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Abstract
This paper studies the contribution of demand, costs, and strategic factors to the

adoption of hub-and-spoke networks in the US airline industry. Our results are based on
the estimation of a dynamic oligopoly game of network competition that incorporates
three groups of factors which may explain the adoption of hub-and-spoke networks:
(1) travelers value the services associated with the scale of operation of an airline in
the hub airport (e.g., more convenient check-in and landing facilities); (2) operating
costs and entry costs in a route may decline with an airline’s scale operation in origin
and destination airports (e.g., economies of scale and scope); and (3) a hub-and-spoke
network may be an effective strategy to deter the entry of other carriers. We estimate
the model using data from the Airline Origin and Destination Survey with information
on quantities, prices, and entry and exit decisions for every airline company in the
routes between the 55 largest US cities. As a methodological contribution, we propose
and apply a simple method to deal with the problem of multiple equilibria when using
the estimated model to predict the effects of changes in structural parameters. We find
that the most important factor to explain the adoption of hub-and-spoke networks is
that the cost of entry in a route declines very importantly with the scale of operation of
the airline in the airports of the route. For some of the larger carriers, strategic entry
deterrence is the second most important factor to explain hub-and-spoke networks.
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1 Introduction

The market structure of the US airline industry has undergone important transformations

since the 1978 deregulation that removed restrictions on the routes that airlines could operate

and on the fares they charged.1 Soon after deregulation, most airline companies adopted a

hub-and-spoke system for the structure of their routes. In a hub-and-spoke network an airline

concentrates most of its operations in one airport, called the "hub". All other cities in the

network (the "spokes") are connected to the hub by non-stop flights. Those customers who

travel between two spoke-cities should take a connecting flight at the hub. The arguments

that have been proposed to explain the adoption of hub-and-spoke networks can be classified

in three groups: demand factors, cost factors and strategic factors. Soon after deregulation,

most airline companies adopted a hub-and-spoke system for the structure of their routes. In

a hub-and-spoke network an airline concentrates most of its operations in one airport, called

the "hub". All other cities in the network (the "spokes") are connected to the hub by non-stop

flights. Those customers who travel between two spoke-cities should take a connecting flight

at the hub. The arguments that have been proposed to explain the adoption of hub-and-

spoke networks can be classified in three groups: demand factors, cost factors and strategic

factors. Demand-side explanations argue that travelers value different services associated

with the scale of operation of an airline in the hub airport, e.g., more convenient check-in

and landing facilities, higher flight frequency.2 Cost-side explanations claim that some costs

depend on the airline’s scale of operation in an airport. For instance, it is well-known that

larger planes are cheaper to fly on a per-seat basis: airlines can exploit these economies of

scale by seating in a single plane, flying to the hub city, passengers who have different final

destinations. These economies of scale may be sufficiently large to compensate for larger

distance travelled with the hub-and-spoke system. 3 An airline’s fixed operating cost, and

1Borenstein (1992) and Morrison and Winston (1995) provide excellent overviews of the US airline indus-
try. For recent analyses of the effect of the deregulation, see Alam and Sickles (2000), Morrison and Winston
(2000), Kahn (2001), and Färe, Grosskopf, and Sickles (2007) .

2This demand factor is partly offset by the fact that consumers prefer non-stop flights to stop-flights.
3See Hendricks, Piccione and Tan (1995) for a monopoly model that formalizes this argument.
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its cost of entry in a route, may also decline with the airline’s scale operation in the airports

of the route. These cost savings may be due to technological reasons, but they may be

also linked to contractual arrangements between airports and airlines. A third hypothesis

that has been suggested to explain hub-and-spoke networks is that it can be an effective

strategy to deter the entry of competitors. Hendricks, Piccione and Tan (1997) formalize

this argument in a three-stage game of entry similar to the model in Judd (1985). The

key argument is that, for a hub-and-spoke airline, there is complementarity between profits

at different routes. Exit from a route between a hub-city and a spoke-city implies to stop

operating any other route that involves that spoke-city. Therefore, hub-and-spoke airlines

are willing to operate some routes even when profits in that single route are negative. This

is known by potential entrants, and therefore entry may be deterred.4

This paper develops an estimable dynamic structural model of airlines network competi-

tion that incorporates the demand, cost and strategic factors described above. We estimate

this model and use it to measure the contribution of each of these factors to explain hub-and-

spoke networks. To our knowledge, this is the first study that estimates a dynamic game

of network competition. In our model, airline companies decide, every quarter, in which

markets (city-pairs) to operate, and the fares for each route-product, they serve. The model

is estimated using data from the Airline Origin and Destination Survey with information

on quantities, prices, and entry and exit decisions for every airline company in the routes

between the 55 largest US cities (1,485 city-pairs).

This paper builds on an extends a significant literature in empirical IO on structural

models of competition in the airline industry. The previous studies that are more closely

4Consider a hub airline who is a monopolist in the market-route between its hub-city and a spoke-city. A
non-hub carrier is considering to enter in this route. Suppose that this market-route is such that a monopolist
gets positive profits but under duopoly both firms suffer losses. For the hub carrier, conceding this market to
the new entrant implies that it will also stop operating in other connecting markets and, as a consequence of
that, its profits will fall. The hub operator’s optimal response to the opponent’s entry is to stay in the spoke
market. Therefore, the equilibrium strategy of the potential entrant is not to enter. Hendricks, Piccione
and Tan (1999) extend this model to endogenize the choice of hub versus non-hub carrier. See also Oum,
Zhang, and Zhang (1995) for a similar type of argument that can explain the choice of a hub-spoke network
for strategic reasons.
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related to this paper are Berry (1990 and 1992), Berry, Carnall, and Spiller (2006) and

Ciliberto and Tamer (2006). Berry (1990) and Berry, Carnall, and Spiller (2006) estimate

structural models of demand and price competition with a differentiated product and obtain

estimates of the effects of hubs on marginal costs and consumers’ demand. Berry (1992)

and Ciliberto and Tamer (2006) estimate static models of entry that provide measures of

the effects of hubs on fixed operating costs. Our paper extends this previous literature in

two important aspects. First, our model is dynamic. A dynamic model is necessary to

distinguish between fixed costs and sunk entry costs, which have different implications on

market structure. A dynamic game is also needed to study the hypothesis that a hub-and-

spoke network is an effective strategy to deter the entry of non-hub competitors. Second,

our model endogenizes airline networks in the sense that airlines take into account how

operating or not in a city-pair has implications on its profits (current and future) at other

related routes.

The paper presents also a methodological contribution to the recent literature on the

econometrics of dynamic discrete games.5 We propose and implement an approach to deal

with multiple equilibria when making counterfactual experiments with the estimated model.

Under the assumption that the equilibrium selection mechanism (which is unknown to the

researcher) is a smooth function of the structural parameters, we show how to obtain an

approximation to the counterfactual equilibrium. This method is agnostic on the form

of the equilibrium selection mechanism, and therefore it is more robust than approaches

which require stronger assumptions on equilibrium selection. An intuitive interpretation of

our method is that we select the counterfactual equilibrium which is "closer" (in a Taylor-

approximation sense) to the equilibrium estimated in the data. The data are used not only

to identify the equilibrium in the population but also to identify the equilibrium in the

counterfactual experiments.

We find that the scale of operation of an airline in an airport (i.e., its hub-size) has

5See Aguirregabiria and Mira (2007), Bajari, Benkard and Levin (2007), and Pakes, Ostrovsky and Berry
(2007) for recent contributions to this literature.
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statistically significant effects on travelers’ willingness to pay (positive effect) and on variable,

fixed and entry costs (negative effect). Nevertheless, the most substantial impact is on the

cost of entry. Descriptive evidence shows that the difference between the probability that

incumbent stays in a route and the probability that a non-incumbent decides to enter in

that route declines importantly with the airline’s hub-size. In the structural model, this

descriptive evidence translates into a sizeable negative effect of hub-size on sunk entry costs.

Given the estimated model, we implement counterfactual experiments to measure airlines’

propensities to use hub-and-spoke networks when we eliminate each of the demand, cost

and strategic factors in our model. These experiments show that the hub-size effect on

entry costs is the most important factor to explain hub-and-spoke networks. For some of

the larger carriers, strategic entry deterrence is the second most important factor to explain

hub-and-spoke networks.

The rest of the paper is organized as follows. Sections 2 presents our model and assump-

tions. The data set and the construction of our working sample are described in section 3.

Section 4 discusses the estimation procedure and presents the estimation results. Section 5

describes our procedure to implement counterfactual experiments and our results from these

experiments. We summarize and conclude in section 6.

2 Model

2.1 Framework

The industry is configured by N airline companies, A airports and C cities or metropolitan

areas. Some cities have more than one airport. Airlines and airports are exogenously given in

our model.6 Following Berry (1992), we define a market in this industry as a city-pair. There

areM ≡ C(C−1)/2markets or city-pairs. We index time by t, markets bym, and airlines by

i. An airline network at period t is the set of city-pairs for which the airline operates non-stop

flights. Note that our market definition is not directional. Let xit ≡ {ximt : m = 1, 2, ...,M}
6However, the estimated model can be used to study the effects of introducing new hypothetical airports

or airlines.
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be the network of airline i at period t, where ximt ∈ {0, 1} is a binary indicator for the event

"airline i operates non-stop flights in city-pair m". Therefore, xit belongs to the set X ≡

{0, 1}M . This network also describes implicitly the city-pairs for which an airline provides

stop-flights. For instance, consider an industry with 4 cities, say A, B, C, and D. The

industry has 6 markets or city-pairs that we represent as AB, AC, AD, BC, BD, and CD.

Then, if airline i’s network is xit ≡ {xiABt, xiACt, xiADt,xiBCt, xiBDt, xiCDt} = {1, 1, 0, 0, 0},

then this airline operates non-stop flights in markets AB and AC, and stop-flights in market

BC. The whole industry network is represented by the vector xt ≡ {xit : i = 1, 2, ..., N} ∈

{0, 1}NM .

Taken as given the network at period t, xt, and some exogenous state variables zt ∈ Z,

airlines compete in prices. Price competition determines current profits for each airline and

market. Section 2.1 describes consumers demand, Nash-Bertrand price competition, and

variable profits. Let Ri(xt,zt) be the indirect variable profit function for airline i that

results from the Nash-Bertrand equilibrium. Every period (quarter), each airline decides its

network for next period. There is time-to-build, such that fixed costs and the entry costs are

paid at quarter t but entry-exit decisions are not effective until quarter t+ 1. We represent

this decision as ait ≡ {aimt : m = 1, 2, ...,M}, where aimt is a binary indicator for the

decision "airline i will operate non-stop flights in city-pair m at period t + 1". It is clear

that xi,t+1 = ait, but it is convenient to use different letters to distinguish state and decision

variables. The airline’s total profit function is:

Πi (ait,xt,zt, εit) = Ri(xt,zt)− Fi(ait,xt, εit) (1)

where Fi(.) represents the sum of fixed costs, entry costs and exit costs for airline i over

all city-pairs. The term εit represents a vector of idiosyncratic shocks for airline i which

are private information of this airline and are independently and identically distributed over

airlines and over time with CDF Gε. Section 2.2 describes our specification assumptions for

fixed costs and entry costs.7

7There are two main reasons why we incorporate these private information shocks. As shown by Do-
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Airlines maximize intertemporal profits, are forward-looking, and take into account the

implications of their entry-exit decisions on future profits and on the expected future reac-

tion of competitors. Markets are interconnected through hub-size effects, such as entry-exit

decisions in a market/city-pair have implications on airlines’ profits at other city-pairs. In

our model, airlines take into account these network effects when making their entry-exit deci-

sions. We assume that airlines’ strategies depend only on payoff-relevant state variables, i.e.,

Markov perfect equilibrium assumption. An airline’s payoff-relevant information at quarter t

is {xt, zt, εit}. Let σ ≡ {σi(xt, zt, εit) : i = 1, 2, ..., N} be a set of strategy functions, one for

each airline. A Markov Perfect Equilibrium (MPE) in this game is a set of strategy functions

such that each airline’s strategy maximizes the value of the airline for each possible state

(xt, zt, εit) and taking as given other airlines’ strategies.

Let V σ
i (xt, zt, εit) represent the value function for airline i given that the other companies

behave according to their respective strategies in σ, and given that airline i uses his best

response/strategy. By the principle of optimality, this value function is implicitly defined as

the unique solution to the following Bellman equation:

V σ
i (xt, zt, εit) = max

ait
{ Πi (ait,xt,zt, εit) + β E [V σ

i (xt+1, zt+1, εit+1) | xt, zt,ait] } (2)

where β ∈ (0, 1) is the discount factor. The set of strategies σ is a MPE if for every airline

i and every state (xt, zt, εit) we have that:

σi(xt, zt, εit) = argmax
ait

{ Πi (ait,xt,zt, εit) + β E [V σ
i (xt+1, zt+1, εit+1) | xt, zt,ait] } (3)

That is, every airline strategy is the best response to the other airlines’ strategies.

Given a set of strategy functions σ we can define a set of Conditional Choice Probabilities

(CCP) P = {Pi(ai|x, z) : (ai,x, z) ∈ X2 × Z} such that Pi(ai|x, z) is the probability that

raszelski and Satterthwaite (2007), without private information shocks, this type of dynamic game may not
have an equilibrium. However, Doraszelski and Satterthwaite show that, under mild regularity conditions,
the incorporation of private information shocks implies that the game has at least one equilibrium. Further-
more, private information state variables independently distributed across players are convenient econometric
errors in the sense that they can explain part of the heterogeneity in players’ actions without generating
endogeneity problems.
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firm i chooses a network ai given that the industry network at the beginning of the period is

x and the value of the exogenous state variables is z. By definition, these CCPs are obtained

integrating decision rules over the distribution of private information shocks. That is,

Pi(ai|x, z) ≡
Z

I {σi(xt, zt, εit) = ai} dGε(εit) (4)

where I{.} is the indicator function. These probabilities represent the expected behavior

of airline i from the point of view of the rest of the airlines. It is possible to show that

the value functions V σ
i depend on players’ strategy functions only through players’ choice

probabilities.8 To emphasize this point we will use the notation V P
i instead V σ

i to represent

these value functions. Then, we can use the definition of MPE in expression (14) to represent

a MPE in terms of CCPs. A set of CCPs P is a MPE if for every airline i, every state (x, z),

and every action ai, we have that:

Pi(ai|x, z) =
Z

I

½
ai = argmax

ait
Πi (ait,xt,zt, εit) + β E

£
V P
i (xt+1, zt+1, εit+1) | xt, zt,ait

¤¾
dGε(εit)

(5)

If the density function of εit is absolutely continuous with respect to the Lebesgue measure,

this dynamic game has at least one equilibrium.9 Multiplicity of equilibria in this class of

dynamic games is very common. An equilibrium in this dynamic game provides a description

of the dynamics of prices, quantities, and airlines’ incumbent status for every route between

the C cities of the industry.

The rest of this section describes the details of the model. Section 2.2 presents the

demand system and the static model of price competition. Section 2.3 discusses the structure

of fixed costs and entry costs. Section 2.4 deals with simplifying assumptions that reduce

very significantly the dimensionality of the model.

8For more details, see sections 2.3 and 2.4 in Aguirregabiria and Mira (2007).
9See Doraszelski and Satterthwaite (2007), and Aguirregabiria and Mira (2007) for proofs of equilibrium

existence.

7



2.2 Consumer demand and variable profits

In the dynamic game of network competition, we have defined a market as a non-directional

city-pair. However, for the model of demand and price competition it is more realistic and

convenient to consider a route as the appropriate market definition. We define a route as a

directional round-trip between two cities, e.g., a round-trip from Chicago to Los Angeles. Of

course, this means that to obtain the current profit of operating non-stop flights in a city-pair

m (i.e., ximt = 1) we have to consider demand and profits in all the routes including this

city-pair. For notational simplicity, we omit the time subindex t for most of this subsection,

but all the variables may vary over time. We index routes by r.

A product can be described in terms of three attributes: the route (r), the airline (i),

and the indicator of non-stop flight (NS).10 For simplicity, we use k instead of the triple

(r, i, NS) to index products. Let Hr be the number of potential travelers in route r. Every

quarter, travelers decide which product to purchase, if any. The indirect utility of a consumer

who purchases product k is Uk = bk − pk + vk, where: pk is the price; bk is the "quality"

or willingness to pay of the average consumer in the market; and vk is a consumer-specific

component that captures consumer heterogeneity in preferences. We use the index k = 0 to

represent a traveler decision of not travelling by air (i.e. the outside alternative). Quality

and price of the outside alternative are normalized to zero.11

Product quality bk depends on exogenous characteristics of the airline and the route, and

on the scale of operation of the airline in the origin and destination airports. We consider

the following specification of product quality:

bk = α1 NSk + α2 HUBO
k + α3 HUBD

k + α4 (1−NSk)HUBC
k + α5 DISTk

+ ξ
(1)
i + ξ(2)r + ξ(3)r + ξ

(4)
k

(6)

α1 to α5 are parameters. NSk is a dummy variable for "non-stop flight". DISTk is the

distance between the origin and destination cities. This variable is a proxy of the value of
10We do not model explicitly other forms of product differentiation, such as flights frequency or service

quality. Consumers’ valuation of these other forms of product differentiation will be embedded in the airline
fixed-effects and the airport fixed-effects that we include in the demand estimation.
11Therefore, bk should be interpreted as willingness to pay relative to the value of the outside alternative.
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air transportation relative to the outside alternative, i.e., air travelling is a more attractive

transportation mode when distance is larger. ξ
(1)
i is an airline fixed-effect that captures

between-airlines differences in quality which are constant over time and across markets. ξ(2)r

(and ξ(3)r ) represents the interaction of origin-airport dummies (destination airport dummies)

and time dummies. These terms account for demand shocks, such as seasonal effects, which

can vary across cities and over time. ξ(4)k is a demand shock that is airline and route specific.

The variables HUBO
k , HUBD

k and HUBC
k are indexes that represent the scale of operation

or "hub size" of airline i in the origin, destination and connecting (if any) airports of route r,

respectively. Therefore, the terms associated with these variables capture consumer willing-

ness to pay for the services associated with the scale of operation of an airline in the origin,

destination and connecting airports. Following previous studies, we measure the hub-size of

an airline in an airport as the sum of the population in the cities that the airline serves from

this airport (see Section 3 for more details).

A consumer purchases product k if and only if the utility Uk is greater than the utilities of

any other choice alternative available for route r. This condition describes the unit demands

of an individual consumer. To obtain aggregate demand, qk, we have to integrate individual

demands over the idiosyncratic variables vk. The form of the aggregate demands depends

on our assumption on the probability distribution of consumer heterogeneity. We consider

a nested logit model with two nests. The first nest represents the decision of which airline

(or outside alternative) to patronize. The second nest consists of the choice of stop versus

non-stop flight. We have that vk = σ1 v
(1)
ir + σ2 v

(2)
k , where v

(1)
ir and v

(2)
k are independent

Type I extreme value random variables, and σ1 and σ2 are parameters which measure the

dispersion of these variables, with σ1 ≥ σ2. Let sk be the market share of product k in route

r, i.e., sk ≡ qk/Hr. And let s∗k be the market share of product k within the products of

airline i in route r, i.e., s∗k ≡ sk/ (sir0 + sir1). A property of the nested logit model is that

9



the demand system can be represented using the following closed-form demand equations:12

ln (sk)− ln (s0) =
αk − pk

σ1
+

µ
1− σ2

σ1

¶
ln (s∗k) (7)

where s0 is the share of the outside alternative, i.e., s0 ≡ 1−
PN

i=1(sir0 + sir1).

Travelers’ demand and airlines’ price competition in this model are static and at the local

market level. The variable profit of airline i in route r is:

πir = (pir0 − cir0) qir0 + (pir1 − cir1) qir1 (8)

where ck is the marginal cost of product k, that is constant with respect to the quantity

sold. Our specification of the marginal cost is similar to the one of product quality:

ck = δ1 NSk + δ2 HUBO
k + δ3 HUBD

k + δ4 (1−NSk)HUBC
k + δ5 DISTk

+ ω
(1)
i + ω

(2)
r + ω

(3)
r + ω

(4)
k

(9)

δ1 to δ5 are parameters. ω
(1)
i is an airline fixed-effect that captures between-airlines differ-

ences in marginal costs. ω(2)r and ω
(3)
r capture time-variant, airport-specific shocks in costs

which are common for all the airlines. ω
(4)
k is a shock in the marginal cost that is airline,

route and time specific.

Given quality indexes {αk} and marginal costs {ck}, airlines active in route r compete

in prices ala Nash-Bertrand. The Nash-Bertrand equilibrium is characterized by the system

of price equations:13

pk − ck =
σ1

1− s̄k
(10)

where s̄k = (eir0+ eir1)
σ2/σ1[1 +

PN
j=1(ejr0 + ejr1)

σ2/σ1]−1, ek ≡ Ik exp{(αk − pk)/σ2}, and Ik

is the indicator of the event "product k is available in route r". Equilibrium prices depend

on the qualities and marginal costs of the active airlines and products.

An airline total variable profits is the some of the profits {πir} over all the possible routes

that the airline serves given its network xit.
12The nested logit model implies the following relationships. Define ek ≡ Ik exp{(αk − pk)/σ2}, and Ik is

the indicator of the event "product k is available in route r". Then, sk = s∗k s̄ir; s∗k = ek/(eir0 + eir1); and
s̄ir = (eir0 + eir1)

σ2/σ1 [1 +
PN

j=1(ejr0 + ejr1)
σ2/σ1 ]−1.

13See page 251 in Anderson, De Palma and Thisse (1992).
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2.3 Fixed costs and sunk entry costs

The total fixed cost and entry cost of airline i at quarter t is:

Fit =
XM

m=1
aimt (FCimt + εimt + (1− ximt) ECimt) (11)

where FCimt + εimt and ECimt represent fixed operating costs and entry costs, respectively,

of operating non-stop flights in city-pair m. The fixed cost FCimt + εimt is paid only if the

airline decides to operate in city-pair m, i.e., if aimt = 1. The entry cost ECimt is paid

only when the airline is not active in market m at period t but it decides to operate in the

market next period, i.e., if ximt = 0 and aimt = 1. The terms {FCimt} and {ECimt} are

common knowledge for all the airlines. However, the component εimt is private information

of the airline. This private information shock is assumed to be independently and identically

distributed over firms and over time.

Our specification of the common knowledge components of fixed costs and entry costs is

similar to the one of marginal costs and consumers’ willingness to pay:

FCimt = γFC1 + γFC2 HUBimt + γFC3 DISTm + γFC4i + γFC5c

ECimt = ηEC1 + ηEC2 HUBimt + ηEC3 DISTm + ηEC4i + ηEC5c

(12)

γ0s and η0s are parameters. HUBimt represents the average hub-size of airline i in the airports

of city-pair m. γFC5i and ηEC5i are airline fixed-effects. γFC6c and ηEC6c are city fixed-effects.

2.4 Reducing the dimensionality of the dynamic game of network
competition

The estimation and solution of the dynamic game of network competition that we have

described in section 2.1 is extremely challenging from a computational point of view. Given

the number of cities and airlines in our empirical analysis,14 the space of possible values

of the industry network xt is really huge: i.e., |X| = 2NM ' 1010,000. We consider several

simplifying assumptions that reduce very significantly the dimension of the dynamic game

and make its estimation and solution very manageable.
14We consider N = 22 airlines, and C = 55 cities, that implies M = 1, 485 city-pairs.
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Suppose that each airline has M local managers, one for each market or city-pair. A

local manager decides whether to operate or not non-stop flights in his local-market: i.e.,

he chooses aimt. Let Rimt be the sum of airline i’s variable profits over all the routes that

include city-pair m.

ASSUMPTION NET-1: The local manager at market m chooses aimt ∈ {0, 1} to maximize

the expected and discounted value of the stream of local-market profits: Et(
P∞

s=1 β
sΠim,t+s),

where Πimt ≡ ximtRimt − aimt (FCimt + εimt + (1− ximt)ECimt).

ASSUMPTION NET-2: The shocks {εimt} are private information of the local manager of

airline i at market m. These shocks are unknown to the managers of airline i at markets

other than m.

Assumptions NET-1 and NET-2 establish that an airline’s network decision is decentral-

ized at the city-pair level. It is important to note that this decentralized decision-making

can still generate the type of entry deterrence suggested by Hendricks, Piccione and Tan

(1997), and that we have described in the Introduction. A local manager of a city-pair takes

into account that exit from this market eliminates profits from every route that includes this

city-pair as a segment. This complementarity between profits of different routes may imply

that a hub-spoke network is an effective strategy to deter the entry of competitors.

To complete the model we follow a similar approach to Hendel and Nevo (2006) and

Nevo and Rossi (2008) to reduce the dimensionality of the decision problem. First, note the

following feature of the model: for local-manager (i,m), the current profit at any period t can

be described in terms of only three time-varying variables: the indicator of incumbent status,

ximt; the variable profit, Rimt; and the hub-size measure, HUBimt.15 Let x∗imt represent the

vector (ximt,Rimt,HUBimt). We consider the following assumption.

ASSUMPTION NET-3: Consider the decision problem of local-manager (i,m). Let P−im

be the vector with the CCPs of all airlines other than i, and all local-managers of airline i

15Variable profit Rimt is well-defined regardless the airline is active in market m or not. That is, Rimt

represents the potential variable profit of airline i in market m. The actual variable profit is ximtRimt.
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other than (i,m). Given P−im, the vector x∗imt ≡ (ximt,Rimt, HUBimt) follows a first-order

controlled Markov Process with control variable aimt. That is,

Pr
¡
x∗im,t+1 | x∗imt, aimt,xt, zt;P−im

¢
= Pr

¡
x∗im,t+1 | x∗imt, aimt;P−im

¢
(13)

Under this assumption, and for a given P−im, the vector of payoff-relevant state vari-

ables for local-manager (i,m) is (ximt,Rimt, HUBimt). We use X∗ to represent the space of

(ximt,Rimt, HUBimt).

Given these assumptions, we redefine a Markov Perfect Equilibrium (MPE) in our dy-

namic game of network competition. Let σ ≡ {σim(x∗imt, εimt) : i = 1, 2, ..., N ; m =

1, 2, ...,M} be a set of strategy functions, one for each local-manager, such that σim is a

function from X∗ × R into {0, 1}. A Markov Perfect Equilibrium (MPE) in this game is a

set of strategy functions such that each local manager’s strategy maximizes the value of the

airline in his local market taken as given the strategies of the other airlines as well as the

strategies other local managers of the same airline. More formally, σ is a MPE if for every

local manager (i,m) and every state (x∗imt, εimt) we have that:

{σim(x∗imt, εimt) = 1}⇔©
εimt ≤ −FCimt − (1− ximt)ECimt + βE

£
V P
im,t+1|x∗imt, aimt = 1

¤
− β E

£
V P
im,t+1|x∗imt, aimt = 0

¤ª
(14)

A MPE can be described in the space of conditional choice probabilities (CCPs). Let P =

{Pim(x
∗)} be a vector of CCPs for every local manager, and every value of x∗ ∈ X∗. Then,

P is a MPE if for every (i,m,x∗imt):

Pim(x
∗
imt) = Gε

¡
−FCimt − (1− ximt)ECimt + β E

£
V P
im,t+1|x∗imt, 1

¤
− β E

£
V P
im,t+1|x∗imt, 0

¤¢
(15)

To complete the model we have to specify the transition probability function of the vec-

tor of state variables: i.e., Pr
¡
x∗im,t+1 | x∗imt, aimt;P−im

¢
. First, it is clear that the transition

of ximt is deterministic, i.e., xim,t+1 = aimt. Therefore, we have to specify only the prob-

ability Pr
¡
Rim,t+1, HUBim,t+1 | x∗imt, aimt;P−im

¢
. We consider a VAR model with varying
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coefficients.

log (Rim,t+1) = λR0(ximt, aimt) + λRR(ximt, aimt) log (Rimt)
+ λRH(ximt, aimt) log

¡
HUBimt

¢
+ uR,im,t+1

log
¡
HUBim,t+1

¢
= λH0(ximt, aimt) + λHR(ximt, aimt) log (Rimt)
+ λHH(ximt, aimt) log

¡
HUBimt

¢
+ uH,im,t+1

(16)

Given that (ximt, aimt) can take only four values, {(0, 0), (0, 1), (1, 0), (1, 1)}, each λ(.) func-

tion can be represented in terms of 4 parameters. The variables uR,im,t+1 and uH,im,t+1

represent error terms which include airline fixed-effects, city fixed-effects, and pure idiosyn-

cratic innovations which are independently distributed over time.

3 Data and descriptive statistics

3.1 Construction of the working sample

We use data from the Airline Origin and Destination Survey (DB1B) collected by the Office

of Airline Information of the Bureau of Transportation Statistics. The DB1B survey is a

10% sample of airline tickets from the large certified carriers in US, and it is divided into 3

parts, namely DB1B-Coupon, DB1B-Market and DB1B-Ticket. The frequency is quarterly.

A record in this survey represents a ticket. Each record or ticket contains information on the

carrier, the origin and destination airports, miles flown, the type of ticket (i.e., round-trip or

one-way), the total itinerary fare, and the number of coupons.16 The raw data set contains

millions of tickets for each quarter. For instance, the number of records in the fourth quarter

of 2004 is 8,458,753. To construct our working sample, we have used the DB1B dataset over

the year 2004. We describe here the criteria to construct our working sample, as well as

similarities and differences with related studies which have used the DB1B database.

(a) Definition of a market and a product. From the point of view of entry-exit decisions,

a market is a non-directional city-pair. For the model of demand and price competition a

market is a round-trip travel between two cities, an origin city and a destination city. These

16This dataset does no contain information on ticket restrictions such as 7 or 14 days purchase in advance.
Another information that is not available is the day or week of the flight or the flight number.
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market definitions are the same as in Berry (1992) and Berry, Carnall and Spiller (2006),

among others. Our definition of market is also similar to the one used by Borenstein (1989) or

Ciliberto and Tamer (2006) with the only difference that they consider airport-pairs instead

of city-pairs. The main reason why we consider city-pairs instead of airport-pairs is to allow

for substitution in the demand (and in the supply) of routes that involve airports located in

the same city. In the demand, we distinguish different types of products within a market.

The type of product depends on whether the flight is non-stop or stop, and on the origin

and destination airports. Thus, the itineraries New York (La Guardia)-Los Angeles, New

York (JFK)-Los Angeles, and New York (JFK)-Las Vegas-Los Angeles are three different

products in the New York-Los Angeles route-market.

(b) Selection of markets. We started selecting the 75 largest US cities in terms of population

in 2004. We use city population estimates from the Population Estimates Program in the

Bureau of Statistics to find out the 75 largest US cities in 2004.17 For each city, we use all

the airports which are classified as primary airports by the Federal Aviation Administration.

Some of the 75 cities belong to the same metropolitan area and share the same airports. We

group these cities. Finally, we have 55 cities or metropolitan areas and 63 airports. Table

1 presents the list of "cities" with their airports and population.18 To measure market size,

we use the total population in the cities of the origin and destination airports. The number

of possible city-pairs is M = (55 ∗ 54)/2 = 1, 485. Table 2 presents the top 20 city-pairs by

annual number of round-trip non-stop passengers in 2004 according to DB1B.

(c) Definition of carrier. There may be more than one airline or carrier involved in a ticket.

The DB1B distinguishes three types of carriers: operating carrier, ticketing carrier, and

reporting carrier. The operating carrier is an airline whose aircraft and flight crew are used

17The Population Estimates Program produces annually population estimates based upon the last de-
cennial census and up-to-date demographic information. We use the data from the category “Cities and
towns”.
18Our selection criterion is similar to Berry (1992) who selects the 50 largest cities, and uses city-pair as

definition of market. Ciliberto and Tamer (2006) select airport-pairs within the 150 largest Metropolitan
Statistical Areas. Borenstein (1989) considers airport-pairs within the 200 largest airports.
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in air transportation. The ticketing carrier is the airline that issued the air ticket. And

the reporting carrier is the one that submits the ticket information to the Office of Airline

Information. According to the directives of the Bureau of Transportation Statistics (Number

224 of the Accounting and Reporting Directives), the first operating carrier is responsible

for submitting the applicable survey data as reporting carrier. For more than 70% of the

tickets in this database the three variables are the same. For the construction of our working

sample, we use the reporting carrier to identify the airline and assume that this carrier pays

the cost of operating the flight and receives the revenue for providing this service.

(e) Selection of tickets. We apply several selection filters on tickets in the DB1B database.

We eliminate all those tickets with some of the following characteristics: (1) one-way tickets,

and tickets which are neither one-way nor round-trip; (2) more than 6 coupons (a coupon is

equivalent to a segment or a boarding pass); (3) foreign carriers; and (4) tickets with fare

credibility question by the Department of Transportation.

(f) Airlines. According to DB1B, there are 31 airlines operating in our selected markets in

2004. However, not all these airlines can be considered as independent because some of them

belong to the same corporation or have very exclusive code-sharing agreements.19 We take

this into account in our analysis. Table 3 presents our list of 22 airlines. The notes in the

table explains how some of these "airlines" combine several carriers. The table also reports,

for each airline, the number of passengers and the number of city-pairs in which the airline

operates for our selected 55 cities. Southwest is the company that flies more passengers

(more than 25 million passengers) and that serves more city-pairs with nonstop flights (373

of a maximum of 1,485). American, United and Delta, in this order, follow in the ranking,

but they serve significantly fewer city-pairs (with non-stop flights) than Southwest.

(g) Definition of active carrier in a route-product. We consider that an airline is active in

a city-pair if during the quarter the airline has at least 20 passengers per week (260 per

19Code sharing is a practice where a flight operated by an airline is jointly marketed as a flight for one or
more other airlines.
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quarter) in non-stop flights for that city-pair.

(h) Construction of quantity and price data. A ticket/record in the DB1B database may

correspond to more than one passenger. The DB1B-Ticket dataset reports the number of

passengers in a ticket. Our quantity measure qk is the number of passengers in the DB1B

survey at quarter t that corresponds to airline i, route r and product NS. The DB1B-Ticket

dataset reports the total itinerary fare. We construct the price variable pk (measured in

dollars-per-passenger) as the ratio between the sum of fares for those tickets that belong to

product k and the sum of passengers in the same group of tickets.

(i) Measure of hub size. For each airport and airline, we construct a measure of the scale

of operation, or hub-size, of the airline at the airport. Following Berry (1990) and Berry,

Carnall and Spiller (2006), we measure the hub-size of an airline-airport as the sum of the

population in other markets that the airline serves with nonstop flights from this airport.

The reason to weight routes by the number of passengers travelling in the route is that more

popular routes are more valued by consumers and therefore this hub measure takes into

account this service to consumers.

Our working dataset is an unbalanced panel with 1,485 city-pairs, 2,970 routes, 22 airline,

and 4 quarters. The number of observations is 249,530.

3.2 Descriptive statistics

Table 4 presents, for each airline, the two airports with largest hub sizes. The largest hubs

are Delta Airlines at Atlanta (48.5 million people) and Tampa (46.9), Northwest at Detroit

(47.6) and Minneapolis-St. Paul (47.1), Continental at Washington International (46.9) and

Cleveland (45.6), American at Dallas-Fort Worth (46.7) and Chicago-O’Hare (44.4), and

United at Denver (45.9) and San Francisco (45.8). Note that Southwest, though it flies more

passengers and is active in more markets than any other airline, has significantly smaller

hubs than most other airlines.

Tables 5 presents different statistics that describe market structure and its dynamics.
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The first panel of the table (panel 5.1) presents the distribution of the 1,485 city-pairs by

the number of incumbent airlines. More than one-third of the city-pairs have no incumbents,

i.e., there are not non-stop flights between the pair of cities. Typically, these are pairs of

relative small cities which are far away of each other (e.g., Tulsa, OK, and Ontario, CA).

Almost one-third of the markets are monopolies, and approximately 17% are duopolies. The

average number of incumbents per market is only 1.4. Therefore, these markets are highly

concentrated, as it is also illustrated by the value of the Herfindahl index in panel 5.2. Panel

5.3 presents the number of monopoly markets for each of the most important carriers. South-

west, with approximately 150 markets, accounts for a large portion of monopoly markets,

followed by Northwest and Delta, with less than 70 monopoly markets each. Panels 5.4 and

5.5 present the distribution of markets by the number of new entrants and by the number

of exits, respectively. It is interesting that, even for our quarterly frequency of observation,

there is a substantial amount of entry and exit in these markets. The average number of

entrants per market and quarter is 0.17 and the average number of exits is 0.12. As shown

in section 4, this significant turnover provides information to identify fixed costs and entry

costs parameters with enough precision.

Table 6 presents the transition matrix for the number of incumbent airlines in a city-pair.

We report the transition matrix from the second to the third quarter of 2004, which is very

similar to the transition matrices from Q1 to Q2 or from Q3 to Q4. There is significant

persistence in market structure, specially in markets with zero incumbents or in monopoly

markets. Nevertheless, there is a non-negligible amount of transition dynamics.

4 Estimation of the structural model

Our approach to estimate the structural model proceeds in three steps. First, we estimate

the parameters in the demand system using information on prices, quantities and product

characteristics. In a second step, we estimate the parameters in the marginal cost function

using the Nash-Bertrand equilibrium conditions. Steps 1 and 2 provide estimates of the
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effects of hub-size on demand and variable costs. Given these estimates of variable profits,

we estimate the parameters in fixed costs and entry costs using the dynamic game of network

competition. For this third step, we use a recursive pseudo maximum likelihood estimator

as proposed in Aguirregabiria and Mira (2007).

4.1 Estimation of the demand system

The demand model can be represented using the regression equation:

ln (skt)− ln (s0t) = Wkt α+

µ
−1
σ1

¶
pkt +

µ
1− σ2

σ1

¶
ln (s∗kt) + ξ

(4)
kt (17)

The regressors in vector Wkt are the ones in equation (6): i.e., dummy for nonstop-flight,

hub-size variables, distance, airline dummies, origin-airport dummies × time dummies, and

destination-airport dummies × time dummies.

It is well-known that an important econometric issue in the estimation of this demand

system is the endogeneity of prices and conditional market shares ln (s∗kt) (see Berry, 1994,

and Berry, Levinshon and Pakes, 1995). Equilibrium prices depend on the characteristics

(observable and unobservable) of all products, and therefore the regressor pkt is correlated

with the unobservable demand shock ξ
(4)
kt . Similarly, the regressor ln (s

∗
kt) depends on un-

observed characteristics and it is endogenous. In our model, there is another potential

endogeneity problem in the estimation of the demand. The hub-size variables HUBO
kt and

HUBD
kt (included in the vectorWkt) depend on the entry decisions of the airline in city-pairs

connected with the origin or the destination of the route in product k (though excluding

the city-pair of product k). These variables may be correlated with the demand shock ξ
(4)
kt .

Suppose that the local managers of city-pairs that include the origin or the destination cities

of the route in product k know the demand shock {ξ(4)kt } and they take it into account when

deciding whether to be active or not. If that is the case, the entry-exit decisions of these local

managers, and therefore HUBO
kt and HUBD

kt, depend on {ξ
(4)
kt }, and the hub-size variables

are endogenous in the estimation of the demand model.
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The following identifying assumption implies that the hub-size variables are not endoge-

nous in the estimation of demand.20

ASSUMPTION D1: The idiosyncratic demand shock {ξ(4)kt } is independently distributed over

time.

Assumption D1 establishes that once we control for the observable variables inWkt, including

airline fixed effects ξ(1)i , and airport-time effects ξ
(2)
kt and ξ

(3)
kt , the residual demand left does

not present any persistence or time-series correlation. Given that entry-exit decisions are

taken a quarter before they become effective, if demand shocks {ξ(4)kt } are independently

distributed over time, they are not correlated with hub-size variables.

ASSUMPTION D2: The idiosyncratic demand shock {ξ(4)kt } is private information of the cor-

responding airline. Furthermore, the demand shocks of two different airlines at two different

routes are independently distributed.

Remember that the hub-size variables HUBO
kt and HUBO

kt depend on the entry decisions in

city-pairs that include one of the cities in the origin or the destination of route in product

k, but they exclude the own city-pair of product k. Under Assumption D2, the hub-size

variables of other airlines in the same route are not correlated with ξ
(4)
kt . Furthermore, by

the equilibrium condition, prices depend on the hub-size of every active firm in the market.

Therefore, we can use the hub-sizes of competing airlines as valid instruments for the price

pkt and the market share ln (s∗kt). We use as instruments the average value of the hub-sizes of

the competitors. Note that Assumptions D1 and D2 are testable. Using the residuals from

the estimation we can test for time-series correlation (Assumption D1), and cross-airlines

correlation in the idiosyncratic demand shocks ξ(4)kt .

Table 7 presents our estimates of the demand system. To illustrate the endogeneity

problem, we report both OLS and IV estimation results. The estimated coefficient for the

FARE variable in the IV estimation is significantly smaller than in the OLS estimation, which

20Sweeting (2007) has also considered this type of identifying assumption in the estimation of a demand
system of radio listeners in the context of a dynamic oligopoly model of the commercial radio industry.
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is consistent with the endogeneity of prices in the OLS estimation. The test of first order

serial correlation in the residuals cannot reject the null hypothesis of no serial correlation.

This result supports Assumption D1, and therefore the exogeneity of the hub-size variables.

We can obtain measures of willingness to pay for different product characteristics, in dollar

amounts, by dividing the coefficient of the product characteristic by the coefficient of the

FARE variable. We find that the willingness to pay for a non-stop flight is $152 more than

for a stop-flight. The estimated effects of hub-size are also plausible. Expanding the hub-size

in the origin airport (destination airport) in one million people would increase consumers

willingness to pay in $1.97 ($2.63). Finally, longer nonstop distance makes consumer more

inclined to use airplane transportation than other transportation modes.

4.2 Estimation of variable costs

Given the Nash-Bertrand price equations and our estimates of demand parameters, we can

obtain estimates of marginal costs as ĉkt = pkt − σ̂1(1 − s̄kt)
−1, where σ̂1(1 − s̄kt)

−1 is,

according to the model, the estimated price-cost margin of product k at period t. The

marginal cost function can be represented using the regression equation ĉkt = Wkt δ + ω
(4)
kt .

The vector of regressorsWkt has the same interpretation as in the demand equation: dummy

for nonstop-flight, hub-size variables, distance, airline dummies, origin-airport dummies ×

time dummies, and destination-airport dummies × time dummies.

As in the estimation of demand, the hub-size variables are potentially endogenous regres-

sors in the estimation of the marginal cost function. These variables may be correlated with

the cost shock ω(4)kt . We consider the following identifying assumption.

ASSUMPTION MC1: The idiosyncratic shock in marginal cost {ω(4)kt } is independently dis-

tributed over time.

Assumption MC1 implies that the hub-size variables are exogenous regressors in the mar-

ginal cost function. Under this assumption, the vector of parameters δ can be estimated

consistently by OLS.
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Table 8 presents OLS estimates of the marginal cost function. The marginal cost of a

non-stop flight is $12 larger than the marginal cost of a stop-flight, but this difference is

not statistically significant. Distance has a significantly positive effect on marginal cost.

The airline scale of operation (or hub-size) at the origin and destination airports reduce

marginal costs. However, these effects are relatively small. An increase of one million people

in the hub-size of the origin airport (destination airport) would reduce the marginal cost

(per passenger) in $2.3 ($1.6).

4.3 Estimation of the dynamic game

4.3.1 An alternative representation of the equilibrium mapping

As we have described in section 2.4, a MPE of our dynamic game can be described as a vector

P = {Pim(x
∗)} of conditional choice probabilities (CCPs) such that for every (i,m,x∗imt):

Pim(x
∗
imt) = Gε

¡
−FCimt − (1− ximt)ECimt + β E

£
V P
im,t+1|x∗imt, 1

¤
− β E

£
V P
im,t+1|x∗imt, 0

¤¢
(18)

Following Aguirregabiria and Mira (2007), we can get a simple and useful representation of

the expression −FCimt − (1− ximt)ECimt + β E
£
V P
im,t+1|x∗imt, 1

¤
− β E

£
V P
im,t+1|x∗imt, 0

¤
. In

order to describe this representation, it is convenient to write the current profit of a local

manager, Πimt, as follows:

Πimt = (1− aimt) zimt(0)
0θ + aimt zimt(1)

0θ − aimt εimt (19)

θ is a column vector with the structural parameters characterizing fixed and entry costs:

θ ≡
¡
1, γFC1 , γFC2 , γFC3 , {γFC4i }, {γFC5c }

ηEC1 , ηEC2 , ηEC3 , {ηEC4i }, {ηEC5c }
¢0 (20)

where {γFC4i } and {ηEC4i } represent airline fixed-effects in fixed costs and entry costs, respec-

tively, and {γFC5c } and {γEC5c } represent city fixed-effects. zimt(0) and zimt(1) are column

22



vectors with the following definitions:

zimt(0) ≡ ( ximtRimt, 0 )
0

zimt(1) ≡
¡
ximtRimt, 1, HUBimt, DISTm, AIRDUMi, CITY DUMm

(1− ximt), (1− ximt)HUBimt, (1− ximt)DISTm,
(1− ximt)AIRDUMi, (1− ximt)CITY DUMm )

0

(21)

AIRDUMi and CITY DUMm are vectors of airline dummies and city dummies, respec-

tively.21

Given this vector notation, we can represent a MPE in this model as a vector P =

{Pim(x
∗)} of CCPs such that for every (i,m,x∗imt):

Pim(x
∗
imt) = Λ

µ
z̃Pimt’

θ

σε
+ ẽPimt

¶
(22)

where we have assumed that εimt is a random variable with logistic distribution and variance

σ2ε, Λ (.) is the logistic function exp(.)/(1 + exp(.)), and:

z̃Pimt ≡
P∞

j=0 β
jE
©¡
1− Pim(x

∗
im,t+j)

¢
zim,t+j(0) + Pim(x

∗
im,t+j)zim,t+j(1) |x∗imt, 1

ª
−

P∞
j=0 β

jE
©¡
1− Pim(x

∗
im,t+j)

¢
zim,t+j(0) + Pim(x

∗
im,t+j)zim,t+j(1) |x∗imt, 0

ª
ẽPimt ≡

P∞
j=0 β

jE
©
Pim(x

∗
im,t+j)

¡
Euler − lnPim(x

∗
im,t+j)

¢
|x∗imt, 1

ª
−

P∞
j=0 β

jE
©
Pim(x

∗
im,t+j)

¡
Euler − lnPim(x

∗
im,t+j)

¢
|x∗imt, 0

ª
(23)

The expression of ẽPimt is based on the assumption that εimt is a logistic random variable.

Though these expressions of z̃Pimt and ẽ
P
imt involve infinite sums, these values can be calculated

solving a system of linear equations with the same dimension as the space of the vector of

state variables x∗imt (see Aguirregabiria and Mira, 2007, for further details).

For the computation of the values z̃Pimt and ẽ
P
imt we discretize the variables (Rimt,HUBimt).

Figures 1 and 2 present the empirical distributions of the variables ln(Rimt) and HUBimt.

We discretize ln(Rimt) using a uniform grid of 31 points in the interval [4, 18]. Similarly,

we discretize HUBimt using a uniform grid of 26 points in the interval [0, 50]. These dis-

cretizations imply that the state space of (ximt, Rimt, HUBimt) has 31 ∗ 26 ∗ 2 = 1, 612 cells.
21AIRDUMi is a vector of dimension N = 22 with a 1 at the position of airline i and zeroes elsewhere.

Similarly, CITY DUMm is a vector of dimension C = 55 with 10s at the positions of the two cities in market
m and zeroes elsewhere.
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This determines the order of the system of linear equations that we have to solve to obtain

z̃Pimt and ẽPimt. Note that we have to solve this system for every local manager (i,m). There

are 22 ∗ 1, 485 = 32, 670 local managers. Therefore, we have to solve 32, 670 systems of

linear equations with dimension 1, 612 each. This is the main computational burden in the

estimation of this model.

4.3.2 Estimators

For notational simplicity, we use θ to represent θ/σε. For arbitrary values of θ and P, define

the likelihood function:

Q(θ,P) ≡
MX

m=1

TX
t=1

NX
i=1

aimt lnΛ
¡
z̃Pimt’θ+ẽ

P
imt

¢
+ (1− aimt) lnΛ

¡
−z̃Pimt’θ−ẽPimt

¢
(24)

For given P, this is the log-likelihood function of a standard logit model where the parameter

of one of the explanatory variables (i.e., the parameter associated to ẽPimt) is restricted to be

one.

Let θ0 be the true value of the θ in the population, and let P0 be the true equilibrium

in the population. The vector P0 is an equilibrium associated with θ0: i.e., in vector form,

P0 = Λ
¡
z̃P0 ’θ + ẽP0

¢
. A two-step estimator of θ is defined as a pair (θ̂, P̂) such that P̂ is

a nonparametric consistent estimator of P0 and θ̂ maximizes the pseudo likelihood Q(θ, P̂).

The main advantage of this estimator is its simplicity. Given P̂ and the constructed variables

z̃P̂imt and ẽ
P̂
imt, the vector of parameters θ0 is estimated using a standard logit model. However,

this two-step method suffers of several important limitations. First, the method should be

initialized with a consistent estimator of P0. That consistent estimator may not be available

in models with unobserved heterogeneity. Our model includes airline and city heterogeneity

in fixed costs and entry costs. Conditional on (i,m) we have only T = 4 observations, and

therefore it is not plausible to argue that we have a consistent nonparametric estimator of P0.

However, note that given a consistent estimator of P0, the logit estimator of θ0 in the second

step is consistent despite the existence of unobserved airline and city heterogeneity. This logit

estimator captures this heterogeneity by including airline dummies (22) and city dummies

24



(55), but not city-pair dummies (i.e., we would have to include 1, 485 dummies). Without

a parametric assumption that establishes how the city dummies enter into the model, we

have that including city dummies is equivalent to include city-pair dummies. Therefore, the

nonparametric estimator is not consistent. A second important of the two-step method is

that, even if consistent, the initial estimator P̂ typically suffers of the well-known curse of

dimensionality in nonparametric estimation. When the number of conditioning variables is

relatively large, the estimator P̂ can be very seriously biased and imprecise in small samples.

In a nonlinear model, both the bias and the variance of P̂ can generate serious biases in the

second step estimator of θ0.

Aguirregabiria and Mira (2007) proposed an alternative estimator that deals with the

limitations of the two-step method. The Nested Pseudo Likelihood (NPL) estimator is

defined as a pair (θ̂, P̂) that satisfies the following two conditions:

θ̂ = argmax
θ∈Θ

Q(θ, P̂)

P̂ = Λ
³
z̃P̂’θ̂ + ẽP̂

´ (25)

That is, θ̂ maximizes the pseudo likelihood given P̂ (as in the two-step estimator), and P̂ is

an equilibrium associated with θ̂. This estimator has lower asymptotic variance and finite

sample bias than the two step estimator (see Aguirregabiria and Mira, 2007, and Kasahara

and Shimotsu, 2008).

A recursive extension of the two-step method can be used as a simple algorithm to obtain

the NPL estimator. We initialize the procedure with an initial vector of CCPs, say P̂0. Note

that P̂0 is not necessarily a consistent estimator of P0. Then, at iteration K ≥ 1, we

update our estimates of (θ0,P0) by using the pseudo maximum likelihood (logit) estimator

θ̂
K
= argmaxθ∈Θ Q(θ, P̂K−1) and the policy iteration P̂K = Λ

³
z̃P̂

K−1
’θ̂

K
+ ẽP̂

K−1
´
, that

is:

P̂K
im(x

∗
imt) = Λ

³
z̃P̂

K−1
imt ’θ̂

K
+ ẽP̂

K−1
imt

´
(26)

Upon convergence this algorithm provides the NPL estimator. Maximization of the pseudo
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likelihood function with respect to θ is extremely simple because Q(θ,P) is globally concave

in θ for any possible value of P.

In our application, we initialize the procedure with a reduced-form estimation of the CCPs

Pim(x
∗
imt) based on a logit model that includes as explanatory variables airline dummies,

city dummies, and a second order polynomial in (Rimt, HUBimt) where the terms of this

polynomial are interacted with the incumbent status dummy ximt.

4.3.3 Estimation results

Table 9 presents our estimation results for the dynamic game of network competition. The

estimates are measured in thousands of dollars. The estimated fixed cost, evaluated at the

mean value of hub-size and distance, is $117, 000. Since the median variable profit in the

sample is around $159,000, we have that this fixed cost is 73% of the median variable profit.

Not surprisingly for this industry, this value implies substantial economies of scale. Fixed

costs increase with the distance between the two cities: it increases $4.64 per mile. Hub-size

has also a significant effect on fixed costs. A million people increase of hub-size implies a

$1, 610 reduction in fixed costs. This is a non-negligible cost reduction.

The estimated entry cost, evaluated at the mean value of hub-size and distance, is

$242, 000. This value represents 207% of the corresponding (quarterly) fixed cost, 152%

of the median variable profit, and 5.8 times the (quarterly) operating profit (variable profit

minus fixed cost) in a market with median variable profit, mean distance and mean hub-size.

That is, it requires almost six quarters of profits to compensate the firm for its initial invest-

ment or entry cost. These costs do not depend significantly on flown distance. However, the

effect of hub-size is very important. While an airline with the minimum hub-size (i.e., zero)

has to pay an entry cost of $501, 000, and airline with the maximum hub-size in the sample

(i.e., 50 million people) pays only $12, 000. A one million people increase in hub-size implies

a reduction of entry costs of more than $10, 000.
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5 Disentangling demand, cost and strategic factors

We use our estimated model to measure the contribution of demand, cost and strategic

factors to explain airlines’ propensity to operate using hub-and-spoke networks. We consider

a simple measure of this propensity, that we define as an airline’s hub − ratio. Airlines’

hub ratios can be obtained from the data. Then, we analyze how different parameters

of the model contribute to the observed hub-ratios. The parameters of interest are the

ones that measure the effects hub-size on demand, variable costs, fixed costs and entry

costs. We use the estimated model to calculate the counterfactual hub-ratio if some of these

parameters becomes zero. We distinguish two different types of counterfactual experiments:

an experiment where the behavior of the other airlines remains the same; and an experiment

where the other airlines change their behavior in the new equilibrium. The comparison

between the two types of experiments provides a measure of the importance of strategic

factors in the adoption of hub-and-spoke networks.

5.1 Empirical hub-ratios

To obtain our measure of an airline propensity to operate using a hub-and-spoke network,

we start assuming that each airline has two hub airports. These hub airports are the two

airports with the largest values of hub-size for the airline. For the most important carriers,

this ’empirical’ definition of a hub-airport coincides with the self-reported hubs. Table 4

presents the list of hub-airports using our definition of hubs. Then, an airline hub-ratio is

defined as:

hub− ratioit =

PM
m=1 ximt I {city-pair m involves a hub airport of airline i}PM

m=1 ximt

(27)

Of those city-pairs in which the airline is active (with nonstop flights), the hub-ratio is the

proportion of these city-pairs that involve a hub airport.

Table 10 presents the hub ratios of the top 12 airlines. Southwest hub-ratio (15.6%) is

substantially smaller than those of any other airline in the industry. Within the other large
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carriers, Continental (with 61.3%), Northwest (49.2), and American (40.1) are the ones with

largest hub ratios. Interestingly, we find very large hub ratios among some of regional carriers

such as Alaska (90.6%), ATA (66.7), Frontier (62.5%), and America West (60.2%).

5.2 A simple method to deal with multiple equilibria in counter-
factual experiments

Multiplicity of equilibria is an important problemwhen we use the estimated model to predict

players’ behavior in counterfactual scenarios such as a change in structural parameters. Here

we propose an approach to deal with this problem. The main advantage of this approach is its

simplicity, and that it makes minimum assumptions on the equilibrium selection mechanism.

Its main limitation is that it provides only a first order approximation. This approximation

might be imprecise when the counterfactual structural parameters are far from the estimated

values.

An equilibrium associated with θ is a vector of choice probabilities P that solves the

fixed point problem P = Λ
¡
z̃P’θ + ẽP

¢
. For a given value θ, the model can have multiple

equilibria. The model can be completed with an equilibrium selection mechanism. This

mechanism can be represented as a function that, for given θ, selects one equilibrium within

the set of equilibria associated with θ. We use π(θ) to represent this (unique) selected

equilibrium. Our approach here (both for the estimation and for counterfactual experiments)

is agnostic with respect to the equilibrium selection mechanism. We assume that there is

such a mechanism, and that it is a smooth function of θ. But we do not specify any particular

form for the equilibrium selection mechanism π(.).

Let θ0 be the true value of θ in the population under study. Suppose that the data

(and the population) come from a unique equilibrium associated with θ0. Let P0 be the

equilibrium in the population. By definition, P0 is such that P0 = Λ
¡
z̃P0’θ0 + ẽP0

¢
and

P0 = π(θ0). Let (θ̂0, P̂0) be a consistent estimator of (θ0,P0). Note that we do not know

the function π(θ). All what we know is that the point (θ̂0, P̂0) belongs to the graph of this

function π. Let θ∗ be the vector of parameters under a counterfactual scenario. We want
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to obtain airlines’ behavior and equilibrium outcomes under θ∗. That is, we want to know

the counterfactual equilibrium π(θ∗). The key issue to implement this experiment is that

given θ∗ the model has multiple equilibria, and we do not know the function π. Given our

model assumptions, the mapping Λ
¡
z̃P’θ + ẽP

¢
is continuously differentiable in (θ,P). Our

approach requires also the following assumption.

ASSUMPTION PRED: The equilibrium selection mechanism π(θ) is a continuously differ-

entiable function of θ around θ̂0.

Under this assumption we can use a first order Taylor expansion to obtain an approxima-

tion to the counterfactual choice probabilities π(θ∗) around our estimator θ̂0. An intuitive

interpretation of our approach is that we select the counterfactual equilibrium which is

"closer" (in a Taylor-approximation sense) to the equilibrium estimated in t0he data. The

data is not only useful to identify the equilibrium in the population but also to identify the

equilibrium in the counterfactual experiments. A Taylor approximation to π(θ∗) around θ̂0

implies that:

π(θ∗) = π(θ̂0) +
∂π(θ̂0)

∂θ0

³
θ∗ − θ̂0

´
+O

µ°°°θ∗ − θ̂0°°°2¶ (28)

Note that π(θ̂0) = P̂0 and that π(θ̂0) = Λ(z̃π(θ̂0)’θ̂0 + ẽπ(θ̂0)). Differentiating this last

expression with respect to θ we have that

∂π(θ̂0)

∂θ0
=

∂Λ(z̃P̂0’θ̂0 + ẽP̂0)

∂θ0
+

∂Λ(z̃P̂0’θ̂0 + ẽP̂0)

∂P0
∂π(θ̂0)

∂θ0
(29)

And solving for ∂π(θ̂0)/∂θ
0 we can represent this Jacobian matrix in terms of Jacobians of

Λ
¡
z̃P’θ + ẽP

¢
evaluated at the estimated values (θ̂0, P̂0). That is,

∂π(θ̂0)

∂θ0
=

Ã
I − ∂Λ(z̃P̂0 ’θ̂0 + ẽP̂0)

∂P0

!−1
∂Λ(z̃P̂0 ’θ̂0 + ẽP̂0)

∂θ0
(30)

Solving expression (30) into (28) we have that:

π(θ∗) = P̂0 +

Ã
I − ∂Λ(z̃P̂0 ’θ̂0 + ẽP̂0)

∂P0

!−1
∂Λ(z̃P̂0 ’θ̂0 + ẽP̂0)

∂θ0

³
θ∗ − θ̂0

´
+O

µ°°°θ∗ − θ̂0°°°2¶
(31)
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Therefore, under the condition that
°°°θ∗ − θ̂0°°°2 is small, the term ³

I − ∂Λ(z̃P̂0 ’θ̂0+ẽP̂0 )
∂P0

´−1
∂Λ(z̃P̂0 ’θ̂0+ẽP̂0 )

∂θ0

³
θ∗ − θ̂0

´
provides a good approximation to the counterfactual equilibrium

π(θ∗). Note that all the elements in
³
I − ∂Λ(z̃P̂0 ’θ̂0+ẽP̂0 )

∂P0

´−1
∂Λ(z̃P̂0 ’θ̂0+ẽP̂0)

∂θ0

³
θ∗ − θ̂0

´
are

known to the researcher.

5.3 Results

Table 11 presents the results of our counterfactual experiments. Hub-size effects on variable

profits and fixed costs explain only a small portion of the observed hub-ratios. However,

hub-size effects on entry costs explain a very significant portion. Furthermore, for Northwest

and Delta, strategic factors play an important role in explaining the hub-ratio. Interestingly,

after Southwest, these are the airlines that operate in a larger number of monopoly markets

(see panel 5.3 in Table 5).

6 Conclusions

We have proposed and estimated a dynamic game of network competition in the US airline

industry. An attractive feature of the model is that an equilibrium of the model is relatively

simple to compute, and therefore the estimated model can be used to analyze the effects of

alternative policies. As it is common in dynamic games, the model has multiple equilibria

and this is an important issue when using the model to make predictions. We have proposed

and implemented a simple approach to deal with multiplicity of equilibria when using this

type of model to predict the effects of counterfactual experiments.

We use this model and methods to study the contribution of demand, costs, and strategic

factors to the adoption of hub-and-spoke networks by companies in the US airline industry.

Though the scale of operation of an airline in an airport has statistically significant effects

on variable profits and fixed operating costs, these effects seem to play a minor role to

explain airlines’ propensity to adopt hub-and-spoke networks. In contrast, our estimates of

the effects of hub-size on entry costs are very substantial. While airlines without previous
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presence in an airport have to pay very significant entry costs to start their operation (i.e.,

around half a million dollars, according to our estimates), an airline with a large hub in the

airport has to pay a negligible entry cost to operate an additional route. Eliminating these

hub-size effects on entry costs reduces very importantly airlines propensity to adopt hub-and-

spoke networks. In our model, these cost savings can be interpreted as due to technological

factors or to contractual agreements between airports and airlines. Investigating the specific

sources of these cost savings is an important topic for further research. For some of the larger

carriers, we also find evidence consistent with the hypothesis that hub-and-spoke networks

are used to deter the entry of competitors in spoke markets.
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Table 1. Cities, Airports and Population

City, State Airports City Pop. City, State Airports City Pop.

New York-Newark-Jersey LGA, JFK, EWR 8,623,609 Las Vegas, NV LAS 534,847

Los Angeles, CA LAX, BUR 3,845,541 Portland, OR PDX 533,492

Chicago, IL ORD, MDW 2,862,244 Oklahoma City, OK OKC 528,042

Dallas, TX(1) DAL, DFW 2,418,608 Tucson, AZ TUS 512,023

Phoenix-Tempe-Mesa, AZ PHX 2,091,086 Albuquerque, NM ABQ 484,246

Houston, TX HOU, IAH, EFD 2,012,626 Long Beach, CA LGB 475,782

Philadelphia, PA PHL 1,470,151 New Orleans, LA MSY 462,269

San Diego, CA SAN 1,263,756 Cleveland, OH CLE 458,684

San Antonio,TX SAT 1,236,249 Sacramento, CA SMF 454,330

San Jose, CA SJC 904,522 Kansas City, MO MCI 444,387

Detroit, MI DTW 900,198 Atlanta, GA ATL 419,122

Denver-Aurora, CO DEN 848,678 Omaha, NE OMA 409,416

Indianapolis, IN IND 784,242 Oakland, CA OAK 397,976

Jacksonville, FL JAX 777,704 Tulsa, OK TUL 383,764

San Francisco, CA SFO 744,230 Miami, FL MIA 379,724

Columbus, OH CMH 730,008 Colorado Spr, CO COS 369,363

Austin, TX AUS 681,804 Wichita, KS ICT 353,823

Memphis, TN MEM 671,929 St Louis, MO STL 343,279

Minneapolis-St. Paul, MN MSP 650,906 Santa Ana, CA SNA 342,715

Baltimore, MD BWI 636,251 Raleigh-Durham, NC RDU 326,653

Charlotte, NC CLT 594,359 Pittsburg, PA PIT 322,450

El Paso, TX ELP 592,099 Tampa, FL TPA 321,772

Milwaukee, WI MKE 583,624 Cincinnati, OH CVG 314,154

Seattle, WA SEA 571,480 Ontario, CA ONT 288,384

Boston, MA BOS 569,165 Buffalo, NY BUF 282,864

Louisville, KY SDF 556,332 Lexington, KY LEX 266,358

Washington, DC DCA, IAD 553,523 Norfolk, VA ORF 236,587

Nashville, TN BNA 546,719

Note (1): Dallas-Arlington-Fort Worth-Plano, TX
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Table 2. Ranking of City-Pairs by
Number of Passengers (Round-trip, Non-Stop) in 2004

CITY A CITY B Total

1. Chicago New York 1,412,670
2. Los Angeles New York 1,124,690
3. Atlanta New York 1,100,530
4. Los Angeles Oakland 1,080,100
5. Las Vegas Los Angeles 1,030,170
6. Chicago Las Vegas 909,270
7. Las Vegas New York 806,230
8. Chicago Los Angeles 786,300
9. Dallas Houston 779,330
10. New York San Francisco 729,680
11. Boston New York 720,460
12. New York Tampa 713,380
13. Chicago Phoenix 706,950
14. New York Washington 680,580
15. Los Angeles Phoenix 648,510
16. Miami New York 637,850
17. Los Angeles Sacramento 575,520
18. Atlanta Chicago 570,500
19. Los Angeles San Jose 556,850
20. Dallas New York 555,420

Source: DB1B Database
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Table 3
Airlines

Airline (Code) # Passengers(1) # City-Pairs in 2004-Q4(2)

(in thousands) (maximum = 1,485)

1. Southwest (WN) 25,026 373
2. American (AA)(3) 20,064 233
3. United (UA)(4) 15,851 199
4. Delta (DL)(5) 14,402 198
5. Continental (CO)(6) 10,084 142
6. Northwest (NW)(7) 9,517 183
7. US Airways (US) 7,515 150
8. America West (HP)(8) 6,745 113
9. Alaska (AS) 3,886 32
10. ATA (TZ) 2,608 33
11. JetBlue (B6) 2,458 22
12. Frontier (F9) 2,220 48
13. AirTran (FL) 2,090 35
14. Mesa (YV)(9) 1,554 88
15. Midwest (YX) 1,081 33
16. Trans States (AX) 541 29
17. Reno Air (QX) 528 15
18. Spirit (NK) 498 9
19. Sun Country (SY) 366 11
20. PSA (16) 84 27
21. Ryan International (RD) 78 2
22. Allegiant (G4) 67 3

Note (1): Annual number of passengers in 2004 for our selected markets

Note (2): An airline is active in a city-pair if it has at least 20 passengers/week

in non-stop flights.

Note (3): American (AA) + American Eagle (MQ) + Executive (OW)

Note (4): United (UA) + Air Wisconsin (ZW)

Note (5): Delta (DL) + Comair (OH) +Atlantic Southwest (EV)

Note (6): Continental (CO) + Expressjet (RU)

Note (7): Northwest (NW) + Mesaba (XJ)

Note (8): On 2005, America West merged with US Airways.
Note (9): Mesa (YV) + Freedom (F8)
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Table 4
Airlines and their Hubs (2004-Q4)

Airline (Code) Largest Hub Second largest Hub

(Hub-Size)(1) (Hub-Size)(1)

1. Southwest (WN) MCI (31.5) BWI (30.5)
2. American (AA) DFW (46.7) ORD (44.4)|
3. United (UA) DEN (45.9) SFO (45.8)
4. Delta (DL) ATL (48.5) TPA (46.8)
5. Continental (CO) IAH (46.9) CLE (45.6)
6. Northwest (NW) DTW (47.6) MSP (47.1)
7. US Airways (US) CLT (39.2) BOS (38.6)
8. America West (HP) PHX (39.6) LAS (36.1)
9. Alaska (AS) SEA (29.0) PDX (26.0)
10. ATA (TZ) IND (26.2) MDW (25.0)
11. JetBlue (B6) LGB (10.7) OAK (10.2)
12. Frontier (F9) DEN (35.1) PDX (14.2)
13. AirTran (FL) ATL (30.7) MEM (25.4)
14. Mesa (YV) AUS (23.1) BNA (22.2)
15. Midwest (YX) MKE (29.9) MCI (14.6)
16. Trans States (AX) STL (25.4) PIT (12.6)
17. Reno Air (QX) PDX (25.9) OMA (10.7)
18. Spirit (NK) DTW (13.9) LAX (12.4)
19. Sun Country (SY) MSP (21.6) JFK (0.6)
20. PSA (16) ATL (10.0) IND (8.9)
21. Ryan International (RD) ATL (4.4) LAX (0.4)
22. Allegiant (G4) LAS (0.7) OKC (0.5)

(1) Hub-size is measured in millions of people.
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Table 5
Descriptive Statistics of Market Structure

1,485 city-pairs (markets). Period 2004-Q1 to 2004-Q4

2004-Q1 2004-Q2 2004-Q3 2004-Q4 All Quarters

(5.1) Distribution of Markets by Number of Incumbents
Markets with 0 airlines 35.79% 35.12% 35.72% 35.12% 35.44%
Markets with 1 airline 30.11% 29.09% 28.76% 28.28% 29.06%
Markets with 2 airlines 17.46% 16.71% 17.52% 18.06% 17.44%
Markets with 3 airlines 9.20% 10.83% 9.47% 9.88% 9.84%

Markets with 4 or more airlines 7.43% 8.25% 8.53% 8.67% 8.22%

(5.2) Herfindahl Index
Herfindahl Index (median) 5344 5386 5286 5317 5338

(5.3) Number of Monopoly Markets by Airline
Southwest 146 153 149 157
Northwest 65 63 67 69

Delta 58 57 57 56
American 31 34 33 28

Continental 31 26 28 24
United 21 14 13 17

(5.4) Distribution of Markets by Number of New Entrants
Markets with 0 Entrants - 82.61% 86.60% 84.78% 84.66%
Markets with 1 Entrant - 14.48% 12.31% 13.33% 13.37%
Markets with 2 Entrants - 2.44% 0.95% 1.69% 1.69%
Markets with 3 Entrants - 0.47% 0.14% 0.20% 0.27%

(5.5) Distribution of Markets by Number of Exits
Markets with 0 Exits - 87.89% 85.12% 86.54% 86.51%
Markets with 1 Exit - 10.55% 13.13% 11.77% 11.82%
Markets with 2 Exits - 1.35% 1.56% 1.15% 1.35%

Markets with more 3 or 4 Exits - 0.21% 0.21% 0.54% 0.32%
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Table 6
Transition Probability of Market Structure (Quarter 2 to 3)

# Firms in Q3
# Firms in Q2 0 1 2 3 4 >4 Total

0 93.83% 5.78% 0.39% 0.00% 0.00% 0.00% 100.00%
519

1 9.07% 79.53% 11.16% 0.23% 0.00% 0.00% 100.00%
430

2 0.81% 19.84% 68.42% 10.12% 0.81% 0.00% 100.00%
247

3 0.20% 3.76% 20.20% 52.28% 19.21% 4.36% 100.00%
160

4 0.00% 1.59% 6.35% 31.75% 46.03% 14.29% 100.00%
63

>4 0.00% 0.00% 0.00% 5.08% 33.90% 61.02% 100.00%
59

Total 528 425 259 140 73 53 1,478
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Table 7
Demand Estimation(1)

Data: 85,497 observations. 2004-Q1 to 2004-Q4
OLS IV

FARE (in $100)
³
− 1

σ1

´
-0.329 (0.085) -1.366 (0.110)

ln(s∗)
³
1− σ2

σ1

´
0.488 (0.093) 0.634 (0.115)

NON-STOP DUMMY 1.217 (0.058) 2.080 (0.084)

HUBSIZE-ORIGIN (in million people) 0.032 (0.005) 0.027 (0.006)

HUBSIZE-DESTINATION (in million people) 0.041 (0.005) 0.036 (0.006)

DISTANCE 0.098 (0.011) 0.228 (0.017)

σ1 (in $100) 3.039 (0.785) 0.732 (0.059)

σ2 (in $100) 1.557 (0.460) 0.268 (0.034)

Test of Residuals Serial Correlation
m1∼ N(0, 1) (p-value) 0.303 (0.762) 0.510 (0.610)

(1) All the estimations include airline dummies, origin-airport dummies × time dummies,

and destination-airport dummies × time dummies. Stadard errors in parentheses.
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Table 8
Marginal Cost Estimation(1)

Data: 85,497 observations. 2004-Q1 to 2004-Q4
Dep. Variable: Marginal Cost in $100

Estimate (Std. Error)

NON-STOP DUMMY 0.006 (0.010)

HUBSIZE-ORIGIN (in million people) -0.023 (0.009)

HUBSIZE-DESTINATION (in million people) -0.016 (0.009)

DISTANCE 5.355 (0.015)

Test of Residuals Serial Correlation
m1∼ N(0, 1) (p-value) 0.761 (0.446)

(1) All the estimations include airline dummies, origin-airport dummies × time dummies,

and destination-airport dummies × time dummies.
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Table 9
Estimation of Dynamic Game of Entry-Exit(1)

Data: 1,485 markets × 22 airlines × 3 quarters = 98,010 observations

Estimate (Std. Error)
(in thousand $)

Fixed Costs (quarterly):(2)

γFC1 + γFC2 mean hub-size +γFC3 mean distance 116.98 (5.931)
(average fixed cost)

γFC2 (hub-size, in million people) -1.61 (0.404)

γFC3 (distance, in thousand miles) 4.64 (0.322)

Entry Costs:
ηFC1 + ηFC2 mean hub-size +ηFC2 mean distance 241.87 (6.047)

(average entry cost)

ηFC2 (hub-size, in million people) -10.06 (0.108)

ηFC3 (distance, in thousand miles) 0.07 (0.417)

σε 8.402 (1.385)

Pseudo R-square 0.289

(1) All the estimations include airline dummies, and city dummies.

(2) Mean hub size = 25.7 million people. Mean distance (nonstop flights) = 1996 miles
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Table 10
Hub Ratios of Top 12 Airlines (2004-Q4)

Airline (Code) Hub Cities Hub-Ratio

(%)

1. Southwest (WN) Kansas City; Baltimore 15.55

2. American (AA) Detroit; Chicago 42.06

3. United (UA) Denver; San Francisco 30.65

4. Delta (DL) Atlanta; Tampa 32.32

5. Continental (CO) Houston; Cleveland 61.27

6. Northwest (NW) Detroit; Minneapolis 49.18

7. US Airways (US) Charlotte; Boston 32.67

8. America West (HP) Phoenix; Las Vegas 60.18

9. Alaska (AS) Seattle; Portland 90.63

10. ATA (TZ) Indianapolis; Chicago 66.67

11. JetBlue (B6) Long Beach; Oakland 36.36

12. Frontier (F9) Denver; Portland 62.50
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Table 11
Counterfactual Experiments

Hub-Ratios when Some Structural Parameters Become Zero

No hub-size effects No hub-size effects No hub-size effects
in variable profits in fixed costs in entry costs

Carrier Observed No Strat. Strategic No Strat. Strategic No Strat. Strategic

Southwest 15.6 14.9 14.8 14.1 13.5 9.7 7.6

American 42.1 40.8 39.2 38.8 36.8 24.2 17.6

United 30.7 29.7 28.5 27.0 26.4 18.8 12.1

Delta 32.3 30.1 29.5 29.4 23.2 19.9 12.6

Continental 61.3 59.4 56.1 55.4 52.4 34.8 24.6

Northwest 49.2 47.4 44.4 44.5 37.1 29.3 15.1

America West 60.2 58.9 55.9 54.1 52.5 34.4 24.1

Alaska 90.6 87.0 84.8 81.5 78.5 50.2 36.8
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Figure 1: Histogram of the Logarithm of (Estimated) Variable Profits
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Figure 2: Histogram of Hub-Size (in million people)
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