. Introduction

We study a large labor market where employed workers search on the job and firms direct the

search process intentionally. All workers are identical. The number of workers is large and fixed,

while the number of jobs (also identical) is determined by free entry. All firms simultaneously

announce a wage level and an employment probability for an applicant. The applicants, including

unemployed ones, first observe all offers and then decide which job to apply to. After receiving

the applicants, a firm selects one and pays the announced wage. Search is directed, in the sense

that firms explicitly take into account how their offers will affect workers’ application strategies.

The game repeats without memory. Recruiting generates endogenous transitions of workers

between jobs, while exogenous separation sends workers into unemployment. We characterize the

stationary equilibrium in this market and study its properties.

Table 1. Search models

whether employed workers are allowed
to search on the job

type of search no yes

undirected
Diamond (1982)
Mortensen (1982)
Pissarides (1990)

Burdett and Judd (1983)
Burdett and Mortensen (1998)
Pissarides (1994)

directed

Peters (1991)
Montgomery (1991)
Acemoglu and Shimer (1999)
Burdett et al. (2001)

This paper

Directed search on the job is a realistic feature of the labor market.1 However, the search

literature (see Table 1 for a rough guide) offers very little knowledge about the equilibrium with

directed search on the job. The popular search models assume that search is undirected, e.g.,

Diamond (1982), Mortensen (1982) and Pissarides (1990). That is, firms ignore how their offers

affect the number of matches they will receive and workers do not choose which job to apply to

ex ante, although workers do choose whether to accept a job ex post. These popular models also

rule out on-the-job search by assuming that unemployed workers are the only workers who search.

The subsequent research has relaxed these two assumptions separately but not simultaneously.

For example, Burdett and Mortensen (1998) and Pissarides (1994) examine undirected search

on the job, while Peters (1991), Montgomery (1991), Acemoglu and Shimer (1999) and Burdett

et al. (2001) examine directed search without on-the-job search.2 Our focus in this paper will

1Reviewing the evidence by Blanchard and Diamond (1989), Pissarides (1994) concludes that about 20% of the
monthly hires in the US are direct job-to-job movements. He argues that this fraction is about 40% in UK.

2Burdett and Judd (1983) analyzed sequential asearch in the goods market and did not frame their model
as on-the-job search. However, the key element in their model, that some agents each have two or more price
quotes while others have only one, is borrowed by Burdett and Mortensen (1998) to generate wage dispersion with
on-the-job search. Similarly, Peters (1991) analyzed directed search in the goods market, but his analysis can be
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be on the characterization of the equilibrium with the combined feature of directed search and

on-the-job search.

Our study is also motivated by the fact that existing search models fail to capture some

important aspects of the wage distribution among homogeneous workers with homogeneous jobs.

First, with undirected search on the job, the density of the wage distribution is a strictly increasing

function, but the empirical density is hump-shaped with the hump occurring at a low wage level

(see Kiefer and Neumann (1993)).3 Second, workers seem to climb up the wage ladder over time

in reality, which existing search models fail to produce. In particular, wage dispersion in models

with undirected search on the job does not constitute a wage ladder, because all workers can

ascend immediately to the end of the wage spectrum with positive probability.

Of course, one can introduce heterogeneity among workers or jobs into existing models to make

their predictions more realistic. To generate the hump-shaped wage distribution, for example, one

may argue that workers differ in ability or that jobs differ in productivity. To generate gradual

wage increases, one may argue that workers’ abilities are gradually observed by their employers

(e.g., Jovanovic (1979)), or there is match-specific productivity, or there is learning-by-doing on

the job. These ex ante and ex post sources of heterogeneity are realistic, and our work does

not diminish their importance. However, because there is sizable dispersion of wages in the data

among similar workers with similar jobs, it is useful to explore theoretical models that generate

wage dispersion among homogeneous workers, as we do here.

We show that the equilibrium with directed search on the job is a wage ladder, which comprises

of a finite number of wage levels. Firms are indifferent between posting these equilibrium wages. A

firm offering a higher wage is compensated by a higher probability of hiring a worker successfully.

The expected surplus of a recruiting firm (i.e., the product of the hiring probability and the

ex post surplus) is the same at all equilibrium wages. This expected surplus exactly covers the

vacancy cost, and so all recruiting firms earn zero net expected profit. In contrast, workers are

not indifferent between the different wages in equilibrium. An applicant chooses to apply to only

such jobs that offer him the maximum expected surplus (i.e., the employment probability times

the ex post gain from the job). These jobs lie one rung above the applicant’s current wage on

the ladder. That is, workers choose to climb up the wage ladder over time, one rung at a time,

rather than leap on the ladder.

The wage ladder has strong implications on equilibrium wages and worker flows. First, the

gap between two adjacent rungs on the ladder becomes smaller and smaller as wage increases,

and so the marginal gain from climbing up on the ladder diminishes. Second, a worker’s quit rate

readily adapted to the labor market. Other examples of directed search models are Cao and Shi (2000), Julien et
al (2000), Peters (2000), Shi (2001, 2002a,b), and Shimer (2001).

3In directed search models without on-the-job search, a wage differential can arise among homogeneous workers
who work for homogeneous jobs, but some additional elements must be introduced. In Shi (2002a), firms are
different in size (i.e., the number of employees), where large firms pay higher wages than small firms do. In
Shi (2002b) and Shimer (2001), the presence of high-skill workers induces partial sorting and generates a wage
differential among low-skill workers.
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decreases with wage, because the probability of getting a higher wage falls as the worker climbs up

the ladder. Third, a worker’s wage, on average, increases with his employment duration, because

a longer duration is likely to indicate that the worker has climbed more rungs on the wage ladder.

Fourth, the average length of time an unemployed worker will take to return to his previous wage

increases with that wage. Fifth, the density of offer wages is a strictly decreasing function; i.e.,

there are more firms recruiting at a low wage than at a high wage. This occurs despite the fact

that a high wage makes hiring more successful than a low wage. Finally, the density of employed

wages can decrease with wage, but not always so. Although there are more vacancies at a low

wage than at a high wage, which generates a large flow of workers into a low wage, there are

also more workers quitting low-wage jobs. Depending on which of these two flows dominates, the

density of employed wages can be decreasing, increasing, or hump-shaped. In particular, when

a low-wage job has a sufficiently higher inflow of workers than a high-wage job, the density of

employed wages is a decreasing function.4

The wage ladder and its properties occur here without any of the familiar assumptions that

induce gradual wage increases. In particular, (i) there is no gradual revelation of workers’ produc-

tivity, learning-by-doing or match-specific productivity, as all workers have the same productivity

which is observable before match; (ii) there is no differential information among employed workers

regarding job openings, as all employed applicants observe all job openings before they apply;

and (iii) firms do not discriminate employed workers according to their current wages, as each

firm selects all applicants it receives with the same probability in equilibrium. Rather, a worker

chooses to apply to only the jobs one level about his current wage because such jobs offer a

significantly higher employment probability, and hence higher expected surplus for the applicant,

than other jobs do.

To understand this result better, imagine two applicants who are currently employed at,

respectively, a low wage and a high wage. These two applicants differ in the trade-off between

the wage and the employment probability, because their current wages are different. A high-wage

applicant cares more about the wage level and less about that employment probability than a

low-wage applicant does. More precisely, since the same wage offer yields a lower ex post gain to a

high-wage applicant than to a low-wage applicant, the same amount of increase in the wage offer

represents a larger proportional increase in the expected surplus to a high-wage applicant than to

a low-wage applicant. Exploring this difference in the trade-off, firms can separate the groups of

applicants by offering high-wage applicants a high wage with a low employment probability and

low-wage applicants a low wage with a high employment probability. In a stationary equilibrium,

the separation produces the wage ladder. Clearly, directed search and on-the-job search are both

important for supporting the wage ladder as an equilibrium.

4With the wage ladder, workers employed at low wages do not apply to very high wages. This contributes
in part to the decreasing density at high wage levels. As a comparison, the undirected search model of Burdett
and Mortensen (1998) produces the result that workers at all wage levels apply to the highest wage with positive
probability, which generates a much higher density of workers employed at the highest wage than at lower wages.
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Before specifying the model, it may be useful to preview the analytical difficulty of combining

on-the-job search with directed search. The source of the difficulty is that on-the-job search makes

a worker’s application strategy in the future depend on his current application strategy (i.e. where

to apply now influences where to apply next once that new wage is obtained). A recruiting firm

anticipates and explores this dependence, which makes the equilibrium a complicated fixed-point

problem. This complexity does not arise when on-the-job search is excluded, because then all

separations are exogenous. Because of the complexity, a large part of this paper will be devoted

to characterizing the equilibrium in a tractable way.

2. A Model of Directed Search On the Job

2.1. The Labor Market and Job Search

A labor market is populated by a large (exogenous) number, L, of risk neutral and infinitely-lived

workers. All workers are identical. When employed, a worker supplies one unit of labor and

produces y units of output per unit of time. When unemployed, a worker receives an unem-

ployment benefit, b. The unemployment rate u is endogenous. For convenience, we refer to a

worker’s wage as the worker’s type and call a worker at wage w a w-worker. Also, we refer to

b as an unemployed worker’s “wage” and write w0 = b. There are also a large number of firms,

determined endogenously by free entry, each of which has one job to offer. All jobs are the same,

and the cost of a vacancy per unit of time is C > 0. Time is continuous. Workers and firms

discount future at a rate of time preference r > 0.

Employed workers search on the job. A worker employed at wage w receives an opportunity

of job application at rate λ(w) > 0, according to the Poisson process. The opportunity allows

the worker to observe the job descriptions offered by all firms. We set λ(w) = λ for all employed

workers in order to ensure that the difference in λ between workers is not the cause of wage

dispersion in this paper. A job description consists of a wage offer and the firm’s selection rule

(described later). All recruiting firms announce the job descriptions simultaneously and commit

to them. After observing the job descriptions, applicants choose their application strategies

simultaneously. Each applicant can apply to only one job and must incur a small fixed cost S > 0

for the application.5 The application strategy can be mixed over the job openings. Because the

applicants observe firms’ offers before the application, a firm can choose the offer intentionally to

attract particular applicants, i.e., to direct workers’ search.

Once employed, a worker produces and is paid the posted wage until separation, either ex-

ogenously or endogenously. Exogenous separation occurs at rate σ > 0 according to the Poisson

process, after which the worker returns to the unemployment pool. Endogenous separation oc-

curs when a worker quits the current job to accept another job. As in many models of on-the-job

search, e.g., Burdett and Mortensen (1998), we assume that a worker’s current employer does

5The small cost S is needed here to help the existence of an equilibrium. See subsection 4.2.
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not match outside offers. This assumption may not be realistic, but it serves two purposes here.

First, it keeps our model comparable to other on-the-job search models. Second, it makes the

model tractable and serves as a benchmark.

Unemployed workers’ search is directed in the same way as an employed worker’s search. Let

λ0 be the arrival rate of a job application opportunity to an unemployed worker. In general,

λ0 6= λ, but our analysis applies equally well to the special case λ0 = λ. Allowing for λ0 6= λ,

we can nest directed search models without on-the-job search as a special case, as discussed

immediately below.

The combination of on-the-job search and directed search is a unique feature. It distinguishes

our model from directed search models in the literature, such as Acemoglu and Shimer (1999) and

Burdett, et al. (2001), which allow only unemployed workers to search. Those models correspond

to the special case λ = 0 < λ0. Another dimension of comparison is with on-the-job search models

that assume undirected search, e.g., Burdett and Mortensen (1998). The most important feature

of directed search is that each applicant observes many offers before application. The indued ex

ante competition between recruiting firms is central to our results.6

Nevertheless, our model has the following frictions that are familiar in previous search models.

First, job application opportunities are not abundant, in the sense that λ and λ0 are finite. This

is a proxy for the cost of gathering information about jobs. Second, each applicant can apply to

only a small number of jobs at a time, which is set to be one in our paper. This is a proxy for

the constraint that an applicant can attend only one interview at a time. Third, agents cannot

coordinate their decisions, which creates the possibility of unmatched agents.

Let wage levels lie in the set of real numbers, <. Let N(.) be the cumulative distribution
function of workers over wages, with a density function n(.). Because we classify the unemploy-

ment benefit as a “wage” level, the mass of the distribution N at w0 = b is equal to u. The

distributional density of (employed) workers over wages in <\{b} is n(.)/(1 − u), which is also
called the employed wage density. Let V (.) be the cumulative distribution function of vacancies

over wages. The corresponding density function, denoted v(.), is called the offer wage density.

Let K be the total number of vacancies, which is endogenous, and denote k = K/L. The number

of vacancies at wage w is v(w)K.

We are interested in the equilibrium in a large market, i.e., one in which L → ∞. However,
to detail agents’ strategies, we will first analyze a market where L is large and finite, and then

take the limit L → ∞.7 The expected number of w-applicants is λn(w)L (or λ0uL if w = w0).
Assume that this number is an integer, without loss of generality.

6The assumption that each applicant observes all firms’ offers before applying to one simplifies the analysis, but
it is not necessary for the analytical results. For ex ante competition to occur, it is sufficient to assume that each
applicant observes two offers that are randomly drawn from all recruiting firms’ offers.

7We view continuous wage distributions as the limits of discrete distributions. This procedure avoids possi-
ble measurability problems associated with analyzing individuals’ strategies directly in an environment with a
continuous wage distribution.
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2.2. Strategies, Payoffs and Decisions

Call a w-worker who has just received a job application opportunity a w-applicant. If w = w0,

the applicant is unemployed. To unify the notation for employed and unemployed workers, let

λ(w) be the arrival rate of a job application to a w-worker, where λ(w) = λ for all w 6= w0 and
λ(w0) = λ0.

A w-applicant’s strategy is an application probability function p(., w): < → [0, 1], where

p(w0, w) is the probability with which the applicant applies to each of the job openings at wage
w0. An implicit assumption is that the applicant must assign equal probability to apply to all
identical job openings. Also, all applicants of the same type use the same strategy. Denote

T (w) = {w0 : p(w0, w) > 0}, which is a w-applicant’s target set of wages.
The probability p(., w) is not a convenient object to use in a large market. Because there

will be many firms offering each wage, an applicant will apply to each of these firms with a very

small probability. That is, p(w0, w) → 0 for all w0. To find a convenient object to describe an
applicant’s strategy, notice that the expected number of w-applicants whom a firm offering w0

will receive is:

a(w0, w) = p(w0, w)λ(w)n(w)L. (2.1)

Recall that λ(w)n(w)L is the expected number of w-applicants. Term a(w0, w) the queue length
of w-applicants for a firm that posts wage w0. Because a(w0, w) > 0 if and only if p(w0, w) >
0, the queue length represents an applicant’s strategy well. Moreover, if p(w0, w) > 0 in a

finite market, a(w0, w) remains strictly positive even when the market becomes large. For these
reasons, we describe a w-applicant’s strategy as a function a(., w): < → <+. Denote A(w) =
{a(w0, w)}w0∈<. Then, a w-applicant’s target set is T (w) = {w0 : a(w0, w) > 0}. Because the
application probabilities p(w0, w) must sum to one over w0, the following constraint must hold:X

w0
a(w0, w)v(w0) = λ(w)n(w)/k.

A recruiting firm announces a job description, which consists of a wage level w ∈ < and a
criterion that determines which applicant will get the job. This ex post selection criterion depends

on the distribution of applicants whom the firm will receive or attract. Because the applicants

use mixed strategies to apply to identical jobs, the distribution of applicants whom the firm will

receive is stochastic. For each realization of such random variables, the selection criterion must

be specified. This is cumbersome but, fortunately, it is not necessary. For the decision problems,

it suffices for the firm to specify an “ex ante” employment probability, denoted q(w,w0), for each
applicant of type w0 (see the supplementary Appendix G for a proof). The probability q(w,w0)
is the probability with which a w0-applicant gets a job w when he applies to the job, and it is

calculated by aggregating ex post employment probabilities over all realizations of the distribution

of applicants whom the firm will receive. We refer to q simply as the employment probability.

It is optimal for a firm to give the same employment probability to all applicants. That is,

q(w,w0) = q(w) for all w0 (see the supplementary Appendix G for a proof). This is because the
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firm’s probability of successfully hiring a worker is a concave function of the expected number of

applicants whom the firm will attract (see (2.3) later). By giving equal employment probability

to all applicants, the firm maximizes the hiring probability and, because all workers have the

same productivity, the strategy maximizes the expected surplus from recruiting.8 Therefore, a

recruiting firm’s strategy is to announce a wage level w ∈ < and an employment probability

q(w) ∈ [0, 1] for every applicant. Let Q = {q(w)}w∈< be a profile of employment probabilities
across offer wages.

To describe the agents’ payoffs, let Je(w) be the value function of a worker who is currently

employed at wage w, and Ju = Je(w0) the value function of an unemployed worker. For firms,

let Jv be the value function of a vacancy and Jf (w) of a firm that currently employs a worker at

w. We will calculate these value functions later.

A w0-applicant’s payoff of applying for a job w is the expected surplus, q(w) [Je(w)− Je(w0)].
This applicant chooses a(w,w0) > 0 if and only if the expected surplus is greater than or equal
to the maximum of expected surplus that the applicant can get elsewhere. Call this maximum

expected surplus the applicant’s market surplus and denote it E(w0). In a large market, individual
agents take such market surpluses as given.9 Then, a w0-applicant’s optimal choice of a(w,w0)
satisfies the following condition:

a(w,w0) =


=∞, if q(w) [Je(w)− Je(w0)] > E(w0)
∈ [0,∞), if q(w) [Je(w)− Je(w0)] = E(w0)
= 0, otherwise.

(2.2)

In the first case, the queue length of w0-applicants for a firm offering w is infinite because every w0-
applicant applies to the firm with probability one and there are a large number of such applicants.

In the last case, the queue length of w0-applicants for a firm is zero because such applicants have

no incentive to apply to the firm. These two cases will not arise when w is an equilibrium wage.10

Thus, if w is an equilibrium wage, the expected surplus of applying to a firm posting w must be

equal to the applicant’s market surplus.

The payoff of a firm posting (w, q(w)) is the expected surplus, h[Jf (w)−Jv], where h denotes
the firm’s probability of successfully hiring a worker. This hiring probability is a function of both

w and q(w), but we shorten it to h(w). Because a firm fails to recruit a worker only when all

potential applicants have applied to other firms, the hiring probability is:

h(w) = 1−
Y
w0

£
1− p(w,w0)¤λ(w0)n(w0)L .

8When workers are heterogeneous in productivity, recruiting firms may give different priorities to different
workers, see Shi (2002b) and Shimer (2001).

9Peters (2000), Cao and Shi (2000), and Burdett, et al. (2001) analyze directed search without imposing this
assumption. They show that the effect of each individual agent’s actions on the worker’s market surplus becomes
negligible when the size of the market approaches infinity.
10If a(w,w0) = ∞, then each w0-applicant who applies to a firm offering w is chosen with probability 0. The

expected surplus is 0 in this case, and hence cannot be higher than the applicant’s market surplus, contradicting
the condition required for a(w,w0) = ∞. On the other hand, if a(w,w0) = 0, then the firm offering w does not
attract any applicant, and so w is not an equilibrium wage.
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Using the queue length defined in (2.1) and the fact that (1− p)1/p → e−1 when p→ 0, we have:

h(w) = 1− exp
"
−
X
w0
a(w,w0)

#
. (2.3)

Thus, a firm’s hiring probability increases with the queue length of applicants whom the firm will

attract. Moreover, the hiring probability is a concave function of the queue length.

To find the link between the hiring probability and the employment probability, notice that

the hiring probability can also be interpreted as the expected number of workers that the firm

hires, because the firm hires only one worker for a job. This interpretation implies the relationship

h(w) = q(w)
P
w0 a(w,w

0). Combining this with the above formula, we have the following negative
relationship between the employment probability and the queue length:

q(w) =

"
1− exp

Ã
−
X
w0
a(w,w0)

!#,X
w0
a(w,w0) . (2.4)

Hence, q and h have the following relationship:

q(w) = − h(w)

ln [1− h(w)] ≡ Ψ(h(w)). (2.5)

Let Ψ−1 be the inverse of Ψ, so that h(w) = Ψ−1(q(w)). The function Ψ is decreasing because

a firm is able to provide a high employment probability to applicants only when the firm will

receive a small number of applicants, in which case the firm’s hiring probability must be low.

We can formulate a recruiting firm’s decisions (w, q(w)) as follows:

(P) max Ψ−1(q(w)) [Jf (w)− Jv]

subject to

q(w)
£
Je(w)− Je(w0)

¤ ≥ E(w0), for all w0 such that T (w0) 3 w. (2.6)

The firm takes other firms’ decisions and the applicants’ market surpluses as given.

The above formulation captures the key feature of directed search — the trade-off between

wage and the probability of forming a match. For a recruiting firm, a higher wage offer is likely

to yield a lower value Jf , but it is also likely to attract more applicants and increase the hiring

probability. The firm chooses such an offer (w, q(w)) that maximizes its expected surplus. For

an applicant, a higher wage offer is likely to yield a higher value of employment Je, but it is also

likely to come with a lower employment probability. The applicant applies only to those firms

whose offer (w, q(w)) maximizes the applicant’s expected surplus, as the dual to (P) suggests.
Now we specify the value functions and the endogenous separation probability. Because an

employee quits only when he gets a job from another firm, the endogenous separation probability

of a worker at wage w is:

ρ(w) = λ(w)
X
w0
q(w0)p(w0, w)v(w0)K =

k

n(w)

X
w0
q(w0)a(w0, w)v(w0). (2.7)
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The value functions are given as follows:

rJv = −C + h(w) [Jf (w)− Jv] , (2.8)

rJf (w) = (y − w)− [σ + ρ(w)] [Jf (w)− Jv] , (2.9)

rJe(w) =

"
w − σ [Je(w)− Ju]− χ (

P
w0 a(w

0, w))λS
+ k
n(w)

P
w0 q(w

0) [Je(w0)− Je(w)] a(w0, w)v(w0),
#

(2.10)

rJu = b− λ0S +
k

u

X
w0
q(w0)

£
Je(w

0)− Ju
¤
a(w0, b)v(w0). (2.11)

The function χ(.) in (2.10) is an indicator function, with χ(Σa) = 1 if Σa > 0 and χ(Σa) = 0 if

Σa = 0.

We explain (2.10) for example. Eq. (2.10) equates the permanent income of a worker employed

at wage w, rJe(w), to the expected “cash flow” in such employment. The cash flow consists of

the current wage, the loss in value in the event of exogenous separation, and the expected gain

from searching on the job. The gain from searching on the job is the difference between the last

two terms in (2.10). If this difference is non-positive, the worker will choose Σa = 0, in which

case the last two terms in the equation are zero.

2.3. Definition of Equilibrium

As formulated above, each firm can choose to post any number w ∈ < as the wage level. However,
the set of equilibrium wage offers is Ω ≡ {w ∈ < : v(w) > 0}. Define w1 = inf(Ω) and wM =

sup(Ω). Let Ω0 = Ω ∪ {w0} and call Ω0 the extended support of equilibrium wages. Clearly, the

accumulative distribution of wages over Ω0 is N(.); the density of employed workers over Ω is

n(.)/(1− u), and the density of vacancies (or offer wages) over Ω is v(.).

Definition 2.1. A (symmetric) equilibrium in the labor market consists of the aggregate char-

acteristics (Ω,N(.), V (.), k), the profile of employment probabilities Q = (q(w))w, and the ap-

plicants’ strategies (A(w))w, where A(w) = (a(w0, w))w0 , such that the following requirements
are met: (i) Given the aggregate characteristics and other firms’ strategies, each firm’s decision

(w, q(w)) is optimal, and w ∈ Ω; (ii) Given the firms’ decisions and the aggregate characteris-

tics, each applicant’s application decision is optimal; (iii) The agents’ strategies are symmetric

within each type, in the sense described earlier; (iv) There is free entry of firms: Jv = 0 for every

recruiting firm; (v) The aggregate characteristics are stationary.

In the symmetric equilibrium, p(w0, w) = 1/[v(w0)K] if w0 ∈ T (w) and 0 otherwise. So,

a(w0, w) = λ(w)n(w)/[v(w0)k] if w0 ∈ T (w) and 0 otherwise. Also, as required by the equilibrium,
we will set Jv = 0 in the remainder of this paper.
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3. Configuration of the Equilibrium

3.1. Separation of Applicants by Their Current Wages

We establish the following lemma that will be central to our analysis.

Lemma 3.1. (Singleton) If there is an equilibrium, then each equilibrium wage attracts at

most one type of applicants. Precisely, a(w∗, wi)a(w∗, wj) = 0 for all wi, wj , w
∗ ∈ Ω0 with

w∗ > wj > wi, provided that Je(.) is an increasing function.

Proof. Because the lemma is trivially true for w∗ = w1 (= inf Ω), we examine a firm posting

w∗ > w1. The decision problem is (P), with w being replaced by w∗, q(w) by q(w∗), etc.. Shorten
the notation q(w∗) to q∗. Suppose that (w∗, q∗) is an equilibrium offer. As concluded earlier, the

constraint (2.6) must hold as equality for all types of applicants whom the firm attracts. Moreover,

the constraint (2.6) must be binding on the firm for at least one type of applicants whom the

firm attracts; otherwise, the firm should set q∗ = 0 to maximize the hiring probability, which

contradicts a non-binding constraint.

Suppose that the applicants’ constraint binds for w0 = wi, with wi < wj . Consider an

alternative offer ( bw, bq), where bw = w∗+ ε, bq[Je( bw)− Je(wj)] = E(wj) = q∗[Je(w∗)− Je(wj)], and
ε > 0 is an arbitrarily small number. Under the presumption that Je(.) is an increasing function

(verified later), bq < q∗. Then,
bq[Je( bw)− Je(wi)] = q∗[Je(w∗)− Je(wi)]− (q∗ − bq)[Je(wj)− Je(wi)]

< q∗[Je(w∗)− Je(wi)] = E(wi).

The inequality follows from the facts that q > bq and Je(wj) > Je(wi). Thus, the new offer ( bw, bq)
still attracts wj-applicants but not wi-applicants. Because this eliminates a binding constraint

on the firm’s decision problem with very little change in the offer, the firm’s expected surplus

increases, contradicting the supposition that (w∗, q∗) is an equilibrium offer.

The proof is similar if the applicant’s constraint binds for w0 = wj under the offer (w
∗, q∗).

In this case, construct the alternative offer by setting bw = w∗− ε and bq[Je( bw)− Je(wi)] = E(wi).
This alternative offer attracts wi-applicants but not wj-applicants, and it increases the firm’s

expected surplus. QED

The above lemma holds because the indifference curves of any two types of applicants have

the following single-crossing property.11 The higher an applicant’s type (i.e., his current wage),

the lower the ex post surplus he can obtain from a given wage; so, a given amount of increase

in the wage offer represents a larger proportional increase in the expected surplus to a high-type

applicant than to a low-type applicant. Put differently, a high-type applicant cares more about

the wage level that an offer provides, and less about the employment probability, than a low-type

11The required condition that Je(w) increases with w holds in all previous search models and, as verified later,
it holds in our model as well.
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applicant does. Thus, there is no combination of the employment probability and wage that is

most attractive to both high- and low-type applicants and yet maximizes the firm’s expected

surplus from recruiting. If any symmetric equilibrium exists, each equilibrium wage must attract

only one type of applicants.

We depict the single-crossing property in Figure 1. An applicant’s indifference curve is derived

from the equality form of (2.6):

q(w) =
E(w0)

Je(w)− Je(w0) , all w
0 such that a(w,w0) > 0. (3.1)

This is a negative relationship between the employment probability and wage, as a low wage

must be compensated by a high employment probability in order to induce an applicant to apply.

Figure 1 depicts two such indifference curves, one for the applicants of type w0 = wi and the other
for w0 = wj > wi. The indifference curve of the high-wage applicant (wj-applicant) crosses that
of the low-wage applicant from above, which reflects the difference discussed above between the

two applicants in the willingness to trade-off the employment probability for wage. In Figure 1,

we also depict the iso-profit curve in Figure 1, which summarizes different combinations of (q, w)

that yield the same level of expected surplus to the recruiting firm.

  q
 indifference curve
  for worker wj (wj>wi)

direction of higher
expected utility

          A    indifference curve
    for worker wi

        B
direction of
higher expected
surplus for firm iso-profit curve

   w

Figure 1

Figure 1 provides the following illustration of Lemma Singleton. If the firm attracts both

types of applicants, the firm’s offer must be at the intersection of these two indifference curves

(point A). For this offer to be optimal for the firm, the firm’s iso-profit curve must be tangent to

the applicants’ indifference curves. This is not possible. If the firm’s iso-profit curve is tangent to

wi-applicants’ indifference curve at point A, the firm can increase expected surplus by offering the

combination at point B that is attractive to only wj-applicants. Similarly, if the firm’s iso-profit

curve is tangent to wj-applicants’ indifference curve at point A, the firm can increase expected

surplus by increasing q and reducing w along wi-applicants’ indifference curve.

Lemma Singleton provides a sharp contrast between an equilibrium with directed search on

the job and an equilibrium with undirected search on the job. In the undirected search model

by Burdett and Mortensen (1998), the equilibrium wage support is a continuum. There, because
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of undirected search, each firm receives applicants from all wage levels with positive probability,

regardless of the firm’s offer. All equilibrium wage offers yield the same expected surplus to the

firm. Applicants are not indifferent between those wages, but they cannot choose ex ante which

wage to apply to. This construct is no longer an equilibrium when search is directed, because

applicants will apply only to the openings which yield the highest expected surplus to them.

3.2. Equilibrium Configuration

To construct the equilibrium, we assume that the recruiting firm’s decision problem (P) has a
unique solution for each type of applicants.12 Then, the dual of (P) also has a unique solution.
That is, for each type w of applicants, the target set of wages T (w) is singleton. Without

confusion, we now refer to T (w) as this single target wage level rather than the set. Then, the

equilibrium must be a wage ladder with a finite number of rungs. The argument proceeds as

follows.

First, an employed applicant’s target wage is strictly higher than his current wage; i.e., T (w) >

w for all w 6= w0. This is because workers employed at all wages receive a job application

opportunity at the same rate λ and have the same access to all job openings. By applying to a

job that offers the same wage as his current wage, an applicant incurs the fixed application cost

without any gain. By applying to a wage lower than his current wage, an applicant loses even

more because of the wage reduction.

The same argument applies to an unemployed applicant if λ0 ≥ λ. However, if λ0 < λ, then

it is possible that T (w0) < w0. In this case, an unemployed applicant may accept a wage lower

than the unemployment benefit in an attempt to gain a better access to higher wages.

Second, the path of future equilibrium wages starting from any equilibrium wage w (including

w0) contains only a finite number of wage levels. This path is the sequence (T
i(w))ji=1, where

T i(w) = T i−1(T (w)) for all i. The number j is finite because there are costs for firms to maintain
a vacancy and for workers to apply for jobs. The difference between any two adjacent wage levels,

T i(w)−T i−1(w), must be bounded below by a strictly positive number in order to cover the fixed
application cost. In a finite number of steps, the ascending wage sequence will reach a level at

which recruiting yields an expected surplus below the vacancy cost.

Third, every employed wage in the equilibrium can be reached in a finite number of steps

from w0. That is, for every w ∈ Ω, there exists a non-negative integer j such that w = T j(w0).

To see this, suppose that an equilibrium wage w ∈ Ω cannot be reached from w0. Then we can

trace backward to find the source of this wage, using the sequence {T−i(w)}i≥0, where T−1 is
the inverse function of T . Given the features of T discussed above, T−1 is a strictly decreasing
function and the difference [T−(i−1)(w)−T−i(w)] is bounded below by a strictly positive amount
for any i ≥ 1. Thus, the descending sequence {T−i(w)}i≥0 reaches a minimum in a finite number

of steps, say m. Because w cannot be reached from w0 in a finite number of steps by the

12We cannot verify such uniqueness analytically, but will verify it with numerical examples later.
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supposition, T−m(w) 6= w0 and T−m(w) cannot be reached from w0 in a finite number of steps.

In fact, T−m(w) cannot be reached from w0 at all because, if it can ever be reached from w0, the

number of steps needed is finite by the previous result. At the wage T−m(w), there is an outflow
of workers because of endogenous and exogenous separation, but there is no inflow of workers.

The measure of workers employed at this wage must be zero in the stationary equilibrium.

Therefore, the equilibrium is a wage ladder that has a finite number of rungs. Denote wi =

T i(w0). The set of employed wages in equilibrium is Ω = (wi)
M
i=1, where M is a finite integer and

wi > wi−1 for all i = 2, 3...,M .13 If λ0 ≥ λ, then w1 > w0; if λ0 < λ, then w1 < w0 is possible.

The wage ladder may contain only one wage level or no wage at all. This can happen if, for

example, the unemployment benefit (w0) is sufficiently close to productivity (y). However, when

y is sufficiently higher than w0, adding even a small amount of on-the-job search (i.e. λ positive,

but very close to 0) generates a non-degenerate wage distribution Ω (i.e. M > 1). Since the case

λ = 0 corresponds to previous directed search models, those models’ prediction that the wage

distribution is degenerate is not robust to the introduction of on-the-job search.

We depict the wage ladder in Figure 2a. Each wage wi attracts only the wi−1-applicants, as
pictured by the arrows. Exogenous separation, which takes the separated workers to unemploy-

ment, is not depicted here.

posted wages
w1 w2 wi-1 wi       wi+1        wM

   …..   ….

   w0=b w1 w2 wi-1 wi       wi+1        wM

employed wages

Figure 2a

With the wage ladder as the equilibrium, an applicant applies only to the wage one rung

above his current wage, and so the quit rate of a worker employed at w is ρ(w) = λ(w)q(T (w)).

The applicant does not apply to wages two or more rungs above because it is not optimal to do

so, not because he does not have access to those higher wages. The lower employment probability

accompanying these higher wages make these wages an inferior tradeoff between wage and the

13Each equilibrium wage on the ladder is necessarily a mass point of the wage distribution. In contrast, a mass
point cannot exist in on-the-job search models where search in undirected, e.g., Burdett and Mortensen (1998).
There, the argument is that a firm can increase the wage offer slightly above the mass point, which increases
the number of applicants the firm gets by a discrete amount (as a result of undirected search) and hence increases
expected profit. This argument becomes invalid when search is directed, because it is not optimal for the applicants
to respond to a marginal increase in the wage offer by a discrete increase in the application probability — doing so
by a large number of applicants would reduce their employment probability by a discrete amount.
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employment probability.

  q
 indifference curve
  for worker T(wi)

direction of higher
expected utility

          A    indifference curve
    for worker wi

       B

free-entry condition

T(wi)    T
2(wi)    w

Figure 2b

We can illustrate this tradeoff in equilibrium by a diagram similar to Figure 1. However,

the iso-profit curve must be replaced by firms’ free-entry condition, h(w)[Jf (w) − Jv] = C.

Substituting Jf from (2.9), ρ(w) = λ(w)q(T (w)) and Jv = 0, we can write this condition as:

q(w) = Ψ

µ
r + σ + λ(w)q(T (w))

y −w C

¶
, (3.2)

where Ψ is a decreasing function defined in (2.5). Figure 2b depicts a possible case of this free-

entry condition, in which the condition gives q as a decreasing and concave function of w. Every

equilibrium wage level is a tangency point between the indifference curve of a particular type of

applicants and the free-entry condition. Figure 2b shows two such wages, T (wi) for the applicants

at wage wi and T
2(wi) for the applicants at wage T (wi). For a wi-applicant, a job opening at

wage T 2(wi) is inferior to an opening at T (wi) because the former offers a much lower employment

probability.

The tradeoff between wage and the employment probability is common in all directed search

models, with or without on-the-job search. The difference is that on-the-job search makes an

agent’s payoff dependent on future strategies, which significantly complicates the task of finding

an equilibrium. In particular, the firm’s value function Jf (w) depends on the employee’s future

application decision, T (w), which in turn makes the free-entry condition for firms offering w

dependent on this future application decision. Similarly, an applicant’s indifference curve depends

on the future application decision through the worker’s value function Je(w). Such dependence

makes it difficult to verify the properties of the curves presumed in Figure 2b. A general translation

of the diagram into a mathematical formulation yields very little about the analytical properties

of the equilibrium (see the supplementary Appendix H).
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In the few sections to follow, we will explore the recursive structure of the wage ladder to find

the analytical properties of the equilibrium. By focusing on the recursive approach, we are able

to construct the equilibrium and in the process to provide some intuition. To do so, we need to

show that the configuration in Figure 2a leaves no incentive for firms and applicants to deviate.

Because one firm’s deviation to a wage outside the equilibrium set sends its potential employee off

the equilibrium path for the application for higher wages in the future, we need to specify what

firms would do to the applicants whose wages happen to lie outside Ω.14 Because it is optimal

for a firm to offer equal probability to all applicants, as discussed before, we impose throughout

the paper the following restriction on beliefs off the equilibrium path:

Restriction (Off-eqm): The employment probabilities satisfy q(w,w0) = q(w) for

all applicants’ types w0 ∈ < and for all wage offers w, including w0 /∈ Ω0 and w /∈ Ω.

Before proceeding further, we simplify the notation. Denote ni = n(wi) and vi = v(wi) for

each wi ∈ Ω, with n0 = u, and ai = a(wi, wi−1). Writing q and h as functions of a, rather than
of w, we transform (2.3) and (2.4) as follows:

hi = h(ai) ≡ 1− e−ai , qi = q(ai) ≡ (1− e−ai)/ai. (3.3)

Clearly, h0(a) > 0 and q0(a) < 0. Also, let ρi be the rate at which a wi-worker endogenously

separates from the job. Then, (2.1) and (2.7) become:

for i ≥ 2: ai = λni−1/(vik), ρi−1 = λqi,
for i = 1: a1 = λ0u/(v1k), ρ0 = λ0q1.

(3.4)

4. Characterizing and Computing the Equilibrium

There are many potential types of deviations from the ladder depicted in Figure 2a. In this

section, we characterize the equilibrium by temporarily imposing the following restriction:

Temporary Restriction (One-rung): For all i ∈ {0, ...,M − 1} and all deviations
wd ∈ (wi, wi+1), either (i) the firm posting wd attracts only applicants at wi−1 and
after receiving the job, such a worker’s next application is to wi+1, or (ii) the firm

posting wd attracts only applicants at wi and after receiving the job, such a worker’s

next application is to wi+2.

We will eliminate this restriction in section 6 but, for now, the restriction simplifies the character-

ization of the equilibrium. This restriction asks that a deviation should disturb the wage ladder

by only one rung, in either the type of applicants whom the deviation attracts or the direction

in which the deviator’s employee will apply to other jobs in the future.
14If the belief off the equilibrium path is unrestricted, an arbitrary set of wages may be supported as an equilib-

rium. For example, consider an arbitrary set of wages Ω and suppose that for each wage wi in this set, the firms
recruiting at wi give positive employment probability only to wi−1-applicants. Then, even a slight deviation from
wi−1 will reduce the recruit’s future employment probability for higher wages to zero. Knowing this, workers may
not apply to the deviating firm at all, and this successfully supports Ω as an equilibrium.
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4.1. Wages Lower Than the Highest Level

Examine wage wi ∈ Ω for 1 ≤ i ≤ M − 1. Consider a deviation wd ∈ (wi−1, wi+1). Under the
restriction One-rung, there is no loss of generality to suppose that the deviating firm intends to

attract only the applicants at wi−1, in which case wd can be regarded as a deviation from wi

because a wi−1-applicant who gets the job wd will apply to wi+1 next.15 Let ad be the queue

length of wi−1 applicants whom wd attracts. Then, the deviating firm’s hiring probability is h(ad)
and each applicant’s employment probability is q(ad), given by (3.3) with ad replacing a. After

an applicant gets the job, the probability of future quit rate is λqi+1 (note that we invoked the

restriction Off-eqm here). If the deviating firm successfully hires a worker, the firm’s and the

employee’s value functions are as follows, which are adapted from (2.9) and (2.10):

Jf (w
d) =

y − wd
r + σ + λqi+1

, (4.1)

Je(w
d) =

wd + σJu − λS + λqi+1Je(wi+1)

r + σ + λqi+1
. (4.2)

It is more convenient to formulate the deviator’s decisions as (wd, ad), rather than (wd, qd). Taking

(qi+1, Je(wi+1)) and other firms’ strategies as given, the decisions (w
d, ad) solve the following

problem similar to (P):

(Pd) max h(ad)Jf (w
d)

s.t. q(ad)
h
Je(w

d)− Je(wi−1)
i
= E(wi−1).

For wi to be an equilibrium wage, the solution to (Pd) must be (wd, ad) = (wi, ai). The

first-order conditions and the constraint of (Pd) yield:

Je(wi)− Je(wi−1) = ai
eai−1−aiJf (wi),

qi [Je(wi)− Je(wi−1)] = E(wi−1),

where Jf (wi) and Je(wi) obey (4.1) and (4.2), respectively, with wi replacing w
d. The first

equation states that the applicant’s surplus after getting the job, Je(wi) − Je(wi−1), is a share
ai/(e

ai − 1) of the total surplus. Notice that this share decreases endogenously with the queue
length ai.

In addition, the value of every vacancy is zero in equilibrium because of free entry. That is,

C

hi
= Jf (wi) =

y − wi
r + σ + λqi+1

. (4.3)

15There are two other cases, but the same analysis applies with i being renumbered. The first is that the
deviating firm intends to attract wi workers with w

d ∈ (wi, wi+1). In this case, the restriction One-rung requires
the wi-worker who gets the job w

d to apply next to wi+2, and so w
d can be treated as a downward deviation from

wi+1. The second is that the deviating firm intends to attract wi−2 workers with wd ∈ (wi−1, wi). In this case,
One-rung requires the wi−2-worker who gets the job wd to apply next to wi, and so wd can be treated as an upward
deviation from wi−1.
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With this condition, we rewrite the first-order conditions of (Pd) as follows:

Je(wi)− Je(wi−1) = C/fi, (4.4)

E(wi−1) = qi [Je(wi)− Je(wi−1)] = Cqi/fi, (4.5)

where

fi = f(ai) ≡ q(ai) (eai − 1− ai) . (4.6)

Finally, for wi−1-applicants to incur the fixed cost of application, the market surplus E(wi−1)
must be greater than or equal to S. With (4.5), this requirement becomes

ai ≤ ā, where eā − 1− ā = C/S. (4.7)

Under the restriction One-rung, the conditions (4.3) — (4.7) ensure that (wi, ai) are optimal

for attracting wi−1-applicants among all wages in (wi−1, wi+1), for any i ∈ {1, ...,M − 1}.

4.2. Highest Wage in Equilibrium

The highest wage wM must satisfy (4.3) — (4.7), for i =M , in order to ensure that it is the optimal

wage for attracting wM−1-applicants. In addition, there should not be incentive for a firm to post
a wage higher than wM . A deviation w∗ > wM can be intended for attracting the applicants

at wM or at other wages. However, to rule out a profitable deviation w∗ > wM , it is necessary
and sufficient to require that posting w∗ > wM to attract wM -applicants is not profitable.

16

To express this requirement formally, consider a single firm that deviates to w∗ > wM with an

intention to attract wM -applicants, and let a
∗ be the queue length of wM -applicants whom the

deviation attracts. Then,

q(a∗) [Je(w∗)− Je(wM)] = S, (4.8)

where Je(w) = (w + σJu)/(r + σ) for both w = w∗ and wM . The deviator’s expected surplus
is h(a∗)Jf (w∗), where Jf (w∗) = (y − w∗)/(r + σ). This deviation is not profitable if and only

if the firm’s maximum expected surplus is less than the vacancy cost C. Solving the deviator’s

maximization problem subject to (4.8), this requirement becomes:

wM > y − (r + σ)Seā, (4.9)

where ā is defined in (4.7). Clearly, for this condition to be satisfied and yet wM ≤ y, we need
S > 0. This is why we introduced the fixed cost of application.

To explain intuitively why S > 0 is needed for an equilibrium, suppose S = 0 and wM < y.

A firm that deviates to a slightly higher wage wM + ε (ε > 0) can always attract wM -applicants,
16This condition guarantees that it is not profitable to post w∗ > wM to attract wM−j-applicants, for j ≥ 1. The

proof consists of two stages. First, by construction, wM yields the highest expected surplus to wM−1-applicants
and hence those applicants prefer to apply to wM to all other wages w∗ > wM . Second, if wM−1-applicants prefer
wM to w∗ > wM , so do all other applicants at wages wM−j (j ≥ 2). The proof for the second stage is similar to
that of Lemma 6.4 later and hence omitted.
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and so it can succeed in hiring almost surely. Relative to posting wM , the deviation gives the

firm a slightly lower ex post surplus but a discrete increase in the hiring probability. Thus, the

deviation is profitable. To prevent such profitable deviations, wM must be equal to or greater

than y, which yields negative expected net profit, after the vacancy cost is deducted.

For future use, it is useful to express (4.7) and (4.9) for i =M as requirements on the hiring

probability at wage wM , as follows:
17

1− (1 + ā)e−ā < hM ≤ 1− e−ā. (4.10)

4.3. Recursive Characterization

The conditions in previous subsections provide a recursive characterization of the equilibrium.

Pick up a number hM that satisfies (4.10). Then, qM+1 = 0. Moreover,

aM = − ln(1− hM), qM = hM/aM ,
wM = y − (r + σ)C/hM , Je(wM) = (wM + σJu)/(r + σ).

The result for wM comes from setting i = M in (4.3), and the result for Je(wM) from setting

i = M and wd = wM in (4.2). Proving by induction (see Appendix B), we have the following

proposition.

Proposition 4.1. (Recursive) Given hM , qM−j+1, wM−j and Je(wM−j), the following condi-
tions hold in equilibrium for j = 0, 1, 2, ...,M − 2:

hM−j =
(r + σ + λqM−j+1)C

y − wM−j , (4.11)

aM−j = − ln(1− hM−j), qM−j = hM−j/aM−j , (4.12)

wM−j−1 = wM + λS − λqM−jC
fM−j

− (r + σ)C
jX
t=0

1

fM−t
, (4.13)

Je(wM−j−1) =
σJu + wM
r + σ

− C
jX
t=0

1

fM−t
. (4.14)

In addition, (4.11) and (4.12) hold for j =M − 1, and Ju satisfies:

Ju =
1

r

·
b− λ0S + λ0C

q1
f1

¸
. (4.15)

The recursive method generates the sequence (hi, ai, qi, wi, Je (wi)) for given hM . For the

sequences to be an equilibrium, the value of hM must be such that the generated value of Je(w1)

satisfies (4.4) for i = 1. We will examine such existence in the next subsection.

17For i =M , (4.7) is equivalent to hM ≤ h(ā) = 1− e−ā. To rewrite (4.9), note that hM [Jf (wM )− Jv] = C in
equilibrium and Jf (wM )− Jv = (y −wM )/(r + σ).
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Once the equilibrium sequence of (h, a, q) is determined, we can obtain the distributions of

workers and vacancies. First, because the equilibrium is stationary, the measure of workers who

separate from wi must be equal to the measure of workers newly recruited at wage wi. That is,

(σ + λqi+1)ni = λni−1qi, for all 2 ≤ i ≤M ,
(σ + λq2)n1 = λ0uq1 = σ(1− u) and u = 1−PM

i=1 ni.
(4.16)

These equations solve for u and (ni)
M
i=1. Second, (3.4) implies

vi = λni−1/(aik) for i ≥ 2, and v1 = λ0u/(a1k). (4.17)

Together with
PM
i=1 vi = 1, these equations solve for k and (vi)

M
i=1. The density of offer wages is

(vi)
M
i=1 and of employed wages (ni/(1− u))Mi=1.

4.4. Hiring Probability at the Highest Wage and the Number of Rungs

The equilibrium values of M and hM are such that (4.4) is satisfied for i = 1. That is, starting

with hM , the computed sequence of Je satisfies ∆ = 0, where ∆ ≡ Je(w1) − Ju − C/f1. Setting
j =M − 2 in (4.14) to obtain Je(w1) and substituting (4.15) for Ju, we get:

∆ =
wM − b+ λ0S

r + σ
− Cλ0q1
(r + σ) f1

−C
M−1X
t=0

1

fM−t
. (4.18)

By Proposition Recursive, the computed a sequence and wM depend on the chosen values of

(M,hM), but not on Ju directly. Hence, we write ∆ = ∆(M,hM). Equilibrium values of (M,hM)

solve ∆(M,hM) = 0.

To examine the function ∆(M,hM), we maintain the following assumption.

Assumption 1. (Regularity) Define ā by (4.7). Assume that the following conditions hold:

b ≤ y + λ0S −C
·
(r + σ) ea + λ0
ea − 1− a

¸
a=ā−ln(1+ā)

, (4.19)

(r + σ)/λ > f(ā)/ā. (4.20)

The condition (4.19) ensures that there is at least one wage level that yields a higher present

value to the workers than unemployment, while (4.20) is a technical condition necessary for

exploring Proposition Recursive. The following lemma is proven in Appendix B.

Lemma 4.2. Fix hM at any value h∗ that satisfies (4.10), and compute the a sequence by
Proposition Recursive. Then, there exists an integer M∗ ≥ 1 such that ∆(M 0, h∗) ≥ 0 for all

M 0 ≤M∗ and ∆(M 0, h∗) < 0 for all M 0 ≥M∗ + 1.
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Now we can find the lowest equilibrium value of hM as follows. Choose h∗ in the above
lemma to be the lower bound on hM given by (4.10) and obtain the corresponding M∗. Then,
∆(M∗, h∗) ≥ 0. If ∆(M∗, h∗) = 0, then the chosen value of h∗ is the lowest equilibrium value

of hM . Suppose ∆(M∗, h∗) > 0. Then ∆(M∗ + 1, h∗) < 0. Reset M = M∗ + 1 and increase
h∗. By Proposition Monotone established later, the a sequence is an increasing function of the
chosen value of hM . So is wM . Thus, ∆(M,h

∗) is an increasing function of h∗ (for given M). For
there to be an equilibrium solution for hM , ∆(M,h

∗) must increase to cross 0 when h∗ increases
to the upper bound in (4.10). The first crossing gives the lowest equilibrium value of hM , where

M =M∗ + 1 is the equilibrium value of M .

Similarly, we can find the highest equilibrium value of hM . To do so, choose the upper bound

of hM , 1−e−ā, to be the starting value of h∗ in the above lemma and compute the corresponding
M∗. If ∆(M∗, h∗) = 0, then the starting value of h∗ is the highest equilibrium value of hM . If

∆(M∗, h∗) > 0, then fix M =M∗ and reduce h∗. For there to be an equilibrium solution for hM ,

∆(M,h∗) must decrease to cross 0 when h∗ decreases to the lower bound of hM in (4.10). The

first crossing gives the highest equilibrium value of hM , where M =M∗ is the equilibrium value

of M . Therefore, the following proposition holds:

Proposition 4.3. (M-exists) Set h∗ = 1−(1 + ā) e−ā and computeM∗ as in Lemma 4.2. There
exists an equilibrium value of hM if and only if

∆(M∗, 1− e−ā) ≥ 0. (4.21)

Under this condition, there exist hL and hH , which possibly coincide with each other, such that

all equilibrium values of hM lie in [hL, hH ]. The equilibrium value of M is either M∗ or M∗ + 1.

It is analytically difficult to verify (4.21) or to check whether the solution for hM is unique.

In section 5.2 we will provide some numerical examples.

5. Properties of the Equilibrium

We delay to section 6 the proof that, even without the restriction One-rung, the wage ladder

constructed in the previous section can be an equilibrium. In the current section, we investigate

the properties of the equilibrium. Whenever possible, we will suppress the index i =M − j, use
the subscript ±t to stand for M − j ± t, where t ≥ 1.

5.1. Analytical Properties

To study the properties of the equilibrium, we examine the properties of the sequence computed

with any given value of hM that satisfies (4.10). We start by deriving some useful equations from

Proposition Recursive. Subtracting (4.13) for j and j + 1, we get:

w − w−1 = (r + σ + λq)C

f
− λCq+1

f+1
. (5.1)
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This condition holds for all i = M − j, where j ∈ {1, 2, ...,M − 2}. For j = 0, replace the last
term in the equation by λCq(ā)/f(ā) = λS. Also, for all j ∈ {1, ...,M − 2}, we have:18

h−1 = (r + σ + λq)

Áµ
r + σ + λq+1

h
+
r + σ + λq

f
− λq+1
f+1

¶
. (5.2)

A similar equation holds for j = 0, with the first q+1 being replaced by 0 and the term λq+1/f+1

by λq(ā)/f(ā) = λS/C.

We establish the following propositions, in Appendices C and D, respectively.

Proposition 5.1. (Monotone) For any given hM that satisfies (4.10), the sequence constructed

in Proposition Recursive has the following monotonicity properties for all 0 ≤ j ≤M − 2 (where
the subscript M − j is suppressed):

a−1 < a ≤ ā, h−1 < h, q−1 > q. (5.3)

(r + σ)/λ > f(a−1)/a−1. (5.4)

a−1 > a− ln(1 + a), (5.5)

da/dhM > 0, dw/dhM > 0. (5.6)

Proposition 5.2. (W-property) For any given hM that satisfies (4.10), the computed sequence

satisfies: (i) w > w−1 and (ii) E(w−1) > E(w) ≥ S. In addition, if the necessary condition for
the equilibrium described later in Lemma No-leap holds, then (iii) w − w−1 > w+1 − w.

These propositions reveal interesting properties of the equilibrium, as listed below:

• A firm is more likely to succeed in hiring at a higher wage than at a lower wage, while an

applicant is more successful getting a low-wage job than a high-wage job. This result arises

from the fact that the queue length of applicants increases endogenously with wage.

• A worker at a high wage is less likely to quit than a worker at a low wage. The quit rate of
a worker at wage w is ρ(w) = λq(a+1). Because the employment probability for the next

wage (q(a+1)) decreases as wage increases, the quit rate falls.

• The longer a worker has been employed since his last unemployment, the higher his cur-
rent wage is on average. Moreover, the higher wage a worker had just before becoming

unemployed, the longer he will take on average to return to this previous wage level.

18This equation comes from the following relationships:

r+σ+λq
h−1 = 1

C
(y −w−1) = 1

C
(y − w) + 1

C
(w −w−1)

=
r+σ+λq+1

h
+ 1

C
(w − w−1) = r+σ+λq+1

h
+ r+σ+λq

f
− λq+1

f+1
.

The first equality comes from using (4.11) for j + 1, the second equality from rewriting, the third equality from
using (4.11) for j, and the last equality from substituting (5.1).
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• A worker’s ex post value of employment increases with wage. That is, Je(w) > Je(w−1),
which we used in Lemma Singleton. Also, E(wi) ≥ S for all 1 ≤ i ≤ M − 1. So, all
applicants employed below the highest wage are indeed willing to incur the fixed cost S to

apply to higher wages.

• The gap between two adjacent rungs on the ladder shrinks as a worker climbs up the ladder.
So, the higher the wage, the smaller the wage gain in the next job change.

• An applicant’s expected surplus diminishes as the applicant moves up the wage ladder, i.e.,
E (w−1) > E (w), despite the fact that the ex post value of employment increases with

wage. This implies that an applicant’s employment probability must decrease more rapidly

than the increase in wage along the wage ladder.

All these properties are realistic features of the labor market. What is special about these

properties is that they all originate from the search frictions, not from exogenous differences

between workers. The last property is a necessary (although not a sufficient) condition for the

wage ladder to be an equilibrium in a directed search environment. Since an applicant observes

all offers, to induce him to apply only to the next wage level, the expected surplus must be higher

from applying for such jobs than for the jobs at higher wages.

The next proposition describes some features of the wage density in the equilibrium (see the

middle part of Appendix D for a proof):

Proposition 5.3. (W-density) The density (frequency) of offer wages decreases with wage. A

sufficient condition for the density of employed wages to be decreasing at the upper end of the

wage support is:
σ

λ
>
1− (1 + ā) e−ā
ā− ln (1 + ā) . (5.7)

When r is sufficiently close to 0, a sufficient condition for the above inequality is C/S > 2.373.

A sufficient condition for the density of employed wages to be increasing at the upper end of the

wage support is σ/λ < q(ā).

The density of offer wages is a decreasing function. This result is opposite to what Burdett

and Mortensen (1998) established in a on-the-job search model with undirected search. Our result

is easy to understand. In the stationary equilibrium, the flow of workers into every equilibrium

wage w must be equal to the outflow. Because the outflow consists of exogenous separation and

quits, the inflow must exceed the number of quits. The inflow of workers into w is the number

of new hires at w, i.e., hv. The number of quits from w is equal to the number of new hires

at the next wage level, h+1v+1, because the applicants at w are the sole source of hiring at the

next wage. Thus, hv > h+1v+1 in the stationary equilibrium. This necessarily implies v > v+1,

because the hiring probability at w is lower than that at w+1. Therefore, the density of offer

wages necessarily decreases with wage.

22



The density of employed wages can also be decreasing, but it is not always so. This is because

the density of employed wages depends on both the inflow and the outflow of workers. Although

there is a larger flow of workers into a low wage than into a high wage, the quit rate is also higher

for a low wage than for a high wage. There are more workers employed at a low wage than at

a high wage if and only if the difference between the inflows into the two wages is larger than

the difference between the outflows. This is satisfied at the upper end of the wage distribution

if the hiring cost is large relative to the application cost. In general, however, the density of

employed wages may not be monotonic with respect to wages and if it is monotonic, it may not

be increasing.

5.2. Numerical Examples

We provide numerical examples to illustrate the equilibrium. Consider the following values of the

parameters: y = 1000, b = 0, C = 60, S = 1, r = 0.02, λ = 0.025, λ0 = 0.2, and σ = 0.125.

These parameter values satisfy all requirements for an equilibrium (see Proposition 6.7). Under

these parameter values, there is a unique equilibrium and the wage distribution has four rungs.

The unemployment rate is u = 40.9% and the overall vacancy-worker ratio is k = 0.41.19 Other

characteristics of this equilibrium are summarized in Table 2.

Table 2. Equilibrium in a numerical example

i wi vi (%)
ni
1−u (%) ai qi (%) hi (%)

1 947.6 95.7 87.8 0.21 90.4 18.6

2 982.6 4.0 11.2 0.78 69.6 53.9

3 988.9 .2 1.0 1.77 46.9 83.0

4 990.8 <.1 .1 2.94 32.2 94.7

These numerical results confirm the analytical properties of (w, a, q, h, v) established in Propo-

sitions Monotone and W-property. A notable feature is that the small difference between two

adjacent wages induces large differences in the employment probability, the hiring probability

and the density of offer wages. For example, when the wage increases from 947.6 to 982.6, the

employment probability falls sharply from 90.4% to 69.6%, the hiring probability increases from

18.6% to 53.9% and the density of offer wages falls from 95.7% to 4.0%. A predominant fraction

of firms recruit at the lowest wage.

The density of employed wages is also a decreasing function of wages in this equilibrium. A

large fraction of workers are employed at the lowest wage, although the distribution is less skewed

toward low wages than the offer wage distribution.

In Tables 3 we illustrate the importance of on-the-job search for the wage ladder, by changing

λ while fixing other parameters (including λ0). When λ = 0, on-the-job search is shut down and,

as previous models of directed search predict, the wage distribution is degenerate, with w = 953.2,

19It is possible to find parameter values which allow for the possibility of multiple equilibria (with different
number of rungs).
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a = .21, u = 40.9% and k = .40. However, the wage ladder becomes non-degenerate as soon as

workers can search while employed. Even for λ = 10−4, the support of equilibrium wages is

significantly dispersed. This result illustrates that the degeneracy of the wage distribution in

previous directed search models is not robust. As the opportunity of on-the-job search increases

further, most of the characteristics of the equilibrium change very little. The support of the

distribution Ω, the employment probabilities {qi}, the hiring rates {hi}, the unemployment rate
u and market tightness k remain very similar. Even though the employment probabilities upon

applying are unaffected, workers get to apply more often as λ increases, and as a result, the

distributions of offer and employed wages become less skewed.

Table 3. Various degrees of on-the-job search

λ = 0 λ = 10−4 λ = .01 λ = .025

w1 953.2 953.2 951.0 947.6

w2 984.0 983.4 982.6

w3 989.6 989.4 988.9

w4 991.0 990.9 990.8

λ = 0 λ = 10−4 λ = .01 λ = .025

a1 .21 .21 .21 .21

a2 .79 .78 .78

a3 1.82 1.80 1.77

a4 3.28 3.13 2.94

% λ = 0 λ = 10−4 λ = .01 λ = .025

v1 100 99.9 98.2 95.7

v2 <.1 1.8 4.0

v3 <.1 <.1 .2

v4 <.1 <.1 <.1

% λ = 0 λ = 10−4 λ = .01 λ = .025
n1
1−u 100 99.9 94.7 87.8
n2
1−u <.1 5.1 11.2
n3
1−u <.1 .2 1.0
n4
1−u <.1 <.1 .1

λ = 0 λ = 10−4 λ = .01 λ = .025

u 40.9% 40.9% 40.9% 40.9%

k .40 .40 .40 .41

6. Wage Ladder Is an Equilibrium

In this section, we eliminate the restriction One-rung imposed in section 4 and show that the wage

ladder is an equilibrium under certain conditions. We divide wages that violate the restriction

One-rung into two categories, those that belong to the equilibrium wage support and those that

lie outside. The two subsections below examine the two categories in turn. The restriction Off-

eqm is maintained throughout. As in the previous section, we suppress the index i = M − j
whenever possible and use the subscript ±t to stand for M − j ± t.

6.1. Workers Apply Only to the Next Wage Level

In this subsection, we confine deviating wages to the equilibrium set of wages, Ω. A wage w ∈ Ω

is a deviation that violates the restriction One-rung if the wage w is intended to attract the

applicants at wi−1 but w 6= wi. For such deviations to be not profitable, the expected surplus

that a wi−1-applicant obtains from applying to wage wi must be larger than or equal to that from
applying to any other wage in Ω. That is,

q [Je(w)− Je(w−1)] ≥ q+t [Je(w+t)− Je(w−1)] . (6.1)
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This requirement hold for all t ∈ {1, 2, ..., j} and all j ∈ {1, 2, ...,M − 1}. Notice that we have
invoked Restriction Off-eqm to compute the payoff of a w−1-applicant who applies to wages other
than w, because such application is off the equilibrium path.

Lemma 6.1. For all j and all t ≥ 2, if the w−1-applicants prefer applying to a job at wage w to
a job at w+1, then so do the w−t-applicants.

Proof. Suppose that the w−1-applicants prefer to apply to w relative to w+1, i.e.,

q [Je(w)− Je(w−1)] ≥ q+1 [Je(w+1)− Je(w−1)] .

For all t ≥ 2, we have
q [Je(w)− Je(w−t)]− q+1 [Je(w+1)− Je(w−t)]

= {q [Je(w)− Je(w−1)]− q+1 [Je(w+1)− Je(w−1)]}+ (q − q+1) [Je(w−1)− Je(w−t)] .

The difference in {.} is non-negative by the supposition. The last term on the right-hand side is

also positive, because q > q+1 and Je(w−1) > Je(w−t) for all t ≥ 2. Thus, the above deference is
positive, implying that applying to w yields a higher expected surplus for a w−t-applicant than
applying to w+1. QED

The intuition for the above lemma is the same as that for Lemma Singleton. An applicant

at wage w−1 is more willing to sacrifice the employment probability for the wage level than an
applicant at lower wages w−t (t ≥ 2). If the high employment probability offered with wage w
is more attractive to an applicant at w−1 than the higher wage w+1, it must be so as well to an
applicant at lower wages w−t.

The above lemma significantly reduces the number of inequalities we need to verify for (6.1).

For each j ∈ {1, 2, ...,M − 1}, it suffices to verify (6.1) for only t = 1. However, there are still

M − 1 such inequalities. To reduce the number further, we use (4.4) to rewrite (6.1) for t = 1 as:

q(a)

q(a+1)
− 1− f(a)

f(a+1)
≥ 0. (6.2)

For given a+1, define φ(a+1) as the solution for a to the equality form of (6.2). Because the

left-hand side of (6.2) is a decreasing function of a, the inequality is equivalent to a ≤ φ(a+1).

We prove the following lemma in Appendix E:

Lemma 6.2. The function φ(.) exists, is unique for each a+1, and has the following properties:

(i) φ0 > 0; (ii) a+1 > φ(a+1) > a+1 − ln(1 + a+1); and (iii) if a ≤ φ(a+1), then a−1 < φ(a).

Property (iii) in Lemma 6.2 says that an applicant at wage wM−2 has the strongest incentive
among all applicants to leap on the wage ladder. To verify (6.2) for all j ∈ {1, 2, ...,M − 1}, it is
sufficient to verify it for j = 1. For j = 1, (6.2) becomes aM−1 ≤ φ(aM), which is equivalent to
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hM−1 ≤ h(φ(aM)). Express (5.2) for j = 0 by replacing q+1 by 0 and λq+1/f+1 by λS/C. Using

this equation to substitute for hM−1, we rewrite hM−1 ≤ h(φ(aM)) as follows:

0 ≤ r + σ

λ

µ
1

hM
+

1

fM
− 1

h(φ(aM))

¶
− qM

µ
1

h(φ(aM))
− 1

fM

¶
− S

C
.

Rewriting this condition further, we have:20

Lemma 6.3. (No-leap) Given the wage levels computed in Proposition Recursive, it is optimal

for applicants to apply only to the next wage level, rather than higher ones, if and only if

r + σ

λ
≥
µ

qM
h(φ(aM))

− qM
fM

+
S

C

¶Áµ
1

hM
+

1

fM
− 1

h(φ(aM))

¶
. (6.3)

6.2. Deviations That Lie Outside the Equilibrium Wage Support

Now we examine deviations that violate the restriction One-rung and lie outside Ω. Let wd ∈
(w−1, w) be such a deviation. This deviation can violate One-rung either in the type of applicants
it attracts, or in the direction in which the prospect employee will apply to other jobs, or in both.

The following lemma narrows down the types of such deviations we need to consider.

Lemma 6.4. The following statements are true regarding any deviation wd ∈ (w−1, w). (i) If an
applicant gets the wd-job, then his future application is to either w or w+1. (ii) If w−2-applicants
do not have incentive to apply to wd, then neither do w−t-applicants, where t ≥ 3.

Proof. For (i), we show that a wd-applicant does not have incentive to apply to w+t, for all

t ≥ 2. Suppose that a worker gets the job wd. Let Jde (wd) be the value function of such a worker
employed at wd. Because this worker is not restricted to applying to w+1 next, J

d
e (w

d) may not

obey (4.2). However, whatever job opportunities a worker at wd will have in the future, a worker

employed at wage w will have as well with the same probability (under Restriction Off-eqm).

Thus, Jde (w
d) < Je(w). For the worker employed at w

d, applying to w+1 next yields a higher

expected surplus than to any higher wage w+t (t ≥ 2), as shown below:
q+t

h
Je(w+t)− Jde (wd)

i
− q+1

h
Je(w+1)− Jde (wd)

i
= q+t [Je(w+t)− Je(w)] + q+t

h
Je(w)− Jde (wd)

i
− q+1

h
Je(w+1)− Jde (wd)

i
< q+1 [Je(w+1)− Je(w)] + q+t

h
Je(w)− Jde (wd)

i
− q+1

h
Je(w+1)− Jde (wd)

i
< q+1 [Je(w+1)− Je(w)] + q+1

h
Je(w)− Je(wd)

i
− q+1

h
Je(w+1)− Je(wd)

i
= 0.

20To rewrite the condition as a lower bound on (r + σ)/λ, note that 1
h
+ 1

f
=
£
1− (1 + a)e−a

¤−1
. So, the fact

φ(a) > a − ln(1 + a) implies 1
h(aM )

+ 1
f(aM )

> 1
h(φ(aM ))

. Moreover, if the right-hand side of the condition is an

increasing function of aM (which seems true from numerical examples), then we can replace (6.3) by the following
sufficient condition (using the facts that aM ≤ ā and C/S = (eā − 1− ā)):

r + σ

λ
≥ q(ā)

h(φ(ā))
h

1
h(ā)

+ 1
f(ā)

i
− 1

.
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The first inequality follows from our previous result that a w-applicant prefers to apply to w+1

relative to w+t for all t ≥ 2. The second inequality comes from the facts that q+t < q+1 for all

t ≥ 2 and Je(w) > Jde (wd).
For (ii), suppose that w−2-applicants do not have incentive to apply to wd. Then,

qd
h
Jde (w

d)− Je(w−2)
i
≤ q−1 [Je(w−1)− Je(w−2)] ,

where qd is the probability with which an applicant to wd gets the job. Using an argument similar

to that established Je(w) > Jde (w
d), we have Jde (w

d) > Je(w−1). Then, the above inequality
implies qd < q−1. Now, for all t ≥ 3, the following relationships hold:

qd
h
Jde (w

d)− Je(w−t)
i
− q−1 [Je(w−1)− Je(w−t)]

= qd
h
Jde (w

d)− Je(w−2)
i
+ qd [Je(w−2)− Je(w−t)]− q−1 [Je(w−1)− Je(w−t)]

≤ q−1 [Je(w−1)− Je(w−2)] + qd [Je(w−2)− Je(w−t)]− q−1 [Je(w−1)− Je(w−t)]
< q−1 [Je(w−1)− Je(w−2)] + q−1 [Je(w−2)− Je(w−t)]− q−1 [Je(w−1)− Je(w−t)]
= 0.

The first inequality follows from the supposition about w−2-applicants, and the second inequality
from qd < q−1. Therefore, a w−t-applicant gets a higher expected surplus from applying to w−1
than to wd. QED

The intuition for the above lemma is similar to that for Lemma Singleton. This similarity

is obvious for part (ii), because part (ii) extends Lemma 6.1 to wages outside the equilibrium

support and Lemma 6.1 relies on the intuition for Lemma Singleton. To see the link between part

(i) and Lemma Singleton, notice that w > wd. According to the intuition for Lemma Singleton,

an applicant at w is more willing to sacrifice the employment probability for the wage level than

an applicant at wd. Because the high employment probability with wage w+1 is more attractive

to a w-applicant than higher wages, it must be even more attractive to an applicant at the lower

wage wd.

Under the above lemma, only the following two types of deviations still need be ruled out:

(I) The deviation wd ∈ (w−1, w) attracts w−1-applicants and, after getting the job
with wd, such a worker will apply to w in the future.

(II) The deviation wd ∈ (w−1, w) attracts w−2-applicants and, after getting wd, such
a worker will apply to w+1.

Figure 3 depicts these two deviations, where the dashed arrows indicate the deviating firm’s

source of applicants and its employee’s future application. A type I deviation is profitable only

when the support of the wage distribution is too sparse. A type II deviation is profitable only

when the support is too dense, and it is meaningful only when the number of rungs on the wage

27



ladder is three or more. We will investigate these two deviations in turn.21

posted wages
w-2 w-1 wd w        w+1        wM

     …..   ….

   b w-2 w-1 wd w        w+1        wM

employed wages
Type I deviation

posted wages
w-2 w-1 wd w        w+1        wM

     …..   ….

   b w-2 w-1 wd w        w+1        wM

employed wages
Type II deviation

Figure 3

Consider first a type I deviation wd ∈ (w−1, w). Let Jdf (wd) be the deviating firm’s value
function after successfully recruiting a worker and Jde (w

d) the value function of a worker who

gets the job wd, conditional on that the worker’s future application is to w as required in a type

I deviation. Then,

Jdf (w
d) =

y − wd
r + σ + λq

,

Jde (w
d) =

wd + σJu − λS + λqJe(w)

r + σ + λq
.

21Other deviations and, in particular, the following two types of deviations, are not profitable. The first is like
the one depicted in the upper panel of Figure 3, but with the employee at wd applying to w+1 in the future.
This deviation can be viewed as a downward deviation from w that satisfies One-rung and, by construction, the
deviation is dominated by w. The second deviation is like the one depicted in the lower panel of Figure 3, but with
the employee at wd applying to w in the future. This deviation can be viewed as an upward deviation from w−1
that satisfies One-rung and, by construction, the deviation is dominated by w−1.
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These functions are different from those in (4.1) and (4.2), because the worker’s future application

direction is different from the one depicted in Figure 2a (again, we invoked Off-eqm).

For the deviation wd to be profitable, it must satisfy the following conditions:

(Ia) By applying to wd, a w−1-applicant’s expected surplus is equal to E(w−1);

(Ib) The deviating firm earns an expected surplus greater than C.

These two conditions cannot be both satisfied. To see this, suppose that the deviation satisfies

(Ia). Let qd be the employment probability of an applicant applying to wd. Then, (Ia) implies

qd
h
Jde (w

d)− Je(w−1)
i
= E(w−1) = Cq/f. (6.4)

Substituting Jde (w
d) and Je(w−1) into the above equation, we solve wd as follows:

wd = w−1 + (r + σ + λq)Cq/(fqd). (6.5)

The deviating firm’s expected surplus is π(ad) = hdJdf (w
d), where hd is the firm’s hiring proba-

bility. Substituting (y − w−1) from (4.11) and (wd − w−1) from (6.5), π(ad) becomes:

π(ad) = hd
µ
C

h−1
− qC

fqd

¶
= C

Ã
hd

h−1
− a

dq

f

!
.

The surplus π(ad) is maximized at ad = a∗, where a∗ = ln
³

f
qh−1

´
solves π0(a∗) = 0. The

maximum is

π(a∗) = C
µ
h(a∗)
h−1

− a
∗q
f

¶
=
Cq

f

³
ea
∗ − 1− a∗

´
=
ea
∗ − 1− a∗
ea − 1− a C,

where the second equality comes from substituting h−1 = e−a
∗
f/q, and the third equality from

the definition of f . Because (ea − 1− a) is an increasing function, a necessary condition for the
deviation to be profitable is a∗ > a. However, a queue length ad > a will not attract any w−1
applicants. To see this, note that a w-worker is employed at a higher wage than a wd-worker and

has all future job opportunities that a wd-worker will have. Thus, Je(w) > Jde (w
d). If ad > a,

then qd < q, which would lead to the following contradiction to (6.4):

E(w−1) = q [Je(w)− Je(w−1)] > q
h
Jde (w

d)− Je(w−1)
i
> qd

h
Jde (w

d)− Je(w−1)
i
.

Therefore, we have established the following lemma:

Lemma 6.5. (Type-I) A type I deviation is not profitable.

The explanation is as follows. A type-I deviation wd ∈ (w−1, w) competes against an equilib-
rium wage w for the same applicants (i.e., w−1-applicants). In comparison with w, the deviation
wd offers a w−1-applicant not only a lower wage but also a lower value for future application. For
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the deviation to attract this applicant, it must provide a significantly higher employment proba-

bility than a job opening at w does. This implies that the deviating firm’s hiring probability must

be significantly lower than that of a firm recruiting at w. In this case, the deviator’s expected

surplus from recruiting will not be high enough to cover the vacancy cost.

Now consider a type II deviation wd ∈ (w−1, w), depicted in the lower panel in Figure 3. With
this deviation, the deviating firm’s ex post value Jdf (w

d) and the employee’s value Jde (w
d) are:

Jdf (w
d) =

y − wd
r + σ + λq+1

, (6.6)

Jde (w
d) =

wd + σJu − λS + λq+1Je(w+1)

r + σ + λq+1
. (6.7)

In contrast to a type-I deviation, a type-II deviation changes not only the applicant’s current

payoff but also the future payoff, by changing the potential employee’s future application. As a

result, it is more difficult to prove that a type-II deviation is not profitable. The following lemma

is proven in Appendix F:

Lemma 6.6. (Type-II) Define β∗ by the following equation:

h (β∗) = 1
Á·

1

h
+

q+1
(q − q+1) f+1

¸
. (6.8)

A type II deviation is not profitable if and only if the following condition is satisfied:

β∗ − h(β∗)ea−1 + r + σ + λq+1
r + σ + λq

(ea−1 − 1− a−1) ≥ 0. (6.9)

It is difficult to verify (6.9) analytically, because the condition involves three variables (a−1, a, a+1).
However, it is satisfied in the numerical example in section 5. We conclude this section by sum-

marizing the results on existence in the following proposition.

Proposition 6.7. Maintain Assumption Regularity and Restriction Off-eqm. An equilibrium

with the described wage ladder exists under the conditions in Proposition M-exists, Lemma No-

leap and (if M ≥ 3) Lemma Type-II.

7. Conclusion

In this paper we have studied the equilibrium in a large labor market where employed workers

search on the job and firms direct workers’ search intentionally using wage offers and employment

probabilities. All applicants observe all posted job openings before the application. There is

wage dispersion among workers, despite the fact that all workers (and all jobs) are homogeneous.

Moreover, equilibrium wages form a ladder and workers choose to climb up the ladder over time,

one rung at a time. This occurs without the familiar elements that prevent workers from jumping
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over the ladder, such as a gradual increase in productivity, differential information among workers,

and intentional discrimination by firms according to workers’ current wages.

Other properties of the wage ladder are as follows: (i) a low-wage job is easier to be obtained

than a high-wage job, and so a low-wage job experiences a higher quit rate than a high-wage

job; (ii) The distance between two adjacent rungs on the wage ladder becomes smaller as wage

increases; (iii) The longer a worker has been employed since his last unemployment, the higher his

current wage is on average and, the higher wage a worker had just before becoming unemployed,

the longer time he will take to return to the previous wage level; (iv) the density of offer wages is

a decreasing function; and (v) the wage density is decreasing at high wages when the hiring cost

is larger relative to the application cost. In particular, properties (ii), (iv)-(v) are not true in the

undirected search framework with on-the-job search. On the other hand, directed search models

without on-the-job search generate a degenerate wage distribution among homogeneous workers.

In fact, our numerical results show that this degeneracy is not robust, because allowing for even

a very small probability of on-the-job search generates a non-degenerate wage ladder.

We have illustrated how useful search frictions can be in explaining labor market phenomena.

When search is directed, wages can direct workers’ applications ex-ante and as a result, both the

meeting technology and the division of the surplus are endogenized. When on-the-job search is

allowed, the tradeoff between wages and employment (hiring) probability, which is the underlying

principle of directed search, leads to a wage ladder equilibrium. We could use that same framework

to look at various extensions, such as learning by doing on the job or match specific productivity.22

22One way to introduce learning by doing is to assume that workers’ productivity depends on their positions
on the wage ladder, specifically that each time they move up the ladder, their productivity increases by some
increment, and that their skills fully depreciate when they lose their job. This would allow the worker’s labor
market history to remain tractable, yet carry the flavor of learning by doing. Of course, some of the properties
of equilibrium (such as the fact that firms offer the same employment probability to all workers) may not hold
anymore, as firms may not be indifferent as to the type of workers it would like to attract.
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Appendix

A. Properties of f(a) and g(a)

In this appendix we establish the following lemma.

Lemma A.1. Define f(.) as in (4.6) and g(.) as follows:

g(a) ≡ (r + σ + λq)

µ
1

f(a)
− 1

h(a)

¶
. (A.1)

For all a > 0, f 0(a) > 0, d
da

³
f(a)
a

´
> 0, d

da

³
1
f(a) − 1

aq(a)

´
< 0, and

(ea − 1)
h
a (ea − 1)2 − (ea − 1− a)2

i
− (ea − 1− a)3 > 0. (A.2)

Furthermore, if (r + σ)/λ > f(a)/a then g0(a) < 0 for all a > 0.

Proof. First, we show that d
da

³
f(a)
a

´
> 0 implies f 0(a) > 0 and d

da

³
1
f(a) − 1

aq(a)

´
< 0. Since

d
da

³
f(a)
a

´
= 1

a2 (af
0(a)− f), then d

da

³
f(a)
a

´
> 0 implies f 0(a) > f(a)/a > 0. Also, it implies that

d
da

³
1
f(a) − 1

aq(a)

´
= − f 0

f2 +
q+aq0
(aq)2 < − 1

af +
q+aq0
(aq)2

∼ −aq + f
q (q + aq

0)
= −(1− e−a) + (ea − 1− a)

³
1−e−a
a − 1−(1+a)e−a

a

´
= −(1− e−a) + (ea − 1− a)e−a = −ae−a < 0,

where the symbol ∼ means “having the same sign as”.
Now we show that d

da

³
f(a)
a

´
> 0. Substituting q(a) = 1−e−a

a , we have

f(a)

a
=
(ea − 1)(ea − 1− a)

a2ea
.

Then, d
da

³
f(a)
a

´
= f1(a)

a3ea
, where

f1(a) = (a− 2)e2a + (a+ 4)ea − (a2 + 2a+ 2).

Note that f1(0) = 0. Denote the nth order derivative of f1(a) by f1(n)(a). We have:

f1(1)(a) = (2a− 3)e2a + (a+ 5)ea − (2a+ 2), with f1(1)(0) = 0,

f1(2)(a) = (4a− 4)e2a + (a+ 6)ea − 2, with f1(2)(0) = 0,
f1(3)(a) = ea[(8a− 4)ea + a+ 7], with f1(3)(0) = 3 > 0,
d

da

h
e−af1(3)(a)

i
= (8a+ 4)ea + 1 > 0 for all a ≥ 0.

The last two results imply that f1(3)(a) > f1(3)(0) > 0 for all a > 0, which in turn implies that

f1(2)(a) > f1(2)(0) = 0, f1(1)(a) > f1(1)(0) = 0 and f1(a) > f1(0) = 0. Therefore, d
da

³
f(a)
a

´
> 0

for all a > 0.
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We can establish (A.2) using the same procedure. Denote the left-hand side of (A.2) tem-

porarily as LHS(a). Then, LHS(i)(0) = 0 for i = 0, 1, 2, and

LHS(3)(a) = 27(a− 1)e3a + (16a+ 72) e2a −
³
4a2 + 31a+ 51

´
ea + 6.

Because (a− 1) ea + 1 > 0 for all a > 0, (a− 1) e3a > −e2a. Substituting this result for the first
term in LHS(3)(a), we have LHS(3)(a) >

¡
12a2 + 30a− 6¢ ea+6. The last expression has a value

0 at a = 0 and a positive derivative for all a > 0. Thus, LHS(3)(a) > 0. Then, for all a > 0, we

have LHS(2)(a) > LHS(2)(0) = 0, LHS(1)(a) > LHS(1)(0) = 0 and LHS(a) > LHS(0) = 0.

Finally, we show that g0(a) < 0 for all a > 0 if (r + σ)/λ > f(a)/a. Compute:

g0(a) = (r + σ + λq)
d

da

µ
1

f(a)
− 1

aq(a)

¶
+ λ

µ
1

f(a)
− 1

aq(a)

¶
q0.

Because d
da

³
1
f(a) − 1

aq(a)

´
< 0, as shown above, the condition (r + σ) /λ > f(a)/a implies

g0(a) <
µ
λf

a
+ λq

¶
d

da

µ
1

f
− 1

aq

¶
+ λ

µ
1

f
− 1

aq

¶
q0 ∼ g1(a),

where g1(a) = (3 − a)e3a − (5a + 9)e2a + (7a2 + 9a + 9)ea − (2a3 + 7a2 + 7a + 3) (correction
to (3 − a)e3a − (5a + 9)e2a + (7a2 + 13a + 9)ea − (2a3 + 7a2 + 7a + 9; the calculations should
also be corrected accordingly.) Verify that g1(0) = 0, g1(1)(0) = −4 < 0, g1(2)(0) = −8 < 0,

g1(3)(0) = −12 < 0, and g1(4)(a) = eag2(a), where

g2(a) = (135− 81a)e2a − (80a+ 304)ea + 7a2 + 65a+ 129.

Verify that g2(0) = −40 < 0, g2(1)(0) = −130 < 0, g2(2)(0) = −234 < 0 and g2(3)(a) = eag3(a),
where

g3(a) = (108− 648a)ea − (80a+ 544).
Verify that g3(0) = −436 < 0 and g30(a) < 0 for all a ≥ 0. Tracing all the way back, we have
g1(a) < 0 for all a > 0 and so g0(a) < 0 for all a > 0. QED

B. Proofs of Proposition Recursive and Lemma 4.2

We prove Proposition Recursive by induction. The argument preceding the proposition in the

text has already established (4.11) and (4.12) for j = 0. To verify (4.13) and (4.14) for j = 0, set

i = M − 1 (and wd = wM−1) in (4.2) to obtain an equation for Je(wM−1). Using this equation
and substituting Je(wM), we get:

Je(wM)− Je(wM−1) = wM − wM−1 + λS

r + σ + λqM
.

Combining this equation with (4.4) for i =M − 1, we obtain (4.13) and (4.14) for j = 0.
Now suppose that (4.11) — (4.14) hold for an arbitrary j ∈ {0, 1, ...,M − 3}. We show that

they also hold for j +1 and so, by induction, the proposition holds. For j +1, (4.11) comes from
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setting i = M − (j + 1) in (4.3), and (4.12) from the definitions of hM−(j+1) and qM−(j+1). To
verify (4.13) and (4.14) for j + 1, set i = M − j − 2 (and wd = wM−j−1) in (4.2) to obtain an
equation for Je(wM−j−2). Substituting this result, we get:

Je(wM−(j+1))− Je(wM−(j+2))
= 1

r+σ+λqM−(j+1)

h
(r + σ)Je(wM−(j+1))−wM−(j+2) − σJu + λS

i
= 1

r+σ+λqM−(j+1)

h
wM − wM−(j+2) + λS − (r + σ)C

Pj
t=0

1
fM−t

i
.

The second equality comes from substituting (4.14) for j, which holds by supposition. Combining

the above result with (4.4) for i =M − (j + 1), we obtain (4.13) and (4.14) for j + 1.
Finally, the zero-profit condition (4.3) must hold for a firm posting w1. By the above deriva-

tion, this implies that (4.11) and (4.12) must hold for j =M − 1. In contrast, (4.13) and (4.14)
need be modified for j =M −1. By definition, w0 = b and Je(w0) = Ju. To derive (4.15), use the
wage ladder to simplify (2.11) as rJu = b− λ0S + λ0q1 [Je(w1)− Ju]. Substituting [Je(w1)− Ju]
from (4.4) (with i = 1), we obtain (4.15). This completes the proof of Proposition Recursive.

Now, we prove Lemma 4.2. BecauseM is unknown, we start with an arbitrary but sufficiently

large integerm and set hm = h
∗, where h∗ is any value that satisfies (4.10). Compute the sequence

(am−t)t≥0 according to Proposition Recursive and define

δi(m) =
wm − b+ λ0S

r + σ
− Cλ0qi
(r + σ) fi

− C
m−iX
t=0

1

fm−t
.

Note that δ1(M) = ∆(M,h∗), where ∆ is given by (4.18). By Proposition Monotone in the text

(proven later), am−t−1 < am−t ≤ ā < ∞ for all t ≥ 0. Since 1/fm−t and qm−t/fm−t are both
decreasing functions of am−t, and ai < ai+1, we get:

δi+1(m)− δi(m) =
Cλ0
r + σ

µ
qi
fi
− qi+1
fi+1

¶
+
C

fi
>
C

fi
≥ C

f (ā)
.

Because C/f (ā) is bounded away above 0, the sequence δi decreases by a strictly positive amount

each time when i decreases. If δm(m) ≥ 0, then there exists i∗ such that δi ≤ 0 for all i ≤ i∗

and δi > 0 for all i ≥ i∗ + 1. In this case, let M∗ = m − (i∗ − 1) and compute the sequence
{δi(M∗)} by setting hM∗ = h∗. Then, δi(M∗) ≤ 0 for all i ≤ 1 and δi(M

∗) > 0 for all i ≥ 2.

Moreover, for any integerM 0 6=M∗, the sequence {δi(M 0)} computed by setting hM 0 = h∗ satisfies
δ1(M

0) = δ(M∗−M 0+1)(M
∗). From the properties of the sequence {δi(M∗)}, we have δ1(M 0) > 0

for all M 0 ≤M∗ − 1 and δ1(M
0) < 0 for all M 0 ≥M∗ + 1. This is the result in Lemma 4.2.

Finally, we show that δm(m) ≥ 0, indeed. After substituting wm = y − C(r + σ)/hm, the

condition δm(m) ≥ 0 becomes

b ≤ y + λ0S − C [(r + σ) eam + λ0]

eam − 1− am .

The right-hand of this inequality is an increasing function of am. Because am is bounded from

below by ā− ln (1 + ā) according to (4.10), a sufficient condition for the above inequality is that
it holds for this lower bound of am, which is imposed as (4.19). QED
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C. Proof of Proposition Monotone

First, we verify (5.3) and (5.4) by induction. To begin, we show that these conditions hold for

j = 0. By (4.10), aM ≤ ā. Since h(a) is an increasing function and q(a) a decreasing function, all
three inequalities in (5.3) are equivalent to each other, and so we show hM−1 < hM only. Since

(5.2) holds for j = 0 after replacing the term q+1 by 0 and λq+1/f+1 by λS/C, hM−1 < hM if

and only if

0 <
r + σ + λqM

fM
− λS

C
− λqM
hM

= λ

µ
1

eaM − 1− aM − 1

eā − 1− ā
¶
+

µ
r + σ

fM
− λ

aM

¶
,

where we have used the definition of ā in (4.7) to replace S/C. Because aM ≤ ā by construction
(see (4.10)) and (ea − 1− a) is an increasing function, the term in the first (.) is positive. Also,

f(a)/a is an increasing function, as shown in Appendix A, and so Assumption Regularity implies

(r + σ)/λ > f(ā)/ā ≥ fM/aM . That is, the term in the second (.) above is also positive. Thus,

hM−1 < hM , verifying (5.3) for j = 0.
Now that aM−1 < aM ≤ ā, and that f(a)/a is an increasing function of a, (4.20) implies

(r + σ)/λ > f(aM−1)/aM−1. That is, (5.4) holds for j = 0.
Suppose that (5.3) and (5.4) hold for an arbitrary j ∈ {1, 2, ...,M − 3}. We show that they

hold for j + 1. For (5.3), this amounts to proving h−2 < h−1. Computing h−2 using (5.2),
h−2 < h−1 if and only if

0 <
r + σ + λq

h−1
− λq

f
+ (r + σ + λq−1)

µ
1

f−1
− 1

h−1

¶
.

Because h−1 < h by supposition, a sufficient condition for the above inequality is:

0 <
r + σ + λq

h
− λq

f
+ (r + σ + λq−1)

µ
1

f−1
− 1

h−1

¶
.

The last term is equal to g(a−1). In Appendix A we showed that g0(a) < 0 if (r+σ)/λ > f(a)/a.

Because (r + σ)/λ > f(ā)/ā, we have g0(a) < 0 for all a ≤ ā. Since a−1 < a by supposition and
a ≤ ā, then g(a−1) > g(a). Thus,

r+σ+λq
h − λq

f + g(a−1)
> r+σ+λq

h − λq
f + (r + σ + λq)

³
1
f − 1

h

´
= (r + σ)/f(a) > 0.

That is, (5.3) holds for j + 1. This in turn implies a−2 < a−1. Because f(a)/a is an increasing
function of a (see Appendix A), the supposition (r + σ)/λ > f(a−1)/a−1 implies (r + σ)/λ >

f(a−2)/a−2. That is, (5.4) also holds for j + 1. By induction, (5.3) and (5.4) hold for all

j ∈ {0, 1, ...,M − 2}.
Second, we prove (5.5), which is equivalent to h−1 > h (a− ln(1 + a)). By (5.2), this in turn

is equivalent to:

0 > r+σ+λq+1
h − λq+1

f+1
+ (r + σ + λq)

³
1
f − 1

h(a−ln(1+a))
´

= r+σ+λq+1
h − λq+1

f+1
− r+σ+λq

h = −λ
³
q−q+1
h + q+1

f+1

´
.
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The equalities follow from calculating f and h(a − ln(1 + a)) explicitly. Because q > q+1, the

above inequality clearly holds, and so does (5.5).

Finally, we show that da/dhM > 0 and dw/dhM > 0 for any hM that satisfies (4.10). From

(4.13) it is easy to see that da/dhM > 0 implies dw/dhM > 0; so, we need to prove only

da/dhM > 0. Because aM = − ln (1− hM), it is obvious that daM/dhM > 0. If da+t/dhM ≥ 0
for all t ≥ 1 implies da/dhM > 0, then by induction, da/dhM > 0. Suppose that da+t/dhM ≥ 0 for
all t ≥ 1. By construction, h = λC

¡
r+σ
λ + q

¢
/ (y − w). Totally differentiating this relationship

with respect to hM (where dw/dhM can be calculated using (4.13)), we have

y−w
λChh

0 da
dhM

= 1
λC

dwM
dhM

+ r+σ
λ

Xj

t=2

f 0+t
f2+t

³
da+t
dhM

´
+

·
q0+1

³
1
h − 1

f+1

´
+
¡ r+σ

λ + q+1
¢ f 0+1
f2+1

¸ ³
da+1
dhM

´
.

Because wM = y− (r+σ)C/hM , dwM/dhM > 0. Because da+t/dhM ≥ 0 for all t ≥ 1, a sufficient
condition for da/dhM > 0 is that the following inequality holds for all j:

q0(a)
µ
1

h−1
− 1

f

¶
+

µ
r + σ

λ
+ q

¶
f 0(a)
f2

> 0.

To verify this inequality, temporarily denote the left-hand side of the inequality by LHS. Because

a−1 > a− ln(1 + a), q0 < 0, (r + σ) /λ > f/a and f 0 > 0, we have

LHS > q0(a)
µ

1

h (a− ln(1 + a)) −
1

f

¶
+

µ
f

a
+ q

¶
f 0(a)
f2

.

After substituting (q, f, q0, f 0), the right-hand side of this inequality has the same sign as the
expression, (ea − 1)

h
a (ea − 1)2 − (ea − 1− a)2

i
− (ea − 1− a)3, which is positive for all a > 0 as

shown in Lemma A.1 in Appendix A. Thus, the required condition LHS > 0 holds. QED

D. Proofs of Propositions W-property and W-density

We prove Proposition W-property first. Using (4.13) and (4.14), it is easy to verify (i) in the

Proposition. Property (ii) holds because E(w−1) = Cq/f > Cq+1/f+1 = E(w) and E(wM−1) ≥ S
(see (4.9) or equivalently the first part of (4.10)).

To establish (iii), use (5.1) to rewrite it as

R+ q

f
− R+ q+1

f+1
− q+1
f+1

+
q+2
f+2

> 0,

whereR = (r+σ)/λ. For the computed sequence to be an equilibrium we need q > q+1 (1 + f/f+1)

(see (6.2)), as shown in section 6. Under this condition, the left-hand side of the above inequality

is greater than the following expression:

(R+ q+1)

µ
1

f
− 1

f+1

¶
+
q+2
f+2

.
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This is clearly positive, because a < a+1 and f (.) is an increasing function. Thus, Proposition

W-property holds.

To prove Proposition W-density, recall that the density of offer wages is (vi) and of employed

wages (ni/(1− u)), where i = 1, 2, ...,M . So, the density of offer wages is a decreasing function
iff v−1 > v and the density of employed wages is decreasing iff n−1 > n. By (4.16) and (4.17),

n−1/n =
¡
σ
λ + q+1

¢
/q and v−1/v = (n−2a)/(n−1a−1) for all i ≥ 3. For all i ≥ 3, we have:

v−1
v
=

µ
a
σ

λ
+ h

¶Á
h−1 >

h

h−1
> 1.

Similarly, the result holds for i = 2; i.e., v1/v2 > h2/h1 > 1.

The density of employed wages is a decreasing function iff σ/λ > q− q+1. Because qM+1 = 0,
the density of employed wages is decreasing at the upper end of the wage support (i.e. nM−1 >
nM) iff σ/λ > qM . Because q(.) is a decreasing function and aM ≥ ā − ln(1 + ā) by (4.10), a
sufficient condition for nM−1 > nM is σ/λ > q(ā − ln(1 + ā)), which can be rewritten as (5.7).
When r is sufficiently close to 0, this condition is satisfied iff (r+σ)/λ > q(ā− ln(1+ ā)). Because
(r+σ)/λ ≥ f(ā)/ā by Assumption Regularity, (5.7) is satisfied if f(ā)/ā > q (ā− ln(1 + ā)), which
is equivalent to ā > 1.605 and hence to C/S > 2.373. Similarly, because aM ≤ ā by (4.10), a

sufficient condition for nM−1 < nM is σ/λ < q(ā). QED

E. Proof of Lemma 6.2

To show that φ(a+1) is well-defined for each a+1 by the equality form of (6.2), we use the definition

of f to rewrite the equality as

q(a)

q(a+1)

·
1− ea − 1− a

ea+1 − 1− a+1
¸
= 1. (E.1)

The left-hand side of (E.1) is a decreasing function of a and an increasing function of a+1 (note

that a+1 > a). If φ(a+1) is a solution for a, then the solution is unique and satisfies φ
0 > 0,

verifying part (i) of the lemma. When a = a+1, the left-hand side of (E.1) is 0, which is less than

the right-hand side. When a→ 0, the left-hand approaches 1/q(a+1) > 1. Thus, the solution for

a, φ(a+1), indeed exists and is unique. This argument also establishes the inequality φ(a+1) < a+1

in part (ii) of the lemma.

For the inequality φ(a+1) > a+1 − ln(1 + a+1) in part (ii), we show that the left-hand side
of (E.1) is greater than 1 (the right-hand side) when a = a+1 − ln(1 + a+1). Substituting this
particular value of a and re-arranging terms, the condition to be established becomes ln(1+a+1)−
a+1
1+a+1

> 0. The left-hand side of this inequality is equal to 0 when a+1 = 0, and its derivative

with respect to a+1 is a+1/(1 + a+1)
2 > 0. Thus, the desired inequality holds for all a+1 > 0.

Before establishing part (iii), we claim that the following inequalities hold:

d

da

·
1

f(a)
− 1

h(φ(a))

¸
≤ 0, (E.2)
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·
f(a)

a
+ q(a)

¸
d

da

·
1

f(a)
− 1

h(φ(a))

¸
+ q0(a)

·
1

f(a)
− 1

h(φ(a))

¸
≤ 0. (E.3)

Because the expressions in these conditions are single-variable functions which do not have any

parameter, we can graph them using a computer and show that the inequalities hold, indeed.

(However, it is difficult to prove them using pen and paper.)

Now, suppose a ≤ φ(a+1). We show a−1 < φ(a) or, equivalently, h−1 < h(φ(a)). Under (5.2),
this desired condition is equivalent to:

r + σ + λq+1
h

− λq+1
f+1

+ (r + σ + λq)

µ
1

f
− 1

h(φ(a))

¶
> 0.

Because a ≤ φ(a+1) by supposition, h ≤ h(φ(a+1)), and so a sufficient condition for the above
inequality is

r + σ + λq+1
h(φ(a+1))

− λq+1
f+1

+ (r + σ + λq)

µ
1

f
− 1

h(φ(a))

¶
> 0.

Under (E.2) and (E.3), we have

d
da

n
(r + σ + λq)

h
1
f − 1

h(φ(a))

io
= (r + σ + λq) dda

h
1
f − 1

h(φ(a))

i
+ λq0(a)

h
1
f − 1

h(φ(a))

i
< λ

³
f
a + q

´
d
da

h
1
f − 1

h(φ(a))

i
+ λq0(a)

h
1
f − 1

h(φ(a))

i
≤ 0.

The first inequality comes from (E.2) and the result (r+σ)/λ > f(a)/a in Proposition Monotone,

and the second inequality from (E.3). Because a < a+1, the above result impliesh
r+σ+λq+1
h(φ(a+1))

− λq+1
f+1

i
+ (r + σ + λq)

h
1
f − 1

h(φ(a))

i
≥

h
r+σ+λq+1
h(φ(a+1))

− λq+1
f+1

i
+ (r + σ + λq+1)

h
1
f+1

− 1
h(φ(a+1))

i
= r+σ

f+1
> 0.

This is the desired result. QED

F. Proof of Lemma Type-II

Consider a type-II deviation wd ∈ (w−1, w). This deviation induces the value Jdf (wd) to the firm
and Jde (w

d) to the worker who gets the job, where Jdf is given by (6.6) and J
d
e by (6.7). Suppose

that the deviation is profitable. Then it must satisfy the following conditions:

(IIa) By applying to wd, a w−2-applicant’s expected surplus is equal to E(w−2);

(IIb) The deviating firm earns an expected surplus greater than C;

(IIc) A wd-applicant’s future application is indeed to w+1 instead of w.
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Under (IIa), qd
h
Jde (w

d)− Je(w−2)
i
= E(w−2) = Cq−1/f−1. That is,

q−1
qdf−1

= 1
C

h
Jde (w

d)− Je(w−2)
i

= 1
C [Je(w)− Je(w−1)] + 1

C [Je(w−1)− Je(w−2)] + 1
C

h
Jde (w

d)− Je(w)
i

= 1
f +

1
f−1 −

(w−wd)/C
r+σ+λq+1

.

The last equality comes from substituting (Jde (w
d), Je(w)) and using (4.4). Solve for w

d:

wd = w −C(r + σ + λq+1)

µ
1

f
+

1

f−1
− q−1
qdf−1

¶
. (F.1)

The deviating firm’s expected surplus is π(ad) = hdJdf (w
d). Substituting (Jdf (w

d), wd) and

using (4.3) for (y − w), this surplus becomes:

π(ad) =
C
h
(y − w) +

³
w − wd

´i
r + σ + λq+1

= C

"
hd
µ
1

h
+
1

f
+

1

f−1

¶
− a

dq−1
f−1

#
.

The expected surplus π(ad) is maximized at ad = A that solves π0(A) = 0. So,

A = ln

·
1

q−1

µ
1 + f−1

µ
1

h
+
1

f

¶¶¸
. (F.2)

Because a−1 > a − ln(1 + a) by Proposition Monotone, it can be shown that A > a−1. The
unconstrained maximum of π(ad) is:

π(A) = C
³
eA − 1−A

´
/ (ea−1 − 1− a−1) > C.

Thus, a type II deviation is not profitable if and only if the constraint (IIc) keeps ad a sufficient

distance away from A.

The constraint (IIc) requires q+1
h
Je(w+1)− Jde (wd)

i
≥ q

h
Je(w)− Jde (wd)

i
. Using (4.4) to

substitute Je(w+1), noting that Je(w)− Jde (wd) = (w−wd)/(r+ σ + λq+1), and substituting w
d

from (F.1), we can rewrite (IIc) as follows:

qd ≤ q−1
Á·
1 + f−1

µ
1

f
− q+1
(q − q+1) f+1

¶¸
. (F.3)

Let β be the level of ad that satisfies (F.3) as equality. Since qd = q(ad) is a decreasing function

of ad, (F.3) is equivalent to ad ≥ β.

Because A is the unique maximizer of π(ad) and π(A) > C, there exist A1 and A2, with

A ∈ (A1, A2), such that π(Ai) = C, for i = 1, 2. Clearly, π(ad) > C iff ad ∈ (A1, A2), and
π0(A1) > 0 > π0(A2). Because a type II deviation must satisfy ad ≥ β (i.e., the constraint (IIc)),

the deviation is not profitable if and only if either β ≥ A2 or β ≤ ad ≤ A1. In the remainder of
this proof, we rewrite these conditions to obtain the condition (6.9) in the lemma. Let us denote

Y = q+1/ [(q − q+1) f+1] in this appendix.
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First, we show that β > A1, and so the case β ≤ ad ≤ A1 never occurs. The inequality β > A1
holds iff q(β) < q(A1) and hence iff

q(A1) >
q−1

1 + f−1
³
1
f − Y

´ = q(A1)
h
1 + f−1

³
1
h +

1
f

´i
− f−1/A1

1 + f−1
³
1
f − Y

´ .

Here we have used the definition of q(β) first and then the definition of A1 to substitute for q−1.
Re-arranging terms and using the definition of β∗ in (6.8), the above inequality is equivalent to
h(A1) < h(β

∗). So, β > A1 is equivalent to β∗ > A1. Because a < φ(a+1), Y < 1/f and so

h(β∗) >
µ
1

h
+
1

f

¶−1
= 1− (1 + a) e−a.

A sufficient condition for β∗ > A1 is then A1 < a − ln (1 + a). Because a − ln (1 + a) < a−1 by
Proposition Monotone and a−1 < A as shown in the text, a− ln(1 + a) < A. Because π0(ad) > 0
for all ad < A and π(A1) = C, then A1 < a − ln (1 + a) iff π (a− ln (1 + a)) > C. Calculating

π (a− ln (1 + a)) and re-arranging terms, the latter condition becomes q (a− ln (1 + a)) > q−1,
which is satisfied because q (.) is a decreasing function and a−ln (1 + a) < a−1. Now that β > A1,
a type II deviation is not profitable iff β ≥ A2.

Second, we show that β ≥ A2 iff β∗ ≥ β. Similar to the above procedure that showed β > A1

iff β∗ > A1, we can show that β ≥ A2 iff β∗ ≥ A2. Because β∗ > A1, as shown above, and

π(A2) = C, the inequality β∗ ≥ A2 holds iff π (β∗) ≤ C. Substituting π(β∗), we rewrite the latter
condition as

0 ≤ 1
h(β∗) −

³
1
h +

1
f +

1
f−1

´
+ β∗

h(β∗)
q−1
f−1

=
³
1
h + Y

´
−
³
1
h +

1
f +

1
f−1

´
+ q−1

q(β∗)f−1
= q−1

q(β∗)f−1 −
³
1
f−1 +

1
f − Y

´
.

Using the equation that defines β to substitute for q−1, we can rewrite the above inequality further
as q(β∗) ≤ q(β). Thus, β ≥ A2 holds iff β∗ ≥ β.

Finally, we show that β∗ ≥ β is equivalent to (6.9). To do so, rewrite (5.2) as

1

f
− Y = 1

h−1
− r + σ + λq+1

r + σ + λq

µ
1

h
+ Y

¶
.

Then, β∗ ≥ β iff 1/q (β∗) ≥ 1/q (β), and hence iff

0 ≤ 1
q(β∗) − 1

q−1

n
1 + f−1

h
1
h−1 −

r+σ+λq+1
r+σ+λq

³
1
h + Y

´io
= 1

q(β∗) − 1
q−1

³
1 + f−1

h−1

´
+
³
r+σ+λq+1
r+σ+λq

´
f−1

q−1h(β∗)

= 1
q(β∗) − ea−1 +

³
r+σ+λq+1
r+σ+λq

´
(ea−1 − 1− a−1) /h(β∗).

The inequality comes from substituting the definition of β and the term
³
1
f − Y

´
; the two equal-

ities come from substituting the definitions of h (β∗) and f . Multiplying the last expression by
h(β∗) yields (6.9). QED
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Supplementary Appendices for the Manuscript:

“Directed Search On the Job and the Wage Ladder”

by

Alain Delacroix and Shouyong Shi

G. Simplifying a Recruiting Firm’s Strategy

In the text of the paper, we claimed that a recruiting firm’s decision can be modelled as announcing

a wage level and an ex ante employment probability, rather than ex post selection criteria that

the firm will use to select one worker out of the received applicants. We also claimed that the

optimal choice of employment probabilities must be the same for all types of applicants. In this

supplementary appendix, we prove these results.

Consider a firm posting wage w and examine its ex post selection criteria. Let R(w0) be the
number of w0-applicants whom this firm will receive and denote R = (R(w0))w0 as the vector of
such numbers. The firm’s selection rule is a matrix of probabilities, (Z(w0, R))w0,R; The element
Z(w0, R) describes the probability with which the selected worker is a w0-worker, conditional
on the composition of received applicants R. Conditional on R and that the selected worker is

a w0-applicant, each particular w0-applicant who applied to the firm is chosen with probability

Z(w0, R)/R(w0). Clearly, the firm cannot select a w0-worker if no such applicant has applied to
the firm, and the selection probabilities must add up to one if the firm has received one or more

applicant. That is, the following restrictions must hold:

Z(w0, R) = 0 if R(w0) = 0, (G.1)X
w0
Z(w0, R) = 1 if R 6= 0, and 0 otherwise. (G.2)

In addition, we exclude lexicographic selection rules by imposing the following restriction:

If Z(w0, R) > 0 for a particular R such that R(w0) > 0,
then Z(w0, R) > 0 for all such R that R(w0) > 0. (G.3)

That is, if a firm selects a type of applicants with positive probability in some cases, then it

must select such applicants with positive probability in all cases, provided that they show up

at the match. The reason for imposing this restriction is that lexicographic selection rules may

induce pure strategy equilibria which feature implicit coordination. Note that the firm can rank

the applicants probabilistically. In particular, we do not restrict the selection probabilities to be

equal for all types of received applicants, although this is a result we will establish later.

Let q(w,w0) denote the (ex ante) employment probability that the firm recruiting at wage w

offers to each w0-applicant. Do not impose q(w,w0) = q(w), because this is a result we need to
prove in this supplementary appendix.

Proposition G.1. Suppose that firms announce (w,Z), where Z satisfies (G.1) — (G.3). Agents’

decision problems can be formulated equivalently using (q(w,w0))w0 in lieu of Z. Moreover, the
1



following relationship holds:

h(w) =
X
w0
q(w,w0)a(w,w0). (G.4)

Proof. Suppress the particular firm’s wage offer w in various notation. Let R be the set

containing the realizations of R, which is the composition of applicants whom the firm receives.

Let Γ(.) be the distributional function of R, with a density γ(.). Because a w0-applicant applies
to the firm with probability p(w0) and the number of such applicants is λ(w0)n(w0)L, we have:

γ(R) =
Y
w0

"Ã
R(w0)

λ(w0)n(w0)L

!£
p(w0)

¤R(w0) £
1− p(w0)¤λ(w0)n(w0)L−R(w0)# ,

where the expression in [.] is the probability with which the firm receives exactly a number R(w0)
of w0-applicants.

We reformulate the firm’s problem. Under (w,Z), the firm’s objective function, i.e., the

expected surplus, is as follows:X
w∗

X
R∈R

Z(w∗, R) [Jf (w)− Jv] γ(R) = [Jf (w)− Jv]
X
w∗

X
R∈R

Z(w∗, R)γ(R).

The equality follows from the fact that the wage to be paid is independent of the type of the

applicant whom the firm will select ex post and of the realization of R. The double summation

in the last expression is the firm’s hiring probability, as demonstrated below:X
w∗

X
R∈R Z(w

∗, R)γ(R) =
X

R∈R γ(R)
hX

w∗
Z(w∗, R)

i
=
X

R∈R\{0} γ(R)
hX

w∗
Z(w∗, R)

i
=
X

R∈R\{0} γ(R) = 1− Γ(0) = h.
(G.5)

The first equality comes from switching the order of the two summations. The second and third

equalities come from (G.2), i.e., that the sum of Z(w∗, R) over w∗ is 0 when R = 0 and 1 when
R 6= 0. The fourth equality comes from the definition of Γ(0) and the last equality from the

meaning of the hiring probability.

Therefore, the firm’s objective function is h [Jf (w)− Jv], as in subsection 2.2. Suppose that
(G.4) holds, which we will established later. Then, (G.4) and (2.3) implies:

1− exp
"
−
X
w0
a(w,w0)

#
−
X
w0
q(w,w0)a(w,w0) = 0. (G.6)

This is a general version of (2.4). We can formulate the firm’s decision problem as choosing

(a, q, w) to solve:
(P 0) maxh(w)[Jf (w)− Jv]

s.t. (2.3), (G.6), and (2.6),

where in (2.6), q (w) should be replaced by q (w,w0). As claimed, this problem involves the ex

ante employment probabilities rather than the ex post selection criteria.

Next, we reformulate the applicant’s decision problem. Consider a particular w∗-applicant
who contemplates applying to the firm. Shorten the notation q(w,w∗) to q(w∗), which stands

2



for the applicant’s ex ante probability of getting the job. (Note that q(w∗) here is not the short
form for q(w∗, w) as we used in the text.) To calculate q, we need the distribution function of the
composition of the firm’s received applicants other than the particular w∗-applicant in discussion.
This is the distribution function of R conditional on that the particular w∗-applicant applies to
the firm, and hence it is different from the unconditional distribution Γ. Denote the composition

of the firm’s received applicants other than the particular w∗-applicant by R−. Let R− be the
set of vectors containing the possible values of R− and γ−(., w∗) the density function of R−.
Conditional on that the particular w∗-applicant applies to the firm, the composition of applicants
whom the firm receives is R, where R(w0) = R−(w0) if w0 6= w∗ and R(w∗) = R−(w∗) + 1
otherwise. With a realization of R− in addition to the particular w∗-applicant, the firm chooses

a w∗-applicant with probability Z(w∗, R), out of which the particular w∗-applicant is the chosen
one with probability 1/R(w∗). Therefore,

q(w∗) =
X

R−∈R−

Z(w∗, R)
R(w∗)

γ−(R−, w∗). (G.7)

When applying to the job, a w∗-applicant’s expected surplus isX
R−∈R−

Z(w∗,R)
R(w∗) [Je(w)− Je(w∗)] γ−(R−, w∗)

= [Je(w)− Je(w∗)]
X

R−∈R−
Z(w∗,R)
R(w∗) γ−(R−, w∗)

= q(w∗) [Je(w)− Je(w∗)] .
The first equality follows from the fact that the wage the applicant gets is independent of the

realization of R−, and the second equality from (G.7). The above result shows that what matters
to an applicant is the wage offer and the ex ante employment probability q, as we claimed.

Finally, we show that h satisfies (G.4). To do so, we find the relationship between the two

densities, γ− and γ. Compute

γ−(R−, w∗) =
Y

w0 6=w∗

"Ã
R(w0)

λ(w0)n(w0)L

!
[p(w0)]R(w

0) [1− p(w0)]λ(w0)n(w0)L−R(w0)
#

×
Ã

R−(w∗)
λ(w∗)n(w∗)L− 1

!
[p(w∗)]R

−(w∗) [1− p(w∗)]λ(w∗)n(w∗)L−1−R−(w∗) .

Here we have isolated w∗-applicants and used R(w0) = R−(w0) for all w0 6= w∗. Rewrite:Ã
R−(w∗)

λ(w∗)n(w∗)L− 1

!
[p(w∗)]R

−(w∗) [1− p(w∗)]λ(w∗)n(w∗)L−1−R−(w∗)

= R−(w∗)+1
λ(w∗)n(w∗)Lp(w∗)

Ã
R−(w∗) + 1
λ(w∗)n(w∗)L

!
[p(w∗)]R

−(w∗)+1 [1− p(w∗)]λ(w∗)n(w∗)L−(1+R−(w∗))

= R(w∗)
a(w∗)

Ã
R(w∗)

λ(w∗)n(w∗)L

!
[p(w∗)]R(w

∗) [1− p(w∗)]λ(w∗)n(w∗)L−R(w∗) .

Here we have used the result, a(w∗) = p(w∗)λ(w∗)n(w∗)L, and the fact R(w∗) = R−(w∗) + 1.
Substituting the above result into the formula of γ− and using the formula of γ, we have:

γ−(R−, w∗) =
R(w∗)
a(w∗)

γ (R) .

3



Since a(w∗) is independent of the realization of R, (G.7) then implies

q(w∗) =
X
R∈R

·
Z(w∗, R)
R(w∗)

· R(w
∗)

a(w∗)
γ(R)

¸
=

1

a(w∗)
X
R∈R

Z(w∗, R)γ(R).

Therefore, (G.4) holds, as shown below:X
w∗
a(w∗)q(w∗) =

X
w∗

X
R∈R

Z(w∗, R)γ(R) = h.

The second equality uses (G.5). This completes the proof of the proposition. QED

Lemma G.2. (Equal-employment) It is optimal for a firm to give equal employment proba-

bility to all applicants. That is, q(w,w0) = q(w) for all such w0 that a(w,w0) > 0.

Proof. Consider the recruiting firm’s decision problem (P 0) formulated in the proof of the
previous Proposition. For all such w0 that a(w,w0) > 0, the optimal choice of a(w,w0) satisfies
the following first-order condition:

q(w,w0) =
·
Jf (w)− Jv

µ
+ 1

¸
exp

Ã
−
X
w0
a(w,w0)

!
,

where µ is the Lagrangian multiplier of (G.6). Clearly, the above equation implies that q(w,w0)
is independent of w0. QED

H. Another Characterization of the Equilibrium

In the text, we used Figure 2b to illustrate the equilibrium heuristically. We did not translate

Figure 2b into a mathematical formulation but, instead, claimed that such a formulation yields

very little about the analytical properties of the equilibrium. In this supplementary appendix, we

formulate Figure 2b mathematically, discuss the analytical difficulties of using this formulation,

and then use a numerical example to show that this formulation yields the same equilibrium as

the recursive formulation in the text.

Figure 2b indicates two steps in the characterization of the equilibrium. First, given a function

q(.) that determines the employment probability at each wage level, the applicants choose the

target set of wages T (.). Second, anticipating the dependence of the applicants’ decisions on q(.),

recruiting firms compete by offering (w, q(w)) and the competition drives each recruiting firm’s

net profit to zero, i.e., the expected surplus from recruiting to the level of the vacancy cost.

To formulate the first step, pick any decreasing employment probability function, q(.). For

each w ∈ <, q(w) gives the probability with which an applicant to a firm offering w will be selected.
Note that this employment probability must be specified for all w, not only for equilibrium wages.

For convenience, when the target application set is empty, set q(∅) = 0. Define:

F (w) = w + λ(w)max{E(w)− S, 0},
4



where E(w) is a w-applicant’s market surplus. We can use (2.10) to write a worker’s value

function as

Je(w) =
1

r + σ
[F (w) + σJu] .

The expected surplus of an applicant for a job at w0 is

q(w0)[Je(w0)− Je(w)] = 1

r + σ
q(w0)[F (w0)− F (w)].

The applicant applies to w0 only if the expected surplus is greater than or equal to S. Therefore,
a w-applicant’s market surplus is:

E(w) = max

½
1

r + σ
max
w0

©
q(w0)[F (w0)− F (w)]ª , S¾ .

In the inner maximization, the applicant takes the function q(.) as given. If the inner maximization

generates a value greater than (r+σ)S, the applicant’s target set T (w) is non-empty. Otherwise,

T (w) = ∅. With this notation, the case E(w) = S means that a w-applicant does not apply.
An applicant’s decision depends on the function F and, by definition, F depends on the ap-

plicant’s market surplus. Thus, the three objects (F (.), E(.), T (.)) must be solved simultaneously

for the given function q(.). We can combine the tasks by substituting the above formula of E(w)

into the definition of F to obtain:

F (w) = w + λ(w)max

½
1

r + σ
max
w0

©
q(w0)[F (w0)− F (w)]ª− S, 0¾ . (H.1)

This is a fixed-point problem for F . Under reasonable conditions we can show that the right-hand

side of (H.1) is a contraction mapping, and so there is a unique function F (.) that satisfies the

functional equation. However, it is difficult to find a meaningful condition to ensure that the

set of maximizers T (w) is singleton. Even if we assume that T (w) is singleton, it is difficult to

complete the second step of the characterization of the equilibrium.

The second step determines the employment probability function through the free-entry con-

dition, (3.2). Rewrite (3.2) as q(w) = Pq(w), where P is the following mapping:

Pq(w) = Ψ

µ
r + σ + λ(w)q(T (w))

y −w C

¶
. (H.2)

Then, q(.) is a fixed point of the mapping P .

It is difficult to examine the fixed-point problem for q, because the maximizer T (w) to the

fixed-point problem (H.1) appears in the mapping P . To see the difficulty, note that we need the

given function q(.) in (H.1) to be decreasing in order to ensure well-behaved fixed point F . In

turn, this requires that the fixed point of P be decreasing, and hence that P maps decreasing

functions into decreasing functions. However, we cannot find meaningful conditions to guarantee

that P has this property. All such conditions involve T , which in turn involves the very object

q(.) that we need to determine in equilibrium.

None of these analytical difficulties would be present if there were no on-the-job search, i.e.,

if λ = 0 < λ0. If λ = 0, then q(w) = Ψ
³
r+σ
y−wC

´
, which is indeed a decreasing (and concave)
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function of w. For all w 6= w0, F (w) = w. For w = w0, F (w0) is given by (H.1), with F (w0) on
the right-hand side of that equation being replaced by w0 and q(.) by the function just obtained.

The above formulation shows why it is difficult to analytically examine on-the-job search in a

directed search environment. The recursive procedure presented in the text is useful for tackling

this problem and to obtain analytical properties of the equilibrium.

Nevertheless, the above formulation suggests the following procedure to compute an equi-

librium numerically. Start with a decreasing function q(.) and find the fixed point F in (H.1).

Substitute the maximizer T into (H.2) to compute Pq(w). Then, use this solution Pq(w) to

serves the role of q(w) in (H.1). Repeat the process until Pq(.) = q(.).

To see whether the above formulation and the recursive formulation in the text generate the

same equilibrium, consider the following parameter values: r = 0.02, y = 1000, b = 0, C = 60,

S = 1, λ = λ0 = .025, and σ = .125 (this is the example of section 5.2, except for λ = λ0).

Discretize the interval between b and y, and set the number of points on the grid to be 25000.

The equilibrium number of rungs on the wage ladder isM = 4 in both formulations. Refer to the

above formulation as “fixed-point” and the recursive formulation “recursive”, we list the results

as follows:
w1 w2 w3 w4

recursive 929.005 980.004 988.339 990.679

fixed-point 929.043 980.401 988.640 990.760

discrepancy 0.004% 0.040% 0.031% 0.008%

The results under the two formulations are very close to each other. The maximum discrepancy

in equilibrium wages between the two formulations is about 0.04 percent. The discrepancy arises

for two reasons. First, the two formulations discretize different objects in the numerical procedure.

With the recursive formulation, we discretize the interval of the hiring probability hM and, with

the fixed-point formulation, we discretize the interval of the wage level. Second, the function q(w)

is highly nonlinear. It remains flat at low wages but sharply declines at high wages, with a slope

approaching −∞ as w approaches the upper bound. Such nonlinearity reduces the accuracy of

the numerical results. Taking such sources of discrepancy into account, we conclude that the two

formulations yield the same equilibrium.
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