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Abstract

In this paper, we perform Bayesian analysis of a panel probit model with unobserved
individual heterogeneity and serially correlated errors. We augment the data with latent
variables and sample the unobserved heterogeneity component as one Gibbs block per
individual using a �exible piecewise linear approximation to the marginal posterior
density. The latent time e¤ects are simulated as another Gibbs block. For this purpose
we develop a new user-friendly form of the E¢ cient Importance Sampling proposal
density for an Acceptance-Rejection Metropolis-Hastings step. We apply our method
to the analysis of product innovation activity of a panel of German manufacturing
�rms in response to imports, foreign direct investment and other control variables. The
dataset used here was analyzed under more restrictive assumptions by Bertschek and
Lechner (1998) and Greene (2004). Although our results di¤er to a certain degree from
these benchmark studies, we con�rm the positive e¤ect of imports and FDI on �rms�
innovation activity. Moreover, unobserved �rm heterogeneity is shown to play a far
more signi�cant role in the application than the latent time e¤ects.
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1 Introduction

It has long been recognized that maximum likelihood analysis of limited dependent variable

(LDV) models with panel data is feasible only under relatively restrictive assumptions

(Butler and Mo¢ tt, 1982). The di¢ culty that such models pose in general lies in the

likelihood function containing multivariate integrals that are often analytically intractable.

Fuelled by advances in computation, the last two decades witnessed an explosion of

interest in Bayesian models using data augmentation (Tanner and Wong, 1987) that had

previously been regarded as numerically unfeasible. Under this framework, the latent vari-

ables within these multivariate integrals are treated as model parameters and hence are

sampled along with the key model parameters of economic interest. The Bayesian Gibbs

sampling scheme is naturally suited for such purpose: an often high-dimensional multivari-

ate integral forming the likelihood function is factorized into a sequence of low-dimensional

conditional densities each of which is sampled individually. Proceeding iteratively along a

Markov Chain of these low-dimensional subproblems yields draws from the joint posterior

which are the used directly for inference.

Due to their �exibility and conceptual simplicity, Bayesian methods successfully compete

against simulation-based frequentist techniques, such as Simulated Maximum Likelihood

(SML)1. The advantages of the former become more pronounced with increased dimen-

sionality of the underlying problem. For example, in our setup the SML approach would

require a large number of latent variable draws for each parameter value in order to ap-

proximate numerically the integral likelihood function to an acceptable degree of accuracy.

In contrast, Gibbs sampling takes one latent variable draw for each parameter value. In

many cases, this implies that Bayesian parameter estimation is faster than SML. Multiple

local modes in the SML objective function for a given dataset are another concern which is

completely bypassed using the Bayesian setup. Numerous other technical details regarding

the advantages of Bayesian inference in latent variable models are discussed in Paap (2002).

Moreover, Bayesian hierarchical models can be readily extended to incorporate inference

on latent classes of similar individuals or mixtures of distributions for various objects of

interest (see e.g. Rossi et al., 2005). Implementation of such features in high-dimensional

latent variable models using SML would arguably pose a far more taxing problem.

In this paper, we perform Bayesian analysis of a panel probit model with unobserved

individual heterogeneity and autocorrelated errors. We do not impose any orthogonality

condition on the unobserved individual e¤ects with respect to the observed regressors. Our

model thus falls outside of the class of what is called in the traditional econometric parlance

"random e¤ects" models (Wooldridge, 2001, p. 252). In the context of dynamic Bayesian

models, previous literature has considered either a latent time dimension or latent individ-

1Gourieroux and Monfort (1996) provide the essential statistical background for the SML estimator.
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ual heterogeneity (Paap, 2002; Franses, 2006; Liesenfeld and Richard, 2006). Our approach,

based on proposal densities constructed with the E¢ cient Imporance Sampling (EIS) pro-

cedure (Richard and Zhang, 2007), combines both features and thus allows for inference

within a rich economic model environment. Speci�cally, we augment the data with la-

tent variables and sample the unobserved individual heterogeneity component as one Gibbs

block per individual, drawing from a piecewise linear approximation to the marginal poste-

rior density constructed with a nonparametric form of EIS. The time e¤ects are simulated

as another Gibbs block with a parametric EIS proposal density for an Acceptance-Rejection

Metropolis-Hastings step.

We apply our method to the product innovation activity of a panel of German manufac-

turing �rms in response to imports, foreign direct investment and other control variables.

The same dataset was analyzed by Bertschek and Lechner (1998) and Greene (2004) for

di¤erent types of frequentist estimators under more restrictive assumptions providing a use-

ful benchmark for comparison with our results.2 Speci�cally, Bertschek and Lechner (1998)

proposed several variants of a GMM estimator based on the period speci�c regression func-

tions. Greene (2004) performed maximum likelihood analysis with GHK-SML and the

Butler and Mo¢ tt (1982) Hermite quadrature method. None of these authors considered

a model with unobserved individual heterogeneity and autocorrelated errors as analyzed in

this paper.

The remainder of the paper is organized as follows. Section 2 outlines the empirical

example and the GMM and ML estimators of the dynamic panel probit models considered

by Bertschek and Lechner (1998) and Greene (2004). In Section 3 we elaborate on our

estimation technique. The results of our empirical application are discussed in Section 4.

Section 5 concludes. A simulation study with arti�cial data is reported in the Appendix.

2 Empirical Example and Estimation Methods

The goal of our empirical application is to investigate �rms�innovative activity as a response

to imports and foreign direct investment (FDI). This problem was originally considered

in Bertschek (1995) who suggested that imports and inward FDI had a positive e¤ect

on the innovative activity of domestic �rms. The rationale behind this argument is that

imports and FDI represent a competitive threat to domestic �rms. Competition on the

domestic market is enhanced and the pro�tability of the domestic �rms might be reduced.

Consequently, these �rms have to produce more e¢ ciently. One possibility to react to this

competitive threat is to increase innovative activity.

The analyzed dataset contains N = 1270 cross-section units observed over T = 5 time

2Similar data set was used in an interesting paper by Inkmann (2000) but with some regressors di¤erent
from ours.
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periods. The dependent variable yit in the data takes the value one if a product innovation

occurred within the last year and the value zero otherwise. The K�vector of control
variables is denoted by zit and the corresponding vector of parameters to be estimated by

�. The independent variables refer to the market structure, in particular the market size of

the industry (ln(sales)), the shares of imports and FDI in the supply on the domestic market

(import share and FDI share), the productivity as a measure of the competitiveness of the

industry as well as two variables indicating whether a �rm belongs to the raw materials

or to the investment goods industry. Also, including the relative firm size accounts

for the innovation ��rm size relation often discussed in the literature. All variables with

exception of the �rm size are measured at the industry level. Descriptive statistics and

further discussion appear in Bertschek and Lechner (1998) and Greene (2004).

Two distinct sources of time dependence have been identi�ed in the literature.3 In the

context of our empirical application, the �rst arises from the possibility that innovation

occurring in the present period may alter the conditions for the occurrence of innovation

in the next period. In this case past experience has a behavioral e¤ect in the sense that

otherwise identical company that did not experience the event would behave di¤erently

from the company that experienced the event. This phenomenon is known as true state

dependence and is typically captured by including a lagged dependent variable among the

regressors.

The second source of time dependence derives from the fact that companies may di¤er

in their propensity to innovate. Two components are distinguished in this case. The �rst

one relates to the existence of company-speci�c attributes that are time-invariant. This

component is typically called unobserved heterogeneity and we allow for it by including a

time-invariant company-speci�c error term � i: It may re�ect institutional factors that are

di¢ cult to control for by direct inclusion among the regressors. The second component takes

into account that economy-wide factors in�uencing all companies alike may be correlated

over time. Improper treatment of the error structure may result in a conditional relationship

between future and past experience that is termed spurious state dependence (Hyslop, 1999).

We avoid this problem by assuming an AR(1) structure for the latent error term �t:

2.1 Alternative Panel Probit Model Speci�cations

The panel probit model has been analyzed extensively under various assumptions in the

literature. In this Section, in addition to the basic probit model, we brie�y review two

studies, Bertschek and Lechner (1998) and Greene (2004), which used the same dataset as

in this paper and are therefore of particular relevance as benchmarks for discussion of our

3An illuminating discussion is provided in Falcetti and Tudela (2006, p. 454), drawing on Heckman (1981)
and Börsch-Supan et al. (1992).
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results. In doing so, we present only the least restrictive models of the ones analyzed by

these authors.

2.1.1 Model 1: Pooled Probit

This is the simplest probit estimator that treats the entire sample as if it were a large

cross-section. Speci�cally, it postulates the latent variable probit model speci�cation

y�it = �
0
0
zit + �it (1)

with the observation rule

yit = 1 (y
�
it � 0) ; i : 1; :::; N ; t : 1; :::T (2)

where 1 (�) denotes the indicator function. The error terms �it are normally distributed with
zero mean and unit variance.

2.1.2 Model 2: Panel Probit with Autocorrelated Errors

Bertschek and Lechner (1998) assume the latent variable probit model speci�cation (1) with

the observation rule (2). However, their error terms �i = (�i1; :::; �iT )
0 are modeled as jointly

normally distributed with mean zero and covariance matrix �: Also, �i are independent

of the explanatory variables which implies strict exogeneity of the latter. The error terms

may be correlated over time for a given �rm, but uncorrelated over �rms. The diagonal

elements of � are set to unity to facilitate identi�cation of � and the o¤-diagonal elements

are considered nuisance parameters. On the basis of the model (1) Bertschek and Lechner

(1998) formulated the following set of moment conditions

E[W (Z; �0)jX] = 0

W (z; �) = [w1(Z1; �); :::; wT (ZT ; �)]
0

wt(Zt; �) = Yt � �(�0zit) (3)

where � denotes the CDF of a univariate normal distribution. The main advantage of using

these moments is that their evaluation does not require multidimensional integration and

they do not depend on the T (T � 1)=2 o¤-diagonal elements of �: In line with the GMM
literature, (3) implies

EfA(X)W (Z; �0)g = 0
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where A(X) is a P � T matrix of instrumental variables. The e¢ cient GMM estimator of

�0 is then de�ned as b�N = argmin
�
g0N (�)


�1gN (�) (4)

where

gN (�) =
1

N

NX
i=1

A(xi)W (Zi; �)

Bertschek and Lechner (1998) obtained a nonparametric estimate of the optimal weighting

matrix 
 using a k-nearest neighbor (k-NN) approach.

2.1.3 Model 3: Random Parameters Model

Greene (2004) noted that the dataset used contains a considerable amount of between group

variation (97.6% of the FDI variation and 92.9% of the imports share variation is accounted

for by di¤erences in the group means). Thus, the dataset was likely to contain signi�cant

degree of unobserved individual heterogeneity, while none of the models above accounted

for it. Greene (2004) suggested two alternative formulations of the panel probit model: the

Random Parameters Model and the Latent Class Model (discussed further below). The

Random Parameters Model (or �Hierarchical�or �Multilevel�Model) is based on the latent

variable probit model speci�cation

y�it = �
0
0
zit + �it

with the observation rule (2), �it � NID[0; 1]; and

�i = �+�zi + �wi

where � is K � 1 vector of location parameters, � is K � L matrix of unknown location
parameters, � is K�K lower triangular matrix of unknown variance parameters, zi is L�1
vector of individual characteristics, wi is K � 1 vector of random latent individual e¤ects.

It holds that E[wijXi; zi] = 0 and V ar[wijXi; zi] = V; a K �K diagonal matrix of known

constants. Hence E[�ijXi; zi] = � + �zi and V ar[�ijXi; zi] = �V �0: Conditional on wi;

observations of yit are independent across time; timewise correlation would arise through

correlation of elements of �i: The joint conditional density on yit is

f (yijXi; �) =
YT

t=1
�[(2yit � 1)�0zit] (5)
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The contribution of this observation to the log-likelihood function for the observed data is

obtained by integrating the latent heterogeneity out of the distribution. Thus

logL =
NX
i=1

logLi =
NX
i=1

log

Z
�i

YT

t=1
�[(2yit � 1)�0zit]g(�ij�;�;�; zi)d�i (6)

Estimates of �; � and � are obtained by maximizing the SML version of (6).

2.1.4 Model 4: Latent Class, Finite Mixture Model

This model arises if we assume a discrete distribution for �i instead of the continuous one

postulated in the previous Random Parameters Model. Alternatively, the Latent Class

model can be viewed as arising from a discrete, unobserved sorting of �rms into groups,

each of which has its own set of characteristics. If the distribution of �i has �nite, discrete

support over J points (classes) with probabilities p(�j j�;�;�; zi); j = 1; :::; J; then the

resulting formulation of the analog of Li from (6) is

Li =
XJ

j=1
p(�j j�;�;�; zi)f

�
yijXi; �j

�
The model can then be estimated using the EM algorithm (see Greene, 2004, for details).

3 Panel Probit with Unobserved Individual Heterogeneity
and Autocorrelated Errors

Our panel probit model di¤ers from the ones described above by an explicit inclusion of

variables for both individual unobserved heterogeneity and time e¤ects accounting for spu-

rious state dependence. Speci�cally, our standardized probit model speci�cation assumes a

latent variable regression for individual i and time period t

y�it = �
0zit + � i + �t + �it; i : 1; :::; N ; t : 1; :::T (7)

under the observation rule (2), where zit is a vector of explanatory variables and �it � N(0; 1)
is a stochastic error component uncorrelated with any other regressor. � i � N(0; �2� ) rep-
resents individual unobserved heterogeneity that can be arbitrarily correlated with other

regressors. �t captures latent time e¤ects and is assumed to follow a stationary autoregres-

sive process

�t = ��t�1 + �t

where �t � N(0; �2�) such that the mean of �t is zero and the variance �2� is stationary. It
is assumed that �ti; � i and �t are mutually independent. The vector of parameters to be
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estimated is � = (�0; �� ; �1; :::; �k; ��)
0: Denote � = (�1; :::; �T )0 and � = (�1; :::; �N )0:

The likelihood function associated with y = (y11; :::; yTN )0 can be written as

L(�; y) =

Z
g(� ; �; �; y)p(� ; �; �)d�d� (8)

with

g(� ; �; �; y) =
NY
i=1

TY
t=1

[�(vit)]
yit [1� �(vit)]1�yit

where

�(vti) =
1p
2�

Z vti

�1
exp

�
�1
2
t2
�
dt

vit = �
0zit + � i + �t

p(� ; �; �) = ��N� (2�)�N=2 exp

"
� 1

2�2�

NX
i=1

�2i

#
(2�)�T=2 j��j�1=2 exp

�
�1
2
�0��1� �

�
(9)

and �� denotes the stationary variance-covariance matrix of �:

Bayesian MCMC simulation methods such as Gibbs sampling rely upon sampling from

conditional posterior distributions in order to construct a Markov chain whose equilibrium

distribution is the joint posterior of the parameters given the data. For the panel probit

model, the joint posterior distribution of parameters can be augmented with the vectors of

latent variables � and �: The complete joint posterior f(�; � ; �jZ) can then be drawn from
using Gibbs sampling. The main di¢ culty with such an MCMC approach is that of e¢ -

ciently sampling from � i and � since the corresponding multivariate posterior distributions

are high-dimensional and have no closed-form solution.

To overcome this problem, Liesenfeld and Richard (2006) proposed combining the EIS

sampler with the Acceptance-Rejection Metropolis-Hastings (AR-MH) algorithm of Tier-

ney (1994) in simulating the autocorrelated error component in stochastic volatility models

along the time dimension. In this paper, we also take the general approach of combining

EIS with AR-MH but introduce a new user-friendly parametrization of the EIS proposal

density for the time dimension �j�; Z. Speci�cally, we approximate with a �rst-stage EIS
kernel only the part of the likelihood that arises from the LDV model speci�cation, and

then recombine this approximation analytically with the known AR(p) likelihood assumed

for the latent time process to form the desired second-stage EIS proposal density. Thus we

avoid the need to pass integrating constants across periods which results in signi�cant sim-

pli�cation of constructing the proposal density. The unobserved individual heterogeneity

component � ij�; Z as N individual Gibbs blocks drawing from a piecewise linear approxima-

tion to the marginal posterior density constructed with a nonparametric form of EIS. The

basis of these procedures is that the EIS proposal densities for � ij�; Z and �j�; Z provide
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very close approximations to f(� ij�; Z) and f(�j�; Z); respectively. The piece-wise linear
approximation to f(� ij�; Z) freely adapts to the shape of the posterior can be made arbi-
trarily precise by increasing the size of the simulated grid. For f(�j�; Z) given the model
assumptions, one can expect that the EIS parametric density provides an e¢ cient proposal

density for the target posterior f(�j�; Z) in the AR-MH step. This conjecture has been

validated by AR-MH acceptance rates close to 100% in our empirical application.

For a given vector of parameters � the augmented likelihood L(�; � ; �;Z) is de�ned in

(8). Let � without the subvector �j be denoted by �=�j . For each Gibbs block of a generic

parameter �j the Bayesian optimal updating of prior beliefs, �(�j); with new information

(data Z) takes the form

f(�j j�=�j ;�; Z) / L(�; � ; �;Z)�(�j) (10)

The individual Gibbs blocks used are �; �� ; ��; �; �; and � ; given data and the remaining

augmented parameters. Throughout the analysis we make use of di¤use priors. Details of

sampling from the posterior distributions are described in Appendix 2.

4 Empirical Results

In this section, we �rst reproduce the pooled probit estimates and the results obtained by

Bertschek and Lechner (1998) and Greene (2004) as a benchmark for comparison with our

results. Although these authors also report estimates of models other than shown below, we

only select the ones with the least restrictive assumptions on the underlying probit models.

Table 1 presents the basic case of Pooled Estimator of Model 1 in (1) estimated in

Stata using the command �probit�. Table 1 also reports the Bertschek and Lechner (1998)

GMM parameter estimates of Model 2 with a k-NN estimate of 
 in (4) and the Greene

(2004) random parameter model prior means estimates of Model 3. As discussed in Greene

(2004), there are some substantial di¤erences compared to the other two models. Especially

noteworthy are the greater impacts of the two central parameters of imports and FDI share

on innovations as implied by the random parameters model. Nonetheless, these e¤ects are

positive in all cases as predicted.

Table 2 lists the Greene (2004) latent class estimates of Model 4. According to Greene

(2004), working down from the number of classes J = 5 the estimates stabilized at the

reported J = 3: Despite a large amount of variation across the three classes, the original

conclusion that FDI and imports positively a¤ect the probability of product innovation

continued to be supported.

Table 3 presents our Bayesian posterior means and medians of parameters in the model

(7). Posterior marginal densities of the Bayesian analysis, MCMC chains and autocorrela-
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tion functions of the parameter draws are presented in Figures 2 - 6. The latter two results

indicate very good mixing properties of the Markov chains.

Table 1: Models 1-3

Pooled Probita Model 1b Model 2c

Variable Estimate Std.Err. Estimate Std.Err. Estimate Std.Err.
Constant �1:960�� 0:230 �1:74�� 0:37 �3:134 0:191
log sales 0:177�� 0:022 0:15�� 0:034 0:306 �
Rel size 1:072�� 0:142 0:95�� 0:20 3:735 0:184
Imports 1:133�� 0:151 1:14�� 0:24 1:582 0:126
FDI 2:853�� 0:402 2:59�� 0:59 3:111 0:320
Prod. �2:341�� 0:715 �1:91�� 0:82 �5:786 0:755
Raw Mtl �0:279�� 0:081 �0:28�� 0:12 �0:346 0:077
Inv good 0:188�� 0:039 0:21�� 0:063 0:238 0:453

a Estimated in Stata by the simple command �probit�.
b Bertschek and Lechner (1998), WNP-joint uniform estimates with k = 880, Table 9, standard errors
from Table 10
c Greene (2004), �̂ in Table 5
� Indicates signi�cant at the 95% level
�� Indicates signi�cant at the 99% level

Table 2: Model 4d

Class 1 Class 2 Class 3
Variable Estimate Std.Err. Estimate Std.Err. Estimate Std.Err.
Constant �2:32�� 0:768 �2:71�� 0:766 �8:97�� 2:50
log sales 0:323�� 0:075 0:233�� 0:0675 0:571�� 0:197
Rel size 4:38�� 0:882 0:720�� 0:253 1:42� 0:616
Imports 0:936�� 0:491 2:26�� 0:503 3:12� 1:35
FDI 2:20 2:54 2:80�� 0:926 8:37�� 2:27
Prod. �5:86�� 1:69 �7:70�� 1:16 �0:910 1:26
Raw Mtl �0:110 0:172 �0:599�� 0:295 �0:856� 0:424
Inv good 0:131 0:143 0:413�� 0:132 0:469� 0:225

d Greene (2004), Table 7
� Indicates signi�cant at the 95% level
�� Indicates signi�cant at the 99% level

We excluded from estimation three distant outliers with relative �rm size larger than 0:1

and productivity larger than 0:8 (see Figure 1) as these observations may potentially induce

numerical instabilities. The three excluded observations with large relative size have also

disproportionately large values of import share and FDI - our two key variables of interest.

The means of the three outliers are 0:402 and 0:208 contrasting with means of the rest of
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the sample of 0:252 and 0:045 for import share and FDI, respectively. The outliers�means

thus correspond to approximately to the 82nd percentile and 98th percentile, respectively,

of the remaining observations of these variables. The exclusion reduced our sample size to

N = 1267 and T = 5:

Table3: EIS-MCMC

Variable Posterior mean Posterior median Std.Dev.
Constant �2:399�� �2:393�� 0:548
log sales 0:2428�� 0:2428�� 0:053
Rel size 1:3443�� 1:3408�� 0:324
Imports 1:5598�� 1:5634�� 0:362
FDI 3:5451�� 3:5250�� 0:906
Prod. �5:2336� �5:2621� 2:886
Raw Mtl �0:2203 �0:2231 0:245
Inv good 0:2985�� 0:2991�� 0:093
�� 1:1625�� 1:1610�� 0:046
�� 0:4729�� 0:4373�� 0:172
� 0:0025 �0:0099 0:498

Posterior moments are based on 20; 000 Gibbs cycles discarding the �rst 5; 000 cycles and keeping every �fth draw
thereafter resulting in 3000 MC draws for each parameter. One Gibbs iteration took approximately 3.5 seconds
on a 2.2 GHz unix machine. The nonparametric EIS sampler was perfomed over a grid of size 200. On average, it
took less than 6 EIS iterations for full convergence of the EIS parameters in sampling from the posteriors of the
latent variables � i and �. The AR and MH acceptance rates for � were 99:00% and 99:85%, respectively.

All of our coe¢ cient estimates �t into a convex combination of the results found in the

previous literature reported in Tables 1 and 2. In most cases, our �nding are close to the

mean values of the previous �ndings. The pattern of parameter signi�cance matches closely

previous results with the exception of sector dummy variables; these were previously found

either both signi�cantly di¤erent from zero or the converse. In our case, the raw materials

dummy turned out not signi�cant while the investment good dummy was estimated as

signi�cant. The estimates of the two key parameters of FDI and import share are positive,

further validating the original economic hypothesis that imports and inward FDI had a

positive e¤ect on the innovative activity of domestic �rms.

The posterior mean of the unobserved heterogeneity parameter �� was estimated at

1:1625 which is closely matches the value 1:1707 of an analogous parameter reported by

Greene (2004, p.35) for the random e¤ects model. In addition, the posterior mean standard

deviation of the latent time e¤ects �� was estimated at 0:4729 which is roughly half the

magnitude of its cross-sectional counterpart. The posterior mean of the autoregressive

parameter � is not statistically di¤erent from zero. Unobserved individual heterogeneity

thus appears to play a more important role in this application than latent time e¤ects.
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5 Conclusion

In this paper, we performed Bayesian analysis of a panel probit model with unobserved

individual heterogeneity and autocorrelated errors. We embedded EIS within a Gibbs sam-

pling method to perform posterior analysis augmented with both the time and cross-section

latent variables. The posterior for the unobserved individual heterogeneity was sampled

from as one Gibbs block per individual, using a nonparametric version of EIS to form a

piecewise linear approximation to the posterior as a proposal density. The posterior for

the vector of latent time e¤ects was treated as another Gibbs block, using a new form of a

parametric EIS approximation as the proposal density for an AR-MH step. This approach

represents a methodological contribution to the limited dependent variable panel literature.

We applied our method to the product innovation activity of a panel of German manu-

facturing �rms in response to imports, foreign direct investment and other control variables.

Our �ndings con�rm the positive e¤ect of imports and FDI on �rms� innovation activity

found in previous literature. However, our coe¢ cient estimates of these variables �t into

a convex combination of the ones reported by Bertschek and Lechner (1998) and Greene

(2004) who analyzed the same dataset under more restrictive model assumptions. The dif-

ference can be explained by the exclusion of three far outliers from our estimation and also

by our weak model assumptions relative to these authors.

6 Appendix 1: Empirical Results

Figure 1: Descriptive Histograms for the Data
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Figure 2: Marginal Posterior Densities of �
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Figure 3: Left: MCMC chain for draws of �. Right: Autocorrelations of draws of �.
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Figure 4: Left: Posterior density of �� . Middle: MCMC chain for draws of �� . Right:
Autocorrelations of draws of �� .
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Figure 5: Left: Posterior density of ��. Middle: MCMC chain for draws of ��. Right:
Autocorrelations of draws of ��.
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Figure 6: Left: Posterior density of �. Middle: MCMC chain for draws of �. Right:
Autocorrelations of draws of �.
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Appendix 2: Sampling from Posterior Densities

Sampling from f(�j�=�;�; Z)
Here we adopt the methodology elaborated in (Albert and Chib, 1993). In our panel application,

Y �i = Zi� + �+ � i�+ "i

Y �=�;i = Y �i � �� � i�+ "i
Y �=�;i = Zi� + "i

Assigning a noninformative prior �(�) to � results in

f(�j�=� ;�; Z) = N(b�; b��) (11)

where b� = �
Z0Z

��1
Z0Y �=� ; the dependent variable is a (NT � k) matrix Y �=� = (Y �0=�;1; :::; Y

�0
=�;N )

0 andb�� = �Z0Z��1 : The random variables Y �it are independent with

f(Y �it j�;�; Z) = N(��it; 1)

��it = Zit� + �t + � i (12)

truncated at the left by 0 if Yit = 1 and truncated at the right by 0 if Yit = 0. Given a previous value of �;
� i and �t, one cycle the Gibbs algorithm would produce Y �it and � from the distributions (12) and (11); see

Train (2003, p. 210) for simulation algorithm. The starting value �(0) may be taken to be the ML estimate.

Sampling from f(� ij�; �; Z)
From (8),

f(� ij�; �; Z) / ��1� exp

�
� 1

2�2�
�2i

� TY
t=1

[�(vit)]
yit [1� �(vit)]1�yit (13)

The posterior f(� ij�; �; Z) is a convolution of a gaussian density and a product of standard normal cdfs. As
such, it can be asymmetric with the direction of skewness depending on the particular realization of the vector
of dependent variables y

i
: Therefore, we use a piece-wise linear approximation to f(� ij�; �; Z) which is a

form of nonparametric EIS capable of accurately sampling from any univariate distribution irrespective of its
shape. The procedure works as follows. First, we obtain an empirical distribution function of f(� ij�; �; Z)
evaluated over an equispaced grid of � i around the importance region and then we invert S draws from
U [0; 1] through this edf to obtain a new grid whose values are concentrated in the importance region. We
update the edf over this grid and iterate this process until the change of the maxima of the edf parameters
(intercept and slope of individual segments) converges within a tolerance level around zero. Then we invert
one draw from U [0; 1] for the given � i via the �nal edf to obtain the new value of the � i in the Gibbs block.
Aside from shape adaptability, another advantage of this nonparametric form of EIS is that the degree of
accuracy of this procedure can be made arbitrarily precise by increasing the size of the mesh, at the expense
of computational cost.
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Sampling from f(�j� ; �; Z)
From (9),

f(�j� ; �; Z) = p(�j�)
TY
t=1

NY
i=1

[�(vit)]
yit [1� �(vit)]1�yit

= p(�j�)
TY
t=1

g(�t)

where

g(�t) �
NY
i=1

[�(vit)]
yit [1� �(vit)]1�yit

vit = �0zit + � i + �t

The procedure is built on the fact that serial dependence in � occurs only in p(�j�) but not in g(�t):We
approximate g(�t) with a �rst-stage EIS kernel for each period individually and then match these approxi-
mations analytically with the known p(�j�) to form a second-stage EIS proposal density em(�j� ; �; Z; 
) for
the AR-MH step. Moreover, this procedure yields accurate scale factors c(�) for the AR-MH step that are
functions of the proposed value of � resulting in a very close overlap between the proposal and the posterior.

The joint EIS sampler takes the form

em(�j� ; �; Z; 
) = p(�1j�)h
�
�1; 


� " TY
t=2

p(�tj�t�1; �)h
�
�t; 


�#

= em(�1j� ; �; Z; 
) TY
t=2

em(�tj� ; �; Z; 
)
where

p(�j�) = (2�)�T=2 j��j�1=2 exp
�
�1
2
�0��1� �

�
p(�1j�) =

1

�2�1

p
2�
exp

"
� 1

2�2�1
�21

#

�2�1 =
�2�

1� �2

�1 � N(0; �2�1)

p(�tj�t�1; �) =
1

��
p
2�
exp

�
� 1

2�2�
(�t � ��t�1)2

�
�t � N(��t ; �

2
�t) for t > 1

��t = ��t�1

�2�t = �2�

and
h
�
�t; 


�
= N

�
�h;�t ; �

2
h;�t

�
The EIS regression for t = 1; :::; T is

ln g(�t) = 
t;0 + 
t;1�t + 
t;2�
2
t
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resulting in

�h;�t = �1
2


t;1

t;2

�2h;�t = �1
2

1


t;2

Estimates of 
 are obtained using the iterative EIS procedure (Richard and Zhang, 2007). Then, for AR-MH
step proposals are generated from em(�j� ; �; Z; 
) that accounts for temporal dependence of � by inclusion
of p(�j�): To construct em(�j� ; �; Z; 
); we match Gaussian kernels of h ��t; 
� and p(�j�) as follows:

For t = 1 with em(�1j� ; �; Z; 
) = N �e��1 ; e�2�1� ;
ln f(�1j� ; �; Z) = ln p(�1j�) + 
t;0 + 
t;1�1 + 
t;2�

2
1 + "1

= ln

 
1

�2�1

p
2�

!
+ 
t;0 �

1

2

 
1

�2�1
+

1

�2h;�t

!
�21 +

�h;�t
�2h;�t

�1 + "1

and hence

e�2�1 =

 
1

�2�1
+

1

�2h;�t

!�1
e��1 = e�2�1 �h;�t�2h;�t

For the scale factor,

ln f(�1j� ; �; Z) = �1
2
ln
�
2��2�1

�
+ 
t;0 �

1

2e�2�1 �21 +
e��1e�2�1 �1 + "1

= �1
2
ln
�
2��2�1

�
+ 
t;0 +

1

2
ln
�
2�e�2�1�� 1

2
ln
�
2�e�2�1�

� 1

2e�2�1 �21 +
e��1e�2�1 �1 �

e�2�1
2e�2�1 +

e�2�1
2e�2�1 + "1

= ln c1 + ln em(�1) + "1
resulting in

ln c1 = �
1

2
ln
�
2��2�1

�
+ 
t;0 +

1

2
ln
�
2�e�2�1�+ e�2�1

2e�2�1
For t > 1

ln f(�tj� ; �; Z) = ln p(�tj�t�1; �) + 
t;0 + 
t;1�t + 
t;2�
2
t + "t

= �1
2
ln
�
2��2�

�
� 1

2�2�
(�t � ��t�1)2 + 
t;0 +

�h;�t
�2h;�t

�t �
1

2�2h;�t
�2t + "t

= �1
2
ln
�
2��2�

�
� 1

2�2�

�
�2t � 2��t�t�1 + �2�2t�1

�
+ 
t;0 +

�h;�t
�2h;�t

�t �
1

2�2h;�t
�2t + "t

= �1
2
ln
�
2��2�

�
� 1

2�2�
�2�2t�1 + 
t;0 �

1

2

 
1

�2�
+

1

�2h;�t

!
�2t +

 
�t�1�

�2�
+
�h;�t
�2h;�t

!
�t + "t
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and hence

e�2�t =

 
1

�2�
+

1

�2h;�t

!�1

e��t = e�2�t
 
�t�1�

�2�
+
�h;�t
�2h;�t

!

For the scale factors,

ln f(�tj� ; �; Z) = �1
2
ln
�
2��2�

�
� 1

2�2�
�2�2t�1 + 
t;0 �

1

2

1e�2�t �2t +
e��te�2�t �t + "t

= �1
2
ln
�
2��2�

�
� 1

2�2�
�2�2t�1 + 
t;0 +

1

2
ln
�
2�e�2�t�

�1
2
ln
�
2�e�2�t�� 1

2

1e�2�t �2t +
e��te�2�t �t �

e�2�t
2e�2�t +

e�2�t
2e�2�t + "t

= ln ct(�t�1) + ln em(�t) + "t
where

ln ct(�t; ) = �1
2
ln
�
2��2�

�
� 1

2�2�
�2�2t�1 + 
t;0 +

1

2
ln
�
2�e�2�t�+ e�2�t

2e�2�t
lnm(�t) = �1

2
ln
�
2�e�2�t�� 1

2

1e�2�t �2t +
e��te�2�t �t �

e�2�t
2e�2�t

Subsequently

em(�j� ; �; Z; 
) = em(�1j� ; �; Z; 
) TY
t=2

em(�tj�t�1; � ; �; Z; 
)
ln c(�) = ln c1 +

TX
t=2

ct(�t�1)

The result regarding ln ct(�t�1) as a function of �t�1 follows from the intrinsic adaptability of the kernel
of the EIS sampler em(�): The kernel changes shape depending on the path � which then in turn changes
ln ct(�t�1): A potential absence of such dependency would imply a global sampler unable to overlap closely
with f(�j� ; �; Z) for a given �; resulting in deterioration of acceptance probabilities.

Following the construction of em(�j� ; �; Z; 
); the AR-MH step then completes the sampling procedure.
Given K draws f�1; :::; �Kg from the EIS-MCMC algorithm, potential new candidate draws are sampled
from em(�j� ; �; Z; b
) until acceptance of a candidate e� in the AR step with probability

P (�) = min

 
f(�j� ; �; Z)

c(�)em(�j� ; �; Z; b
) ; 1
!

In the MH-step e� is accepted as the K +1�th draw �K+1 from the EIS-MCMC algorithm with probability

�(�K ;
e�); otherwise �K+1 is set to equal �K . It holds that

�(�K ;
e�) = min

0@f(e�j� ; �; Z)min
h
f(�j� ; �; Z); c(e�)em(�j� ; �; Z; b
)i

f(�j� ; �; Z)min
h
f(e�j� ; �; Z); c(e�)em(e�j� ; �; Z; b
)i ; 1

1A
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Note that we could technically use a random walk chain or an independence chain, tweaking the pro-
posal dispersion for low-dimensional integrals. However, with increased dimensionality of integration, such
methods would result in acceptance probability approaching zero as f(�j� ; �; Z) takes strictly positive values
on a very small region in the domain of �:

Sampling from f(�2� j�=�� ;�; Z)
Since for all � i it holds that � i � N(0; �2� ) we can apply result B (p. 300) of Train (2003): for a IG(s0; v0)
prior, the posterior of �2� is given by IG(s1; v1) with v1 = v0 + N and s1 = (v0s0 + Ns)=(v0 + N) where

s = N�1PNci
i=1 �

2
i : We utilize a di¤use prior s0 = 1 and v0 ! 1:

Sampling from f(�2�j�=�� ;�; Z)

Derivation of the posterior proceeds along the lines of result B (p. 300) of Train (2003) but care needs to
be taken with regard to the serial dependence of �. Conditional on � and �; the likelihood function of �2�
takes the form

L(�2�j�; �=�2� ) /
p
1� �2
��
p
2�

exp

�
�1� �

2

2�2�
�21

� TY
t=2

1

��
p
2�
exp

�
� 1

2�2�
(�t � ��t�1)2

�

An IG(v0; s0) prior has density

k(�2�) =
1

m0�
(v0+1)=2
�

exp

�
�v0s0
2��

�

where m0 is a normalizing constant. The posterior is then

L(�2�j�; �=�2� ) / L(�2�j�; �=�2� )k(�
2
�)

/ 1

�
(T+v0+1)=2
�

exp

24�
�
1� �2

�
�21 +

PT
t=2 (�t � ��t�1)

2 + v0s0

2�2�

35
= IG(v1; s1)

where

v1 = v0 + T

s1 =
v0s0 +

�
1� �2

�
�21 +

PT
t=2 (�t � ��t�1)

2

v0 + T

Sampling from f(�j�=�;�; Z)

Under the assumption of AR(1) process for �t, the posterior density is given by

f(�j�=�; �; � ; Z) /
1r

2�
�2�

(1��2)

exp

�
� (1� �

2)

2�2�
�21

� TY
t=1

8<: 1q
2��2�

exp

�
� 1

2�2�
(�t � ��t�1)2

�9=; (14)

Since � is univariate in this application, we utilize the same procedure as for sampling � ij�; �; Z but with
the posterior (14).

18



Appendix 3: Simulation Study with Arti�cial Data
We performed a small-scale pilot simulation study in order to assess the performance of our method on
arti�cal data of the same sample size N = 1267 and T = 5: In order to distinguish the properties of the
technique from the generic small-sample properties that concern any model, we selected a series of simu-
lated true values of �0 = f�0:21738;�0:63577;�0:45545; 0:67616; 0:63244g that result in classical maximum
likelihood estimates b� = 0:4 and b�� = 0:5 which we set as the true values for these parameters. Then we
generated a sample of true �0 from N(0; �2� ) with true �� = 0:5. Finally, we drew sample data zit from a
uniform density on the interval (�0:5; 0:5). We generated the latent utility according to (7) and observed
responses according to (2) for a vector of true values �

0
= f0;�0:4;�0:4;�0:4; 0:3; 0:3; 0:3; 0:3g: These true

values are marked by solid lines in Figure 7. Maximum likelihood estimates conditional on true values of
the latent variables �0 and �0 are shown with dashed lines in Figure 7. The ML estimates di¤er in some
cases substantially from the true values which serves as a benchmark for assessing the performance of the
posterior estimation of our model.

As in the empirical application, the posterior draws are based on 20,000 Gibbs cycles discarding the �rst
5,000 cycles and keeping every �fth draw thereafter resulting in 3000 MC draws for each parameter. One
Gibbs iteration takes approximately 3.5 seconds on a 2.2 GHz unix machine. The nonparametric EIS sampler
was perfomed over a grid of size 200. On average, it took less than 6 EIS iterations for full convergence
of the EIS parameters in sampling from the posteriors of the latent variables � and � . The AR and MH
acceptance rates for � and � were close to 99%. Posterior means of all parameters are very close to the
true values. Most means of � draw are in absolute value closer to the true values than the ML conditional
estimates. Aided by a 5 cycle thinning, all autocorrelation functions indicate superior mixing properties of
the Markov chains on which the posterior analysis is based. Most autocorrelation coe¢ cients falter to a
statistical zero after a handful of cycles, with the exception of the �� chain that takes 6 cycles due to the
incremental nature of the sampler for � i:

Figure 7: Marginal Posterior Densities of �
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Figure 8: Left: MCMC chain for draws of �. Right: Autocorrelations of draws of �.
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Figure 9: Left: Posterior density of �� . Middle: MCMC chain for draws of �� . Right:
Autocorrelations of draws of �� .
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Figure 10: Left: Posterior density of ��. Middle: MCMC chain for draws of ��. Right:
Autocorrelations of draws of ��.
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Figure 11: Left: Posterior density of �. Middle: MCMC chain for draws of �. Right:
Autocorrelations of draws of �.
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