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Abstract

This paper considers a class of semiparametric estimators that take the
form of density-weighted averages. These arise naturally in a consideration
of semiparametric methods for the estimation of index and sample-selection
models involving preliminary kernel density estimates. The question con-
sidered in this paper is that of selecting the degree of smoothing to be used
in computing the preliminary density estimate. This paper proposes a boot-
strap method for estimating the mean squared error and associated optimal
bandwidth. The particular bootstrap method suggested here involves using
a resample of smaller size than the original sample. This method of band-
width selection is presented with specific reference to the case of estimators
of average densities, of density-weighted average derivatives and of density-
weighted conditional covariances.
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1 Introduction
This paper is concerned with the issue of smoothing parameter selection for non-
parametric estimators that are used as components of a semiparametric estima-
tor. In this case the relative importance of bias and variance from the perspec-
tive of bandwidth selection is different than it is when nonparametric estima-
tors are considered on their own. In particular, semiparametric estimates of a
Euclidean parameter that incorporate nonparametric kernel estimators will typi-
cally involve asymptotic undersmoothing of the kernel estimates—to guarantee
the

√
n-consistency of the Euclidean parameter estimate, the bandwidth used to

implement the nonparametric “ingredient” must converge more rapidly to zero
than would be optimal for estimates of the corresponding function evaluated at
points of interest in its domain.1

The class of semiparametric estimator considered in this paper involves the
relatively simple case of procedures designed to estimate density-weighted ex-
pectations. Generally known as density-weighted averages, the implementation
of these estimators involves the use of smoothing via embedded kernel functions.
Despite their relative simplicity, an investigation of estimators of this sort is in-
teresting because of the wide range of econometric scenarios in which these esti-
mators can be applied. In particular, estimators in this class arise naturally in the
consideration of semiparametric methods for the estimation of single-index and
sample selection models involving preliminary kernel density estimates. It should
also be noted that apart from the case of semiparametric estimation of density-
weighted average derivatives, there is at this point still a paucity of research on
how best to choose smoothing parameters in this setting.

For density-weighted averages involving kernel smoothing, the selection of
bandwidths used to implement the preliminary kernel estimates is complicated by
the fact that the asymptotic distribution of the normalized semiparametric estima-
tor does not actually depend on the bandwidth used. Asymptotic approaches to
bandwidth selection in this setting will therefore depend on the use of higher-order
distributional approximations, as used for example in the case of density-weighted
average derivatives by Härdle and Tsybakov (1993). In particular, Härdle and
Tsybakov (1993) used a higher-order approximation to the distribution of the nor-

1The necessity for asymptotic undersmoothing of preliminary nonparametric estimates em-
bedded in semiparametric estimates of Euclidean parameters was noted in the unifying theory
elaborated by Goldstein and Messer (1992). For estimators exhibiting this feature in an economet-
ric setting, cf. among others, the papers of Robinson (1988); Härdle and Stoker (1989) and Powell
et al. (1989).
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malized and centred average derivative estimator to construct a bandwidth mini-
mizing an asymptotic approximation of the estimator’s mean squared error. This
approach to the construction of an asymptotically optimal bandwidth was also
taken in the more general context considered by Powell and Stoker (1996). Both
Härdle and Tsybakov (1993) and Powell and Stoker (1996, Proposition 4.1) show
that the asymptotically optimal bandwidth for the estimation problems they con-
sider has the form h = kn−r, where n denotes the sample size and r is positive
and depends on the order of the kernel function and the dimension of the condi-
tioning variables involved. Powell and Stoker (1996, §4.4) describe a “plug-in”
method for estimating the leading constant k for a class of estimators including
that considered by Härdle and Tsybakov (1993).

This paper considers the specific estimation context adopted by Powell and
Stoker (1996) and proposes a new method of estimating the asymptotically opti-
mal bandwidth in applications. The approach taken in this paper was inspired by
a suggestion of Horowitz (1998, §2.8) and involves the use of resampling fewer
observations than are present in the original sample—the so-called “m-out-of-n”
or “m-bootstrap”.

The approach taken in this paper also complements existing methods based on
resampling as many observations as exist in the original sample coupled with an
explicit method of bias correction. The “manual” bias correction called for in this
case arises out of the inability of the full-sample bootstrap to generate adequate
approximations of the bias of the semiparametric estimator.2 The approach taken
in this paper avoids any need to engage in the sort of case-specific explicit bias
correction required by approaches involving the full-sample bootstrap.

The remainder of this paper proceeds as follows. The following section presents
a discussion of the specific estimation problem considered in this paper. Exam-
ples are presented in Section 2.1. Section 3 presents the main results of this paper
demonstrating the efficacy of the m-bootstrap method in estimating mean squared
error and estimating the asymptotically optimal bandwidth. The first part of Sec-
tion 3 presents the regularity conditions presumed to underlie the structure of the
mean squared errors of the estimators considered in this paper. The final portion
of Section 3 deals with the important practical issue of how to select the resample
size m. Section 4 contains the proof of the major theorem of Section 3, while Sec-
tion 5 presents the results of a simulation experiment comparing the performance
in a small sample of the bootstrap method of bandwidth selection proposed here

2Cf. e.g., the approach taken by Nishiyama and Robinson (2005) for the case of semiparametric
estimators of density-weighted average derivatives.
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with the plug-in method suggested by Powell and Stoker (1996, §4.4). Section 6
concludes. Proofs of certain lemmas not presented in the main text appear in the
appendix.

A word on notation
In what follows, K : Rd → R will generally be referred to as a “smoothing kernel”. K will
be assumed to satisfy K(u) = K(−u) and

∫
K(u)du = 1. The symbol h will always denote

a positive scalar-valued function of an integer n such that h ≡ h(n) → 0 as n → ∞. In this
connection, f̂n(·, h) will always denote a “leave-out” kernel estimate based on a random sample
X1, . . . , Xn. In particular,

f̂n(Xi, h) ≡ 1
n− 1

∑

{j:j 6=i}

1
hd

K

(
Xi −Xj

h

)
. (1)

The symbol ‖ · ‖ will denote the usual Euclidean norm of a vector.3

2 Density-weighted averages
Suppose the data represent an iid sample of observations X1, . . . , Xn, where Xi,
for i ∈ {1, . . . , n}, is a d-vector of response and conditioning variables. The
estimators considered in this paper take the form of second-order U -statistics with
kernel functions depending on a smoothing parameter h. In particular, we consider
estimators in the form

θ̂n(h) ≡
(

n

2

)−1 ∑
i<j

g(Xi, Xj, h), (2)

where g(·, ·, h) is a function symmetric in pairs of observations4 and h is a (scalar)
smoothing parameter such that h ≡ h(n) → 0 as n →∞.

Remark 1. In what follows, the function g(·, ·, h) will be taken to be scalar-valued
when it is convenient to do so. In applications involving a vector-valued U -
statistic kernel, it is possible to extend the derivations for the scalar-valued case
by applying them to single components of g(·, ·, h) and of θ̂n(h), and then sub-
sequently deducing desired results for arbitrary linear combinations λT g(·, ·, h)
and λT θ̂n(h).

3Cf. e.g., Hall and Marron (1987), Jones and Sheather (1991) for discussion of issues related
to the omission of the “i = j” terms in the kernel estimate (1).

4i.e., g(Xi, Xj , h) = g(Xj , Xi, h). The estimator θ̂n(h) can be described as a second-order
U -statistic with kernel g(·, ·, h).
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Denote the expectation of θ̂n(h) as

θ(h) ≡ E
[
θ̂n(h)

]
= E[g(X1, X2, h)], (3)

and the object of estimation as

θ0 ≡ lim
h→0

θ(h). (4)

The characterization of the estimator θ̂n(h) as a density-weighted average
arises from the fact that the second-order U -statistic structure given above in
(2) arises frequently when the estimand θ0 has the form of a density-weighted
expectation—this is indeed the case in each of the examples presented below in
Section 2.1.

2.1 Examples
This section reproduces the three motivating examples of Powell and Stoker (1996).
Although the material in this section has primarily been included to make this pa-
per more self-contained than it otherwise would be, it does serve the purpose of
linking the notation of (2)–(4) to concrete examples.

Example 1 (Average densities). Suppose Xi ∈ Rd is a continuous random vector
with density f . The objective is to estimate

θ0 =

∫
f(x1)

2dx1 = E[f(X1)]

with

θ̂n(h) =
1

n

n∑
i=1

f̂n(Xi, h),

where f̂n(·, h) is a kernel estimate given by

f̂n(Xi, h) ≡ 1

n− 1

∑

{j:j 6=i}

1

hd
K

(
Xi −Xj

h

)
,

which indicates a special case of the estimator given above in (2) with scalar-
valued U -statistic kernel

g(Xi, Xj, h) =
1

hd
K

(
Xi −Xj

h

)
.
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Remark 2. Although it generally seems to be of little more than paedagogical
interest, it should be noted at this point that the problem of estimating the average
density, as presented in Example 1, arises in the measurement of the variance of
rank estimators.5 On the other hand, Examples 2 and 3 below describe estima-
tors that seem to have become widely accepted in econometrics. Further discus-
sion, along with examples of their application, can be found in Powell (1994) and
Horowitz (1998).

Example 2 (Density-weighted average derivatives). Suppose Xi = (Yi, Z
T
i )T ,

Yi ∈ R, Zi ∈ Rd. Assume that Zi is an absolutely continuous random vector with
density f . Let m(Zi) ≡ E[Yi|Zi]. We want to estimate

θ0 = E

[
f(Z1)

∂m(Z1)

∂Z1

]
= −2E

[
∂f(Z1)

∂Z1

Y1

]
,

where we assume f(z)m(z) → 0 as ‖z‖ → ∞ and that all derivatives and
moments exist. θ0 is important because it is proportional to the coefficients of a
semiparametric index model—i.e., if m(Zi) ≡ M(ZT

i β), then θ0 is proportional
to β. If f̂n(Zi, h) is a kernel estimate of the density of Zi, the estimator θ̂n(h) is
given by

θ̂n(h) ≡ 1

n

n∑
i=1

−2Yi
∂f̂n(Zi, h)

∂Zi

,

which in turn yields a special case of the estimator given above in (2) with U -
statistic kernel

g(Xi, Xj, h) = − 1

hd+1
K ′

(
Zi − Zj

h

)
(Yi − Yj) ,

where K ′(·) denotes the derivative of a smoothing kernel K(·), where K(·) has
the generic properties assumed above in the discussion appearing at the end of
the Introduction.

Example 3 (Density-weighted conditional covariances). Suppose

Xi = (Yi, Z
T
i , W T

i )T ,

Yi ∈ R, Zi ∈ Rl, and Wi ∈ Rd. Assume Wi is an absolutely continuous ran-
dom vector with density f . The objective here is to estimate the density-weighted
conditional covariances

θy
0 = E[f(W1)(Z1 − E[Z1|W1])(Y1 − E[Y1|W1])]

5Cf. e.g., Jurečková (1971); Jaeckel (1972).
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and
θz
0 = E[f(W1)(Z1 − E[Z1|W1])(Z1 − E[Z1|W1])

T ].

These are relevant for example in the estimation of the partially linear model

Yi = ZT
i β + υ(Wi) + Ui,

where E[Ui|Zi,Wi] = 0. Assuming that θz
0 is nonsingular and υ(·) is sufficiently

smooth we can write
β = [θz

0]
−1θy

0 .

θy
0 and θz

0 are estimated by estimators in the form given above in (2) with U -
statistic kernels given by

gy(Xi, Xj, h) =
1

2hd
K

(
Wi −Wj

h

)
(Zi − Zj)(Yi − Yj) (5)

and

gz(Xi, Xj, h) =
1

2hd
K

(
Wi −Wj

h

)
(Zi − Zj)(Zi − Zj)

T , (6)

respectively.

Remark 3. In the context of estimation of density-weighted conditional covari-
ances as given in Example 3, the focus of the development that follows is the
issue of bandwidth selection for estimators of the components θy

0 and θz
0 of β.

Powell and Stoker (1996, §5) discuss the issue of bandwidth choice for the ratio

β̂n(h) ≡
[
θ̂z

n(h)
]−1

θ̂y
n(h). The form of the asymptotic MSE-minimizing band-

width for the ratio β̂n(h) can be shown fairly straightforwardly to be identical to
that used for estimating the density-weighted average given by

θ̂zu
n (h) ≡ [θz

0]
−1 θ̂u

n(h). (7)

Here θ̂u
n(h) refers to a second-order U -statistic of the basic form given in (2) with

kernel
u(Xi, Xj, h) ≡ gy(Xi, Xj, h)− gz(Xi, Xj, h)β,

where gy(·) and gz(·) are the U -statistic kernels given above in (5) and (6), re-
spectively. The asymptotically MSE-optimal bandwidth can be shown to be con-
sistently estimable using preliminary consistent estimates of θz

0 and β. Further
details can be found in the discussion leading up to the statement of Powell and
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Stoker (1996, Proposition 5.1). The essential equivalence between the bandwidth
selection problem for ratios of density-weighted averages and the corresponding
problem for the density-weighted average given by θ̂zu

n (h) in (7) above makes the
extension of the method of bandwidth selection proposed in this paper to the case
of ratios of density-weighted averages fairly straightforward.6

3 Main Results
Details of the proposal to estimate the mean squared error and select the optimal
bandwidth for the class of estimators under consideration appear in Section 3.2 be-
low. These details are preceded by a signficant amount of preliminary discussion
in Section 3.1 setting out the relevant notation and regularity conditions that are
presumed to underlie the analysis. The estimand will be taken to be scalar-valued
for the sake of convenience.7

3.1 Setup and assumptions
Define the following, with reference to the expressions given above in (2) and (3):

ḡ(Xi, h) ≡ E [g(Xi, h)|Xi] (8)
ḡ0(Xi) ≡ lim

h→0
ḡ(Xi, h) (9)

θ̄n(h) ≡
n∑

i=1

ḡ(Xi, h)− (n− 1)θ(h) (10)

It is to be noted that the asymptotic behaviour of the basic class of estima-
tor given above as θ̂n(h) in (2) depends to a large extent on various properties
of the function ḡ0(Xi). In particular, under regularity conditions that ensure the

6The careful reader will note that the possibility of employing different bandwidths for esti-
mating the two components of the ratio

β̂n(h) ≡
[
θ̂z

n(h)
]−1

θ̂y
n(h)

(i.e., what might be referred to loosely as the “numerator” and “denominator”) has been excluded
by the use of a single “h” in the argument of β̂n(·). This is motivated by what appears to be most
prevalent in empirical practice.

7Cf. the comments in Remark 1 above.
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√
n-asymptotic normality of θ̂n(h),8 the asymptotic behaviour of θ̂n(h) − θ0 is

equivalent to that of
2

n

n∑
i=1

(ḡ0(Xi)− θ0) ,

where θ0 is the estimand given above in (4). In addition, a natural nonparametric
estimator of the asymptotic variance of θ̂n(h) under these regularity conditions
is the empirical variance of 2ḡ(Xi, h). Given the importance of the functions
ḡ(Xi, h) and ḡ0(Xi) to the large-sample theory of θ̂n(h) under conditions suffi-
cient for

√
n-asymptotic normality, the regularity conditions underlying the de-

velopment that follows will be couched in terms of the behaviour of ḡ(Xi, h) and
ḡ0(Xi). To wit:

Assumption 1. It is always possible to interchange the expectation and limh→0

operators. In particular,
E[ḡ0(X1)] = θ0,

where θ0 is the estimand given above in (4).

Assumption 2. There exists a constant α > 0 and a function s(·) with E[s(X1)] 6=
0 such that

ḡ(Xi, h)− ḡ0(Xi) = s(Xi)h
α + s̄(Xi, h),

where E[‖s̄(X1, h)‖2] = o(h2α).

Assumption 3. There exists a constant γ > 0 and a function q(·) with E[q(X1)] 6=
0 such that

E
[‖g(X1, X2, h)‖2|X1

]
= q(X1)h

−γ + q̄(X1, h),

where E[‖q̄(X1, h)‖] = o(h−γ).

Assumption 4. E [‖ḡ0(X1‖4)] < ∞, and for the same constant γ > 0 specified
in Assumption 3,

E
[‖g(X1, X2, h)‖4

]
= O

(
h−3γ

)
.

Assumption 5. 2α > γ, where α and γ are the constants specified in Assump-
tions 2 and 3 above.

8Cf. e.g., Powell et al. (1989, Assumptions 1–4).

9



Assumption 1 seems necessary to rule out pathological behaviour. Assump-
tions 2 and 3 also figure in the development of Powell and Stoker (1996), and
serve to regulate the bias and variance, respectively, of ḡ(Xi, h) as an estimator
of ḡ0(Xi). From (3) above, it is also clear that Assumption 2 regulates the bias
of θ̂n(h) as an estimator of θ0, since an immediate implication of this condition is
that

θ(h)− θ0 = E[s(X1)]h
α + o(hα). (11)

Assumption 3 can also be seen to have an important role in the unconditional
variance of the U -statistic kernel g(·), since an immediate consequence is that

E
[‖g(X1, X2, h)‖2

]
= E[q(X1)]h

−γ + o(h−γ). (12)

We note that Assumptions 2 and 3 are satisfied by the three examples in Sec-
tion 2.1. In particular, in the context of each example presented in Section 2.1, the
constant α in Assumption 2 is the order of the kernel function K(·). In general,
however, the value of α is reflected in the structure of the U -statistic kernel g(·).
The constant γ in Assumption 3 is equal to d in Examples 1 and 3 of Section 2.1,
and is equal to d + 2 in the context of Example 2.

Assumption 4 is stronger than the more conventional condition of E[‖ḡ0(X1)‖2] <
∞ typically imposed to ensure the asymptotic normality at rate

√
n of θ̂n(h). The

conditions of Assumption 4 will be shown in Section 4 to be important in guaran-
teeing the efficacy of the bootstrap method proposed in this paper for estimating
the mean-squared error of θ̂n(h).

Finally, the conditions on the bandwidth sequence {h} = {hn} that are nec-
essary for the

√
n-asymptotic normality of θ̂n(h) as an estimator of θ0 are noted.

These conditions are given in terms of the constants α and γ specified above in
Assumptions 2 and 3, respectively. In particular, the condition

h = o
(
n−

1
2α

)
(13)

is necessary for
√

n (θ(h)− θ0) = o(1), while

h−1 = o
(
n

1
γ

)
(14)

is required for
E

[‖g(X1, X2, h)‖2
]

= o(n). (15)

The condition (15) is in turn necessary for the variance of θ̂n(h) to disappear at
rate n.9

9Cf. Powell et al. (1989, Lemma 3.1).
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It is clear that the conditions given as (13) and (14) above bound the rate
at which h is permitted to converge to zero if the estimator θ̂n(h) is to be

√
n-

asymptotically normal. As such, Assumption 5 is required in order for both (13)
and (14) to hold simultaneously.

LetHn(α, γ) denote the set of all bandwidths h = hn ∈ (0,∞) satisfying both
(13) and (14) above. The statistical problem considered in this paper is to find
the mean squared error-minimizing bandwidth within the set Hn(α, γ) for semi-
parametric estimation contexts satisfying Assumptions 1–5 above. As first-order
asymptotic theory provides no guidance in this situation beyond that provided by
the bounds in (13) and (14), the route taken here is to resort to an expansion of the
mean squared error function under Assumptions 1–5 that holds for all bandwidths
h ∈ Hn(α, γ). The MSE-optimal bandwidth sequence will be taken to be that that
minimizes the leading terms of this expansion.

In order to develop the expansion of the mean squared error function for
estimators in the form given as θ̂n(h) in (2) above, note from the theory of U -
statistics10 that the finite-sample variance of θ̂n(h) is given by

V ar
[
θ̂n(h)

]
=

(
n

2

)−1

{2(n− 2)V ar [ḡ(X1, h)] + V ar [g(X1, X2, h)]}

=
4

n
V ar [ḡ(X1, h)] +

2

n2
E

[
g2(X1, X2, h)

]
+ o(n−2). (16)

Invoking Assumption 2 produces the following characterization of V ar [ḡ(X1, h)]:

V ar [ḡ(X1, h)] = V ar [ḡ0(X1)] + 2Cov [ḡ0(X1), s(X1)] h
α + o(hα). (17)

Combining the statements of Assumptions 2 and 3 along with (16) and (17) results
in the representation for the mean squared error of θ̂n(h) given by

MSE
[
θ̂n(h)

]
= (θ(h)− θ0)

2 + V ar
[
θ̂n(h)

]

= {E [s(X1)]}2 h2α +
4

n
V ar [ḡ0(X1)] +

4

n
Cov [ḡ0(X1), s(X1)] h

α

+
2

n2
E [q(X1)] h

−γ + o(h2α) + o(n−1hα) + o(n−2h−γ)

+o(n−2). (18)

It is clear that the first and third terms in (18) are increasing functions of the band-
width, while the fourth term is decreasing in h. The following elementary argu-

10Cf. e.g., Serfling (1980, §5.2).
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ment clarifies the order of the largest terms in (18) at an MSE-optimal bandwidth
sequence.

Lemma 1. Suppose h = hn belongs to a sequence that minimizes (18). In this
case {E [s(X1)]}2 h2α is of larger order than 4

n
Cov [ḡ0(X1), s(X1)] h

α.

Proof. Suppose not. Then the bandwidth sequence {hn} equating the order of the
order O (n−1hα) and O (n−2h−γ) terms in (18) would satisfy hn ∝ n−

1
α+γ , thus

implying that h2α
n ∝ n−

2α
α+γ and that n−1hα

n ∝ n−
2α+γ
α+γ . This, however, implies

that {E [s(X1)]}2 h2α
n is of greater order than 4

n
Cov [ḡ0(X1), s(X1)] h

α
n, a contra-

diction.

It is immediate from Lemma 1 that mean squared-error minimization under
the assumptions made above proceeds on the basis of equating the orders of
{E [s(X1)]}2 h2α and of 2

n2 E [q(X1)] h
−γ . As such, the MSE-optimal bandwidth

sequence {hn} satisfies
hn ∝ n−

2
2α+γ . (19)

The foregoing discussion is summarized in the following theorem character-
izing the mean squared error of the class of estimators under consideration.

Theorem 1. Under Assumptions 1–5 we have for n →∞ that

MSE
[
θ̂n(hn)

]
=

4

n
V ar [ḡ0(X1)] + {E [s(X1)]}2 h2α

n +
2

n2
E [q(X1)] h

−γ
n

+o
(
n−

4α
2α+γ

)

for all hn ∝ n−
2

2α+γ .

Powell and Stoker (1996, Proposition 4.1) exploit the conclusion of Theorem 1
to derive an approximation of the theoretically MSE-optimal bandwidth, which is
seen to depend on the functions introduced in Assumptions 2 and 3.11 As such,
estimates of the optimal bandwidth necessarily involve—perhaps in an implicit

11In particular, the approximation given in Powell and Stoker (1996, Proposition 4.1) to the
MSE-optimal bandwidth has the form

hn =

{
γE [q(X1)]

α (E [s(X1)])
2

} 1
2α+γ

n−
2

2α+γ .
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fashion—estimation of the bias quantity s(·) introduced in Assumption 2. It fol-
lows that one might be concerned about the quality of estimates of the leading
constant in the optimal bandwidth that are in turn based on estimation methods
that deliver poor estimates of the bias of θ̂n(h) with respect to θ0.

It is clear from (19) above that the MSE-optimal bandwidth hm for a sample of
size m < n will have the form hm = km− 2

2α+γ , where k is the same leading con-
stant appearing in the formula for the optimal bandwidth appropriate for a sample
of size n. For this reason, it is plausible to base estimates of the optimal band-
width hn for the full sample of observations on estimates of the leading constant
k obtained using subsamples of size m < n. This consideration is particularly
relevant in cases where k is difficult to estimate using the full sample. While the
bootstrap method presented in the following section does not involve explicit es-
timation of the leading constant k, it is nevertheless effective for essentially the
reason just noted.

3.2 Bootstrap estimates of mean squared error

This section presents the details of this paper’s proposal for estimating MSE
[
θ̂n(hn)

]

and the associated optimal bandwidth via a resampling procedure. In this con-
nection, further notation and a number of definitions are introduced. Let Xn ≡
{X1, . . . , Xn} denote the original random sample of n observations. For m ≤ n,
let X ∗

m ≡ {X∗
1 , . . . , X

∗
m} denote a random sample of size m from Xn. In what fol-

lows, X ∗
m will generally be referred to as an m-bootstrap sample. Let {h} ≡ {hn}

and {hm} denote bandwidth sequences appropriate for samples of sizes n and m
respectively, where hn, hm → 0 as n,m →∞. Define the following m-bootstrap
analogues of θ̂n(h), ḡ(Xi, h), θ(h) and θ̄n(h):

θ̂∗m(hm) ≡
(

m

2

)−1 ∑
i<j

g(X∗
i , X∗

j , hm); (20)

ḡ∗(X∗
i , hm) ≡ E [g(X∗

i , X∗
2 , hm)|X∗

i ,Xn] ; (21)
θ∗(hm) ≡ E [ ḡ∗(X∗

i , hm)| Xn] ; (22)

θ̄∗m(hm) ≡ θ∗(hm) +
2

m

m∑
i=1

(ḡ∗(X∗
i , hm)− θ∗(hm)) . (23)

13



For clarity, note that

ḡ∗(X∗
i , hm) =

1

n

n∑
j=1

g(X∗
i , Xj, hm); (24)

and that

θ∗(hm) =
1

n

n∑
i=1

ḡ∗(Xi, hm) =
1

n2

∑
i,j

g(Xi, Xj, hm). (25)

We also have that θ∗(hm) = E
[
g(X∗

i , X∗
j , hm)

∣∣Xn

]
, and that

E
[
θ̂∗m(hm)

∣∣∣Xn

]
=

(
n

2

)−1 ∑
i<j

g(Xi, Xj, hm) = θ̂n(hm). (26)

A natural m-bootstrap estimate of the variance of θ̂n(h) is given by V ar
[
θ̂∗m(hm)

∣∣∣Xn

]
,

whose form is easily derivable from standard discussions of U -statistic theory:12

V ar
[
θ̂∗m(hm)

∣∣∣Xn

]
=

(
m

2

)−1

{2(m− 2)V ar [ ḡ∗(X∗
i , hm)| Xn]

+V ar
[
g(X∗

i , X∗
j , hm)

∣∣Xn

]}
, (27)

where

V ar [ ḡ∗(X∗
i , hm)| Xn] =

1

n3

n∑
i=1

∑

j,k

g(Xi, Xj, hm)g(Xi, Xk, hm)

−
{

1

n2

∑
i,j

g(Xi, Xj, hm)

}2

;

V ar
[
g(X∗

i , X∗
j , hm)

∣∣Xn

]
=

1

n2

∑
i,j

g2(Xi, Xj, hm)−
{

1

n2

∑
i,j

g(Xi, Xj, hm)

}2

.

On the other hand, the bias of θ̂n(h) as an estimator of θ0 can be estimated by

E
[
θ̂∗m(hm)

∣∣∣Xn

]
− θ̂n(h),

12Cf. e.g., Serfling (1980, §5.2).
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which in light of (26) is given by

θ̂n(hm)− θ̂n(h). (28)

This bias estimate is clearly not useful when hm = h = hn—in this case the
expression in (28) is identically equal to zero—but one would expect practitioners
to set hm > hn when m < n.

Combining (27) and (28) produces an m-bootstrap estimate of the mean squared
error of θ̂n(h) as an estimate of θ0. In particular

MSE
[
θ̂∗m(hm)

∣∣∣Xn

]
≡

(
θ̂n(hm)− θ̂n(h)

)2

+ V ar
[
θ̂∗m(hm)

∣∣∣Xn

]

= E

[(
θ̂∗m(hm)− θ̂n(h)

)2
∣∣∣∣Xn

]
(29)

denotes the m-bootstrap estimate of MSE
[
θ̂n(h)

]
. The efficacy of the m-bootstrap

in this setting is shown by the conclusion of Theorem 2, which indicates that under
certain conditions additional to those assumed above in Theorem 1, the statistic
given in (29) is so close in a uniform sense to MSE

[
θ̂m(hm)

]
—i.e., to the true

mean squared error of the estimator computed using a sample of size m < n—
that the bandwidth sequence minimizing MSE

[
θ̂∗m(hm)

∣∣∣Xn

]
will also minimize

MSE
[
θ̂m(hm)

]
. The bandwidth sequence minimizing the m-bootstrap estimate

of MSE
[
θ̂m(hm)

]
can then be converted into a bandwidth estimate that is asymp-

totically equivalent to the MSE-optimal bandwidth for θ̂n(h)—i.e., the estimator
computed using the full sample—by an appropriate rescaling for the amount by
which n and m differ. The main result of this paper is stated as follows.

Theorem 2. Suppose that Assumptions 1–5 hold, and that hn satisfies both (13)
and (14) above. Then as m,n → ∞ with m ∝ nδ for some constant δ ∈ (0, 1)
with δ ≤ 1− δ,

MSE
[
θ̂∗m(hm)

∣∣∣Xn

]
=

4

m
V ar [ḡ0(X1)] + {E [s(X1)]}2 h2α

m +
2

m2
E [q(X1)] h

−γ
m

+op

(
m− 4α

2α+γ

)
,

where hm = km− 2
2α+γ for any k ∈ (0,∞). This representation holds uniformly

for k ∈ [ε, ε−1], where the constant ε > 0 is arbitrary.
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Proof. The proof is deferred to Section 4 below.

Remark 4. The condition on the resample size m given in the statement of The-
orem 2 is more stringent than the more commonly encountered requirement that
m → ∞ with m = o(n). The requirement that m ∝ nδ for some δ ∈ (0, 1) with
δ ≤ 1 − δ ensures that m is sufficiently small so that the stochastic remainder
term in the expansion of MSE

[
θ̂∗m(hm)

∣∣∣Xn

]
is of the same order of magnitude

as the remainder term in the expansion of MSE
[
θ̂m(hm)

]
. Further details ap-

pear in Section 4. In Section 3.3 below, it is shown that under the conditions of
Theorem 2, a setting of δ = 1

2
is optimal from the point of view of minimizing the

discrepancy between the m-bootstrap MSE estimate and the leading terms in the
expansion of MSE

[
θ̂m(hm)

]
as given in the statement of Theorem 1.

Remark 5. It is clear from (29) and the statement of Theorem 2 that the m-
bootstrap estimate of MSE

[
θ̂n(h)

]
incorporates a bias estimate involving a pilot

bandwidth hn = h(n) satisfying both (13) and (14) above. The proof of Theorem 2
proceeds on the assumption that hn is nonstochastic. In cases when practitioners
choose a data-dependent pilot bandwidth ĥn,13 a subsidiary argument regarding
the asymptotic equivalence of θ̂n(ĥn) and θ̂n(hn) for a nonstochastic hn satisfying
ĥn

hn

p→ 1 would seem to be in order.14

It is immediate from Theorems 1 and 2 that for bandwidth sequences satis-
fying hm = km− 2

2α+γ , the m-bootstrap estimate MSE
[
θ̂∗m(hm)

∣∣∣Xn

]
is asymp-

totically equivalent to MSE
[
θ̂m(hm)

]
up to terms of order m− 4α

2α+γ , where for
ε > 0 that may be made arbitrarily small, the asymptotic equivalence holds uni-
formly for values of k ∈ [ε, ε−1]. As such, minimization of the m-bootstrap MSE
estimate proposed here produces a bandwidth sequence {ĥm} that is asymptoti-
cally equivalent to the sequence of bandwidths that minimize the leading terms of
MSE

[
θ̂m(hm)

]
. In particular, if hm is the nonstochastic bandwidth minimizing

MSE
[
θ̂m(hm)

]
, then the bandwidth ĥm minimizing MSE

[
θ̂∗m(hm)

∣∣∣Xn

]
satis-

13For example, ĥn might be computed as a plug-in estimate of the MSE-optimal bandwidth
according to the proposal of Powell and Stoker (1996, §4.4).

14Unfortunately, it is not clear if such a subsidiary argument can be made without a substantial
strengthening of the conditions given in the statement of Theorem 2. Cf. also the comments on
this subject by Powell and Stoker (1996, p. 311–312).
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fies
ĥm

hm

p→ 1 (30)

as m,n →∞ in accordance with the requirements of Theorem 2. The bandwidth
ĥm is easily seen to involve an implicit estimate of the leading constant in the
theoretically optimal bandwidth hm. As such, rescaling the sequence {ĥm} by the

factor
(

m
n

) 2
2α+γ will produce a sequence of bandwidths {ĥn} with

ĥn ≡ ĥm

(m

n

) 2
2α+γ

(31)

that is in turn asymptotically equivalent to the sequence of nonstochastic min-
imizers of MSE

[
θ̂n(h)

]
. The quantity given in (31) can be thought of as an

m-bootstrap estimate of the MSE-optimal bandwidth for the estimator computed
using the full sample of observations. From (30) and (31) it is easily seen that the
discrepancy between the m-bootstrap bandwidth estimate ĥn and the true MSE-
optimal bandwidth hn,opt vanishes at rate

ĥn − hn,opt = op

(
n−

2
2α+γ

)
,

which indicates performance in large samples at least as accurate as the plug-in
bandwidth estimator proposed by Powell and Stoker (1996, §4.4).

3.3 Selection of the resample size
In this section guidance on selecting the resample size m is given. In particu-
lar, inspection of the proof of Theorem 2 reveals that the discrepancy between
the m-bootstrap MSE estimate MSE

[
θ̂∗m(hm)

∣∣∣Xn

]
and the leading terms of the

expansion of MSE
[
θ̂m(hm)

]
for hm ∝ m− 2

2α+γ with m ∝ nδ is of order

op

(
m− 4α

2α+γ

)
+ op

(
n−δm− 2α

2α+γ

)
+ op

(
n−2δm

γ
2α+γ

)
. (32)

The expression in (32) is clearly minimized for δ satisfying the requirements of
Theorem 2 by setting δ = 1

2
.15

15In particular, cf. (47) and (64) below.
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4 Proof of Theorem 2
This section presents the proof of the central result of this paper.

Let Hm(α, γ) denote the analogue of the set Hn(α, γ) as defined above in
Section 3.1. In particular, Hm(α, γ) denotes the set of all bandwidth sequences
appropriate for samples of size m that satisfy conditions (13) and (14) with m
appearing in place of n. The following preliminary argument is made.

Lemma 2. Suppose Assumption 3 holds, and suppose that hm ∈ Hm(α, γ). Then

θ̂∗m(hm)− θ̄∗m(hm) = op

(
m−1h

− γ
2

m

)
.

Proof. The proof appears in Appendix A.1.

From Lemma 2, it follows that we can write

θ̂∗m(hm)− θ̂n(hn) = θ̄∗m(hm)− θ̂n(hn) + op

(
m−1h

− γ
2

m

)

= θ̄∗m(hm)− θ∗(hm) + θ∗(hm)− θ̂n(hn) + op

(
m−1h

− γ
2

m

)

=
2

m

m∑
i=1

(ḡ∗(X∗
i , hm)− θ∗(hm)) + θ∗(hm)− θ̂n(hn) + op

(
m−1h

− γ
2

m

)
.

Consider θ∗(hm)− θ̂n(hn). Recalling that θ(hn) ≡ E
[
θ̂n(hn)

]
, set

θ∗(hm)− θ̂n(hn) = θ∗(hm)− θ(hn) + θ(hn)− θ̂n(hn)

= {θ∗(hm)− θ(hm)}+ {θ(hm)− θ0}+ {θ0 − θ(hn)}
+

{
θ(hn)− θ̂n(hn)

}
. (33)

The analysis of the quantity in (33) begins by considering θ∗(hm) − θ(hm) for
hm ∈ Hm(α, γ). Since

θ∗(hm) =
1

n2

∑
i,j

g(Xi, Xj, hm),

it follows that

E [θ∗(hm)] = E [g(X1, X2, hm)]

= θ(hm).
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In addition,

E
[
(θ∗(hm)− θ(hm))2] =

1

n4

∑

i,j,k,l

E [(g(Xi, Xj, hm)− θ(hm)) (g(Xk, Xl, hm)− θ(hm))] .

(34)
By independence, all terms in (34) with i 6= k and j 6= l have zero expectation.
Suppose that i = k and that j 6= l. In this case,

E [(g(Xi, Xj, hm)− θ(hm)) (g(Xi, Xl, hm)− θ(hm))]

= E [E [ (g(Xi, Xj, hm)− θ(hm)) (g(Xi, Xl, hm)− θ(hm))|Xi]]

= E [(ḡ(Xi, hm)− θ(hm)) (ḡ(Xi, hm)− θ(hm))]

= V ar [ḡ(Xi, hm)]

= V ar [ḡ0(X1)] + 2Cov [ḡ0(X1), s(X1)] h
α
m + o(hα

m)

by Assumption 2. Now suppose that i = k and j = l. Then

E
[
(g(Xi, Xj, hm)− θ(hm))2]

= E
[
g2(Xi, Xj, hm)− 2θ(hm)g(Xi, Xj, hm) + θ2(hm)

]

= E [q(X1)] h
−γ
m + o(h−γ

m )− θ2(hm)

by Assumption 3. Therefore for hm ∈ Hm(α, γ) and recalling the assumption that
m = O

(
n1−δ

)
for some δ ∈ (0, 1) as m,n →∞,

E
[
(θ∗(hm)− θ(hm))2]

=
1

n4

{
n2

(
E [q(X1)] h

−γ
m + o(h−γ

m )− θ2(hm)
)

+ 2n2(n− 1) (V ar [ḡ0(X1)]

+2Cov [ḡ0(X1), s(X1)] h
α
m + o(hα

m))}
= n−2

{
E [q(X1)] h

−γ
m − θ2(hm)

}
+ o(n−2h−γ

m )

+
2(n− 1)

n2
V ar [ḡ0(X1)] +

2(n− 1)

n2
Cov [ḡ0(X1), s(X1)] h

α
m + o(n−1hα

m)

= O
(
n−2h−γ

m

)
+ O

(
n−1

)
+ O

(
n−1hα

m

)
(35)

= o
(m

n2

)
+ O

(
1

n

)
+ o

(
1

n
√

m

)

= O

(
1

n

)
.

Therefore an application of Chebyshev’s inequality produces the result

θ∗(hm)− θ(hm) = op

(
1√
n

)
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for all hm ∈ Hm(α, γ). Then for hm ∈ Hm(α, γ) and hn ∈ Hn(α, γ),

θ∗(hm)− θ̂n(hn) = op

(
1√
n

)
+ {θ(hm)− θ0}+ E [s(X1)] h

α
n + o (hα

n) + op

(
1√
n

)

= θ(hm)− θ0 + E [s(X1)] h
α
n + o (hα

n) + op

(
1√
n

)

= θ(hm)− θ0 + op

(
1√
n

)

as m,n →∞ with m = O
(
n1−δ

)
for some δ ∈ (0, 1).

Now let

σ∗2m ≡ σ∗2m (hm)

≡ 4V ar [ḡ∗(X∗
i , hm)|Xn] . (36)

Note that

σ∗2m = 4E
[
(ḡ∗(X∗

i , hm)− θ∗(hm))2
∣∣Xn

]

= 4
{
E

[
ḡ∗2(X∗

i , hm)
∣∣Xn

]− θ∗2(hm)
}

.

Define Y ∗
im ≡ Y ∗

im(hm) ≡ 2
σ∗m

(ḡ∗(X∗
i , hm)− θ∗(hm)). It will be shown that

1√
m

∑m
i=1 Y ∗

im is asymptotically normal under the assumptions that have been made
regarding m and n. Two preliminary arguments are made prior to the statement
of the asymptotic normality result.

Lemma 3. Suppose Assumptions 1–5 hold, and that hm ∈ Hm(α, γ). Then

|g(Xi, Xj, hm)− θ∗(hm)| = op

(
n−

δ
2

)

as m,n →∞ with m ∝ nδ for some constant δ ∈ (0, 1) with δ ≤ 1− δ.

Proof. The proof appears in Appendix A.2.

Lemma 4. Under the conditions of Lemma 3,

E
[
σ∗2m

]
= 4V ar [ḡ0(X1)] + 8Cov [ḡ0(X1), s(X1)] h

α
m + o (hα

m)

+
2

m
E

[
g2(X1, X2, hm)

]
+ o(1).

Proof. The proof appears in Appendix A.3.
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The asymptotic normality of 1√
m

∑m
i=1 Y ∗

im is given in the following argument.

Proposition 1. Under the conditions of Lemmas 3 and 4,

1√
m

m∑
i=1

Y ∗
im

d→ W,

where W is a standard normal random variable independent of Xn.

Proof. Consider E [ |Y ∗
im|3| Xn]. We have

E
[ |Y ∗

im|3
∣∣Xn

]

=
8

n

n∑
i=1

∣∣∣∣
ḡ∗(Xi, hm)− θ∗(hm)

σ∗m

∣∣∣∣
3

≤ 8

n4

n∑
i=1

∑

j,k,l

∣∣∣∣
g(Xi, Xj, hm)− θ∗(hm)

σ∗m

∣∣∣∣
∣∣∣∣
g(Xi, Xk, hm)− θ∗(hm)

σ∗m

∣∣∣∣

·
∣∣∣∣
g(Xi, Xl, hm)− θ∗(hm)

σ∗m

∣∣∣∣ .

Since σ∗m = (E [σ∗2m ])
1
2 + 1

2
(σ∗2m − E [σ∗2m ]) (E [σ∗2m ])

− 1
2 + · · ·, we have

∣∣∣∣
g(Xi, Xj, hm)− θ∗(hm)

σ∗m

∣∣∣∣

≤ |g(Xi, Xj, hm)− θ∗(hm)|√
E [σ∗2m ]

(37)

≤ |g(Xi, Xj, hm)− θ∗(hm)|
2
√

V ar [ḡ0(X1)]
(38)

= op

(
n−

δ
2

)
, (39)

where the inequality (37)–(38) follows from Lemma 4 and the inequality (38)–
(39) follows from Lemma 3. Therefore

E
[ |Y ∗

im|3
∣∣Xn

]
= n−4 · n4 · op

(
n−

3δ
2

)
= op

(
n−

3δ
2

)
,

and as such,

mE

[∣∣∣∣
1√
m

Y ∗
im

∣∣∣∣
3
∣∣∣∣∣Xn

]
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=
1√
m

E
[ |Y ∗

im|3
∣∣Xn

]

= m− 1
2 · op

(
n−

3δ
2

)

= Op

(
n−

δ
2

)
op

(
n−

3δ
2

)

= op

(
n−2δ

)

= op(1)

as n → ∞. This verifies the condition for Liapunov’s central limit theorem.16

Therefore
1√
m

m∑
i=1

Y ∗
im

∣∣∣∣∣Xn
d→ W,

where W ∼ N(0, 1) and W is independent of Xn.

Corollary 1. Under the conditions of Proposition 1, there exists a positive con-
stant C3 such that

sup
y

∣∣∣∣∣P
[

1√
m

m∑
i=1

Y ∗
im ≤ y

∣∣∣∣∣Xn

]
− Φ(y)

∣∣∣∣∣ ≤ C3 · 1√
m

E
[ |Y ∗

im|3
∣∣Xn

]
,

where Φ(·) denotes the distribution function of W as given above.

Proof. This is an application of the Berry-Esséen theorem for triangular arrays.17

Now consider the following, under Assumptions 1–5, hn ∈ Hn(α, γ), hm ∈
Hm(α, γ), m, n →∞ with m ∝ nδ for some constant δ ∈ (0, 1) with δ ≤ 1− δ:

√
m

σ∗m

(
θ̂∗m(hm)− θ̂n(hn)

)
=

1√
m

m∑
i=1

Y ∗
im +

√
m

σ∗m
(b∗m + c∗m) ,

where

b∗m ≡
√

m

σ∗m
(θ(hm)− θ0) (40)

16Cf. e.g., Chung (2001, Theorem 7.1.2).
17Cf. e.g., Chung (2001, Theorem 7.4.1).
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and

c∗m ≡
√

m

σ∗m

{
(θ∗(hm)− θ(hm)) + (θ0 − θ(hn)) +

(
θ(hn)− θ̂n(hn)

)

+
(
θ̂∗m(hm)− θ̄∗m(hm)

)}
. (41)

For Φ(·) denoting the distribution function of a N(0, 1) random variate, set

∆∗ ≡ sup
y

∣∣∣∣∣P
[

1√
m

m∑
i=1

Y ∗
im ≤ y

∣∣∣∣∣Xn

]
− Φ(y)

∣∣∣∣∣ .

Now suppose that

C3 · 1√
m

E
[ |Y ∗

im|3
∣∣Xn

] ≤ e−
1
2 , (42)

where C3 > 0 is the constant appearing in Corollary 1. Condition (42) clearly
holds for n sufficiently large. From Petrov (1975, Theorem 9, p. 121), there exists
a constant C4 > 0 such that for every y,

∣∣∣∣∣P
[

1√
m

m∑
i=1

Y ∗
im ≤ y

∣∣∣∣∣Xn

]
− Φ(y)

∣∣∣∣∣ ≤
C4∆

∗ log
(

1
∆∗

)
+ λ∗2

1 + y4
,

where

λ∗2 ≡
∣∣∣∣∣∣
E




(
1√
m

m∑
i=1

Y ∗
im

)4
∣∣∣∣∣∣
Xn


−

∫ ∞

−∞
y4dΦ(y)

∣∣∣∣∣∣

=

∣∣∣∣∣∣
E




(
1√
m

m∑
i=1

Y ∗
im

)4
∣∣∣∣∣∣
Xn


− 3

∣∣∣∣∣∣

=

∣∣∣∣∣
1

m2

∑

i,j,k,l

E
[
Y ∗

imY ∗
jmY ∗

kmY ∗
lm

∣∣Xn

]− 3

∣∣∣∣∣

=

∣∣∣∣
1

m
E

[
Y ∗4

im

∣∣Xn

]
+

2m(m− 1)

m2

(
E

[
Y ∗2

im

∣∣Xn

])2 − 3

∣∣∣∣

=

∣∣∣∣
1

m
E

[
Y ∗4

im

∣∣Xn

]− 2

m
− 1

∣∣∣∣ .
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From Lemma 3, |g(Xi, Xj, hm)− θ∗(hm)| = op

(
n−

δ
2

)
, and

E
[
Y ∗4

im |Xn

]

≤ 16

n5

n∑
i=1

∑
p,q,r,s

∣∣∣∣
g(Xi, Xp, hm)− θ∗(hm)

σ∗m

∣∣∣∣
∣∣∣∣
g(Xi, Xq, hm)− θ∗(hm)

σ∗m

∣∣∣∣

·
∣∣∣∣
g(Xi, Xr, hm)− θ∗(hm)

σ∗m

∣∣∣∣
∣∣∣∣
g(Xi, Xs, hm)− θ∗(hm)

σ∗m

∣∣∣∣

=
16

n5
· n · n4 ·Op

(∣∣∣∣
g(Xi, Xp, hm)− θ∗(hm)

σ∗m

∣∣∣∣
4
)

(43)

= op

(
n−2δ

)
, (44)

where the equality (43)–(44) follows from (39) above. Therefore

λ∗2 ≤ 1

m
· op

(
n−2δ

)
+

2

m
+ 1

≤ Op

(
n−δ

)
+ 1.

So for W ∼ N(0, 1) independently distributed of Xn and constants C5, C6 > 0,
∣∣∣∣∣∣
E




(
1√
m

m∑
i=1

Y ∗
im + b∗m + c∗m

)2
∣∣∣∣∣∣
Xn


− E

[
(W + b∗m + c∗m)2

∣∣Xn

]
∣∣∣∣∣∣

= 2

∣∣∣∣∣
∫ ∞

0

y

{
P

[∣∣∣∣∣
1√
m

m∑
i=1

Y ∗
im + b∗m + c∗m

∣∣∣∣∣ > y

∣∣∣∣∣Xn

]

−P [ |W + b∗m + c∗m| > y| Xn]} dy|
= 2

∣∣∣∣
∫ ∞

0

y {P [ |W + b∗m + c∗m| ≤ y| Xn]

−P

[∣∣∣∣∣
1√
m

m∑
i=1

Y ∗
im + b∗m + c∗m

∣∣∣∣∣ ≤ y

∣∣∣∣∣Xn

]}
dy

∣∣∣∣∣

≤ C5

∫ ∞

−∞
|y|{1 + (y + b∗m + c∗m)4}−1

dy · λ∗2
≤ C6 (1 + |b∗m + c∗m|)

(
Op

(
n−δ

)
+ 1

)
.

Therefore

MSE
[
θ̂∗m(hm)

∣∣∣Xn

]
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= E

[(
θ̂∗m(hm)− θ̂n(hn)

)2
∣∣∣∣Xn

]

=
σ∗2m

m
E

[(√
m

σ∗m

(
θ̂∗m(hm)− θ̂n(hn)

))2
∣∣∣∣∣Xn

]

=
σ∗2m

m
E




(
1√
m

m∑
i=1

Y ∗
im + b∗m + c∗m

)2
∣∣∣∣∣∣
Xn




=
σ∗2m

m
E

[
(W + b∗m + c∗m)2

∣∣Xn

]
+ R∗

m(hm),

where

|R∗
m(hm)| ≤ σ∗2m

m
· C6 (1 + |b∗m + c∗m|)

(
Op

(
n−δ

)
+ 1

)

= Op

(
σ∗2m

m
(1 + |b∗m + c∗m|)

)
.

From Lemma 3 we have that

σ∗2m ≤ 4

n3

n∑
i=1

∑

j,k

|g(Xi, Xj, hm)− θ∗(hm)| |g(Xi, Xk, hm)− θ∗(hm)|

= O
(
n−3 · n · n2

)
op

(
n−δ

)

= op

(
n−δ

)
.

Therefore
σ∗2m

m
= m−1 · op

(
n−δ

)
= op

(
n−2δ

)
, (45)

and

σ∗2m

m
|b∗m + c∗m| ≤ σ∗m√

m
|θ(hm)− θ0|+ σ∗m√

m

∣∣∣∣op

(
1√
n

)
+ op

(
m−1h−

γ
2

)∣∣∣∣
= op

(
n−δhα

m

)
+ op

(
n−δ− 1

2

)
+ op

(
n−δm−1h

− γ
2

m

)

= op

(
n−δhα

m

)
+ op

(
n−δ− 1

2

)
+ op

(
n−2δh

− γ
2

m

)

= op

(
n−δhα

m

)
+ op

(
n−2δh

− γ
2

m

)
, (46)
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for hm ∈ Hm(α, γ). Combining (45) and (46) produces

|R∗
m(hm)| = op

(
n−2δ

)
+ op

(
n−δhα

m

)
+ op

(
n−2δh

− γ
2

m

)

= op

(
n−δhα

m

)
+ op

(
n−2δh

− γ
2

m

)
. (47)

Now consider the leading term in the expansion of MSE
[
θ̂∗m(hm)

∣∣∣Xn

]
. In

particular, consider σ∗2m

m
E

[
(W + b∗m + c∗m)2

∣∣Xn

]
, where W ∼ N(0, 1) is inde-

pendently distributed of Xn and b∗m and c∗m are as defined above in (40) and (41),
respectively.

We have

E

[
σ∗2m

m
E

[
(W + b∗m + c∗m)2

∣∣Xn

]]

= E

[
σ∗2m

m
E

[
W 2 + 2W (b∗m + c∗m) + (b∗m + c∗m)2

∣∣Xn

]]

= E

[
σ∗2m

m

(
1 + E

[
(b∗m + c∗m)2

∣∣Xn

])]

=
E [σ∗2m ]

m
+ E

[
(θ(hm)− θ0)

2 + 2 (θ(hm)− θ0) E

[
σ∗m√
m

c∗m

∣∣∣∣Xn

]
+ E

[
σ∗2m

m
c∗2m

∣∣∣∣Xn

]]

=
E [σ∗2m ]

m
+ (θ(hm)− θ0)

2 + 2 (θ(hm)− θ0) E

[
σ∗m√
m

c∗m

]
+ E

[
σ∗2m

m
c∗2m

]
.

Note that for hm ∈ Hm(α, γ) and hn ∈ Hn(α, γ),

E

[
σ∗m√
m

c∗m

]
= {θ(hm)− θ(hm)}+ {−E [s(X1)] h

α
n + o (hα

n)}+ {θ(hn)− θ(hn)}
+ {θ(hm)− θ(hm)}

= O (hα
n)

= o (hα
m)

from the assumption that m ∝ nδ for some δ ∈ (0, 1) with δ ≤ 1− δ. In addition,

E

[
σ∗2m

m
c∗2m

]

= O
(
E

[
(θ∗(hm)− θ(hm))2] + E [(θ∗(hm)− θ(hm)) (θ0 − θ(hn))]
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+E
[
(θ∗(hm)− θ(hm)) (θ(hn)− θ̂n(hn))

]

+E
[
(θ∗(hm)− θ(hm)) (θ̂∗m(hm)− θ̄∗m(hm))

]
+ (θ0 − θ(hn))2

+ (θ0 − θ(hn)) E
[
θ(hn)− θ̂n(hn)

]
+ (θ0 − θ(hn)) E

[
θ̂∗m(hm)− θ̄∗m(hm)

]

+E

[(
θ(hn)− θ̂n(hn)

)2
]

+ E
[(

θ(hn)− θ̂n(hn)
)(

θ̂∗m(hm)− θ̄∗m(hm)
)]

+E

[(
θ̂∗m(hm)− θ̄∗m(hm)

)2
])

= o
(
m−2h−γ

m

)
+ o

(
h2α

m

)
+ o

(
m−2h−γ

m

)
+ o

(
m−2h−γ

m

)

= o
(
h2α

m

)
+ o

(
m−2h−γ

m

)
,

where, after noting that m ∝ nδ for some constant δ ∈ (0, 1) with δ ≤ 1 − δ,
appeal was made to the following results established above:

E
[
(θ∗(hm)− θ(hm))2] = O

(
n−1

)
= o

(
m−1

)
= h−γ

m o
(
m−2

)

from (35);
(θ0 − θ(hn))2 = O

(
h2α

n

)
= o

(
h2α

m

)

by Assumption 2;

E

[(
θ(hn)− θ̂n(hn)

)2
]

= V ar
[
θ̂n(hn)

]
= O

(
n−2h−γ

n

)
= o

(
m−2h−γ

m

)

from (16)–(17); and

E

[(
θ̂∗m(hm)− θ̄∗m(hm)

)2
]

= o
(
m−2h−γ

m

)

by inspection of the proof of Lemma 2.
From Lemma 4 we have the representation

E
[
σ∗2m

]
= 4V ar [ḡ0(X1)]+8Cov [ḡ0(X1), s(X1)] h

α
m+o (hα

m)+
2

m
E

[
g2(X1, X2, hm)

]
+o(1).

Note that for hm ∈ Hm(α, γ), o (m−1) = h−γ
m o (m−2), and so the leading term of

the expansion of MSE
[
θ̂∗m(hm)

∣∣∣Xn

]
has mean

4

m
V ar [ḡ0(X1)] +

2

m2
E

[
g2(X1, X2, hm)

]
+ O

(
m−1hα

m

)
+ o

(
m−2h−γ

m

)
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+ (θ(hm)− θ0)
2 + o

(
h2α

m

)
+ o

(
h2α

m

)
+ o

(
m−2h−γ

m

)

=
4

m
V ar [ḡ0(X1)] + (θ(hm)− θ0)

2 +
2

m2
E

[
g2(X1, X2, hm)

]
+ O

(
m−1hα

m

)
+ o

(
h2α

m

)

+o
(
m−2h−γ

m

)
. (48)

It remains to complete the argument—via an appeal to Chebyshev’s inequality—
by first considering the order of

E

[
σ∗4

m2

{
E

[
(W + b∗m + c∗m)2

∣∣Xn

]}2
]

,

where W , b∗m and c∗m are as defined previously.
In particular,

E

[
σ∗4m

m2

{
E

[
(W + b∗m + c∗m)2

∣∣Xn

]}2
]

= E

[
σ∗4m

m2

{
W 2 + E

[
(b∗m + c∗m)2

∣∣Xn

]
+ 2WE

[
(b∗m + c∗m)2

∣∣Xn

]}2
]

= E

[
σ∗4m

m2

{(
W 2 + E

[
(b∗m + c∗m)2

∣∣Xn

])2

+4WE [b∗m + c∗m| Xn]
(
W 2 + E

[
(b∗m + c∗m)2

∣∣Xn

])
+ 4W 2 (E [b∗m + c∗m|Xn])2}]

= E

[
σ∗4m

m2

(
W 2 + E

[
(b∗m + c∗m)2 |Xn

])2
]

+ 4E

[
σ∗4

m2
(E [b∗m + c∗m|Xn])2

]

= E

[
σ∗4m

m2

(
W 4 + 2W 2E

[
(b∗m + c∗m)2

∣∣Xn

]
+

(
E

[
(b∗m + c∗m)2

∣∣Xn

])2
)]

+4E

[
σ∗4m

m2
(E [b∗m + c∗m|Xn])2

]

= 3E

[
σ∗4m

m2

]
+ 2E

[
σ∗4m

m2
E

[
(b∗m + c∗m)2 |Xn

]]
+ 5E

[
σ∗4m

m2

(
E

[
(b∗m + c∗m)2 |Xn

])2
]

= 3E

[
σ∗4m

m2

]
+ 2E

[
σ∗2m

m
E

[
(θ(hm)− θ0)

2 + 2 (θ(hm)− θ0)
σ∗m√
m

c∗m +
σ∗2m

m
c∗2m

∣∣∣∣Xn

]]

+5E

[(
E

[
(θ(hm)− θ0)

2 + 2 (θ(hm)− θ0)
σ∗m√
m

c∗m +
σ∗2m

m
c∗2m

∣∣∣∣Xn

])2
]

= 3E

[
σ∗4m

m2

]
+ 2

{
(θ(hm)− θ0)

2 E

[
σ∗2m

m

]
+ 2 (θ(hm)− θ0) E

[
σ∗2m

m
· σ∗m√

m
c∗m

]
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+E

[
σ∗2m

m
· σ∗2m

m
c∗2m

]}
+ 5E

[
(θ(hm)− θ0)

4 + 4 (θ(hm)− θ0)
2 σ∗2m

m
c∗2m +

σ∗4m

m2
c∗4m

+4 (θ(hm)− θ0)
3 σ∗m√

m
c∗m + 2 (θ(hm)− θ0)

2 σ∗2m

m
c∗2m + 4 (θ(hm)− θ0)

σ∗m√
m

c∗m ·
σ∗2m

m
c∗2m

]

≤ 3E

[
σ∗4m

m2

]
+ 2

{
(θ(hm)− θ0)

2 E

[
σ∗2m

m

]
+ 2 (θ(hm)− θ0)

(
E

[
σ∗4m

m2

]) 1
2
(

E

[
σ∗2m

m
c∗2m

]) 1
2

+

(
E

[
σ∗4m

m2

]) 1
2
(

E

[
σ∗4m

m2
c∗4m

]) 1
2

}
+ 5

{
(θ(hm)− θ0)

4 + 4 (θ(hm)− θ0)
2 E

[
σ∗2m

m
c∗2m

]

+E

[
σ∗4m

m2
c∗4m

]
+ 4 (θ(hm)− θ0)

3 E

[
σ∗m√
m

c∗m

]
+ 2 (θ(hm)− θ0)

2 E

[
σ∗2m

m
c∗2m

]

+4 (θ(hm)− θ0)

(
E

[
σ∗2m

m
c∗2m

]) 1
2
(

E

[
σ∗4m

m2
c∗4m

]) 1
2

}
, (49)

where the inequality follows from several applications of Hölder’s inequality.
The argument is made that each term in (49) is of order O

(
m− 8α

2α+γ

)
for

hm ∝ m− 2
2α+γ .

For hm ∝ m− 2
2α+γ , Assumption 2 implies that θ(hm) − θ0 = O

(
m− 2α

2α+γ

)
.

Arguments already made yield

E

[
σ∗2m

m

]
= O

(
m−2h−γ

m

)
= O

(
m− 4α

2α+γ

)
; (50)

E

[
σ∗m√
m

c∗m

]
= o (hα

m) = o
(
m− 2α

2α+γ

)
; (51)

E

[
σ∗2m

m
c∗2m

]
= o

(
h2α

m

)
= o

(
m− 4α

2α+γ

)
. (52)

for hm ∝ m− 2
2α+γ .

Now consider E
[

σ∗4m

m2 c∗4m

]
. In this connection the fourth moment conditions

of Assumption 4 are crucial. Note that from the theory of U -statistics18 and for
hn ∈ Hn(α, γ),

E

[(
θ̂n(hn)− θ(hn)

)4
]

18Cf. e.g., Serfling (1980, §5.2).
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=

(
n

2

)−4 {
O

(
n2(n− 1)2

(
E

[
(g(X1, X2, hn)− θ(hn))2])2

)

+O
(
n(n− 1)E

[
(g(X1, X2, hn)− θ(hn))4])

+O
(
n2

(
E

[
(ḡ(X1, hn)− θ(hn))2])2

)
+ O

(
nE

[
(ḡ(X1, hn)− θ(hn))4])}

=

(
n

2

)−4 {
O

(
n2(n− 1)2h−2γ

n

)
+ O

(
n(n− 1)h−3γ

n

)
+ O

(
n2

)
+ O(n)

}

= O
(
n−8

) {
O

(
n4h−2γ

n

)
+ O

(
n2h−3γ

n

)
+ O

(
n2

)
+ O (n)

}

= O
(
n−4h−2γ

n

)
+ O

(
n−6h−3γ

n

)

= o
(
n−2

)
+ o

(
n−3

)

= o
(
m−2

)

= O
(
h4α

m

)

= O
(
m− 8α

2α+γ

)
(53)

for hm ∝ m− 2
2α+γ .

Next,

E
[
(θ∗(hm)− θ(hm))4]

=
1

n8

∑
i1,...,i8

E [(g(Xi1 , Xi2 , hm − θ(hm)) · · · (g(Xi7 , Xi8 , hm)− θ(hm))] ,

where all terms in the summation with i1 6= i2 6= · · · 6= i8 have zero expectation.
Then

E
[
(θ∗(hm)− θ(hm))4]

= n−8
{

O
(
nE

[
(ḡ(X1, hm)− θ(hm))4]) + O

(
n2

(
E

[
(ḡ(X1, hm)− θ(hm))2])2

)

+O
(
n2E

[
(g(X1, X2, hm)− θ(hm))4])

+O
(
n2(n− 1)2

(
E

[
(g(X1, X2, hm)− θ(hm))2])2

)}

= n−8
{
O(n) + O

(
n2

)
+ O

(
n2h−3γ

m

)
+ O

(
n4h−2γ

m

)}

= O
(
n−6h−3γ

m

)
+ O

(
n−4h−2γ

m

)

= o
(
m−6h−3γ

m

)
+ o

(
m−4h−2γ

m

)

= o
(
m− 12α

2α+γ

)
+ o

(
m− 8α

2α+γ

)

= o
(
m− 8α

2α+γ

)
(54)

30



for hm ∝ m− 2
2α+γ .

In addition, for κ(X∗
i , X∗

j , hm) as defined in (73) in Appendix A.1,

E

[(
θ̂∗m(hm)− θ̄∗m(hm)

)4
∣∣∣∣Xn

]

=

(
m

2

)−4 ∑
i1<i2

· · ·
∑
i7<i8

E
[
κ(X∗

i1
, X∗

i2
, hm) · · ·κ(X∗

i7
, X∗

i8
, hm)

∣∣Xn

]

= O
(
m−8

) {
O

(
m2(m− 1)2

(
E

[
κ2(X∗

i , X∗
j , hm)

∣∣Xn

])2
)

+O
(
m(m− 1)E

[
κ4(X∗

i , X∗
j , hm)

∣∣Xn

])}

= O
(
m−4E

[
g2(X∗

i , X∗
j , hm)

∣∣Xn

])
+ O

(
m−6E

[
g4(X∗

i , X∗
j , hm)

∣∣Xn

])
.

It follows that

E

[(
θ̂∗m(hm)− θ̄∗m(hm)

)4
]

= O
(
m−4E

[
g2(X1, X2, hm)

])
+ O

(
m−6E

[
g4(X1, X2, hm)

])

= O
(
m−4h−2γ

m

)
+ O

(
m−6h−3γ

m

)

= O
(
m− 12α

2α+γ

)
+ O

(
m− 8α

2α+γ

)

= O
(
m− 8α

2α+γ

)
(55)

for hm ∝ m− 2
2α+γ .

Combining the condition of Assumption 2, (53)–(55), and Minkowski’s in-
equality yields

(
E

[
σ∗4m

m2
c∗4m

]) 1
4

≤ (
E

[
(θ∗(hm)− θ(hm))4]) 1

4 +
(
(θ0 − θ(hn))4) 1

4 +

(
E

[(
θ(hn)− θ̂n(hn)

)4
]) 1

4

+

(
E

[(
θ̂∗m(hm)− θ̄∗m(hm)

)4
]) 1

4

= O
(
m− 2α

2α+γ

)

for hm ∝ m− 2
2α+γ . Therefore

E

[
σ∗4m

m2
c∗4m

]
= O

(
m− 8α

2α+γ

)
. (56)
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It remains to consider the order of E
[

σ∗4m

m2

]
. Naturally, E [σ∗4m ] = (E [σ∗2m ])

2
+

V ar [σ∗2m ]. A representation for E [σ∗2m ] is available from Lemma 4, so the imme-
diate focus is on V ar [σ∗2m ]. In particular, the argument is made that V ar [σ∗2m ] =
O(1). In this connection, define

ḡ∗0(X
∗
i ) ≡ lim

hm→0
ḡ∗(X∗

i , hm) = lim
hm→0

1

n

n∑
j=1

g(X∗
i , Xj, hm)

and

θ∗0 ≡
1

n

n∑
i=1

ḡ∗0(Xi).

The following preliminary argument is made.

Lemma 5. Under the conditions of Lemmas 3 and 4,

ḡ∗(X∗
i , hm)− ḡ0(X

∗
i ) = E [s(X1)] h

α
m + o (hα

m) + op

(
n−

δ
2

)
.

Proof. The proof appears in Appendix A.4.

It is immediate from Lemma 5 that V ar [ḡ∗(X∗
i , hm)|Xn] = V ar [ḡ∗0(X

∗
i )|Xn].

Note that

V ar [ḡ∗0(X
∗
i )|Xn] =

1

n

n∑
i=1

(ḡ∗0(Xi)− θ∗0)
2

=
1

n

n∑
i=1

ḡ∗20 (Xi)− θ∗20

=
1

n

n∑
i=1

ḡ∗20 (Xi)− 1

n2

∑
i,j

ḡ∗0(Xi)ḡ
∗
0(Xj).

Therefore

V ar [V ar [ḡ∗0(X
∗
i )|Xn]]

= V ar

[
1

n

n∑
i=1

ḡ∗20 (Xi)

]
+ V ar

[
1

n2

∑
i,j

ḡ∗0(Xi)ḡ
∗
0(Xj)

]

−2Cov

[
1

n

n∑
i=1

ḡ∗20 (Xi),
1

n2

∑
i,j

ḡ∗0(Xi)ḡ
∗
0(Xj)

]
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=
1

n
V ar

[
ḡ∗20 (X1)

]
+

1

n4
V ar

[
n∑

i=1

ḡ∗20 (Xi) + 2
∑

i6=j

ḡ∗0(Xi)ḡ
∗
0(Xj)

]

− 2

n3

∑

i,j,k

Cov
[
ḡ∗20 (Xi), ḡ

∗
0(Xj)ḡ

∗
0(Xk)

]
. (57)

As such,

V ar
[
ḡ∗20 (X1)

]

= E
[
ḡ∗40 (X1)

]− (
E

[
ḡ∗20 (X1)

])2

≤ E
[
ḡ∗40 (X1)

]

= lim
hm→0

1

n4

∑

j,k,p,q

E [g(X1, Xj, hm)g(X1, Xk, hm)g(X1, Xp, hm)g(X1, Xq, hm)]

= lim
hm→0

1

n4

∑

j,k,p,q

E
[
ḡ4(X1, hm)

]

= E
[
ḡ4
0(X1)

]

= O(1), (58)

where the last equality follows from Assumption 4. In addition,

V ar [ḡ∗0(X1)ḡ
∗
0(X2)]

= E
[
ḡ∗20 (X1)ḡ

∗2
0 (X2)

]− (E [ḡ∗0(X1)] E [ḡ∗0(X2)])
2

≤ (
E

[
ḡ∗20 (X1)

])2

= lim
hm→0

E

[
1

n2

∑

j,k

E [g(X1, Xj, hm)g(X1, Xk, hm)|X1]

]

= lim
hm→0

E
[
ḡ2(X1, hm)

]

= E
[
ḡ2
0(X1)

]

= O(1), (59)

where the last equality also follows from Assumption 4.
Now

Cov

[
n∑

i=1

ḡ∗20 (Xi), 2
∑

i6=j

ḡ∗0(Xi)ḡ
∗
0(Xj)

]
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= 2
n∑

i=1

∑

j 6=k

Cov
[
ḡ∗20 (Xi), ḡ

∗
0(Xj)ḡ

∗
0(Xk)

]

= 4n
n∑

k=2

Cov
[
ḡ∗20 (X1), ḡ

∗
0(X1)ḡ

∗
0(Xk)

]

= 4n(n− 1)
{
E

[
ḡ∗30 (X1)

]− E
[
ḡ∗20 (X1)

]
E [ḡ∗0(X1)]

}
E [ḡ∗0(X2)]

= 4n(n− 1) lim
hm→0

{
E

[
1

n3

∑

j,k,l

g(X1, Xj, hm)g(X1, Xk, hm)g(X1, Xl, hm)

]

−E

[
1

n2

∑

j,k

g(X1, Xj, hm)g(X1, Xk, hm)

]
E

[
1

n

∑
j

g(X1, Xj, hm)

]}

·E
[

1

n

∑
j

g(X1, Xj, hm)

]

= 4n(n− 1) lim
hm→0

{
E

[
ḡ3(X1, hm)

]− E
[
ḡ2(X1, hm)

]
E [ḡ(X1, hm)]

}

·E [ḡ(X1, hm)]

= 4n(n− 1)
{
E

[
ḡ3
0(X1)

]− E
[
ḡ2
0(X1)

]
θ0

}
θ0

= O(n2); (60)

and ∑

i,j,k

Cov
[
ḡ∗20 (Xi), ḡ

∗
0(Xj)ḡ

∗
0(Xk)

]

=
∑
i,j

Cov
[
ḡ∗20 (Xi), ḡ

∗2
0 (Xj)

]
+

n∑
i=1

∑

j 6=k

Cov
[
ḡ∗20 (Xi), ḡ

∗
0(Xj)ḡ

∗
0(Xk)

]

= nV ar
[
ḡ∗20 (X1)

]
+ 2n

n∑

k=2

Cov
[
ḡ∗20 (X1), ḡ

∗
0(X1)ḡ

∗
0(Xk)

]

= nV ar
[
ḡ∗20 (X1)

]
+ 2n(n− 1)

{
E

[
ḡ∗30 (X1)

]− E
[
ḡ∗20 (X1)

]
E [ḡ∗0(X1)]

}

= nV ar
[
ḡ∗20 (X1)

]
+ 2n(n− 1)

{
E

[
ḡ∗30 (X1)

]− E
[
ḡ∗20 (X1)

]
θ0

}

≤ nE
[
ḡ∗40 (X1)

]
+ 2n(n− 1)

{
E

[
ḡ∗30 (X1)

]− E
[
ḡ∗20 (X1)

]
θ0

}

= O(n2). (61)

Combining (57), (58), (59), (60) and (61), we have that V ar [V ar [ḡ∗0(X
∗
i )|Xn]] =

O(1). Therefore

V ar
[
σ∗2m

]
= 16V ar [V ar [ḡ∗(X∗

i , hm)|Xn]]
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= 16V ar [V ar [ḡ∗0(X
∗
i )|Xn]]

= O(1).

As such, for hm ∝ m− 2
2α+γ ,

E

[
σ∗4

m2

]
= m−2

(
E

[
σ∗2m

])2
+ m−2 ·O(1)

=
(
O

(
m−1 ·m−1h−γ

m

))2
+ O

(
m−2

)

=
(
O

(
m− 4α

2α+γ

))2

= O
(
m− 8α

2α+γ

)
. (62)

Returning to (49) above, we have from Assumption 2, (50)–(56) and (62) that for
hm ∝ m− 2

2α+γ ,

E

[
σ∗4m

m2

{
E

[
(W + b∗m + c∗m)2

∣∣Xn

]}2
]

≤ O
(
m− 8α

2α+γ

)
+ O

(
m− 4α

2α+γ

)
O

(
m− 4α

2α+γ

)

+O
(
m− 2α

2α+γ

){
O

(
m− 8α

2α+γ

)} 1
2
{

o
(
m− 4α

2α+γ

)} 1
2

+
{

O
(
m− 8α

2α+γ

)} 1
2
{

o
(
m− 8α

2α+γ

)} 1
2

+ O
(
m− 8α

2α+γ

)
+ O

(
m− 4α

2α+γ

)
o
(
m− 4α

2α+γ

)

+o
(
m− 8α

2α+γ

)
+ O

(
m− 6α

2α+γ

)
o
(
m− 2α

2α+γ

)
+ O

(
m− 4α

2α+γ

)
o
(
m− 4α

2α+γ

)

+O
(
m− 2α

2α+γ

){
o
(
m− 4α

2α+γ

)} 1
2
{

o
(
m− 8α

2α+γ

)} 1
2

= O
(
m− 8α

2α+γ

)
+ O

(
m− 8α

2α+γ

)
+ o

(
m− 8α

2α+γ

)
+ o

(
m− 8α

2α+γ

)
+ O

(
m− 8α

2α+γ

)

+o
(
m− 8α

2α+γ

)
+ o

(
m− 8α

2α+γ

)
+ o

(
m− 8α

2α+γ

)
+ o

(
m− 8α

2α+γ

)
+ o

(
m− 8α

2α+γ

)

= O
(
m− 8α

2α+γ

)
. (63)

It follows from (63) that for hm ∝ m− 2
2α+γ ,

m
4α

2α+γ

(
σ∗2m

m
E

[
(W + b∗m + c∗m)2

∣∣Xn

]− E

[
σ∗2m

m
(W + b∗m + c∗m)2

])
= op(1),

35



and so it is possible to write, with an appeal to Lemma 1,

σ∗2m

m
E

[
(W + b∗m + c∗m)2

∣∣Xn

]

=
4

m
V ar [ḡ0(X1)] + (θ(hm)− θ0)

2 +
2

m2
E

[
g2(X1, X2, hm)

]
+ O

(
m−1hα

m

)

+o
(
h2α

m

)
+ o

(
h2α

m

)
+ o

(
m−2h−γ

m

)
+ op

(
m− 4α

2α+γ

)

=
4

m
V ar [ḡ0(X1)] + (θ(hm)− θ0)

2 +
2

m2
E

[
g2(X1, X2, hm)

]

+op

(
m− 4α

2α+γ

)
(64)

for all hm ∝ m− 2
2α+γ .

Now consider |R∗
m(hm)| as given in (47) above. When hm ∝ m− 2

2α+γ ,

hα
m ∝ m−1h

− γ
2

m ,

so op

(
n−δhα

m

)
= op

(
n−δm−1h

− γ
2

m

)
= op

(
n−2δh

− γ
2

m

)
, which implies that

|R∗
m(hm)| = op

(
n−δhα

m

)

= op

(
m−1m− 2α

2α+γ

)

= op

(
m− 4α−γ

2α+γ

)

= op

(
m− 4α

2α+γ

)
. (65)

Thus (48), (64) and (65) imply the representation

MSE
[
θ̂∗m(hm)

∣∣∣Xn

]
=

4

m
V ar [ḡ0(X1)] + {E [s(X1)]}2 h2α

m +
2

m2
E [q(X1)] h

−γ
m

+op

(
m− 4α

2α+γ

)
(66)

for all hm ∝ m− 2
2α+γ .

Now suppose hm = km− 2
2α+γ , where k ∈ (0,∞). Pick ε > 0. Assuming that

k ∈ [ε, ε−1], define

µm(k) ≡ 4

m
V ar [ḡ0(X1)] + {E [s(X1)]}2 h2α

m +
2

m2
E [q(X1)] h

−γ
m
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and

ρm(k) ≡ σ∗2m

m
E

[
(W + b∗m + c∗m)2

∣∣Xn

]− µm(k).

In order to extend the representation of (66) uniformly for values of the scaling
constant k ∈ [ε, ε−1], the argument is made that for any η > 0,

P

[
sup

k∈[ε,ε−1]

|ρm(k)| > ηm− 4α
2α+γ

]
→ 0 (67)

as m →∞.
Let Mρm(t) denote the moment-generating function of ρm(k) for k ∈ [ε, ε−1].

Assume that t ∈
(
0,m

4α
2α+γ

)
so that |tρm(k)| is bounded in probability for suffi-

ciently large m. Arguing via Taylor’s theorem, there exists a constant c > 0 such
that

log Mρm(t) ≤ tE [ρm(k)] + ct2V ar [ρm(k)] .

An application of Markov’s inequality accordingly produces

P
[
|ρm(k)| > ηm− 4α

2α+γ

]
≤ exp

{
−ηm− 4α

2α+γ t + tE [ρm(k)] + ct2V ar [ρm(k)]
}

,

(68)
while results established earlier give the bounds

E [ρm(k)] = o
(
m− 4α

2α+γ

)
(69)

and
V ar [ρm(k)] = O

(
m− 8α

2α+γ

)
. (70)

Now pick
t = m− 2α

2α+γ log m. (71)

Combining (69)–(71) in (68), we find that there exists a constant m0 ≥ 1 not
depending on k such that for m ≥ m0,

P
[
|ρm(k)| > ηm− 4α

2α+γ

]
≤ exp (−η log m) = m−η (72)

for all η > 0.
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Now consider that for k, k′ ∈ [ε, ε−1],

|ρm(k)− ρm(k′)| ≤ 2 |µm(k′)− µm(k)|+ op

(
m− 4α

2α+γ

)

≤ 2m− 4α
2α+γ

(
{E [s(X1)]}2

∣∣∣k′2α − k2α
∣∣∣ + E [q(X1)]

∣∣∣k′−γ − k−γ
∣∣∣
)

+op

(
m− 4α

2α+γ

)

= Op

(
m− 4α

2α+γ

)
.

As such, |ρm(k)− ρm(k′)| = Op

(
m− 4α

2α+γ

)
uniformly as m → ∞ for {k, k′} ⊂

[ε, ε−1].
Define a partition Km ≡ {kim} of the interval [ε, ε−1] with

kim ≡ ε + im−ζ ,

where for some ζ > 0, i = 0, 1, 2, . . . , mζ (ε−1 − ε). The cardinality of Km is
accordingly O

(
mζ

)
. Exploiting (72), it follows from the chaining argument in

the previous paragraph that

P

[
sup
k∈K

|ρm(k)| > ηm− 4α
2α+γ

]
≤ mζ−η

for m sufficiently large. Set ζ ∈ (0, η) and (67) follows, which is the desired
result.

5 Numerical Evidence
This section presents results of a modest simulation experiment comparing the
performance of the m-bootstrap bandwidth estimate given above in (31) with a
number of implementations of the “plug-in” bandwidth estimator proposed by
Powell and Stoker (1996, §4.4). In the experiment considered here, the objective
is to estimate the average density

θ0 ≡ E [f(X1)]

of a sample of scalar-valued observations given by Xn ≡ {X1, . . . , Xn}. One
hundred Monte Carlo replications of Xn were drawn from a standard normal dis-
tribution. The sample sizes were fixed at n = 50 throughout, and the estimator
θ̂n(h) was constructed using a standard normal smoothing kernel.
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In the case of the simulations reported here, the true value of θ0 is straightfor-
wardly calculated as

θ0 =
1

2
√

π
≈ .2821,

while the constants α and γ of Assumptions 2 and 3, respectively, are given by α =
2 and γ = 1. The true MSE-minimizing bandwidth for the estimator and data-
generating process considered in this experiment can be approximated to order
o
(
n−

2
5

)
by the expression given in the statement of Powell and Stoker (1996,

Proposition 4.1), which in this context can be shown to be

hn,opt = 8
1
5 n−

2
5 .

For n = 50, the true MSE-optimal bandwidth is accordingly given by h50,opt ≈
.3170.19 Estimates of the true MSE-optimal bandwidth are naturally called for
when hn,opt cannot be computed due to insufficient information regarding the un-
derlying data-generating process.

Table 1 summarizes the simulated performance of three different plug-in es-
timators of hn,opt as well as three different implementations of the m-bootstrap
estimator of the same estimand. The plug-in estimates of hn,opt were computed
in accordance with the proposal given in Powell and Stoker (1996, §4.4), which
involves replacement of the unknown quantities in the leading constant of hn,opt

with natural empirical counterparts. In particular, the plug-in bandwidth estimator
has the form

h̃n,h0,τ ≡
(

γQ̂n(h0)

αŜ2
n(τ, h0)

) 1
2α+γ

· n− 2
2α+γ ,

where

Q̂n(h0) ≡
(

n

2

)−1 ∑
i<j

hγ
0g

2(Xi, Xj, h0)

and

Ŝn(τ, h0) ≡ θ̂n(τh0)− θ̂n(h0)

(τh0)
α − hα

0

.

Here h0 > 0 denotes a pilot bandwidth and τ 6= 1 a positive secondary smoothing
parameter, while α, γ, g(·, ·, ·) and θ̂n(·) are all as given above in Section 3.1.

19The general expression for hn,opt is reproduced in n. 11 above. Cf. also the tabulated values
of hn,opt in Powell and Stoker (1996, Table 1) for the data-generating process considered by the
simulations reported here.
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The selection of h0 and τ is obviously an integral part of implementing the plug-
in bandwidth estimator of hn,opt. In the simulations reported here, h0 is fixed at
hn,opt = .3170, while τ ∈ {

1.1, 2
3
× 1.1, 3

2
× 1.1

}
. The initial setting τ = 1.1 was

settled upon after some experimentation by the author.
The m-bootstrap estimator as given by the expression in (31) was implemented

in the simulations reported here by first computing the m-bootstrap MSE estima-
tor given above in (29) repeatedly for bandwidths hm = km− 2

5 , where the scaling
constant k ranges over a grid of 100 equally spaced values covering the interval
[0.01, 3.00]. These initial computations were followed by finding the setting of
k = k∗ in the grid covering [0.01, 3.00] that produces the smallest realized value of
MSE

[
θ̂∗m

(
km− 2

5

)∣∣∣Xn

]
in the first step. The bandwidth estimate ĥm = k∗m− 2

5

is then rescaled in accordance with the expression given in (31) to produce a band-
width estimate ĥn,m appropriate for the full sample. In each of the initial compu-

tations of MSE
[
θ̂∗m

(
km− 2

5

)∣∣∣Xn

]
, the pilot bandwidth hn ∝ n−

2
5 required for

bias estimation was taken to be the plug-in bandwidth estimator of Powell and
Stoker (1996, §4.4) described above with h0 = hn,opt and τ = 1.1. The resample
size m was set to diverge in accordance with the optimal rate suggested above in
Section 3.3. In particular, the setting m = bκ√nc was used, where κ = 1, 2

3
, 3

2

in order to investigate the sensitivity of the results in small samples to variation in
this particular scaling constant.20

The results displayed in Table 1 suggest a degree of sensitivity of the band-
width estimates considered to changes in τ and m, although the m-bootstrap pro-
cedure seems to be relatively more insensitive to changes in the resample size
than the plug-in estimates are to variation in τ . Both sets of implementations of
the bandwidth estimators considered here lead to biased estimates of the optimal
bandwidth.21 Use of the m-bootstrap appears to lead to bandwidth estimates with
significantly greater precision than those produced by the plug-in procedure.

Table 2 reports the simulated sampling behaviour of the average density es-
timates constructed using each of the implementations of the plug-in and m-
bootstrap bandwidth estimators described above. The results summarized in Ta-
ble 2 seem to suggest that use of the m-bootstrap leads to average density esti-
mators with sampling performance superior to that induced by use of the plug-in
bandwidth estimates.

20For any x, bxc denotes the largest integer less than or equal to x.
21The degree of bias in the bandwidth estimates evident from a glance at Table 1 is perhaps

unsurprising given the small sample size used in the simulations.
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6 Conclusion
This paper has presented a bootstrap method for estimating the mean squared error
and the associated asymptotically optimal bandwidth for density-weighted aver-
ages. For samples of size n, the bootstrap procedure described above involves
the resampling of m < n observations without replacement from the original
sample. This method is shown to work in the sense that the m-bootstrap mean
squared error estimate MSE

[
θ̂∗m(hm)

∣∣∣Xn

]
is so close in a uniform sense to the

actual mean squared error MSE
[
θ̂m(hm)

]
of the estimator computed for a sam-

ple of size m that the bandwidth that minimizes one is asymptotically equivalent
to the bandwidth that minimizes the other. An estimate of the asymptotically op-
timal bandwidth for the estimator computed using the full sample of size n can
then be generated by an appropriate rescaling of the bandwidth found to mini-
mize MSE

[
θ̂∗m(hm)

∣∣∣Xn

]
.22 Specific guidance on selecting the resample size m

in applications was also given. In particular, for resamples of size m ∝ nδ with
δ ∈ (0, 1) a constant satisfying δ ≤ 1− δ, it was shown that a setting of m ∝ √

n
is sufficient to minimize the stochastic order of magnitude of the discrepancy be-
tween the leading terms of the expansion of MSE

[
θ̂m(hm)

]
and its m-bootstrap

estimate when these quantities are evaluated at an optimal bandwidth sequence.
Natural alternatives to the bootstrap method presented above include plug-in

methods of the sort described by Powell and Stoker (1996, §4.4) and methods
based on the full-sample bootstrap coupled with an explicit method of bias cor-
rection. Simulation evidence presented above in Section 5 seems to suggest that
the m-bootstrap method of bandwidth estimation presented in this paper leads to
estimators of density-weighted averages with sampling performance in small sam-
ples superior to that induced by certain implementations of the plug-in estimator
of the optimal bandwidth suggested by Powell and Stoker (1996, §4.4). Further
work on the relationship between the sampling behaviour of bandwidth estima-
tors and the sampling behaviour of the semiparametric estimators in which they
are embedded would appear to be fruitful from both a theoretical and an applied
viewpoint.

22Cf. the discussion surrounding (31) above.
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A Proofs of lemmas not proved in the main text

A.1 Proof of Lemma 2
Set

κ(X∗
i , X∗

j , hm) ≡ g(X∗
i , X∗

j , hm)− ḡ∗(X∗
i , hm)− ḡ∗(X∗

j , hm) + θ∗(hm). (73)

As such,

θ̂∗m(hm)− θ̄∗m(hm) =
(

m

2

)−1 ∑

i<j

κ(X∗
i , X∗

j , hm),

and

E

[(
θ̂∗m(hm)− θ̄∗m(hm)

)2
∣∣∣∣Xn

]
=

(
m

2

)−1 ∑

i<j

∑

k<l

E
[
κ(X∗

i , X∗
j , hm)κ(X∗

k , X∗
l , hm)

∣∣Xn

]
.

By the independence—conditional on Xn—of the elements of X ∗m,

E

[(
θ̂∗m(hm)− θ̄∗m(hm)

)2
∣∣∣∣Xn

]
=

(
m

2

)−2 ∑

i<j

E
[
κ2(X∗

i , X∗
j , hm)|Xn

]
.

Now O
(
E

[
κ2(X∗

i , X∗
j , hm)

∣∣Xn

])
= O

(
E

[
g2(X∗

i , X∗
j , hm)

∣∣Xn

])
, and

E
[
g2(X∗

i , X∗
j , hm)

∣∣Xn

]
=

1
n2

∑

i,j

g2(Xi, Xj , hm),

which has expectation by Assumption 3 equal to

E
[
E

[
g2(X∗

i , X∗
j , hm)

∣∣Xn

]]
= E

[
g2(X1, X2, hm)

]

= E[q(X1)]h−γ
m + o

(
h−γ

m

)

for hm ∈ Hm(α, γ).
Therefore for hm ∈ Hm(α, γ),

E

[
E

[(
θ̂∗m(hm)− θ̄∗m(hm)

)2
∣∣∣∣Xn

]]
=

(
m

2

)−2

·O(m2) ·O (
E

[
E

[
g2(X∗

i , X∗
j , hm)

∣∣Xn

]])

= O
(
m−2

) ·O (
h−γ

m

)

= O
(
m−2h−γ

m

)

= o(1).

As such,

m2hγ
mE

[
E

[(
θ̂∗m(hm)− θ̄∗m(hm)

)2
∣∣∣∣Xn

]]
= m2hγ

mE

[(
θ̂∗m(hm)− θ̄∗m(hm)

)2
]

= o(1),

from which it follows, via Markov’s inequality, that mh
γ
2
m

(
θ̂∗m(hm)− θ̄∗m(hm)

)
= op(1) as m →

∞.
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A.2 Proof of Lemma 3
Note that

|g(Xi, Xj , hm)− θ∗(hm)| =
∣∣∣∣∣∣

1
n2

∑

k,l

{g(Xi, Xj , hm)− g(Xk, Xl, hm)}
∣∣∣∣∣∣
,

and that

E





∑

k,l

{g(Xk, Xl, hm)− g(Xi, Xj , hm)}



2



= n2E
[
(g(Xk, Xl, hm)− g(Xi, Xj , hm))2

]

+2n2(n− 1)E [(g(Xk, Xl, hm)− g(Xi, Xj , hm)) (g(Xk, Xq, hm)− g(Xi, Xj , hm))] .

But

E
[
(g(Xk, Xl, hm)− g(Xi, Xj , hm))2

]

= 2E
[
g2(Xk, Xl, hm)

]− 2E [E [g(Xk, Xl, hm)g(Xi, Xj , hm)|Xk, Xl]]

= 2
(
E

[
g2(Xk, Xl, hm)

]− θ2(hm)
)

= 2E [q(X1)] h−γ
m + o(h−γ

m )− 2θ2
0 + O (hα

m) ,

and

E [(g(Xk, Xl, hm)− g(Xi, Xj , hm)) (g(Xk, Xq, hm)− g(Xi, Xj , hm))]
= E [E [(g(Xk, Xl, hm)− g(Xi, Xj , hm)) (g(Xk, Xq, hm)− g(Xi, Xj , hm)) |Xk, Xi, Xj ]]
= E [(ḡ(Xk, hm)− g(Xi, Xj , hm)) (ḡ(Xk, hm)− g(Xi, Xj , hm))]
= E [E [(ḡ(Xk, hm)− g(Xi, Xj , hm)) (ḡ(Xk, hm)− g(Xi, Xj , hm)) |Xi, Xj ]]
= E

[
E

[
ḡ2(Xk, hm)

]− θ(hm)g(Xi, Xj , hm)− θ(hm)g(Xi, Xj , hm) + g2(Xi, Xj , hm)
]

= E
[
ḡ2(Xk, hm)

]− 2θ2(hm) + E
[
g2(Xi, Xj , hm)

]

= V ar [ḡ(Xk, hm)]− θ2(hm) + E [q(X1)]h−γ
m + o

(
h−γ

m

)

= V ar [ḡ0(X1)] + 2Cov [ḡ0(X1), s(X1)] hα
m + o (hα

m)− θ2
0 + O (hα

m) + E [q(X1)] h−γ
m + o

(
h−γ

m

)
.

From this it follows that

1
n4

E





∑

k,l

|g(Xk, Xl, hm)− g(Xi, Xj , hm)|



2



=
2
n2

E [q(X1)] h−γ
m + o

(
n−2h−γ

m

)− 2θ2
0

n2
+ O

(
n−2hα

m

)
+

2
n

V ar [ḡ0(X1)]

+
4
n

Cov [ḡ0(X1), s(X1)] hα
m + o

(
n−1hα

m

)− θ2
0

n
+ O

(
n−1hα

m

)
+

1
n

E [q(X1)] h−γ
m
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+o
(
n−1h−γ

m

)
+ O

(
n−2

)

= O
(
n−1

)
+ O

(
n−1hα

m

)
+ O

(
n−1h−γ

m

)

= O
(
n−1

)
+ o

(
1

n
√

m

)
+ o

(m

n

)

= o
(m

n

)

= o
(
n1−δ−1

)

= o
(
n−δ

)
.

By Chebyshev’s inequality, therefore,

1
n2

∑

k,l

|g(Xk, Xl, hm)− g(Xi, Xj , hm)| = op

(
n−

δ
2

)
,

which implies that |g(Xi, Xj , hm)− θ∗(hm)| = op

(
n−

δ
2

)
.

A.3 Proof of Lemma 4
We have

E
[
σ∗2m

]

=
4
n

n∑

i=1

E [g(Xi, X2, hm)g(Xi, X3, hm)]− 4
n4

{
n2E

[
g2(X1, X2, hm)

]

+2n2(n− 1)E [g(X1, X2, hm)g(X1, X3, hm)] + n2(n− 1)2 (E [g(X1, X2, hm)])2
}

=
4
n

n∑

i=1

E [E [g(Xi, X2, hm)g(Xi, X3, hm)|Xi]]− 4
{

1
n2

E
[
g2(X1, X2, hm)

]

+
2(n− 1)

n2
E [E [g(X1, X2, hm)g(X1, X3, hm)|X1]] +

(n− 1)2

n2
θ2(hm)

}

=
4
n

n∑

i=1

E
[
ḡ2(Xi, hm)

]− 4
{

1
n2

E
[
g2(X1, X2, hm)

]
+

2(n− 1)
n2

E
[
ḡ2(X1, hm)

]
+

(n− 1)2

n2
θ2(hm)

}

= 4
{

E
[
ḡ2(X1, hm)

]− θ2(hm) +
(

1
n2
− 2

n

) (
E

[
ḡ2(X1, hm)

]− θ2(hm)
)

+
1
n2

E
[
ḡ2(X1, hm)

]

− 1
n2

E
[
g2(X1, X2, hm)

]}

=
4(n2 + 2− 2n)

n2
V ar [ḡ(X1, hm)]− 4

n2
V ar [g(X1, X2, hm)]

= 4V ar [ḡ(X1, hm)] + O
(
n−1

)− 4
n2

V ar [g(X1, X2, hm)]

= mV ar
[
θ̂m(hm)

]
+ o

(
m−1h−γ

m

)−
(

2
m

+
4
n2

)
E

[
g2(X1, X2, hm)

]
+ O(n−1) + O

(
n−2

)
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= mV ar
[
θ̂m(hm)

]
+ o (1) + O

(
2
m

E
[
g2(X1, X2, hm)

])
.

for hm ∈ Hm(α, γ). Note that O
(

2
mE

[
g2(X1, X2, hm)

])
= o(1) for hm ∈ Hm(α, γ). The

desired result follows from (16) and (17) above.

A.4 Proof of Lemma 5
Note that

E [ḡ∗(X∗
i , hm)] = E [E [ḡ∗(X∗

i , hm)|Xn]]

= E

[
1
n

n∑

i=1

ḡ∗(Xi, hm)

]

= E


 1

n2

∑

i,j

g(Xi, Xj , hm)




= θ(hm),

and that

E [ḡ∗0(X∗
i )] = E [E [ḡ∗0(X∗

i )|Xn]]

= E

[
1
n

n∑

i=1

ḡ∗0(Xi)

]

= E [ḡ∗0(X1)]

= lim
hm→0

1
n

n∑

j=1

E [g(X1, Xj , hm)]

= θ0.

Therefore E [ḡ∗(X∗
i , hm)− ḡ∗0(X∗

i )] = θ(hm)− θ0.

Now consider E
[
(ḡ∗(X∗

i , hm)− ḡ∗0(X∗
i ))2

]
. We have

E
[
(ḡ∗(X∗

i , hm)− ḡ∗0(X∗
i ))2

]

= E
[
E

[
(ḡ∗(X∗

i , hm)− ḡ∗0(X∗
i ))2

∣∣∣Xn

]]

= E

[
1
n

n∑

i=1

(ḡ∗(Xi, hm)− ḡ∗0(Xi))
2

]

= E
[
(ḡ∗(X1, hm)− ḡ∗0(X1))

2
]

= E





 1

n

n∑

j=1

(g(X1, Xj , hm)− ḡ∗0(X1))




2
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=
1
n2

∑

j,k

E [(g(X1, Xj , hm)− ḡ∗0(X1)) (g(X1, Xk, hm)− ḡ∗0(X1))]

=
1
n2

{
nE

[
(g(X1, X2, hm)− ḡ∗0(X1))

2
]

+n(n− 1)E [(g(X1, X2, hm)− ḡ∗0(X1)) (g(X1, X3, hm)− ḡ∗0(X1))]} .

Now

E
[
(g(X1, X2, hm)− ḡ∗0(X1))

2
]

= E
[
g2(X1, X2, hm)− 2g(X1, X2, hm)ḡ∗0(X1) + ḡ∗20 (X1)

]

= E
[
g2(X1, X2, hm)

]− 2 · lim
hm→0

E


g(X1, X2, hm) · 1

n

n∑

j=1

g(X1, Xj , hm)




+ lim
hm→0

E


 1

n2

∑

j,k

g(X1, Xj , hm)g(X1, Xk, hm)




= E
[
g2(X1, X2, hm)

]− 2 · lim
hm→0

E


g(X1, X2, hm) · 1

n

n∑

j=1

E [g(X1, Xj , hm)|Xj ]




+ lim
hm→0

E


 1

n2

∑

j,k

E [g(X1, Xj , hm)g(X1, Xk, hm)|X1]




= E
[
g2(X1, X2, hm)

]− 2 · lim
hm→0

E [g(X1, X2, hm)ḡ(X1, hm)] + lim
hm→0

E
[
ḡ2(X1, hm)

]

= E
[
g2(X1, X2, hm)

]− 2 · lim
hm→0

E [ḡ(X1, hm)E [g(X1, X2, hm)|X1]]

+E

[
lim

hm→0
ḡ2(X1, hm)

]

= E
[
g2(X1, X2, hm)

]− 2 · lim
hm→0

E
[
ḡ2(X1, hm)

]
+ E

[
ḡ2
0(X1)

]

= E
[
g2(X1, X2, hm)

]− E
[
ḡ2
0(X1)

]

= E [q(X1)] h−γ
m + o

(
h−γ

m

)− V ar [ḡ(X1, hm)] + 2Cov [ḡ0(X1), s(X1)] hα
m + o (hα

m)

= O
(
h−γ

m

)
,

and

E [(g(X1, X2, hm)− ḡ∗0(X1)) (g(X1, X3, hm)− ḡ∗0(X1))]

= E
[
(E [(g(X1, X2, hm)− ḡ∗0(X1)) |X1])

2
]

= E
[
(ḡ(X1, hm)− ḡ∗0(X1))

2
]

= E
[
ḡ2(X1, hm)− 2ḡ∗0(X1)ḡ(X1, hm) + ḡ∗20 (X1)

]

= E
[
ḡ2(X1, hm)

]− 2 · lim
hm→0

E


ḡ(X1, hm) · 1

n

n∑

j=1

g(X1, Xj , hm)
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+ lim
hm→0

E


 1

n2

∑

j,k

g(X1, Xj , hm)g(X1, Xk, hm)




= E
[
ḡ2(X1, hm)

]− 2 · lim
hm→0

E
[
ḡ2(X1, hm)

]
+ lim

hm→0
E

[
ḡ2(X1, hm)

]

= E
[
ḡ2(X1, hm)

]− E
[
ḡ2
0(X1)

]

= V ar [ḡ(X1, hm)] + θ2(hm)− V ar [ḡ0(X1)]− θ2
0

= 2Cov [ḡ0(X1), s(X1)] hα
m + o(hα

m) + (θ(hm) + θ0) (θ(hm)− θ0)
= O (hα

m) .

Therefore

1
n2

{
nE

[
(g(X1, X2, hm)− ḡ∗0(X1))

2
]

+n(n− 1)E [(g(X1, X2, hm)− ḡ∗0(X1)) (g(X1, X3, hm)− ḡ∗0(X1))]}
= O

(
n−1h−γ

m

)
+

n− 1
n

·O (hα
m)

= o
(m

n

)
+ o

(
m− 1

2

)
+ o

(
n−1m− 1

2

)

= o
(m

n

)

= o
(
n1−δ−1

)

= o
(
n−δ

)
.

It follows that n
δ
2 (ḡ∗(X∗

i , hm)− ḡ∗0(X∗
i )− (θ(hm)− θ0)) = op(1).
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Table 1: Bandwidth estimates for average density estimation, n = 50
mean s.d.

hn,opt .3170 —
h̃n,τ1 .4802 .5301
h̃n,τ2 .3857 .2090
h̃n,τ3 .3670 .1010
ĥn,m1 .4491 .0531
ĥn,m2 .4265 .0456
ĥn,m3 .4670 .0580

Notes:

1. Simulated random samples each of size n = 50 were drawn from a standard normal dis-
tribution. The estimates of the average densities were constructed using standard normal
smoothing kernels. Reported means and standard deviations (s.d.) are based on 100 Monte
Carlo replications.

2. hn,opt refers to the approximation of the true MSE-optimal bandwidth for n = 50 given in
the statement of Powell and Stoker (1996, Proposition 4.1).

3. h̃n,τj , for j = 1, 2, 3 refer to three implementations of the plug-in bandwidth estimator
suggested by Powell and Stoker (1996, eq. (4.35)) with pilot bandwidth h0 equal to hn,opt

and three settings of the tuning parameter τ—in particular, τ1 = 1.1, τ2 = 2
3 × τ1 and

τ3 = 3
2 × τ1. The setting τ1 = 1.1 was settled upon after some experimentation by the

author.

4. ĥn,mj , for j = 1, 2, 3 refer to three implementations of the m-bootstrap bandwidth es-
timator given above in (31) with corresponding resample sizes m1 = b√nc, m2 =⌊

2
3 ×m1

⌋
and m3 =

⌊
3
2 ×m1

⌋
, where bxc indicates the largest integer less than or

equal to x. In each of these implementations, MSE
[
θ̂∗m(hm)

∣∣∣Xn

]
was minimized for

hm = km− 2
5 by choice of k over an evenly spaced grid of 100 points covering the interval

[0.01, 3.00]. In each of these implementations, the pilot bandwidth hn used to construct
MSE

[
θ̂∗m(hm)

∣∣∣Xn

]
was taken to be h̃n,τ1 as described above.
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Table 2: Estimates of average densities, n = 50
bias s.d. MSE

θ̂n (hn,opt) -.0041 .0320 .0010
θ̂n

(
h̃n,τ1

)
-.0056 .0289 .0009

θ̂n

(
h̃n,τ2

)
-.0115 .0093 .0002

θ̂n

(
h̃n,τ3

)
-.0468 .0040 .0022

θ̂n

(
ĥn,m1

)
-.0038 .0043 .0000

θ̂n

(
ĥn,m2

)
-.0020 .0037 .0000

θ̂n

(
ĥn,m3

)
-.0052 .0047 .0000

Notes:

1. Simulated random samples each of size n = 50 were drawn from a standard normal distri-
bution. As such, the object of estimation is θ0 ≡ E [f(X1)] = 1

2
√

π
≈ .2821.

2. Simulated biases, standard deviations (s.d.) and mean squared errors (MSE) were based
on 100 Monte Carlo replications. The estimates of the average densities were constructed
using standard normal smoothing kernels.

3. hn,opt and h̃n,τj , ĥn,mj for j = 1, 2, 3 are as described in the notes to Table 1.
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