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Abstract

This paper studies optimal auction design in a private value setting with endogenous infor-
mation acquisition. First, we develop a general framework for modeling information acquisition
when a seller wants to sell an object to one of several potential buyers who can each gather
information about their valuations prior to participation. We then show that under certain
conditions, standard auctions with a reserve price remain optimal, but the optimal reserve price
lies between the mean valuation and the standard reserve price in Myerson (1981). We provide
sufficient conditions under which the value of information to the seller is positive, and also char-
acterize the necessary and sufficient conditions under which equilibrium information acquisition
in private value auctions is socially excessive. The key to the analysis is the insight that buyer
incentives to acquire information become stronger as the reserve price moves toward the mean
valuation.
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1 Introduction

The efficient use of information dispersed in society is, as Hayek (1945) emphasized, a fundamental
issue in economics, and one that has been the focus of important research in mechanism design. A
typical assumption in the literature is that the information held by market participants is exogenous;
yet in many real world situations, agents’ information about the goods and services being traded is
acquired rather than endowed.1 When information acquisition is endogenous, the selling mechanism
proposed by the seller affects not only buyers’ incentives to reveal the information they gathered ex
post, but also their incentives to acquire information ex ante. Not surprisingly, if the information
structure is endogenous, the ex post optimal selling mechanism, such as the one characterized in
Myerson (1981), may not be optimal ex ante.

The purpose of this paper is to study how a seller should design the selling mechanism when
information acquisition is endogenous and costly for buyers. We first develop a convenient and
general framework to model information acquisition in an independent private value setting, where
a seller wants to sell an object to one of several potential buyers and where the buyers can each
covertly acquire information about their valuations. In the model, a buyer acquires information
by increasing the precision of the signal he receives, and after receiving this each buyer forms a
posterior estimate of his valuation which will depend on both the realization and the informative-
ness of his signal in the following way: buyer valuation estimates in a private value setting move
apart as more information is acquired, i.e., the distribution of posterior estimates conditional on a
more informative signal is more spread out.2 The resulting family of distributions of the posterior
estimates with different signals are rotation-ordered3 – the information order we use to rank the
informativeness of signals.

We apply this framework to analyze monopoly pricing and optimal auction design with endoge-
nous information acquisition. Since an increase in information leads to an increase in the dispersion
of buyers’ valuation estimates, increased information acquisition has two competing effects on the
seller’s revenue. On the one hand, it increases the potential social surplus – the difference be-
tween the highest valuation estimate among buyers and the seller’s reservation value. On the other
hand, it also increases buyers’ private information, raising their information rents.4 Given that the

1For example, consumers collect information about the characteristics of products and match this information

with their private preferences to determine their valuations before their purchase decision. In a take-over bidding,

buyers gather costly information about potential syergies between their own assets and assets of the target firm to

determine how much they should bid.
2For example, suppose a consumer tries a newly opened restaurant and finds the food spicy. He will like the

restaurant more if he loves spicy food, and he will like the restaurant less if he dislikes spicy food.
3If two signals are rotation-ordered, then the two distributions of posterior estimates generated by these signals

cross each other only once. The rotation order was recently introduced by Johnson and Myatt (2006) in order to

model how advertising, marketing and product design affect the dispersion of consumers’ valuations and lead to a

rotation (rather than a shift) of the market demand curve. It meets the Blackwell’s (1951) criterion of informativeness

in the sense that a buyer can achieve a higher expected payoff under incentive compatible mechanisms when basing

his decision on the realization of a more informative signal.
4This should be contrasted to results in the common value setting where more information links buyer valuations

together and thus always benefits the seller (Milgrom and Weber (1982), and Ottaviani and Prat (2001)).
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seller’s revenue is the difference between social surplus and information rents, her task is therefore
to choose a selling mechanism that balances these two forces.

We start by considering optimal auctions with a single buyer, whose true valuation is normally
distributed and ex-ante unobservable to both parties. The buyer receives a noisy signal – the sum
of his true valuation and a normally distributed noise – and can increase the informativeness of his
signal by reducing the variance of the noise, though at an increasing cost.5 In this case, we show
that the optimal selling mechanism is to post a (reserve) price, so we can also reinterpret the seller’s
optimization problem as a monopoly pricing problem with endogenous information acquisition by
consumers.

Since the buyer always prefers a low reserve price, it may seem at first glance that a lower reserve
price always gives the buyer a higher incentive to gather information. Yet the buyer’s incentives
to acquire information depend on his relative gain from information acquisition rather than on his
absolute payoff; indeed, incentives to collect information increase as the reserve price moves toward
the mean valuation, either from above or from below. To understand this observation, consider
the case where information acquisition is binary. If the reserve price is very high or very low, new
information is unlikely to change the buyer’s purchase decision. In contrast, if the reserve price is
close to the mean valuation, new information is valuable because it helps the buyer make the right
decision – namely, to buy or not to buy.

The observation that incentives to acquire information become stronger as the reserve price
moves closer to the mean valuation, together with the fact that more information leads to an
increase in the dispersion of the buyer’s valuation estimates, yields a surprising result: the optimal
reserve price is always adjusted downward compared to the standard reserve price in this setting.6

To see this, note that when the standard reserve price is higher than the mean valuation, more
information increases the probability of trade and benefits the seller. Therefore, the seller will
adjust the reserve price downward to induce the buyer to acquire more information. On the other
hand, when the standard reserve price is lower than the mean valuation, more information reduces
the probability of trade and hurts the seller. Hence, the seller again adjusts the reserve price
downward, but this time to induce the buyer to acquire less information.

The same observation can be extended to a general setting with many buyers and rotation-
ordered information structures. But the analysis of the general model is more subtle and com-
plicated, primarily because the optimal selling mechanism no longer admits the simple form of
a posted price. Rather, a feasible mechanism has to provide buyers with the right incentives to
collect information in the information acquisition stage (moral hazard) and be incentive compatible
in the information revelation stage (adverse selection). We use the standard first-order approach
to tackle the moral hazard problem, replacing the information acquisition constraints by the first-
order conditions of the buyers’ maximization problems (Mirrlees (1999), and Rogerson (1985)).7

5The resulting information structure will be rotation-ordered, with the rotation point at the mean valuation.
6The standard reserve price is defined as the optimal reserve price in Myerson (1981) where information is ex-

ogenous. In the case of one bidder, the standard reserve price is simply the optimal monopoly price with exogenous

information.
7A condition, analogous to CDFC in Rogerson (1985), is shown to be sufficient for the first-order approach to be
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Our problem here is complicated because more information may hurt or benefit the seller, while
in the standard moral hazard problem, the principal always benefits from higher effort (without
considering the incentive cost of inducing higher effort).

In order to identify the seller’s information preference, we focus for tractability on the symmetric
equilibrium in which all buyers acquire the same level of information. Given that buyers are ex ante
symmetric, this restriction is quite natural because symmetric mechanisms are easier to implement
and are less likely to cause legal disputes.8 Using Rogerson’s technique, we show that the value of
information to the seller is positive when the number of bidders is not too small. Then we show that
standard auctions9 with a reserve price are optimal, but the reserve price has to be adjusted toward
the mean valuation to induce buyers to acquire more information. Further, the buyers’ incentives
to collect information are socially excessive in standard auctions with a reserve price lower than
the mean valuation. As a robustness check, we also investigate the optimal (asymmetric) selling
mechanism in a setting with discrete information acquisition. We dispense with both the first-
order approach and the symmetric restriction on equilibrium information choices, and show that
the optimal selling mechanism in this setting involves price discrimination against “strong” bidders,
though to a weaker extent as compared with the case with exogenous information.

In sum, our analysis makes it clear that endogenous information pushes down the price level
in a monopoly pricing setting. We also show that the optimal selling mechanisms identified in
Myerson (1981) are robust to endogenous information acquisition if buyers are induced to acquire
the same level of information in equilibrium. This implies that the seller should still use standard
auctions to allocate the object as long as she appropriately adjusts the reserve price to incorporate
buyer incentives to acquire information. The general framework we develop to model information
acquisition in a private value setting can also apply to mechanism design problems when agents
can make investment prior to the auction. For instance, Lichtenberg (1988) finds strong evidence
of private R&D investment prior to government procurement auctions. In this vein, our framework
can be used to investigate how the government should design procurement auctions in order to
promote private R&D investment.

The remainder of the paper is organized as follows. Section 2 discusses the related literature,
Section 3 introduces the model, and Section 4 studies optimal auctions with a single bidder and the
Gaussian specification. Section 5 then presents the analysis of optimal auctions with many bidders,
and Section 6 concludes.10

valid when the support of buyers’ posterior estimates is invariant to buyers’ information choices. See Appendix B for

a set of sufficient conditions under which the first-order approach is valid.
8Nevertheless, this is an important restriction. In principle, the seller may become better off by implementing an

asymmetric equilibrium rather than a symmetric one.
9In this paper, we use standard auctions to refer to the four commonly used auction formats: first-price sealed-bid

auctions, Vickery auctions, English auctions, and Dutch auctions.
10All omitted proofs are relegated to Appendix A. Appendix B provides sufficient conditions for the first-order

approach to be valid.
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2 Related Literature

This paper is related to the growing literature on information and mechanism design, extending the
principal-agent model with information acquisition to a multi-agent setting.11 Cremer and Khalil
(1992) and Cremer, Khalil, and Rochet (1998a) (1998b) introduce endogenous information acquisi-
tion into the Baron and Myerson (1982) regulation model, and illustrate how the optimal contract
has to be modified in order to give the agent incentives to acquire information. Szalay (2005)
extends their framework to a setting with continuous information acquisition, and demonstrates
that their findings are robust. Our model shares a similar information structure and a focus on the
interim participation constraint, though we incorporate strategic interactions among bidders.

Our analysis is also related to studies on information acquisition in given auctions. Matthews
(1984) studies information acquisition in a common value auction and investigates whether the
equilibrium price fully reveals bidders’ information. Stegeman (1996) shows that first and second
price auctions with independent private values result in the same incentives for information ac-
quisition, while Persico (2000) shows that the incentive to acquire information is stronger in the
first-price auction than in the second-price auction if bidders’ valuations are affiliated.12 In con-
trast, the current paper studies the optimal mechanism that maximizes the seller’s revenue, rather
than studying information acquisition under given auction formats.13

A third strand of related literature studies optimal auctions when the seller controls either
the access to information sources or the timing of information acquisition. The information order
used in the present paper, the rotation order, was first introduced by Johnson and Myatt (2006).
They use it to show that a firm’s profits are a U-shaped function of the dispersion of consumers’
valuations, so a monopolist will pursue extreme positions, providing either a minimal or maximal
amount of information. Eso and Szentes (2007) study optimal auctions in a setting where the
seller controls the access to information sources. They show that the seller will fully reveal her
information and can extract all of the benefit from the released information.14 In these models, the
seller makes the information decision, rather than the buyers.

Several papers study the optimal selling mechanism in a setting where buyers make the informa-
tion decision, but the seller controls the timing of information acquisition. These models (hereafter
referred to as “entry models”) impose an ex-ante participation constraint, so the buyers’ informa-
tion decision is essentially an entry decision. The optimal selling mechanism typically consists of
a participation fee followed by a second price auction with no reserve price, with the participation
fee being equal to the bidders’ expected rent from attending the auction (see for example, Levin
and Smith (1994) and Ye (2004)).15

11For a broad survey of the literature on information and mechanism design, see Bergemann and Välimäki (2006a).
12See Ye (2006) and Compte and Jehiel (2006) for an analysis of information acquisition in dynamic auctions.
13Bergemann and Välimäki (2002) also study information acquisition and mechanism design, but their focus is

efficient mechanisms.
14Bergemann and Pesendorfer (2007) characterize the optimal information structure in the optimal auctions, while

Ganuza and Penalva (2006) study the seller’s optimal disclosure policy when the information is costly.
15Similarly, with an ex-ante participation constraint, Cremer, Spiegel, and Zheng (2003) construct a sequential
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In contrast to these papers, where the seller can control either access to information sources
or the timing of information acquisition (centralized information acquisition), information acquisi-
tion in the current paper is decentralized : buyers make the information decision, and can acquire
information prior to participation. Thus, we impose an interim rather than an ex-ante participa-
tion constraint.16 The relationship between our model and the existing literature can be partially
summarized in the following table.

given auction formats mechanism design approach
centralized information acquisition optimal disclosure in auctions entry models

decentralized information acquisition information acquisition in auctions our model

3 The Model

A seller wants to sell a single object to n ex-ante symmetric buyers (or bidders), indexed by
i ∈ {1, 2, ..., n}.17 Both the seller and buyers are risk neutral. The buyers’ true valuations
{ωi : i = 1, ..., n} , unknown ex-ante, are independently drawn from a common distribution F with
support [ω, ω]. F has a strict positive and differentiable density f and mean µ. A buyer with
valuation ωi gets utility ui if he wins the object and pays ti:

ui = ωi − ti.

The seller’s valuation for the object is normalized to be zero.

3.1 The Information Structure

Buyer i can acquire a costly signal si about ωi, with si ∈ [s, s] ⊆ R. Signals received by different
buyers are independent. Buyer i acquires information by choosing a joint distribution of (si, ωi)
from a family of joint distributions Gαi : R × [ω, ω] → [0, 1] , indexed by αi ∈ [α, α] . Each fixed
αi corresponds to a statistical experiment, and the signal with higher αi is more informative in a
sense to be defined later. We refer to the joint distribution Gαi , or simply αi, as the information
structure. The cost of performing an experiment αi is C (αi) , which is assumed to be convex in
αi. A buyer can conduct the experiment α at no cost, so α is interpreted as the endowed signal.

Let Gαi (·|ωi) denote the prior distribution of signal si conditional on ωi, and Gαi (·|si) denote
the posterior distribution of ωi conditional on si. With a little abuse of notation, Gαi (ωi) and
Gαi (si) are used to denote the marginal distributions of ωi and si, respectively. They are defined
in the usual way – that is, Gαi (ωi) = Esi [Gαi (ωi|si)] and Gαi (si) = Eωi [Gαi (si|ωi)] . Consistency

selling mechanism in which the seller charges a positive entry fee and extracts the full surplus from buyers.
16Cremer, Spiegel, and Zheng (2007) also analyze optimal auctions where buyers can acquire information prior to

participation, but the seller, rather than the buyer, pays the information cost.
17The analysis can be extended to a multi-unit setting where each buyer has a unit demand.
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requires that Gαi (ωi) = F (ωi) for all αi and i. We use gαi (si, ωi) , gαi (·|ωi) , gαi (·|si) , gαi (ωi)
and gαi (si) to denote the corresponding densities.

A buyer who observes a signal si from experiment αi will update his prior belief about ωi
according to Bayes’ rule:

gαi (ωi|si) =
gαi (si|ωi) f (ωi)∫ ω

ω gαi (si|ωi) f (ωi) dωi

Let vi (si, αi) denote buyer i’s revised estimate of ωi after performing experiment αi and observing
si :

vi (si, αi) ≡ E [ωi|si, αi] =
∫ ω

ω
ωigαi (ωi|si) dωi

To simplify notation, we use vi to denote vi (si, αi) , and use v to denote the n-vector (v1, ..., vn) .
Occasionally, we also write v as (vi, v−i) , where v−i = (v1, ...vi−1, vi+1, ..., vn) . Throughout the
paper we assume that the densities {gαi (·|ωi)} have monotone likelihood ratio property (MLRP),
so that vi (si, αi) is increasing in si, i.e., a higher si leads to a higher posterior estimate, given the
information choice αi (Milgrom (1981)). Let Hαi denote the distribution of vi with corresponding
density hαi . Then the family of distributions {Hαi} have the same mean because

Esi [vi (si, αi)] = E [ωi] = µ.

For bidder i, different information choices {αi} lead to different distributions {Hαi} . So choosing
αi is equivalent to choosing an Hαi from the family of distributions {Hαi} . In what follows, we will
extensively work with the posterior estimate vi and its distribution Hαi .

3.2 Timing

The timing of the game is as follows: the seller first proposes a selling mechanism; after observing the
mechanism, each buyer decides how much information to acquire; after the signals are realized, each
buyer decides whether to participate; each participating buyer submits a report about his private
information; and finally, an outcome, consisting of an allocation of the object and payments, is
realized. Figure 1 summarizes the timing of the game:

−−−| − −−−
seller announces

mechanism

−−−| − −−
buyer i

chooses αi

−−−−−−−| − −−−−−
buyer i observes si and

decides whether to participate

−−−−−| − −−−
buyers report

private information

−−−| − −−
outcome
realized

−→

Figure 1. The timing of the game

The payoff structure, the timing of the game, the information structure {Gαi} and distribution
F are assumed to be common knowledge. The solution concept is Bayesian Nash equilibrium.
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3.3 Mechanisms

In our setting, the buyer’s private information is two-dimensional, consisting of the information
choice αi and the realized signal si. This suggests that the design problem here is multi-dimensional
and could potentially be very complicated. However, similar to Biais, Martimort, and Rochet (2002)
and Szalay (2005), one single variable, the posterior estimate vi (αi, si) , completely captures the
dependence of buyer i’s valuation on the two-dimensional information. Furthermore, the seller
cannot screen the two pieces of information separately. For example, suppose there are two buyers,
i and j, with the same posterior estimate (vi = vj) , but αi 6= αj . If the seller wants to favor the
buyer with αi, then buyer j can always report to have αi. Therefore, the posterior estimate vi is
the only variable that the seller can use to screen different buyers.

We can thus invoke the Revelation Principle to focus on the direct revelation mechanisms
{qi(v), ti(v)}ni=1:

qi : [ω, ω]n → [0, 1] ,

ti : [ω, ω]n → R,

where qi (v) denotes the probability of winning the object for bidder i when the vector of report
is v, and ti (v) denotes bidder i’s corresponding payment. Let Qi (vi) and Ti (vi) be the expected
probability of winning and the expected payment conditional on vi, respectively. The interim utility
of bidder i who has a posterior estimate vi and reports v′i is

Ui
(
vi, v

′
i

)
= viQi

(
v′i
)
− Ti

(
v′i
)
.

Define ui (vi) = Ui (vi, vi): the payoff of bidder i who has a posterior estimate vi and reports
truthfully.

A feasible mechanism has to satisfy the individual rationality constraint (IR):

ui (vi) = Ui (vi, vi) ≥ 0, ∀vi ∈ [ω, ω] , (IR)

and the incentive compatibility constraint (IC):

Ui (vi, vi) ≥ Ui
(
vi, v

′
i

)
, ∀vi, v′i ∈ [ω, ω] . (IC)

With endogenous information acquisition, a feasible mechanism also has to satisfy the information
acquisition constraint (IA): no bidder has an incentive to deviate from the equilibrium choice α∗i :

α∗i ∈ arg max
αi

{
Ev,α∗−i [ui (vi (si, αi))]− C (αi)

}
. (IA)

Note that Ev,α∗−i [ui (vi (si, αi))] is bidder i’s expected payoff by choosing αi conditional on other
bidders choosing α∗j , j 6= i.

The seller chooses mechanism {qi(v), ti(v)}ni=1 and a vector of information choices (α∗1, ..., α
∗
n)

to maximize her expected sum of payment from all bidders,

πs = Ev,(α∗1,...,α∗n)

n∑
i=1

Ti (vi) ,

subject to (IA), (IC), and (IR).
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3.4 Information Order

In order to analyze a model with general information structures, we need an information order
to rank the informativeness of different signals. Since the relevant variable for screening is the
posterior estimate vi and there is one-to-one mapping between the information choice αi and the
distribution Hαi of vi, we would like to have an information order that directly ranks Hαi . The
rotation order, recently introduced by Johnson and Myatt (2006), meets this requirement.

Definition 1 (Rotation Order)
The family of distributions {Hαi} is rotation-ordered if, for every αi, there exists a rotation point

v+
αi , such that

vi ≷ v
+
αi ⇔

∂Hαi (vi)
∂αi

≶ 0. (1)

Two distributions ordered in terms of rotation cross only once: the distribution with lower αi
crosses the distribution with higher αi from below. As shown below, the rotation order implies
second-order stochastic dominance. However, the reverse is not true: two distributions ordered in
terms of second-order stochastic dominance can cross each other more than once.

Lemma 1 (Rotation Order Implies Second Order Stochastic Dominance)
If a family of distributions {Hαi} is rotation-ordered and they all have the same mean, then they

are also ordered in terms of second-order stochastic dominance.

Proof. See Theorem 2.A.17 in Shaked and Shanthikumar (1994).
Following Blackwell (1951) (1953), we say that one signal is more informative than the other if

a decision-maker can achieve a higher expected utility when basing a decision on the realization of
the more informative signal. We extend Blackwell’s information criterion to our multi-agent setting
by applying his criterion to each bidder while fixing other bidders’ information choices.

Proposition 1 (Rotation Order and Blackwell’s Criterion)
Suppose that {Hαi} is rotation-ordered and α′i > α′′i . Then under any mechanism {qi (v) , ti (v)}
that is incentive compatible, bidder i achieves a higher expected payoff with information choice α′i
than information choice α′′i .

The above result is intuitive. Because the bidder i’s interim payoff u (vi) is convex in vi under
any incentive compatible mechanism (Rochet (1987)), and because Hα′i

second-order stochastic
dominates Hα′′i

(by Lemma 1), bidder i’s expected payoff is higher under the more risky prospect
Hα′i

. Therefore, if {Hα} is rotation-ordered and α′i > α′′i , then a signal with α′i is indeed more
informative than a signal with α′′i because α′i corresponds to a higher expected payoff for bidder i.

4 Optimal Auctions with One Bidder and Gaussian Specification

We start with a simple model with one buyer. If the buyer’s information is exogenous, Riley and
Zeckhauser (1983) show that the optimal selling mechanism is to post a non-negotiable price. With
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endogenous information, their logic still applies and a posted price is optimal.18 Therefore, we can
also reinterpret the seller’s optimization problem as a monopoly pricing problem with endogenous
information.

We first examine the buyer’s information decision and show that the marginal value of infor-
mation to the buyer increases as the reserve price (or monopoly price) moves toward the mean
valuation. Then we analyze the seller’s information preferences and demonstrate that the seller
would prefer a more informed buyer if and only if the monopoly price is above the mean valuation.
The above two observations lead to the main result of this section: the optimal monopoly price
with endogenous information is always lower than the standard monopoly price with exogenous
information.

For the purposes of illustration, we focus on a special but important rotation-ordered informa-
tion structure: the Gaussian specification, though it is straightforward to extend the analysis to
general rotation-ordered information structures.

4.1 Gaussian Specification

The buyer’s true valuations ωi are drawn from a normal distribution with mean µ and precision β :
ωi ∼ N (µ, 1/β) . Lowering β has the consequence that the prior distribution becomes more spread
out, yielding more potential gains from information acquisition.

The buyer can observe a costly signal si:

si = ωi + εi,

where the additive error εi is independent of ωi, and εi ∼ N (0, 1/αi) . The higher is the αi, the
more precise is the signal. Thus we interpret αi as the informativeness (precision) of the buyer’s
signal. αi is assumed to have two parts:

αi = α+ γi.

The first part, α, is the endowed signal precision; the second term γi is the additional precision
obtained by investing in information acquisition. For illustration purposes, the cost of information
is assumed to be linear in the incremental precision. That is,

C (αi) = cγi = c (αi − α) ,

where c is the constant marginal cost of one additional unit of precision.
After observing a signal si with precision αi, the buyer updates his belief of ωi. By the standard

normal updating technique, the posterior valuation distribution conditional on the signal si will be
normal:

ωi|si ∼ N
(
βµ+ αisi
αi + β

,
1

αi + β

)
.

18The one-bidder model is a special case of the general model we study later. As shown in the next section, after

incorporating the information acquisition constraint, the seller’s objective function will be the Lagrangian specified

in (10). If there is only one bidder, it reduces to a simple form similar to the one analyzed in Riley and Zeckhauser

(1983). Therefore, their proof of the optimality of the posted price mechanism still applies here.
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It immediately follows that

vi (si, αi) ≡ E (ωi|si, αi) =
βµ+ αisi
αi + β

.

Thus the distribution of the posterior estimate vi, Hαi (vi) , is normal:

vi ∼ N
(
µ, σ2 (αi)

)
, where σ (αi) =

√
αi

(αi + β)β
.

Note that the variance of vi is increasing in the information choice αi. So the distribution Hαi

will be more spread out for a more precise signal. The following two graphs capture the relationship
between two distributions of the posterior estimate with different information choices.

Less
informative

More
informative

posterior estimate ivµ

i
hα

posterior estimate

1

More
informative

Less
informative

µ

i
Hα

iv

Figure 2. PDF and CDF of the posterior estimate with different signals

The left graph in Figure 2 shows that the density of the posterior estimate with a more infor-
mative signal is more dispersed than the one with a less informative signal. The right graph shows
that the distribution with a less informative signal crosses the distribution with a more informative
one from below at the mean valuation. With some algebra, we can show

vi ≷ µ⇔
∂Hαi (vi)
∂αi

≶ 0. (2)

Therefore, {Hαi} are rotation-ordered and the rotation point v+
αi = µ for all αi.

4.2 Marginal Value of Information to the Buyer

Given the reserve price r, the buyer chooses αi to maximize his expected payoff:

max
αi

∫ ∞
r

(vi − r)hαi (vi) dvi − c (αi − α)

The marginal value of information (MVI) to the buyer is given by

MV I ≡
∂
[∫∞
r (vi − r)hαi (vi) dvi

]
∂αi

= −
∫ ∞
r

∂Hαi (vi)
∂αi

dvi.
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The following proposition shows how the marginal value of information to the buyer varies with
respect to the reserve price.

Proposition 2 (Marginal Value of Information to the Buyer)
The marginal value of information to the buyer increases as the reserve price r moves toward the

mean valuation µ, and achieves maximum at r = µ.

Proof. With some algebra, we can show that

∂ [MV I]
∂r

=
∂Hαi (r)
∂αi

= −(r − µ)
2
√

2π
exp

(
−(r − µ)2

2σ2

)√
β3

α3
i (αi + β)

. (3)

Therefore, as r → µ, MV I increases.
This finding is crucial in understanding other results obtained in the paper. To understand it

better, consider a discrete version of the marginal value of information with two information choices
αi and α′i (α′i > αi). The buyer’s gain from having signal α′i rather than αi is

∆V I =
∫ ∞
r

(Hαi (vi)−Hα′i
(vi))dvi. (4)

Since the two distributions have the same mean, we have

µ =
∫ ∞
−∞

(1−Hα′i
(vi))dvi =

∫ ∞
−∞

(1−Hαi (vi)) dvi.

Therefore, we can also write the gain from more information as

∆V I =
∫ r

−∞
(Hα′i

(vi)−Hαi (vi))dvi. (5)

The following two graphs illustrate the buyer’s gain from more information.19
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Figure 3: Buyer’s gain from more information
Left (r ≥ µ): buyer’s gain from more information (shaded area) decreases as r increases
Right (r ≤ µ): buyer’s gain from more information (shaded area) increases as r increases

19I would like to thank Ben Polak for suggesting these two graphs.
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Given the reserve price r, the payoff of the buyer with signal αi is the area above the distribution
Hαi but below one and to the right of reserve price r. When r ≥ µ, the buyer’s relative gain with
signal α′i rather than αi is the shaded area in the left graph (see also expression (4)). On the other
hand, when r ≤ µ, according to expression (5), the buyer’s gain from more information is the
shaded area in the right graph. In both cases, the shaded area expands as r moves toward µ and
achieves maximum at the mean valuation.

Figure 3 also illustrates that the buyer’s gain from a more informative signal is always positive.
Under mild conditions, the buyer’s expected payoff is an increasing concave function of αi. Hence,
the solution to the buyer’s maximization problem will be unique, and the buyer’s information choice
will be decreasing in the information cost c (see Proposition 4 below).

4.3 Seller’s Pricing Decision

For the seller, she chooses r and equilibrium α∗ to maximize her revenue. That is

max
r,α∗

r (1−Hα∗ (r))

s.t. : α∗ ∈ arg max
αi

∫ ∞
r

(vi − r)hαi (vi) dvi − c (αi − α) .

The buyer’s (agent) information choice is unobservable to the seller (principal), and the seller sets
r to align the buyer’s incentives to her own. Thus, we can interpret it as a principal-agent problem.
The standard way to solve this problem, the so-called first-order approach, is to assume that the
second-order condition of the agent’s maximization problem is satisfied, and use the first-order
condition to replace the incentive constraint. We will assume the second-order condition is satisfied
for now, and discuss it in detail at the end of this subsection.

Then, we can replace the buyer’s optimization problem with the first-order condition, and
rewrite the seller’s optimization problem as20

max
r,α∗

r (1−Hα∗ (r))

s.t. : −
∫ ∞
r

∂Hα∗ (vi)
∂α∗

dvi − c = 0. [λ]

Let λ be the Lagrangian multiplier for the constraint. We write the Lagrangian in a way such that
a positive value of λ means that the seller benefits from a reduction in the information cost; in
other words, the seller prefers a more informed buyer.

Lemma 2
For a fixed reserve price r, the seller’s revenue increases in α∗ if and only if r > µ, and the seller’s

revenue decreases in α∗ if and only if r < µ.

Proof. Immediate from the definition of the seller’s revenue and property (2) of the Gaussian
specification.

20To simplify notation, in what follows, we will use
∂Hα∗ (vi)

∂α∗ to denote
∂Hαi (vi)

∂αi
|αi=α∗ .
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The intuition for this result is straightforward by looking at Figure 3. Suppose the buyer’s
information choice increases from αi to α′i. If r > µ (left figure), then more information increases
the probability of trade from (1−Hαi (r)) to (1−Hα′i

(r)). More information will therefore benefit
the seller. In contrast, if r < µ (right figure), more information decreases the probability of trade
from (1−Hαi (r)) to (1−Hα′i

(r)), so more information will hurt the seller.
If we reinterpret our model as a monopoly pricing problem with a continuum of consumers,

then this result links to the main findings in Johnson and Myatt (2006). To see this, we classify all
markets into either niche markets or mass markets following Bergemann and Välimäki (2006b),
and Johnson and Myatt (2006):

Definition 2 (Niche Market and Mass Market)
A market is said to be a niche (mass) market if the monopoly price is higher (lower) than the mean

valuation µ.

Therefore, the lemma states that the monopolist would prefer better informed consumers if she
is in a niche market. In contrast, the monopolist in a mass market will prefer not well-informed
consumers. This result immediately leads to the key insight in Johnson and Myatt (2006): if
information is free, then a seller in the niche (mass) market will provide the maximal (minimal)
amount information to consumers to maintain its niche (mass) position.

Before stating our results about the optimal reserve price, we need to define a benchmark: the
standard reserve price when information is endowed rather than acquired.

Definition 3 (Standard Reserve Price)
The standard reserve price rα is the optimal reserve price when the buyer’s signal α is exogenous.

That is

rα ∈ arg max
r
r (1−Hα (r))⇒ rα −

1−Hα (rα)
hα (rα)

= 0.

In particular, we will denote rα as the standard reserve price when no additional information
(other than the endowed signal α) is acquired. Since normal distributions have an increasing hazard
rate, rα is uniquely defined for each Hα. The seller’s optimal pricing rule can thus be stated as
follows:

Proposition 3 (Optimal Reserve Price)
For a fixed β, there exists a µ̂ such that

µ < r∗ < rα∗ if µ < µ̂

r∗ = rα∗ = µ if µ = µ̂

r∗ < rα∗ < µ if µ > µ̂

.

Therefore, the optimal reserve price r∗ with endogenous information is always (weakly) lower than

the standard reserve price rα∗ .
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In order to understand the seller’s optimal pricing strategy, we can decompose the effect of a
price increase on the seller’s profits in three parts:

dπs
dr
|r=r∗ = 1−Hα∗ (r∗)︸ ︷︷ ︸

A

+ [−r∗hα∗ (r∗)]︸ ︷︷ ︸
B

+
[
−r∗∂Hα∗ (r∗)

∂α∗
∂α∗

∂r

]
︸ ︷︷ ︸

C

.

First, the seller’s profits increase given that a trade is made (termA). Second, for a fixed information
choice, a price increase will reduce the probability of trade (term B). Third, with endogenous
information acquisition, a price increase will affect the buyer’s incentive to acquire information,
thereby the probability of trade (term C). The first two terms are standard, while the last one is
specific to the setting with endogenous information acquisition.

If r∗ > µ, ∂Hα∗ (r∗) /∂α∗ < 0 by (2), and an increase in r discourages information acquisition:
∂α∗/∂r < 0, so term C is negative. If r∗ < µ, ∂Hα∗ (r∗) /∂α∗ > 0 by (2), and the incentives to
gather information are higher for a higher r: ∂α∗/∂r > 0. Again, term C is negative. Therefore,
for r∗ 6= µ, the marginal gain to the seller from raising price r here is always smaller than the gain
in a setting with exogenous information. As a result, the seller will charge a lower price: r∗ < rα∗ .

For r∗ = µ, a marginal increase in price does not affect buyer’s incentive to acquire information, so
r∗ = rα∗ .

We conclude this subsection by presenting sufficient conditions for the second-order condition of
the buyer’s maximization problem to be satisfied. Under these conditions, the first-order approach
is valid and the buyer’s expected payoff is globally concave in the information choice αi.

Proposition 4 (Validity of the First Order Approach)
If r ∈ [µ− 2σ (α) , µ+ 2σ (α)] and α ≥ β, the second-order condition of the buyer’s maximization

problem is satisfied.

These conditions are stronger than necessary and are not very restrictive. Note that more than
95% of the normal density is within two standard deviations of the mean. Thus, the first condition
is to ensure that the probability of trade under r will be higher than 2.5% but lower than 97.5%.
In other words, the reserve price r is neither extremely high nor extremely low ensuring that the
probability of trade is neither close to 1 nor close to 0. The second condition α ≥ β is to ensure
αi > β for all αi.21 It requires that signals be informative relative to the prior.

5 Optimal Auctions with Many Bidders

In the single-bidder model, the strategic interaction among bidders is absent, so the simple posted
price mechanism is optimal. This section studies optimal auctions with many bidders and rotation-
ordered information structures, and shows that most of the insights from the previous section
carry through. Specifically, we show that: 1) A bidder’s incentives to acquire information increase

21Under this condition, the equilibrium information level is away from zero. Therefore, we can avoid the non-

concavity of the value of information identified in Radner and Stiglitz (1984).
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as the reserve price moves toward the rotation point; 2) If we restrict attention to the symmetric
mechanism that induces all bidders to acquire the same level of information, standard auctions with
an adjusted reserve price are optimal; 3) If information decision is discrete, then the optimal selling
mechanism reduces the level of price discrimination against (stochastically) strong bidders compared
to the case with exogenous information; 4) We derive a necessary and sufficient condition under
which the bidders’ incentives to acquire information are socially excessive in standard auctions.

One insight that cannot be carried over from the one-bidder case, however, concerns the seller’s
information preferences. If there are sufficiently many bidders, the seller will encourage information
acquisition — even when the standard reserve price is lower than the mean valuation (rotation
point). We show that, in many cases, the seller will prefer that bidders acquire more information,
as long as the number of bidders is large.

5.1 Marginal Value of Information to the Buyer

As stated in Section 3, the seller’s optimization problem is to choose a menu {qi (vi, v−i) , ti (vi, v−i)}
and a vector of information choices (α∗1, α

∗
2, ..., α

∗
n) to maximize her revenue subject to (IC) (IR)

and (IA) constraints.
It is well-known (Myerson (1981), and Rochet (1987)) that the incentive compatibility constraint

(IC) is equivalent to the following two conditions:

ui (vi) = ui (ω) +
∫ vi

ω
Qi (x) dx, (6)

and
Qi (vi) is increasing in vi. (7)

With equation (6), we can write the individual rationality constraint (IR) simply as ui (ω) ≥ 0.
The information acquisition constraint (IA) requires that α∗i be bidder i’s best response given

that other bidders chooses α∗−i = (α∗1, ..., α
∗
i−1, α

∗
i+1, ..., α

∗
n). That is, for all i,

α∗i ∈ arg max
αi

Ev−i,α∗−i

{∫ ωαi

ωαi

[1−Hαi (vi)] qi (vi, v−i) dvi − C (αi)

}
.

The subscript α∗−i of the expectation operator is to remind the readers that the expectation depends
on the information choice α∗−i of bidder i’s opponents. The subscript αi in the lower and upper
limits (ωαi , ωαi) is to emphasize the fact that the support of the posterior estimates may depend
on the information choice αi. The first-order condition is

− Ev−i,α∗−i

∫ ωαi

ωαi

∂Hα∗i
(vi)

∂α∗i
qi (vi, v−i) dvi − C ′ (α∗i ) = 0. (8)

Let ri denote the personalized reserve price for bidder i in the optimal auction. That is, if
bidder i is allocated the object with positive probability, then his posterior estimate is at least ri:

qi (vi, v−i) > 0⇒ vi ≥ ri.
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The marginal value of information to bidder i with reserve price ri is

MV I = −Ev−i,α∗−i

[∫ ωαi

ri

∂Hαi (vi)
∂αi

qi (vi, v−i) dvi

]
.

Theorem 1 (Marginal Value of Information to a Buyer)
The marginal value of information to a buyer increases as ri moves toward the rotation point v+

αi

if and only if signals are rotation-ordered.

Proof. Sufficiency. Notice that

∂ [MV I]
∂ri

= Ev−i,α∗−i

[
∂Hαi (ri)
∂αi

qi (ri, v−i)
]
. (9)

Rotation order implies that ∂Hαi (ri) /∂αi > 0 if ri < v+
αi and ∂Hαi (ri) /∂αi < 0 if ri > v+

αi .

Therefore, MV I is increasing in ri if ri < v+
αi and decreasing in ri if ri > v+

αi .
Necessity. Suppose signals are not rotation-ordered. Then the two distributions associated with

two different αi’s must cross at least twice. Without loss of generality, suppose the other crossing
points is lower than v+

αi . Then we can find a ri < v+
αi such that

∂Hαi (ri)
∂αi

< 0.

Thus, MVI decreases as ri moves toward v+
αi by (9), a contradiction.

Theorem 1 generalizes Proposition 2 to a setting with many bidders and rotation-ordered infor-
mation structures. Therefore, if a seller wants to induce buyer i to acquire more information, she
should set the reserve price ri closer to the rotation point v+

αi .

5.2 Characterization of Symmetric Optimal Auctions

In order to characterize optimal auctions, we need to simplify the (IA) constraints. If the first-
order approach is valid, we can can replace bidder i’s optimization problem by (8). It is valid if the
second-order condition of bidders’ optimization problem is satisfied, which we will assume for now
and relegate detailed discussions to Appendix B. In principle, the equilibrium information choices
could be different: α∗i 6= α∗j , for i 6= j, so there will be a system of n first-order conditions: one for
each bidder.

We use Lagrangian approach to incorporate the n first-order conditions. As in the standard
moral hazard model, the main difficulty lies in the determination of the sign of the Lagrangian
multiplier of these first-order conditions (Rogerson (1985)). The seller’s maximization problem
here, however, is substantially more complicated in three ways. First, we have n agents and n first-
order conditions. Second, unlike in the standard moral hazard model where higher effort always
benefits the principal if it is costless to induce effort, more information here may hurt the seller,
as we can see from Lemma 2. Finally, the seller has to give bidders not only incentives to acquire
information, but also incentives to tell the truth, i.e., our model is a mixed model with moral
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hazard and adverse selection. As such, some restrictions on the model are necessary in order to
characterize the optimal selling mechanism.

In this subsection, we restrict our attention to symmetric mechanisms with α∗1 = · · · = α∗n =
α∗. This restriction helps reduce the system of first-order conditions to a single equation (8).22

Replacing the incentive constraint by equation (6) and (7), and replacing the (IA) constraint by
(8), we can transform the seller’s optimization problem from the allocation-transfer space into the
allocation-utility space:

max
qi,u(ω),α∗

{
Ev,α∗

n∑
i=1

[(
vi −

1−Hα∗ (vi)
hα∗ (vi)

)
qi (vi, v−i)

]
− nui (ω)

}

subject to

0 ≤ qi (vi, v−i) ≤ 1;
n∑
i=1

qi (vi, v−i) ≤ 1, (Regularity)

Qi (vi) is increasing in vi, (Monotonicity)

ui (ω) ≥ 0, (IR)

Ev,α∗
[
−∂Hα∗ (vi)

∂α∗
1

hα∗ (vi)
qi (vi, v−i)

]
− C ′ (α∗) = 0. (IA)

It is easy to see that the (IR) constraint must be binding. For now we ignore the regularity
constraint and the monotonicity constraint, and verify them later. Then the only remaining con-
straint is the (IA) constraint. Let λ denote the Lagrangian multiplier for the (IA) constraint, and
write the Lagrangian for the seller’s maximization problem as

L = Ev,α∗
n∑
i=1

[(
vi −

1−Hα∗ (vi)
hα∗ (vi)

− λ

n

∂Hα∗ (vi)
∂α∗

1
hα∗ (vi)

)
qi (vi, v−i)

]
− λC ′ (α∗) . (10)

Then a positive λ implies that the seller’s revenue increases as the marginal cost of information
decreases. The virtual surplus function J∗ (vi) can be defined as

J∗ (vi) = vi −
1−Hα∗ (vi)
hα∗ (vi)

− λ

n

∂Hα∗ (vi)
∂α∗

1
hα∗ (vi)

. (11)

In order to characterize the optimal solution to the seller’s optimization problem, we make the
following assumptions:

Assumption 1 (Rotation Order)
The family of distributions of the posterior estimates, {Hαi} , is rotation-ordered and the rotation

point is µ for all αi.

22A sufficient condition for the existence of a symmetric equilibrium is that there exists a α∗ satisfying both the first-

order condition and the second-order condition of the buyer’s maximization problem. If we assume limα→α C
′ (α) = 0,

and limα→α C
′ (α) = κ (where κ is a large positive number), then there must exist a α∗ satisfies the first-order

condition (8). If the cost function is sufficiently convex, that is, C′′ (α) is sufficient large, then the second-order

condition is satisfied (See Appendix B for more detail). A quadradic cost function C (α) = κ0 (α− α)2 with large κ0

meets all the requirements.
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Assumption 2 (Monotonicity)

−∂Hαi (vi)
∂αi

1
hαi (vi)

is increasing in vi for all αi and vi ∈
[
ωαi , ωαi

]
.

Assumption 3 (Regularity)

vi −
1−Hαi (vi)
hαi (vi)

is increasing in vi for all αi and vi ∈
[
ωαi , ωαi

]
.

Assumption 1 assumes that the signals are rotation-ordered and the rotation point v+
αi is µ for

all αi. The assumption v+
αi = µ is not critical, but it greatly eases our presentation. We will discuss

it later. Assumption 2 is stronger than the rotation order assumption, and it says that the expected
gain from more information is higher for the buyers with higher vi.23 Finally, Assumption 3 is a
regularity assumption.

Both the rotation order assumption and the regularity assumption are mild assumptions. The
monotonicity assumption is relatively more restrictive, but two commonly used information tech-
nologies in the literature, the Gaussian specification and the truth-or-noise technology (Lewis and
Sappington (1994)), satisfy all three assumptions.

Definition 4 (Truth-or-noise Technology)
The buyers’ true valuations {ωi} are independently drawn from a distribution F, and F has an

increasing hazard rate. Buyer i can acquire a costly signal si about ωi. With probability αi ∈ [α, 1] ,
the signal si perfectly matches the true valuation ωi, and with probability 1 − αi, si is a noise

independently drawn from F.

Under the truth-or-noise specification, the signal si sometimes perfectly reveals buyer i’s valu-
ation ωi, but is noise otherwise.

Lemma 3 (All Assumptions Hold for the Two Leading Examples)
Both the Gaussian specification and the truth-or-noise technology generate a family of distributions

{Hαi} that satisfies Assumptions 1, 2, and 3.

Note that Assumption 1 does not imply that the underlying distribution F is symmetric. For ex-
ample, for the truth-or-noise technology, the underlying distribution F could be convex or concave,
but the rotation point is still µ.

In order to characterize the symmetric optimal auction, we first need to identify the seller’s
information preferences, that is, the sign of the Lagrangian multiplier λ for the (IA) constraint.
It turns out that this is the most difficult part of the analysis. We use the technique in Rogerson

23Indeed, the monotonicity assumption, together with the mean-preserving property of our information structures,

implies rotation order. To see this, first note that
∂Hαi (vi)

∂αi
cannot always be positive or negative, otherwise it will

imply first order stochastic dominance which violates the fact that the family of distributions {Hαi} have the same

mean. Therefore, if monotonicity assumption holds,
∂Hαi (vi)

∂αi
must change sign from positive to negative only once.

That is, {Hαi} is rotation ordered.
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(1985) to sign λ: we relax the (IA) constraint to an inequality constraint, characterize the optimal
solution of the relaxed problem, and then verify that (IA) constraint is binding in the optimal
solution under the set of conditions in Lemma 4 below.

Lemma 4
Suppose the first-order approach is valid. The seller benefits from a reduction of marginal cost

(λ > 0), when either one of the following two sets of conditions is satisfied:

(1) Assumptions 1-3 hold and rα > µ.

(2) The Gaussian specification or the truth-or-noise technology, and large n.

The first condition implies r∗ > µ, which is sufficient for λ > 0. Recall that, in the case of one
bidder, the seller prefers more information if r∗ > µ. An increase in the number of bidders only
strengthens the seller’s preference for more information. The second condition should be contrasted
with Lemma 2 in the case of one bidder. The strategic interaction between buyers, which is absent
in the one-bidder model, plays a crucial part here. To see this, note that the seller’s revenue is
determined by the valuation of the marginal bidder (for example, the second highest bidder) and
the reserve price. With many bidders, the valuation of the marginal bidder will be higher than the
mean valuation. This valuation is likely to be higher when more information is acquired. In the
case with one bidder, however, a seller will prefer a more informed buyer only when the optimal
reserve price is higher than the mean valuation (niche market).

Now, we can present a simple rule for adjusting the reserve price in optimal auctions with
information acquisition:24

Theorem 2 (Simple Rule for Adjusting the Reserve Price)
Suppose the first-order approach is valid, Assumptions 1 and 3 hold. If λ > 0, then the optimal

reserve price r∗ is closer to the mean valuation µ than the standard reserve price rα∗ . Specifically,
µ ≤ r∗ < rα∗ if rα∗ > µ

r∗ = µ if rα∗ = µ

rα∗ < r∗ ≤ µ if rα∗ < µ

.

If λ < 0, then r∗ < rα∗ < µ.

Theorem 2 is conceptually a direct consequence of Theorem 1, and generalizes Proposition 3.
It characterizes the relationship between the optimal reserve price in our setting and the standard
reserve price in Myerson’s optimal auctions. If the seller wants to encourage information acquisition,
she has to set the optimal reserve price between the mean valuation and the standard reserve price
because the bidders’ incentives to acquire information are stronger when the reserve price is closer
to the mean valuation.

24The next two theorems will characterize the optimal selling mechanism contingent on the sign of the endogenous

Lagrangian multiplier λ. With Lemma 4, we can always restate the theorems by replacing the condition λ > 0 by the

exogenous condition (1) or (2). However, since both condition (1) and (2) are not necessary for λ > 0, we state our

theorems in terms of the sign of λ.
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This result is important in practice when the seller is concerned about bidders’ incentives to
acquire information. The reserve price is always the most important decision she has to make other
than choosing the auction format. Theorem 2 identifies a simple rule to adjust the reserve price
when endogenous information acquisition is important.

This result also has important implication for empirical studies. The empirical auction liter-
ature has attempted to evaluate the optimality of a seller’s reserve price policy. Most of these
studies assume exogenous information and do not consider the bidders’ incentives to acquire infor-
mation. They use observed bids and the equilibrium bidding behavior to recover the distribution
of bidders’ valuations, and then compare the actual reserve price with the standard reserve price
calculated from the estimated distribution. Our results indicate that, in situations where informa-
tion acquisition is important, the standard reserve price may not be an appropriate benchmark for
comparison.

The next result shows that under the stronger Assumption 2, standard auctions with an appro-
priately chosen reserve price are optimal.

Theorem 3 (Optimal Auctions)
Suppose the first-order approach is valid, Assumptions 1, 2 and 3 hold, and λ > 0. Then standard

auctions with the reserve price r∗ adjusted according to Theorem 2 are optimal.

An immediate consequence of Theorem 3 is the revenue equivalence among all standard auctions,
because the allocation rule is the same across all standard auctions. Furthermore, since the bidders’
expected gain from information acquisition is the same for all standard auctions, the equilibrium
amount of information acquired is the same across standard auctions as well.

The restriction of symmetric equilibrium is important for the above result. If bidders are
allowed to acquire different levels of information in equilibrium, the revenue equivalence theorem
fails. If we assume that information acquisition is discrete rather than continuous, however, we
can characterize the optimal selling mechanism without the symmetric restriction, as shown in the
following subsection.

5.3 Asymmetric Mechanisms with Discrete Information Acquisition

In this subsection, we assume information acquisition is discrete, so we can drop both the symmetric
restriction and the first-order approach. Specifically, bidders are assumed to be ex ante symmetric
and endowed with signal with precision α0. Each bidder can opt to receive a signal α1 that is more
informative than signal α0 in terms of rotation order, but he has to incur a cost c. The distribution
of bidder i’s posterior estimates vi is denoted by H0 (·) if he does not acquire information, and
H1 (·) if he acquires information. Let h0 and h1 denote the corresponding densities.

By revelation principle, we can restrict to the direct revelation mechanism {qi (v) , ti (v)} . With-
out loss of generality, suppose the seller wants to induce first m bidders (0 ≤ m ≤ n) to acquire
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additional information. Then the mechanism must satisfy the standard (IC), (IR) constraints,

ui (vi) = ui (ω) +
∫ vi

ω
Qi (vi) dvi and Qi (vi) is increasing in vi, for all i and vi

ui (vi) ≥ 0, for all i and vi

and information acquisition (IA) constraints:∫ ω

ω
ui (vi) dH1 (vi)−

∫ ω

ω
ui (vi) dH0 (vi) ≥ c, for i ≤ m∫ ω

ω
ui (vi) dH1 (vi)−

∫ ω

ω
ui (vi) dH0 (vi) ≤ c, for i > m

That is, the mechanism has to ensure that the first m bidders have incentives to acquire information
and the remaining (n−m) bidders have incentives not to acquire information.

Let λi denote the Lagrangian multiplier of the information acquisition constraint for bidder i,
i = 1, ..., n. Then the Lagrangian can be written and simplified as

L =
m∑
i=1

{∫ ω

ω

[
vi −

1−H1 (vi)
h1 (vi)

+ λi
H0 (vi)−H1 (vi)

h1 (vi)

]
Qi (vi) dH1 (vi)− λic

}

+
n∑

i=m+1

{∫ ω

ω

[
vi −

1−H0 (vi)
h0 (vi)

− λi
H0 (vi)−H1 (vi)

h0 (vi)

]
Qi (vi) dH0 (vi) + λic

}
(12)

Consider two bidders, i and j: bidder i acquires information and bidder j does not. Then the
distributions of the posterior estimates of bidder i and j are H1 and H0, respectively. Let r0 and
r1 solve

r0 −
1−H0 (r0)
h0 (r0)

= 0 and r1 −
1−H1 (r1)
h1 (r1)

= 0.

Since information structures are rotation-ordered,

H0 (x) > H1 (x) if x > v+

H0 (x) < H1 (x) if x < v+
,

where v+ is the rotation point. Therefore, conditional on the posterior estimate x > v+, informed
bidder i is stochastically “stronger” than bidder j, but conditional on x < v+, uninformed bidder j
is stochastically “stronger” than bidder i. Myerson (1981) demonstrates that the optimal auction
should discriminate against “strong” bidders. Interestingly, endogenous information acquisition
reduces the level of ex-post discrimination against “strong” bidders, as shown in the following
theorem.

Theorem 4 (Asymmetric Mechanism)
With endogenous information, the optimal reserve price for informed bidder i, r∗i , lies between r1

and v+, and the optimal reserve price for uninformed bidder j, r∗j , is set such that r0 is between r∗j
and v+. Moreover, the mechanism reduces the level of price discrimination against “strong” bidders

if signals are rotation-ordered.
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Proof. The proof of the first part is identical to the proof of Theorem 2. For the second part,
notice that the difference between the virtual surplus functions for bidder i and bidder j is:

Ji (x)− Jj (x) =
(
x− 1−H1 (x)

h1 (x)

)
−
(
x− 1−H0 (x)

h0 (x)

)
+ λi

H0 (x)−H1 (x)
h1 (vi)

+ λj
H0 (x)−H1 (x)

h0 (x)
.

Since λi, λj ≥ 0,

Ji (x)− Jj (x) ≥
(
x− 1−H1(x)

h1(x)

)
−
(
x− 1−H0(x)

h0(x)

)
if x > v+

Ji (x)− Jj (x) ≤
(
x− 1−H1(x)

h1(x)

)
−
(
x− 1−H0(x)

h0(x)

)
if x < v+

.

Thus, compared to the case with exogenous information, informed bidder i is treated more favorably
if the winning bid is higher than v+, and uninformed bidder j is treated more favorably otherwise.
In both cases, endogenous information acquisition reduces price discrimination against “strong”
bidders.

The first part of the theorem shows that the optimal rule for adjusting reserve price identified
in Theorem 2 is still valid in this discrete setting. The seller would set the optimal reserve price
closer to the rotation point in order give bidder i incentives to acquire information. The second
part suggests that the seller would soften price discrimination in order to provide bidders with
appropriate incentives either to or not to acquire information.

5.4 Informational Efficiency

Theorem 3 states that standard auctions with an adjusted reserve price are optimal when we
restrict the equilibrium to be symmetric. This subsection will examine the informational efficiency
of standard auctions and obtain a slightly more general results that can apply to optimal symmetric
auctions.

We use a symmetric benchmark in which the social optimal information choice αFB is the same
for all bidders. For all i :

αFB ∈ arg max
αi

∫ ωαi

0

(
1−Hn

αi (vi)
)
dvi − nC (αi) .

At information level αi, the marginal value of information to the social planner is

MV IFB (αi) = −n
∫ ωαi

0

∂Hαi (vi)
∂αi

Hn−1
αi (vi) dvi. (13)

Recall that, at information level αi, the marginal value of information to the bidder i is

MV I (αi) = −
∫ ωαi

r

∂Hαi (vi)
∂αi

Hn−1
αi (vi) dvi. (14)

Since the social planner has to pay n times the individual information cost, we normalize the
social value of information by multiplying 1/n. The difference between the social and individual
gain from acquiring information is

∆ (αi, n) =
1
n
MV IFB (αi)−MV I (αi) = −

∫ r

0

∂Hαi (vi)
∂αi

Hn−1
αi (vi) dvi. (15)
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By definition of rotation order, if r < µ, ∆ (αi, n) < 0.That is, information acquisition in auctions
with r < µ is socially excessive. Thus, we have proved the following result.

Proposition 5 (Informational Efficiency)
Suppose Assumption 1 holds. There exists δ > 0 such that bidders have socially excessive incentives

to acquire information in standard auctions if and only if r < µ+ δ.

When r = 0, the bidders’ incentive to acquire information coincides with the social optimum,
which can be easily seen from equation (15).25 As r increases, the buyers’ incentive to acquire
information increases, reaches maximum at r = µ, and declines afterwards. Consequently, there
exists a δ > 0, such that the individual incentive to acquire information coincides with the social
optimum when r = µ + δ. Therefore, the bidders’ incentive to acquire information is socially
excessive when r ∈ (0, µ+ δ). For the one-bidder model with the Gaussian specification studied in
Section 4, δ = µ.

5.5 Discussion

Rotation order. The rotation order ranks different information structures by comparing the
distributions of the posterior estimates. In contrast, most existing information orders (for example,
Lehmann (1988)) impose restrictions on the prior or posterior distributions of underlying states and
signals. One can show that a weaker version of Lehmann’s order, the MIO-ND order in Athey and
Levin (2001), generates a family of distributions {Hαi} ordered in terms of second-order stochastic
dominance. But second-order stochastic dominance is not strong enough for our analysis.

Assumption 1 restricts the rotation point to be the mean valuation. However, if the rotation
point v+ is different from µ and does not move as level of information varies, then all our results
remain valid as long as we replace µ in the statements of the results by v+. If the rotation point
moves as more information is acquired, or the rotation order assumption fails (for example, two
distributions of the posterior estimate cross each other more than once), then some of our results
(for instance, Theorem 1) still hold locally.

First order approach. In Appendix B, we provide several sets of sufficient conditions for
the first-order approach to be valid. First, it is satisfied if the cost function is sufficiently convex.
Second, if the support ofHαi is invariant with respect to αi, then a condition analogous to the CDFC
condition in the principal-agent literature (Mirrlees (1999), and Rogerson (1985)) is sufficient.
Third, we present sufficient conditions for the case of the Gaussian specification and the truth-or-
noise technology, respectively.

As pointed out in Bolton and Dewatripoint (2005), the requirement that the bidders’ first-order
condition be necessary and sufficient is too strong. All we need is that the replacement of the (IA)
constraint by the first-order condition can generate necessary conditions for the seller’s original
maximization problem. Thus, our analysis may remain valid even when the second-order condition
of the bidders’ maximization problem fails.

25This is consistant with the results in Bergemann and Välimäki (2002): the individual incentives to acquire

information coincide with the social optimum for efficient mechanisms in the private value setting.
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Private value. Our model focuses on the independent private value framework, but it can be
immediately extended to a setting with a common component. Suppose buyer i’s true valuation θi
has two components:

θi = ωi + y.

The first term ωi represents the individual idiosyncratic valuation and is unknown ex-ante. Buyer
i can acquire costly information about ωi. The second term y is the common value component, and
both the buyers and the seller learn it for free.26 In this setting, all our analysis remain valid because
the common component only shifts the distribution but does not affect the buyers’ incentives.

Pre-auction investment. Finally, our model framework can easily modified to analyze pre-
auction investment that stochastically shifts bidders’ valuation upwards.27

6 Conclusion

The mechanism design literature studies how carefully designed mechanisms can be used to elicit
agents’ private information in order to achieve a desired goal. Most of the papers in the literature,
however, ignore the influence of the proposed mechanisms on agents’ incentives to gather infor-
mation. In particular, with endogenous information acquisition, the optimal selling mechanism
should take into account the bidders’ information decision as a response to the proposed mecha-
nism. We show that under some conditions standard auctions with a reserve price remain optimal
but the reserve price has to be adjusted in order to incorporate the buyers’ incentives to acquire
information.

Relative to the existing literature, our model has three distinctive features. First, we study
the optimal mechanism that maximizes revenue in the presence of information acquisition. This
distinguishes our model from papers studying information acquisition in fixed auction formats.
Second, we study private and decentralized information acquisition, thus differing from previous
studies on the seller’s optimal disclosure policy and various entry models. Finally, the information
structure required for our results is more general than most of the existing literature on mechanism
design: we require only that the distributions of the posterior estimates be rotation-ordered.

26For example, a firm typically has two types of assets: liquid and illiquid. All potential buyers of the firm may

agree on the value liquid assets reflected in the financial statement, but they may value the illiquid assets differently.
27See Obara (2007) for an analysis of optimal auctions with hidden actions and correlated signals.
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7 Appendix A: Omitted Proofs

Proof of Proposition 1: Under mechanism {qi (vi, v−i) , ti (vi, v−i)} , a bidder’s expected payoffs
(information rent) with information structure α′i and α′′i are, respectively28

Eu
(
vi;α′i

)
= Ev−i

[∫ ω

ω

(
1−Hα′i

(vi)
)
qi (vi, v−i) dvi

]
,

Eu
(
vi;α′′i

)
= Ev−i

[∫ ω

ω

(
1−Hα′′i

(vi)
)
qi (vi, v−i) dvi

]
.

Therefore,

Ev
[
u
(
vi;α′i

)]
− Ev

[
u
(
vi;α′′i

)]
= Ev−i

[∫ ω

ω

(
Hα′′i

(vi)−Hα′i
(vi) (vi)

)
qi (vi, v−i) dvi

]
= −Ev−i

[∫ ω

ω

(∫ ωi

ω
qi (x, v−i) dx

)(
hα′′i (vi)− hα′i (vi)

)
dvi

]
(integration by part)

= −
∫ ω

ω

(∫ ωi

ω
Qi (x) dx

)(
hα′′i (vi)− hα′i (vi)

)
dvi,

where Qi (x) = Ev−i [qi (x, v−i)]. Since Qi (x) is increasing in x,
∫ ωi
ω Qi (x) dx is convex. By Lemma

1, Hα′i
SOSD Hα′′i

. Therefore, Evu [(vi;α′i)]− Ev [u (vi;α′′i )] > 0.�

Proof of Proposition 3: We can write the Lagrangian of the seller’s optimization problem as
follows:

L (r, α∗) = r (1−Hα∗ (r)) + λ

(
−
∫ ∞
r

∂Hα∗ (vi)
∂α∗

dvi − c
)
.

The first-order conditions are

∂L
∂r

= 1−Hα∗ (r∗)− r∗hα∗ (r∗) + λ
∂Hα∗ (r∗)
∂α∗

= 0, (16)

∂L
∂α∗

= −r∗∂Hα∗ (r∗)
∂α∗

+ λ

(
−
∫ ∞
r∗

∂2Hα∗ (vi)
∂α∗2

dvi

)
= 0. (17)

Note that the second-order condition of the buyer’s optimization problem implies

−
∫ ∞
r∗

∂2Hα∗ (vi)
∂α∗2

dvi < 0.

It follows from the rotation order property (3) of {Hα∗} and (17) that

r∗ ≷ µ⇔ λ ≷ 0. (18)

That is, a seller prefers a more informed buyer if and only if r∗ > µ.

28If the support of the posterior estimates varies with respect to information choice αi, we can redefine the distri-

bution as follows. Suppose under information structure αi, the support is
[
ωαi , ωαi

]
. Then define Hαi (vi) = 0 for

vi ∈
[
ω, ωαi

]
and Hαi (vi) = 1 for vi ∈ [ωαi , ω] .
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Next, we will show that 
µ < r∗ < rα∗ if r∗ > µ

r∗ = rα∗ = µ if r∗ = µ

r∗ < rα∗ < µ if r∗ < µ

.

First consider the case: r∗ > µ, and suppose the opposite is true: r∗ ≥ rα∗ . By (18), λ > 0. Then it
follows from the definition of rα∗ and monotone hazard rate property and rotation order property
of Hα∗ ,

∂L
∂r
|r=r∗ ≥ 1−Hα∗ (rα∗)− rα∗hα∗ (rα∗) + λ

∂Hα∗ (r∗)
∂α∗

= λ
∂Hα∗ (r∗)
∂α∗

> 0,

a contradiction of the optimality of r∗. Thus, µ < r∗ < rα∗ . The other two cases can be proved
analogously.

To complete the proof, we need to show that for a fixed β, there exists a µ̂ such that

r∗ ≷ µ⇔ µ ≶ µ̂.

We can rewrite the first-order condition for the buyer’s maximization problem as

0 = −
∫ ∞
r

∂Hαi (vi)
∂αi

dvi − c =
1

2
√

2π

√
β

α (α+ β)3 exp

(
−(r − µ)2

2σ2

)
− c (19)

Applying implicit function theorem to (19), we can show that

∂α

∂r


> 0 if r < µ

= 0 if r = µ

< 0 if r > µ

and
∂2α

∂r∂µ
> 0. (20)

We can also write the necessary first-order condition the seller’s maximization problem as

dπs
dr
|r=r∗ = 1−Hα∗ (r∗)− r∗hα∗ (r∗)− r∗∂Hα (r∗)

∂α∗
∂α∗

∂r
= 0 (21)

Define the function Γ (r∗, µ) as

Γ (r∗, µ) = 1−Hα∗ (r∗)− r∗hα∗ (r∗)− r∗∂Hα∗ (r∗)
∂α∗

∂α∗

∂r
.

Then applying implicit function theorem to Γ (r∗, µ) = 0, we have

dr∗

dµ
= −

∂Γ(r∗,µ)
∂µ

∂Γ(r∗,µ)
∂r

.

Notice that

∂Γ (r∗, µ)
∂µ

=
∂Hα∗ (r∗)
∂α∗

∂α∗

∂r∗
+ r∗

∂hα∗ (r∗)
∂α∗

∂α∗

∂r
+ r

∂2Hα∗ (r)
∂α∗2

(
∂α∗

∂r∗

)2

− r∗∂Hα∗ (r∗)
∂α∗

∂2α∗

∂r∗∂µ

and

∂Γ (r∗, µ)
∂r∗

= −2hα∗ (r∗)−2
∂Hα∗ (r∗)
∂α∗

∂α∗

∂r∗
−r∗∂hα

∗ (r∗)
∂α∗

∂α∗

∂r∗
−r∗∂

2Hα∗ (r∗)
∂α∗2

(
∂α∗

∂r∗

)2

+r∗
∂Hα∗ (r∗)
∂α∗

∂2α∗

∂r∗∂µ
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Given (20), it is easy to show that

for r∗ > µ :
∂Γ (r∗, µ)

∂µ
> 0,

∂Γ (r∗, µ)
∂r

< 0, and
∂Γ (r∗, µ)

∂µ
< −∂Γ (r∗, µ)

∂r

for r∗ = µ :
∂Γ (r∗, µ)

∂µ
= 0 and

∂Γ (r∗, µ)
∂r

< 0.

Therefore, for r∗ > µ, dr
∗

dµ ∈ (0, 1) , and for r∗ = µ, dr
∗

dµ = 0.
Note that r∗ (µ) > µ for µ < 0. Hence, there must exists a µ̂ such that r∗ (µ̂) = µ̂.

reserve price

mean valuation

*r

µ̂ µ0

µ=*r

( )µ*r

Moreover, because dr∗

dµ ∈ (0, 1) for r∗ > µ, and dr∗

dµ = 0 for r∗ = µ, µ̂ is unique and r∗ ≷ µ⇔ µ ≶ µ̂.

�

Proof of Proposition 4: The second-order condition for the buyer’s optimization problem is

−
∫ ∞
r

∂2Hαi (v)
∂α2

i

dvi < 0.

With some algebra, we can show

∂2Hαi (vi)
∂α2

i

=
4αi + 3β

2αi (αi + β)
(vi − µ)
2
√

2π

√
β3

α3
i (αi + β)

exp

(
−(vi − µ)2

2σ2

)(
1− αi + β

4αi + 3β
β2

αi
(vi − µ)2

)
.

Therefore, we can rewrite the second-order condition as∫ ∞
r

(vi − µ)
2
√

2π
exp

(
−(vi − µ)2

2σ2

)(
1− αi + β

4αi + 3β
β2

αi
(vi − µ)2

)
dvi > 0.

By a change of variable with y = vi−µ
σ , we can obtain∫ ∞

x
y exp

(
−1

2
y2

)(
1− ky2

)
dy > 0, (22)

where

x =
r − µ
σ

= (r − µ) /
√

αi
(αi + β)β

, and k =
αi + β

4αi + 3β
β2

αi
σ2 =

β

4αi + 3β
.
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The inequality (22) can be simplified into

−e−
1
2
x2 (

kx2 + 2k − 1
)
> 0⇔ k <

1
2 + x2

.

Substitute the expression of k and x and we can obtain

4αi + β

αi + β

αi

β2 > (r − µ)2 . (23)

Now if r ∈ [µ− 2σ (α) , µ+ 2σ (α)] , then r ∈ [µ− 2σ, µ+ 2σ] because σ (αi) ≥ σ (α) for all αi.
Therefore, a sufficient condition for (23) is

4αi + β

αi + β

αi

β2 > 4σ2,

which is equivalent to αi > 3β/4. Since αi > α for all i, the second-order condition is satisfied
whenever α > β. Hence, the first-order approach is valid if r ∈ [µ− 2σ (α) , µ+ 2σ (α)] and α > β.�

Proof of Lemma 3: For the Gaussian specification, we know from the text that

Hαi (vi) =
∫ vi

−∞

1√
2πσ

exp

(
−(x− µ)2

2σ2

)
dx where σ2 =

αi
(αi + β)β

.

Since Hα is normal, it has an increasing hazard rate and the regularity assumption is satisfied.
Recall equation (3)

∂Hαi (vi)
∂αi

= −(vi − µ)
2
√

2π
exp

(
−(vi − µ)2

2σ2

)√
β3

α3
i (αi + β)

.

In addition,
∂Hαi (vi)
∂αi

1
hαi (vi)

= − β (vi − µ)
2αi (αi + β)

.

It is easy to see that the other two assumptions are satisfied as well.
For the truth-or-noise technology, a buyer who observes a realization si with precision αi will

revise his posterior estimate as follows:

vi (si, αi) = E (ωi|si, αi) = αisi + (1− αi)µ.

The distribution and density of the posterior estimate are, respectively

Hαi (vi) = F

(
vi − (1− αi)µ

αi

)
; hαi (vi) =

1
αi
f

(
vi − (1− αi)µ

αi

)
.

Simple calculations lead to

∂Hαi (vi)
∂αi

= f

(
vi − (1− αi)µ

αi

)
(µ− vi)
α2
i

, (24)

∂Hαi (vi)
∂αi

1
hαi (vi)

= −vi − µ
αi

, (25)

hαi (vi)
1−Hαi (vi)

=
1
αi

f
(
vi−(1−αi)µ

αi

)
1− F

(
vi−(1−αi)µ

αi

) . (26)
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Equation (24) shows that the family of distributions {Hαi (·)} is rotation-ordered with rotation
point equal to µ. The monotonicity assumption follows from equation (25). Finally, Hαi (·) has an
increasing hazard rate, because, by assumption, the underlying distribution F (·) has an increasing
hazard rate. Therefore, the family of distributions {Hαi (·)} generated by the “truth-or-noise”
technology satisfies all assumptions. �

Proof of Lemma 4: Let α∗ denote the equilibrium information choice of bidders in the symmetric
equilibrium. We prove the lemma by establishing the following two claims.
Claim 1: The seller’s revenue in standard auctions with reserve price r is increasing in α∗ if (1)
r ≥ µ; or (2) Gaussian specification or truth-or-noise information technology, and n is large.

Proof : Let Vk,n denote the k-th order statistic from n random variables independently drawn
from Hα∗ . The seller’s revenue in standard auctions with a reserve price r is:

πs (α∗, r) = rPr (Vn−1,n < r ≤ Vn,n) + E [Vn−1,n|Vn−1,n ≥ r] Pr (Vn−1,n ≥ r)

= r [Hn−1,n (r)−Hn,n (r)] +
∫ ωα∗

r
vihn−1,n (vi) dvi

= r [1−Hα∗ (r)n] +
∫ ωα∗

r

[
1− nHα∗ (vi)

n−1 + (n− 1)Hα∗ (vi)
n
]
dvi.

Thus,

∂πs (α∗, r)
∂α∗

= −rnHα∗ (r)n−1 ∂Hα∗ (r)
∂α∗

− n (n− 1)
∫ ωα∗

r
Hα∗ (vi)

n−2 [1−Hα∗ (vi)]
∂Hα∗ (vi)
∂α∗

dvi.

If r ≥ µ, then ∂Hα∗ (vi)
∂α∗ ≤ 0 for all vi ≥ r. As a result, ∂πs(α∗,r)

∂α∗ > 0. Thus we have proved (1).
For Gaussian specification or truth-or-noise information technology, we only need to consider

the case of r < µ given the result in (1). For Gaussian specification, we have

∂Hα∗ (vi)
∂α∗

= − β (vi − µ)
2α∗ (α∗ + β)

hα∗ (vi) .

Therefore,

∂πs (α∗, r)
∂α∗

= −nrHα∗ (r)n−1 ∂Hα∗ (r)
∂α∗

− n (n− 1)
∫ ∞
r

Hα∗ (vi)
n−2 [1−Hα∗ (vi)]

∂Hα∗ (vi)
∂α∗

dvi

= nrHα∗ (r)n−1 β (r − µ)
2α∗ (α∗ + β)

hα∗ (r) + n (n− 1)
∫ ∞
r

Hα∗ (vi)
n−2 [1−Hα∗ (vi)]β (vi − µ)

2α∗ (α∗ + β)
hα∗ (vi) dvi

=
β

2α∗ (α∗ + β)

 nr (r − µ)Hα∗ (r)n−1
hα∗ (r) + n

[
(1−Hα∗ (vi)) (vi − µ)Hα∗ (vi)

n−1
]∞
r

−n
∫∞
r

(1−Hα∗ (vi)− hα∗ (vi) (vi − µ))Hα∗ (vi)
n−1

dvi


=

β

2α∗ (α∗ + β)

 n (r − µ)Hα∗ (r)n−1
hα∗ (r)

(
r − 1−Hα∗ (r)

hα∗ (r)

)
+n
∫∞
r

(
vi − 1−Hα∗ (vi)

hα∗ (vi)

)
Hα∗ (vi)

n−1
hα∗ (vi) dvi − µ (1−Hα∗ (r)n)


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If r ≤ rα∗ , then

r − 1−Hα∗ (r)
hα∗ (r)

≤ 0, and n (r − µ)Hα∗ (r)n−1 hα∗ (r)
(
r − 1−Hα∗ (r)

hα∗ (r)

)
≥ 0

In addition, when n is relatively large, the following inequality holds:

E [Vn−1,n]− µ > 0.

Therefore,

∂πs (α∗, r)
∂α∗

> n

∫ ∞
−∞

(
vi −

1−Hα∗ (vi)
hα∗ (vi)

)
Hα∗ (vi)

n−1 hα∗ (vi) dvi − µ

= E [Vn−1,n]− µ > 0.

If r > rα∗ , then

r − 1−Hα∗ (r)
hα∗ (r)

> 0 and n (r − µ)Hα∗ (r)n−1 hα∗ (r)
(
r − 1−Hα∗ (r)

hα∗ (r)

)
> 0.

Hence,

∂πs (α∗, r)
∂α∗

>
β

2α∗ (α∗ + β)

[∫ ∞
r

(
vi −

1−Hα∗ (vi)
hα∗ (vi)

)
d [Hn

α∗ (vi)]− µ
]

>
β

2α∗ (α∗ + β)

[∫ ∞
µ

(
vi −

1−Hα∗ (vi)
hα∗ (vi)

)
d [Hn

α∗ (vi)]− µ
]
.

The last inequality follows from the assumption that r ≤ µ. When n is relatively large, the seller’s
revenue with n bidders and reserve price µ will be higher than µ. Therefore, ∂πs(α∗,r)

∂α∗ > 0.
Similarly, for truth-or-noise technology, we have

∂Hα∗ (vi)
∂α∗

= −vi − µ
α∗

hα∗ (vi) .

Therefore,

∂πs (α∗, r)
∂α∗

= −rnHα∗ (r)n−1 ∂Hα∗ (r)
∂α∗

− n (n− 1)
∫ ωα∗

r

Hα∗ (vi)
n−2 [1−Hα∗ (vi)]

∂Hα∗ (vi)
∂α∗

dvi

= nrHα∗ (r)n−1 (r − µ)
α∗

hα∗ (r) + n (n− 1)
∫ ωα∗

r

Hα∗ (vi)
n−2 [1−Hα∗ (vi)] (vi − µ)

α∗
hα∗ (vi) dvi

=


n
α∗ (r − µ)Hα∗ (r)n−1

hα∗ (r)
(
r − 1−Hα∗ (r)

hα∗ (r)

)
+ n
α∗

∫ ωα∗
r

(
vi − 1−Hα∗ (vi)

hα∗ (vi)

)
Hα∗ (vi)

n−1
hα∗ (vi) dvi − µ (1−Hα∗ (r)n)


If r ≤ rα∗ , then

r − 1−Hα∗ (r)
hα∗ (r)

≤ 0, and
n

α∗
(r − µ)Hα∗ (r)n−1 hα∗ (r)

(
r − 1−Hα∗ (r)

hα∗ (r)

)
≥ 0
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Note that α∗ ≤ 1, so we have

∂πs (α∗, r)
∂α∗

>
n

α∗

∫ ∞
−∞

(
vi −

1−Hα∗ (vi)
hα∗ (vi)

)
Hα∗ (vi)

n−1 hα∗ (vi) dvi − µ

= E [Vn−1,n]− µ > 0.

If r > rα∗ , then

r − 1−Hα∗ (r)
hα∗ (r)

> 0 and
n

α∗
(r − µ)Hα∗ (r)n−1 hα∗ (r)

(
r − 1−Hα∗ (r)

hα∗ (r)

)
> 0.

Hence,

∂πs (α∗, r)
∂α∗

>

∫ ωα∗

r

(
vi −

1−Hα∗ (vi)
hα∗ (vi)

)
d [Hn

α∗ (vi)]− µ

≥
∫ ωα∗

µ

(
vi −

1−Hα∗ (vi)
hα∗ (vi)

)
d [Hn

α∗ (vi)]− µ

The last inequality uses the fact that r∗ ≤ µ. Again, as n is relatively large, the seller’s revenue
with n bidders and reserve price µ is higher than µ. So ∂πs(α∗,r)

∂α∗ > 0.

Claim 2: If the seller’s revenue is increasing in α∗ in standard auctions with reserve price r, then
λ > 0.

Proof : Recall the seller’s maximization problem is

max
qi,u(ω),α∗

{
Ev,α∗

n∑
i=1

[(
vi −

1−Hα∗ (vi)
hα∗ (vi)

)
qi (vi, v−i)

]
− nu (ω)

}

s.t. : 0 ≤ qi (vi, v−i) ≤ 1;
n∑
i=1

qi (vi, v−i) ≤ 1, (Regularity)

: Qi (vi) is increasing in vi, (Monotonicity)

: u (ω) ≥ 0, (IR)

: −Ev,α∗
[
∂Hα∗ (vi)
∂α∗

1
hα∗ (vi)

qi (vi, v−i)
]
− C ′ (α∗) = 0. (IA)

Note that the expectation term is independent of u (ω) , and u (ω) is nonnegative, so the (IR)
constraint must be binding. Ignore the regularity constraint and monotonicity constraint for the
moment.

We adopt the same strategy of Rogerson (1985) by weakening the equality (IA) constraint to
the following inequality constraint.

−Ev,α∗
[
∂Hα∗ (vi)
∂α∗

1
hα∗ (vi)

qi (vi, v−i)
]
− C ′ (α∗) ≥ 0.

With the inequality constraint, the corresponding Lagrangian multiplier λ is always nonnegative.
If we can show that λ > 0 at the optimal solution of the relaxed program, then the constraint is
binding in equilibrium. Then, the optimal solution of relaxed program is also an optimal solution
of the original program. Hence λ > 0 for the original program.
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We can write and simplify the Lagrangian for the relaxed program as

L = Ev,α∗
n∑
i=1

[(
vi −

1−Hα∗ (vi)
hα∗ (vi)

− λ

n

∂Hα∗ (vi)
∂α∗

1
hα∗ (vi)

)
qi (vi, v−i)

]
− λC ′ (α∗)

The necessary first-order condition is

0 =
∂L

∂α∗
=


∂

{
Ev,α∗

∑n
i=1

[(
vi−

1−Hα∗ (vi)
hα∗ (vi)

)
qi(vi,v−i)

]}
∂α∗

+λ
∂

[
−Ev,α∗

[
∂Hα∗ (vi)

∂α∗
1

hα∗ (vi)
qi(vi,v−i)

]
−C′(α∗)

]
∂α∗

 . (27)

Since λ ≥ 0, standard auctions are optimal by theorem 3. Therefore, we can restrict attention to
standard auctions, and the seller’s revenue in standard auctions is

Ev,α∗
n∑
i=1

[(
vi −

1−Hα∗ (vi)
hα∗ (vi)

)
qi (vi, v−i)

]
.

By assumption, the seller’s revenue is increasing in α∗, so the first term in the big bracket of
(27) is positive. In order to show λ > 0, we need to show that the second term is negative. Note
that in a standard auction with reserve price r,

−Ev,α∗
[
∂Hα∗ (vi)
∂α∗

1
hα∗ (vi)

qi (vi, v−i)
]
− C ′ (α∗) =

∫ ωα∗

r
(1−Hα∗ (vi))Hα∗ (vi)

n−1 dvi − C ′ (α∗) .

Thus,

∂
[
−Ev,α∗

[
∂Hα∗ (vi)
∂α∗

1
hα∗ (vi)

qi (vi, v−i)
]
− C ′ (α∗)

]
∂α∗

= −
∫ ωα∗

r

∂2Hα∗ (vi)
∂α∗2

Hα∗ (vi)
n−1 dvi +

∂2Hα∗ (ωα∗)
∂α∗2

∂ωα∗

∂α∗
− C ′′ (α∗)︸ ︷︷ ︸

A

−
∫ ωα∗

r

(
∂Hα∗ (vi)
∂α∗

)2

(n− 1)Hα∗ (vi)
n−2 dvi︸ ︷︷ ︸

B

Since α∗ maximize a bidder’s expected payoff, the local second-order condition of the bidder’s
maximization problem holds. As a result, term A is negative. Since term B is also negative, the
partial derivative is negative. Therefore, λ > 0 at the optimal solution (α∗, q∗) . The solution to
the relaxed program is the same as the one for the original program, and the maximum of the
relaxed program can be achieved by the original program. Hence, the Lagrangian multiplier λ for
the original problem must be strictly positive.

To complete the proof, we need to show that rα > µ implies rα∗ > µ. Note that by definition
of rα and Assumption 3, rα > µ is equivalent to

µ−
1−Hα (µ)
hα (µ)

< 0.
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Since α∗ ≥ α, by Assumption 1,

Hα (µ) = Hα∗ (µ) and hα (µ) ≥ hα∗ (µ)

It follows that
µ− 1−Hα∗ (µ)

hα∗ (µ)
≤ µ−

1−Hα (µ)
hα (µ)

< 0

Thus, rα∗ > µ. Finally, from Theorem 2, for λ > 0, rα∗ > µ⇔ r∗ ≥ µ.
The Lemma now follows from the results of Claim 1 and Claim 2. �

Proof of Theorem 2: Recall the virtual surplus function is

J∗ (vi) = vi −
1−Hα∗ (vi)
hα∗ (vi)

− λ

n

∂Hα∗ (vi)
∂α∗

1
hα∗ (vi)

.

The optimal reserve price r∗ has to satisfy

qi (vi, v−i) > 0⇒ vi ≥ r∗,

and
r∗ ≤ min {r : J∗ (vi) ≥ 0 for all vi ≥ r} . (28)

The last condition says that the seller will sell the object as long as the marginal revenue is
nonnegative.

Case 1: λ > 0 and rα∗ > µ. First we show r∗ < rα∗ . By definition of rα∗ ,

rα∗ −
1−Hα∗ (vi)
hα∗ (vi)

= 0.

Then for all vi ≥ rα∗ > µ,

J∗ (vi) = vi −
1−Hα∗ (vi)
hα∗ (vi)

− λ

n

∂Hα∗ (vi)
∂α∗

1
hα∗ (vi)

= −λ
n

∂Hα∗ (vi)
∂α∗

1
hα∗ (vi)

> 0.

The last inequality follows from the fact that {Hα∗} is rotation-ordered. Therefore, there exists
ε > 0, such that

J∗ (rα∗ − ε) ≥ 0.

Therefore, by (28), the optimal reserve price r∗ < rα∗ .

Next, we show r∗ ≥ µ. Suppose r∗ < µ by contradiction. Then

J∗ (r∗) = r∗ − 1−Hα∗ (r∗)
hα∗ (r∗)

− λ

n

∂Hα∗ (r∗)
∂α∗

1
hα∗ (r∗)

< −λ
n

∂Hα∗ (r∗)
∂α∗

1
hα∗ (r∗)

< 0.

The first inequality follows because r∗ < rα∗ , and the second inequality follows from the rotation
order. This contradicts the fact the J∗ (r∗) ≥ 0. Thus, we have shown µ ≤ r∗ < rα∗

Case 2: λ > 0 and rα∗ = µ. Then for all vi > µ,

J∗ (vi) = vi −
1−Hα∗ (vi)
hα∗ (vi)

− λ

n

∂Hα∗ (vi)
∂α∗

1
hα∗ (vi)

≥ −λ
n

∂Hα∗ (vi)
∂α∗

1
hα∗ (vi)

> 0.
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Therefore, r∗ cannot be higher than µ. On the other hand, for all vi < µ

J∗ (vi) = vi −
1−Hα∗ (vi)
hα∗ (vi)

− λ

n

∂Hα∗ (vi)
∂α∗

1
hα∗ (vi)

≤ −λ
n

∂Hα∗ (vi)
∂α∗

1
hα∗ (vi)

< 0.

Therefore, r∗ cannot be lower than µ. Therefore, r∗ = rα∗ = µ.

Case 3: λ > 0 and rα∗ < µ. Note that for all vi < rα∗ ,

J∗ (vi) = vi −
1−Hα∗ (vi)
hα∗ (vi)

− λ

n

∂Hα∗ (vi)
∂α∗

1
hα∗ (vi)

≤ −λ
n

∂Hα∗ (vi)
∂α∗

1
hα∗ (vi)

< 0.

Therefore, r∗ > rα∗ . Furthermore, for all vi > µ,

J∗ (vi) = vi −
1−Hα∗ (vi)
hα∗ (vi)

− λ

n

∂Hα∗ (vi)
∂α∗

1
hα∗ (vi)

≥ −λ
n

∂Hα∗ (vi)
∂α∗

1
hα∗ (vi)

> 0.

Thus, r∗ ≤ µ. As a result, rα∗ < r ≤ µ.
Case 4: λ < 0 and rα∗ < µ. Note that for all vi ∈ [rα∗ , µ]

J∗ (vi) = vi −
1−Hα∗ (vi)
hα∗ (vi)

− λ

n

∂Hα∗ (vi)
∂α∗

1
hα∗ (vi)

≥ −λ
n

∂Hα∗ (vi)
∂α∗

1
hα∗ (vi)

> 0.

In addition, r∗ cannot be higher than µ, otherwise λ > 0. Therefore, r∗ < rα∗ < µ.

From the proof of Lemma 4, we know rα∗ ≥ µ implies λ > 0, the above four cases include all
possible cases, and our proof is complete.�

Proof of Theorem 3: Under Assumption 2 and 3,

J∗ (vi) = vi −
1−Hα∗ (vi)
hα∗ (vi)

− λ

n

∂Hα∗ (vi)
∂α∗

1
hα∗ (vi)

is increasing in vi. In this case, we can define the reserve price as

r∗ = inf {r : J∗ (r) ≥ 0} .

Therefore the optimal auctions will assign the object to the bidder with highest posterior estimate
provided his estimate is higher than r∗. So standard auctions with reserve price r∗ are optimal,
where r∗ is set according to Theorem 2.�

8 Appendix B: Sufficient Conditions for Validity of the First Or-

der Approach

This Appendix will provide several sets of sufficient conditions under which the first-order approach
is valid. Recall that bidder i chooses αi to maximize his payoff given other bidders choose αj (j 6= i) .
Bidder i’s payoff under mechanism {qi (v) , ti (v)} is,

πb (αi) = Ev−i

{∫ ωαi

ωαi

[1−Hαi (vi)] qi (vi, v−i) dvi − C (αi)

}
.

35



Then with some algebra, one can show that

∂2πb
∂α2

i

= −Ev−i


∂qi

(
ωαi

,v−i
)

∂vi

(
∂ωαi
∂αi

)2
+ qi

(
ωαi , v−i

) ∂2ωαi
∂α2

i
−

∂Hαi

(
ωαi

)
∂αi

qi
(
ωαi , v−i

) ∂ωαi
∂αi

+
∂Hαi(ωαi)

∂αi
qi (ωαi , v−i)

∂ωαi
∂αi

+
∫ ωαi
ωαi

∂2Hαi (vi)

∂α2
i

qi (vi, v−i) dvi

−C ′′ (αi)
The first-order approach is valid if ∂2πb/∂α

2
i < 0, which holds as long as the cost function is

sufficient convex.29

If the support of the posterior estimates is independent of information choice αi, all terms except
the last one in the expectation are zero. Therefore, the first-order approach is valid if the last term
in the expectation is nonnegative. A sufficient condition for the last term to be nonnegative is

∂2Hαi (vi)
∂α2

i

≥ 0 for all vi. (29)

That is, the distribution of the posterior estimates is convex in the bidder’s information choice.
This condition is analogous to the CDFC (convexity of the distribution function condition) in the
principal-agent literature, which requires that the distribution function of output be convex in the
action the agent takes (Mirrlees (1999), and Rogerson (1985)).30

For our two leading information structures, we will provide sufficient conditions under which
the first-order approach is valid.

Proposition 6
For the truth-or-noise technology, if C ′′ (αi)αi ≥ f (ω) (ω − µ)2 for all αi, the second-order condition

of buyers’ maximization problem is satisfied either (1) F (x) is convex, or (2) F (x) = xb (b > 0)
with support [0, 1] . For the Gaussian specification, the second-order condition is satisfied if, for all

αi, √
β3

α3
i (αi + β)5 < 2

√
2πC ′′ (αi) .

Proof: For the truth-or-noise technology,

∂2πb
∂α2

i

= −Ev−i


∂qi

(
ωαi

,v−i
)

∂vi

(
∂ωαi
∂αi

)2

−
∂Hαi

(
ωαi

)
∂αi

qi
(
ωαi , v−i

) ∂ωαi
∂αi

+
∂Hαi(ωαi)

∂αi
qi (ωαi , v−i)

∂ωαi
∂αi

+
∫ ωαi
ωαi

∂2Hαi (vi)

∂α2
i

qi (vi, v−i) dvi

− C ′′ (αi)
< −∂Hαi (ωαi)

∂αi
Qi (ωαi)

∂ωαi
∂αi

+
∂Hαi

(
ωαi
)

∂αi
Qi
(
ωαi
) ∂ωαi
∂αi

− C ′′ (αi)−
∫ ωαi

ωαi

∂2Hαi (vi)
∂α2

i

Qi (vi) dvi

= f (ω)
(ω − µ)2

αi
Qi (ωαi)− f (ω)

(µ− ω)2

αi
Qi
(
ωαi
)
− C ′′ (αi)−

∫ ωαi

ωαi

∂2Hαi (vi)
∂α2

i

Qi (vi) dvi

≤ f (ω)
(ω − µ)2

αi
− C ′′ (αi)−

∫ ωαi

ωαi

∂2Hαi (vi)
∂α2

i

Qi (vi) dvi

≤ −
∫ ωαi

ωαi

∂2Hαi (vi)
∂α2

i

Qi (vi) dvi

29Persico (2000) makes such an assumption in his example of information acquisition.
30See also Jewitt (1988).
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The last equality follows from equation (24) and the fact that

∂ωαi/∂αi = ω − µ, ∂ωαi/∂αi = (µ− ω) .

and the last inequality follows from the assumption that C ′′ (αi)αi ≥ f (ω) (ω − µ)2 .

Note that

−
∫ ωαi

ωαi

∂2Hαi (vi)
∂α2

i

Qi (vi) dvi

= −
∫ ωαi

ωαi

{
f ′
(
vi − (1− αi)µ

αi

)
(µ− vi)2

α4
i

− f
(
vi − (1− αi)µ

αi

)
2 (µ− vi)

α3
i

}
Qi (vi) dvi

= −
∫ ω

ω

{
f ′ (si)

(si − µ)2

αi
+ f (si)

2 (si − µ)
αi

}
Qi (αisi + (1− αi)µ) dsi

If F (·) is convex, then

∂2πb
∂α2

i

< − 2
αi

∫ ω

ω
(si − µ) f (si)Qi (αisi + (1− αi)µ) dsi

< − 2
αi

∫ µ

ω
(si − µ) f (si)Qi (µ) dsi −

2
αi

∫ ω

µ
(si − µ) f (si)Qi (µ) dsi

= − 2
αi
Qi (µ)

∫ ω

ω
(si − µ) f (si) dsi

= 0

If F (x) = xb (0 < b ≤ 1) with support [0, 1] , then

∂2πb
∂α2

i

< −
∫ ω

ω

{
f ′ (si)

(si − µ)2

αi
+ f (si)

2 (si − µ)
αi

}
Qi (αisi + (1− αi)µ) dsi

= − 1
αi

∫ 1

0
[(b+ 1) s+ (1− b)µ] bsb−2 (s− µ)Qi (αis+ (1− αi)µ) ds

< − 1
αi
Qi (µ)

∫ 1

0
((b+ 1) s+ (1− b)µ) bsb−2 (s− µ) ds

= − 1
αi
Qi (µ) (b+ 1)

∫ 1

0
bsb−1 (s− µ) ds− 1

αi
Qi (µ) (1− b)µb

∫ 1

0
sb−2 (s− µ) ds

= − 1
αi
Qi (µ)

b

(1 + b)2

< 0.

For the Gaussian specification,

∂2πb
∂α2

i

= −Ev−i
{∫ ∞
−∞

∂2Hαi (vi)
∂α2

i

qi (vi, v−i) dvi

}
− C ′′ (αi) .

With some algebra, we can obtain

∂2Hαi (vi)
∂α2

i

=
4αi + 3β

2αi (αi + β)
(vi − µ)
2
√

2π

√
β3

α3
i (αi + β)

exp

(
−(vi − µ)2

2σ2

)(
1− αi + β

4αi + 3β
β2

αi
(vi − µ)2

)
.
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Thus, we can write the second derivative as

∂2πb
∂α2

i

=

 −
∫∞
−∞

4αi+3β
2αi(αi+β)

(vi−µ)

2
√

2π

√
β3

αi(αi+β) exp
(
− (vi−µ)2

2σ2

)
Qi (vi) dvi

+
∫∞
−∞

β2

4α2
i

(vi−µ)3√
2π

√
β3

α3
i (αi+β)

exp
(
− (vi−µ)2

2σ2

)
Qi (vi) dvi

− C ′′ (αi)
=

 − 4αi+3β
2αi(αi+β)

∫∞
−∞

(
−∂Hαi (vi)

∂αi

)
Qi (vi) dvi

+
∫∞
−∞

β2

4α2
i

(vi−µ)3√
2πσ

β
αi(αi+β) exp

(
− (vi−µ)2

2σ2

)
Qi (vi) dvi

− C ′′ (αi) .
By Proposition 1, bidders always prefer higher αi, which implies∫ ∞

−∞

(
−∂Hαi (vi)

∂αi

)
Qi (vi) dvi > 0.

Thus, a sufficient condition for the second-order condition is∫ ∞
−∞

β2

4α2
i

β

αi (αi + β)
(vi − µ)3

√
2πσ

exp

(
−(vi − µ)2

2σ2

)
Qi (vi) dvi < C ′′ (αi)⇔

β3

4α3
i (αi + β)

∫ ∞
−∞

(vi − µ)3

√
2πσ

exp

(
−(vi − µ)2

2σ2

)
Qi (vi) dvi < C ′′ (αi) .

A sufficient condition for the above inequality is,

β3

4α3
i (αi + β)

∫ ∞
µ

(vi − µ)3

√
2πσ

exp

(
−(vi − µ)2

2σ2

)
dvi < C ′′ (αi)⇔

1
2
√

2π

√
β3

α3
i (αi + β)5 < C ′′ (αi) .

Note that if β/αi is small, the above sufficient condition is easy to be satisfied. Therefore, if α/β
is sufficiently large, the second-order condition is satisfied. �

For the truth-or-noise technology, the condition, C ′′ (αi)αi ≥ f (ω) (ω − µ)2, is to ensure that
the relative gain from information acquisition is not too high so that bidders will not pursue extreme
information choice α. The convexity of F is not necessary. For example, F (x) = xb may not be
convex but the second-order condition is still satisfied.

For the Gaussian specification, if β is small and α is large relative to β, then the second-order
condition is satisfied. This is quite intuitive. Small β implies the prior distribution is quite spread
out, so the potential gain from information acquisition is high. If α is large relative to β, then the
signal will be informative, which again implies information acquisition is profitable.
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