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Abstract

In general equilibrium, irreversibility a�ects both the wealth of consumers and the re-

turn on assets. As long as the inter-temporal elasticity of substitution is realistically low,

irreversibility not only prevents capital destruction, but it also induces capital creation.

Furthermore, under certain conditions, irreversibility raises the risk premium by increas-

ing the variability of consumption and market portfolio.These issues are dealt in a simple

model of investment irreversibility with multiple types of capital. Its tractability allows

for analytical results which explain the contrast, emphasized in the extant literature,

between the consequences of irreversibility for individual markets and the consequences

of irreversibility for the whole economy. JEL No: E22, G12. Keywords: Irreversible

Investment, Stochastic Growth, Asset Pricing.

The original place of publication of this article is Economic Inquiry published by WEA

International <http://www.weainternational.org> with cooperation with Oxford Univer-

sity Press <http://www.oup.co.uk/ecoinq/>.



1 Introduction

Many forms of investment are irreversible. A growing body of literature1 has shown that

irreversibility is important for �rms' investment decisions under uncertainty. However,

we still know little about the consequences of investment irreversibility for the economy

as a whole, that is, in general equilibrium. Learning about these consequences is not

only important for a better understanding of capital accumulation, it is also important

for an understanding of the information that asset returns provide about the business

cycle. In fact, recent papers by Boldrin, Christiano, and Fisher [1995], Beaudry and Guay

[1996], and Jermann [1998] convincingly argue that impediments to the reallocation of

capital are crucial to generate realistic dynamics for asset returns. Thus, understanding

the general equilibrium consequences of investment irreversibility is important to the

theories of economic growth, the business cycle, and asset pricing.

In this paper, I advance an analytically tractable model to explore the consequences

of investment irreversibility in general equilibrium. The main contribution of this model

to the existing literature is analytical tractability. Analytical results from the literature

dealing with investment irreversibility in general equilibrium are scarce and mainly lim-

ited to general properties such as existence of solutions. (See Sargent [1980] and Olson

[1989].) Fortunately, thanks to numerical simulations, we know some of the e�ects of

investment irreversibility in general equilibrium. For example, using an extension to the

neoclassical growth model, Coleman [1997] documents that irreversibility signi�cantly

a�ects interest rates, and it may increase aggregate investment even when no constraints

are binding.2 In contrast, �rms' behavioral analyses, and the related competitive equi-

librium model by Leahy [1993], show that irreversibility typically discourages capital
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creation. The model advanced in this paper helps to understand and to formalize why

such contrast exists.

The model of this paper extends the endogenous growth model found in Barro [1990].

The four main assumptions of the model are the following. All production processes yield

the same output which can be consumed or invested in many types of capital. All factors

of production are a type of capital. The aggregate production function yields constant

returns to scale. Preferences are homothetic and modeled along the lines of Epstein

and Zin [1989]. These preferences include as a special case the standard isoelastic time

additive preferences, but they allow to distinguish between the inter-temporal elasticity

of substitution and the inverse of the coe�cient of relative risk aversion. These two

parameters play important and distinct roles in the analysis.

To attain strong analytical results, the model in this paper has to adopt the restrictive

assumption that all factors of production are a form of capital. However, the model re-

mains quite 
exible to capture important elements of reality: The model allows for many

types of capital, so some of them can be interpreted as human capital. Also, the model al-

lows great 
exibility on the stochastic shocks a�ecting the production possibilities of the

economy. Finally, the model allows for the coexistence of irreversible and 
exible types of

capital with or without complementarities between them. This diversity of capital types

is important to generate endogenous interest rates and endogenous marginal products of

capital. Also, capital diversity allows for strongly binding irreversibility constraints even

with positive gross investment (as it has always been).

The model reveals that in general equilibrium there are three e�ects of irreversibility

on aggregate investment. The �rst is the obvious direct e�ect of preventing capital
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destruction in periods one may wish to consume part of the capital stock.3 The second

is the substitution e�ect induced by the option value lost as a result of constraining the

future capital stock when investment takes place. This substitution e�ect, as stressed

in much of the partial equilibrium literature, discourages capital creation. The third,

unique to a general equilibrium context, is the wealth e�ect induced by reducing the set

of feasible paths with the irreversibility constraints. This wealth e�ect promotes capital

creation because with investment irreversibility the representative consumer is poorer, so

it chooses to consume less and thus to save-invest more. In addition, this wealth e�ect

dominates the substitution e�ect as long as the inter-temporal elasticity of substitution

is, as all empirical studies �nd, less than one.4 This result is related to, but distinct

from, the demand for precautionary saving.5 With precautionary saving, one considers a

consumer faced with various portfolios with returns that have the same mean but distinct

variances. In contrast, investment irreversibility a�ects not only the variance but also

the mean of the returns of the portfolio of a representative consumer. In addition to

a�ecting aggregate investment, irreversibility a�ects the capital mix in the economy. In

a well-de�ned sense, investment is diverted from irreversible into 
exible types of capital

at the cost of lowering the aggregate return of capital. Consequently, even if irreversibility

encourages investment, it still has an ambiguous e�ect on growth and the long-run capital

stock.

Irreversibility a�ects asset returns, �rst, through a direct e�ect on the market return

because it opens the possibility to capital gains and losses. Second, it a�ects asset

returns through an indirect e�ect, because it changes the variability of consumption

and the market return, and thus the price of risk. For analytical tractability, I study
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with more detail the e�ects of irreversibility on asset returns in a simple special case

with independent and identically distributed (i.i.d.) shocks. For this case, as long as the

relative risk aversion coe�cient is not lower than one, I �nd that irreversibility raises both

the price of risk and the risk premium. Moreover, it makes both the risk-free rate and

the risk premium counter-cyclical. With persistent shocks, the model is not analytically

tractable. However, the results with i.i.d. shocks give some intuition as to why the

risk-free rate in the United States is less pro-cyclical than equilibrium models without

investment irreversibility predict, and why, as Ferson and Harvey [1991] document, the

risk premium is counter-cyclical.

The e�ect of irreversibility on the risk premium is not a potential resolution to the

equity premium puzzle. The equity premium puzzle is about �tting the Euler equation

that relates consumption growth rates with asset returns. (See Kocherlakota [1996]).

Irreversibility has nothing to add to the puzzle of why, with the preferences used in

this paper, for measured aggregate consumption and measured asset returns, this Euler

equation implies implausibly high degrees of risk aversion. Instead, irreversibility should

be useful to construct general equilibrium models that replicate the consumption and

the asset returns we measure in the United States and other countries. Of course, if

these models are to imply a high equity premium, they will have to assume either a high

degree of risk aversion, or they will have to incorporate other factors such as heterogenous

consumers or habit persistence.

In summary, the general equilibrium e�ects of irreversibility transmitted through the

wealth of consumers and through the return of assets are important both to understand

investment and to understand the interaction between the business cycle and asset pric-
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ing. The rest of the paper is organized as follows: Section 2 describes the model in detail.

Section 3 reports analytical results. Section 4 concludes the paper.

2 The Model

The economy has a representative consumer. In each period, the consumer's problem

is to consume or invest the output just obtained from a stochastic production process.

All output is homogeneous, but capital is di�erentiated into N multiple types. In the

present, the vector of capital stocks inherited from the past is k 2 RN and the realized

value of the stochastic shocks is z 2 RM . The vector z follows a Markov process endowed

with the Feller property. A gross production function G maps (k; z) onto gross output:

x = G(k; z): (1)

To simplify notation, the gross output x includes both production and the capital stocks

inherited from the past valued at cost. The function G is concave, linearly homogeneous,

and continuously di�erentiable in k, and measurable in z.

In the allocation of x, the consumer faces a set of irreversibility constraints on each

one of the capital stocks:

k0i � �i(1� �i)ki, for i = 1:::N ; (2)

where �i is the depreciation rate of capital i, �i is the degree of irreversibility of capital i,

and a prime denotes the value of a variable next period. This speci�cation accommodates


exible capital stocks with a zero �i, irreversible capital stocks with a unit �i, and types of

capital with other degrees of irreversibility. In addition to the irreversibility constraints,
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the consumer faces a standard resource constraint:

c+
NX
i=1

k0i � x; (3)

where c is consumption.

The preferences of the consumer are recursive, homothetic, and independent across

states for atemporal lotteries, but not necessarily time-additive. Speci�cally, the con-

sumer is endowed with the parametric version of Kreps and Porteus preferences intro-

duced by Epstein and Zin (1989)6:

u =
�

(1� �) c1�� + �
h
E
�
u01�


�i 1��
1�

� 1

1��
; (4)

where u is present utility; 
 is the coe�cient of relative risk aversion for atemporal

lotteries; and � is the inverse of the inter-temporal elasticity of substitution along a

deterministic path. Both 
 and � are assumed positive. The expectation E is conditional

on present information.

The representative consumer maximizes (4) subject to (2) and (3). A solution to

this optimal growth problem exists under some restrictions on G (see Epstein and Zin

[1989]) which are assumed to be satis�ed throughout the paper. Similarly, an analogous

proof to Epstein and Zin (1989) shows that there is a value function V which maps the

vector (k; z) onto the maximized utility of the consumer. Standard recursive dynamic

programming arguments imply that, with respect to k, V is continuously di�erentiable,

concave, and linearly homogeneous.

Using �i and � as the Lagrange multipliers for constraints (2) and (3), the �rst order

conditions to the optimal growth path are:

(1� �)V �c�� = �; (5)
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and

�� V ��
h
E
�
V 01�


�i 
��
1�
 E

 
V 0�
 @V

0
@k0i

!
= �i � 0; for i = 1; :::N: (6)

Condition (6) holds with equality if k0i > �i(1� �i)ki: Despite the length of these expres-

sions, the intuition behind them is simple. Condition (5) equates the marginal utility of

consumption to the marginal value of wealth (�). Condition (6) states that each con-

straint (2) penalizes the consumer for a marginal value �i, which is equal to the di�erence

between the marginal value of wealth and the marginal value of k0i. Moreover, �i is always

nonnegative, and it is zero when the constraint is not binding.

Using the Envelope Theorem, we can derive from these �rst order conditions a useful

consumption rule. The Envelope Theorem states:

@V
@ki

= �
@G
@ki
� �i�i(1� �i), for i = 1:::N . (7)

Making use of the fact that V and G are linearly homogeneous, we can multiply both

sides of (7) by ki and add for all i to obtain:

V = �ex, where ex = x� NX
i=1

(1� qi)�i(1� �i)ki, and qi = 1� �i
�
: (8)

The variable qi is the real price (in units of the consumption good) of capital i (\Tobin's

q"). This variable nets out the (shadow) capital losses incurred due to the irreversibility

constraint from to the cost of producing one unit of capital. Consequently, the variable

ex is the market value of the goods available after production, which includes the output

just produced and the value of the capital stocks inherited from the past. Finally, using

(5) and (8), we obtain the consumption rule:

c = (1� �)
1
� �1� 1

� ex: (9)
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Because preferences are homothetic, consumption is proportional to the consumer's

wealth, which in this model it corresponds with the market value of the goods avail-

able after production ex. Consumption also depends on the marginal value of wealth �.

An increase in � induces a negative substitution e�ect and a positive wealth e�ect on

consumption. If � > 1, the wealth e�ect dominates. All this is familiar. The novelty

here is that ex is not predetermined but is endogenous to the present decisions of the

representative consumer.

The �rst order conditions (5) and (6) can be transformed into useful asset pricing

equations. For this transformation, the following preliminary results are needed.

The market value of the stock of capital after this period's investment is the di�erence

between the market value of gross output and consumption:

qk0 =
NX
i=1

[k0i � (1� qi)�i(1� �i)ki] = ex� c; (10)

where q is the vector whose components are qi; i = 1:::N: For the �rst equality in (10),

note that if constraint i is binding, k0i = �i(1 � �i)ki, and if constraint i is not binding

qi = 1. The second equality in (10) follows from the resource constraint (6) and the

de�nition of ex in (8).

The �rst order condition (6) can be aggregated across capital types if we multiply by

k0i on both sides of (6), add the resulting equations for all i; and make use of the linear

homogeneity of V :

� (qk0) = V ��
h
E
�
V 01�


�i 1��
1�
 : (11)

Finally, using (7), (8), (10), and (11), the �rst order condition (6) can be transformed
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into a pricing equation for capital i (see the Appendix for details in this derivation):

qi = E

8<: V 0�
�0

E
�
V 0�
�0 eR�

"
@G
@k0i
� (1� q0i)�i (1� �i)

#9=; ; (12)

where eR � ex
qk0 is the ex-post (gross) market return. The price of one unit of installed

capital is equal to the expected present value of its gross return next period. The gross

return of capital i next period is the expression in square brackets. This expression is

multiplied by a set of contingent prices denoting the relative value of output next period

in terms of output this period. These contingent prices can be transformed using (8) to

(11) to obtain the following standard Euler equation (see the Appendix for details):

qi = E

8><>:
24�  c0

c

!�� eR ��

1�


35 1�

1�� "@G

@k0i
� (1� q0i)�i (1� �i)

#9>=>; : (13)

That is, the contingent prices depend on consumption growth and the ex-post market

return in a fairly simple fashion. As a pricing formula, this Euler equation is just an

application of Epstein and Zin (1989) and Weil (1989). The novelty here is how con-

sumption and the ex-post market return are related to the irreversibility constraints. This

novelty, as the next section shows, is important to understand how irreversibility a�ects

the price of risk and the cyclical pattern of asset returns.

3 The E�ects of Irreversibility

This section provides a comparison between an economy with the irreversibility con-

straints (2) and an economy where these constraints are relaxed. The aim of this

comparison is to improve our understanding of the e�ects of irreversibility on capital

accumulation and asset prices.
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3.1 Capital Accumulation

Suppose there are two economies identical in all respects, except that in one the degrees

of irreversibility for all types of capital are zero (�i = 0 for all i), while in the other at

least one of them is positive (�i > 0 for some i). The �rst economy will be referred to as

the 
exible economy and the second one as the irreversible economy. Using (8) and (9),

the consumption rule for both economies can be described as:

c =
h
(1� �)V ��1exi 1

� (14)

except, of course, that V and ex will di�er in each economy. Let superscript F denote

the 
exible economy and the superscript I denote the irreversible economy. Because the

constraints in (2) restrict the set of feasible paths for the irreversible economy versus those

of the 
exible economy, V F (k; z) � V I(k; z). Moreover, qi = 1 for all i in the 
exible

economy, while qi � 1 in the irreversible economy, thus exF (k; z) = x(k; z) � exI(k; z).

Therefore, if � � 1, the consumption rule (14) implies cF (k; z) � cI(k; z). Using the

resource constraint (3), this implies:

If the inter-temporal elasticity of substitution is between zero and one (� � 1), in-

vestment in the 
exible economy does not exceed investment in the irreversible economy.

In addition, this inequality is strict if some irreversibility constraints are presently bind-

ing
hexF (k; z) > exI(k; z)i, or, if � > 1 and some constraints are expected to be binding

sometime in the future
h
V F (k; z) > V I(k; z)

i
:

The elimination of the irreversibility constraints increases the marginal value of wealth

(without the constraints wealth is more versatile). This induces a negative substitution

e�ect and a positive wealth e�ect on consumption. If � � 1, the wealth e�ect at least
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balances the substitution e�ect. Moreover, if some irreversibility constraints are presently

binding, the direct e�ect of the elimination of these constraints revalues the capital stock,

and so it raises wealth and consumption.

Proposition 1 is a comparison of policy functions. It is not a comparison about long-

run capital stocks. Even under the conditions of Proposition 1 that ensure cF (k; z) �
cI(k; z) for all (k; z); and even if the irreversible and the 
exible economies start in iden-

tical conditions and receive identical shocks, the 
exible economy may end up with larger

stocks of capital in the long-run.7 Certainly, this paradoxical outcome never happens if

N = 1, because then the marginal product of capital is identical in the two economies.

However, in the more interesting case N � 2, irreversibility changes not only the amount

of investment, but also its composition, typically sacri�cing productivity to achieve 
ex-

ibility (see subsection 3.5 below). Hence, the smaller amounts invested in the 
exible

economy may in average yield higher output than the larger amounts invested in the

irreversible economy. Consequently, as one can check numerically,8 the 
exible economy

may grow faster and have larger capital stocks in the long-run.

3.2 Fixed Factors

This section modi�es the model to explain why it is di�cult to obtain strong analytical

results on the e�ects of investment irreversibility in general equilibrium models where

output is a strictly concave function of capital. These models, implicitly or explicitly, as-

sume the existence of some factors, such as labor or land, which are inelastically supplied,

so they either are �xed or grow at an exogenous rate. Thus, without loss of generality,

let the capital stock 1 be �xed, in the sense that the constraint (2) must now hold with
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equality. Using analogous derivations to those in section 2, we obtain the consumption

rule (14), except that now q1 may either be above or be below unity. Let us compare

this economy with a 
exible economy with �i = 0 for i = 2; :::; N . The removal of the

constraints on all capital stocks except for 1,which now is a �xed factor, unambiguously

raises the utility of the representative consumer V with the same type of substitution

and wealth e�ects as in Proposition 1. However, this removal may induce capital losses

on the �xed factor, so it may actually depress the market value of goods available ex. An

analogous result to Proposition 1 in this modi�ed model requires that these potential

capital losses are su�ciently low:

We can guarantee that investment in the 
exible economy with a �xed factor does not

exceed investment in the irreversible economy if, in addition to � � 1, exF (k; z) � exI(k; z):
3.3 Relocation Versus Irreversibility

A common motivation for irreversibility is the di�culty of relocating installed capital

from a particular use to another. This strong form of irreversibility is captured in this

model when the set of constraints (2) applies to each particular use of capital. A weaker

constraint is to allow relocation but continue with an aggregate irreversibility constraint.

This is achieved by replacing the set of constraints (2) with this unique constraint on the

total capital stock:

NX
i=1

k0i � �
NX
i=1

(1� �i)ki: (15)

We can now evaluate the constraint on relocation by comparing an economy with com-

plete irreversibility (I superscript) with another with relocation (L superscript). Suppose

to facilitate the comparison that the degrees of irreversibility in the economy with irre-
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versibility are all equal to the aggregate degree of irreversibility in the economy with

relocation, that is �i = � for all i = 1; :::; N . With this assumption, the set of feasible

paths with the constraint in (15) includes the feasible paths with the constraints in (2).

For states in which the constraint (15) is not presently binding, Proposition 1 is valid for

exactly the same reasons as before. For states in which the constraint (15) is binding,

we have:

NX
i=1

k0Li = �
NX
i=1

(1� �i)ki =
NX
i=1

�i(1� �i)ki �
NX
i=1

k0Ii (16)

Consequently:

If � � 1, investment in the economy with relocation does not exceed investment in

the economy with complete capital irreversibility.9

This proposition implies that modeling investment irreversibility by imposing to the

aggregate capital stock a degree of irreversibility which is an average of the degrees

of irreversibility of the individual types of capital typically understates the e�ects of

irreversibility. Conversely, when aggregation is feasible, the degree of irreversibility that

yields accurate predictions for the aggregate model may be much higher than the average

degree of irreversibility across capital stocks. The following examples illustrate this last

point.

3.4 Aggregation Across Capital Types

This subsection provides simple examples to show that irreversibility constraints may

be binding even though gross investment is positive, and it discusses the consequences

for the degree of irreversibility when aggregating capital across distinct types. To allow
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for perfect commodity aggregation, it is assumed perfect complementarity across capital

types.

Suppose an economy with two indispensable types of capital both with a low but

positive depreciation rate. One type of capital is irreversible: �1 = 1, while the other is


exible: �2 = 0. Both types of capital are perfect complements. For example, refrigera-

tors, k1; and cows, k2; are required at a �xed proportion (Leontie� coe�cient) to produce

milk. Refrigerators can never be consumed, but cows can be killed for meat. With catas-

trophic shocks, the representative consumer will choose to let some refrigerators idle, and

eat the badly needed meat from cows. In this case, perfect aggregation will no longer

apply. However, as long as shocks are not catastrophic, the representative consumer

combines cows and refrigerators at the �xed proportion dictated by the technology. That

is, killing a cow becomes more costly because it implies leaving some refrigerators idle,

so it is avoided for shocks that are not catastrophic. Consequently, an economy without

catastrophic shocks works as if the degree of irreversibility for the aggregate capital stock

is 1, even though only one of the two types of capital is irreversible.

Suppose that the previous example is modi�ed so cows are now irreversible, that is for

some reason, religious or otherwise, meat from cows cannot be consumed, so �1 = �2 = 1.

Also, even if the two types of capital are still perfect complements in production, the

Leontie� coe�cient now varies over time: The amount of refrigerators required to process

the milk of one cow depends on the warmth of the weather, so the required ratio of

refrigerators over cows alternates from a high in the summer to a low in the winter.

Since investment takes place one period before the new capital becomes productive,

investment, if unconstrained, is cow-intensive in the summer and refrigerator-intensive
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in the winter, in an attempt to have all resources fully employed. In the absence of

shocks, this attempt is successful as long as the economy grows su�ciently fast or the

rates of depreciation for the two types of capital are su�ciently high. Suppose that in an

equilibrium of this type the production of milk is now subject to total factor productivity

shocks. With adverse shocks, the representative consumer smooths consumption by

investing less. When a severe shock comes in the winter, the irreversibility constraint

on cows is the �rst to bind because investment in the winter is refrigerator-intensive.

When this happens and as long as the shock is not catastrophic, the representative

consumer continues to invest in refrigerators so that all the next summer's milk can be

kept cool. Consequently, an economy without catastrophic shocks works as if the degree

of irreversibility for the aggregate capital stock is higher than 1, that is the irreversibility

of cows prevents lowering the investment of refrigerators to zero.

3.5 Capital Mix

In the aggregate, the intuition from partial equilibrium analyses that irreversibility de-

presses capital creation is misleading. With some quali�cations, this intuition is nonethe-

less correct when applied to the composition of capital; that is, irreversibility drives in-

vestment away from irreversible types of capital and toward 
exible types of capital.10

Suppose capital F is 
exible (�F = 0) while capital I is irreversible (�I > 0) . Subtracting

equations (7) applied to next period for i = F and I, we have

@V 0
@k0F
� @V 0
@k0I

= �0
 
@G
@k0F
� @G
@k0I

!
+ � 0I�I(1� �I) (17)

Multiplying both sides of (17) by V 0�
 and taking the conditional expectation of the
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resulting expressions, we obtain

E
"
V 0�


 
@V 0
@k0F
� @V 0
@k0I

!#
= E

"
V 0�
�0

 
@G
@k0F
� @G
@k0I

!#
+ E

h
V 0�
� 0I�I(1� �I)

i
(18)

If the irreversibility on capital I is not binding, the �rst order condition (6) implies

that the left-hand side of (18) is zero. Also, (6) applied to the next period implies that

E [V 0�
� 0I�I(1� �I)] is nonnegative. Consequently,

E
"
V 0�
�0

 
@G
@k0F
� @G
@k0I

!#
� 0 (19)

The expression V 0�
�0 stands for the contingent value to the representative consumer of

one good next period, so:

When the representative consumer is investing in capital I, so the irreversibility con-

straint on capital I is not binding, the expected value of the contingent evaluation of the

marginal product of capital I is at least as large as the expected value of the contingent

evaluation of the marginal product of 
exible capital F. Moreover, if there is a positive

probability that the irreversibility constraint on I will be strictly binding next period,

this inequality is strict.

Proposition 4 implies that investment in a particular type of capital is discouraged

not only by the irreversibility of this particular type of capital, but also by a low co-

movement of its return with the contingent value of goods. This is the central idea of

portfolio allocation, and it is applied next to the choice between capital and bonds.

3.6 Asset Returns

The risk-free rate consistent with the representative consumer choosing neither to borrow

nor to lend, that is choosing a zero net demand for a one period risk-free bond, is
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determined by a �rst order condition analogous to (6):

� = V ��
h
E
�
V 01�


�i 
��
1�
 E

�
V 0�
�0r

�
; (20)

where r is the gross risk-free rate of interest (one plus the net risk-free rate of interest),

and �0r replaces @V 0
@k0i

as an application of the Envelope Theorem (7). Using (8), (10), and

(11), this equation is transformed into:

r = E
�
 eR� , where  =

V 0�
�0
E (V 0�
�0) : (21)

The risk-free rate is equal to the expectation of the product between the ex-post market

return, eR; and the contingent prices,  , that denote the relative value of future output

at di�erent states. These contingent prices depend on the relative scarcity of goods at

di�erent states and how this scarcity a�ects utility at the margin. Using (21) the risk

premium is:

E
� eR�� r = E

h
(1�  ) eRi : (22)

Irreversibility a�ects the risk-free rate and the risk premium both through the e�ect it

has on the ex-post market return, because it opens the possibility to capital gains and

losses, and through the contingent prices of future goods, because it a�ects the variability

of the market value of output and consumption.

3.7 A Simple Special Case

Even in the highly tractable model advanced in this paper, the e�ects of irreversibility

on asset returns are hard to describe beyond the general formulae (20) to (22). For

further analytical tractability, I will specialize the model, to have one type of capital and
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a multiplicative i.i.d. stochastic shock, that is x = zk where z is the gross return of

capital (it includes the net return and the survival rate (1� �)). The realizations of z are

assumed to be positive and to satisfy the restrictions studied in Epstein and Zin [1989]

for the existence of an optimal growth path.

In a 
exible economy, the utility of the representative consumer depends only on

the total amount of goods available, x. Moreover, since the value function is linearly

homogeneous of degree one, we have V F = v0x = v0zk for a positive number v0. In

an irreversible economy, the irreversibility constraint (2) may be binding, so the value

function depends not only on x, but also on its composition. In this case, the linear

homogeneity of the value function implies V I = v(z)x = v(z)zk for a positive function

v. Also, the function v is weakly increasing because for a given total amount of goods

x, the representative consumer is less constrained on future choices the lower is k and so

the higher is z.

The value of installed capital in (13) specializes to:

q = E

8><>:
24�  c0

c

!�� eR ��

1�


35 1�

1�� ez09>=>; , where ez0 = z0 + (q0 � 1)� (1� �) : (23)

Since k0 is a uni-dimensional vector, ez0 = ex0
k0 (see the de�nition of ex in (8)). Also, the

ex-post market return is

eR � ex
qk0 =

ez0
q
: (24)

Hence, with the help of the consumption rule (14), equation (23) is transformed into

q
1�

1�� = E

8<:" �
1� �

c�

[v(z0)z0k0]��1 ex0
# 1�


1�� ez0 1�
1��

9=; : (25)
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Taking the variables presently known out of the expectation and simplifying, we have

q =
� c
k0
�� �

1� �
�
E
n

[v(z0)z0]1�

o� 1��

1�
 : (26)

When the irreversibility constraint is binding k0 = �(1� �) and c = z � �(1� �), so we

have

q = min
("
z � �(1� �)
�(1� �)

#� �
1� �

�
E
n

[v(z0)z0]1�

o� 1��

1�
 ; 1
)
: (27)

Consequently, q increases with z as long as the irreversibility constraint is binding, and

it ceases to bind when q = 1.

In the 
exible economy, ex = x = zk and V F = v0x, so (8) implies v0 is equal to the

marginal value of wealth �: Also, the ex-post market return in this economy is eR = ez = z,

so equation (21) determining the risk-free rate simpli�es to:

rF = E
h
 F z0

i
, where  F =

z0�

E(z0�
) : (28)

The contingent prices of future goods decrease with z0 re
ecting that in states of nature

that z0 is low, goods are more scarce and more valuable (see Weil [1989] for further

discussion of this equation). Equation (28) implies that rF is constant because z0 is i.i.d.

In the irreversible economy, ex = ezk and V I = v(z)zk, so (8) implies � = [v(z)z] ez�1.

Therefore, equation (21) simpli�es now to

rI = E
 
 I
ez0
q

!
; where  I =

[v(z0)z0]1�
 ez0�1

E
n

[v(z0)z0]1�
 ez0�1
o : (29)

In this case, the risk-free rate rI is not constant because q depends on z. Moreover, since

q weakly increases with z, rI weakly falls with z. Once the risk-free rates are determined,

the risk premium for the irreversible and the 
exible economies follow from equation
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(22). The following proposition establishes the e�ect of irreversibility on the spread of

the contingent prices of future goods,  F and  I , which determines the price of risk and

the risk premium.

In this special case, if 
 � 1, the contingent prices of future goods for the irreversible

economy,  I ; are a mean preserving spread of the analogous prices for the 
exible econ-

omy,  F . As a consequence, the risk premium in the irreversible economy is not lower

than the risk premium in the 
exible economy. (See the Appendix for the proof).

This proposition implies that irreversibility raises the value of future goods when z0

is low and depresses them when z0 is high, so the variability of returns (risk) is penalized

more heavily in the irreversible economy than in the 
exible economy. This re
ects the

extra scarcity of goods induced by binding irreversibility constraints associated with low

values of z0. The assumption 
 � 1 is necessary because with irreversibility, even if

the shock z is i.i.d., the market return is not: Capital losses today are expected to be

reversed with capital gains tomorrow. For this reason, 
 � 1 is necessary to ensure that

the representative consumer values capital highly when output is scarce (wealth e�ect)

as opposed to when the expected market return is high (substitution e�ect).

Proposition 5 has also strong implications for the cyclical pattern of the risk-free

rate and the risk premium. In good times, when z is high enough for the irreversibility

constraint not to bind, q is one, and thus the market return in the irreversible economy is

ez0. Then, if 
 � 1, rI � rF for two reasons. First, the possibility of capital losses implies

that ez0 � z for all states of nature. Second, as seen, the contingent prices of future goods

penalize risk more heavily in the irreversible economy than in the 
exible economy. In

contrast, in bad times, when z is low enough so q < 1; the ex-post market return is

20



ez0
q > ez0: Then, the possible capital gains from an increase in q raises the expected market

return. With i.i.d. shocks, the contingent prices of future goods do not depend on z; and

ez0 is i.i.d., so rI is counter-cyclical. The constraint irreversibility imposes on the supply

of goods raises their inter-temporal price: the risk-free rate. Equation (22) implies that

a similar argument applies to the risk premium. Consequently, as z falls a portion of the

higher expected market return goes to raise the risk-free rate while another portion goes

to raise the risk premium.

Proposition 5 does not imply that, by comparison with a 
exible economy, irreversibil-

ity depresses the average risk-free rate. When the irreversibility constraint is binding,

rI may well exceed rF . Furthermore, as one can check numerically,11 the average risk-

free rate in the irreversible economy may be above or below the average risk-free rate in

the 
exible economy. In conclusion, even tough, irreversibility may lead to lower aver-

age risk-free rates as in Coleman [1997], this is not a general result even in this simple

economy.

4 Concluding Remarks

The model advanced in this paper provides analytical results which explain the contrast,

emphasized by Coleman [1997], between the consequences of investment irreversibility for

individual �rms and the consequences of irreversibility for the whole economy. The source

of this contrast lies on the e�ect of irreversibility on the e�ective wealth of consumers

and the return on assets. In the framework of the model, as long as the inter-temporal

elasticity of substitution is less than one, investment irreversibility not only prevents
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capital destruction, but it also induces capital creation. Furthermore, irreversibility

a�ects the price of risk by making both consumption and the market portfolio more

variable.

For ease of exposition and analysis, the model presented in this paper has been set as

an optimal growth problem. However, as it is well known, the solution path for this type of

problems can be decentralized as a competitive equilibrium. Likewise, the irreversibility

constraints are expressed as a simple inequality. However, costly reversion of investment

should yield similar results (see Abel and Eberly [1996]). Finally, the irreversibility

constraints have been modeled as physical constraints. However, to a certain degree, these

constraints can also handle an extreme form of the \lemon's problem" which would lead to

the disappearance of some markets. In this case, the interpretation of the irreversibility

constraints would be that buying a car constitutes an irreversible commitment to a

particular use for the car, for example being the means of transportation of the buyer.

The buyer can still fully diversify the risk involved in this purchase, for example by

selling shares on the ownership of the car. But at the end of the day, the only way the

shareholders can get any dividend from the car is if the original buyer uses it. If this buyer

does not need the car anymore, this is a social loss no matter how much diversi�cation

there was. If in addition to investment irreversibility capital markets were imperfect, the

\lemon's problem" would lead to stronger wealth e�ects than the ones modeled in this

paper. Then, aggregation does not hold in general, and I conjecture that the e�ects of

irreversibility on capital accumulation and asset returns would, in general, be stronger.
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Appendix

Derivation of equations (12) and (13)

Both (12) and (13) are derived from the �rst order condition (6). Rearranging terms,

this condition can be re-stated as follows:

1� �i
�

= ��1V ��
h
E
�
V 01�


�i 1��
1�
 E

(
V 0�


E (V 01�
)
@V 0
@k0i

)
: (30)

Using the Envelope Theorem (7), condition (11), and the de�nition of qi in (8), this

equation is transformed into:

qi = (qk0)E
(

V 0�

E (V 01�
)

"
�0@G
@k0i
� � 0i�i(1� �i)

#)
: (31)

Rearranging terms and using the de�nition of qi in (8), we have:

qi = E

8<: V 0�
�0

E
�
V 0�
 V 0qk0

� "@G
@k0i
� (1� q0i)�i(1� �i)

#9=; : (32)

Finally, using (8) and the de�nition of eR, we obtain equation (12).

The derivation of equation (13) uses the following two expressions:

V 01�
 =
h
(1� �) c0�� ex0i 1�


1�� ; (33)

and

E
�
V 01�


�
=
h
�V �� (qk0) ��1

i 1�

1�� =

h
�1�� ex�� (qk0) ��1

i 1�

1�� =

h
(1� �) c�� (qk0) ��1

i 1�

1�� :

(34)

The �rst of these expressions is derived from (8) and (9). In the second expression,

the �rst equality is a restatement of (11). The second equality uses (8). And the third

equality uses (9). Using (8), the contingent prices in (12) can be written as follows:

V 0�
�0

E
�
V 0�
�0 eR� =

V 01�

E (V 01�
)

qk0ex0 : (35)
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Finally, equation (13) follows from substituting (33) and (34) into (35), using the de�ni-

tion of eR, and substituting the resulting expression into (12).

Proof of Proposition 5

The function v(z) is positive and weakly increasing, so the expression [v(z0)]1�
 is a

positive and weakly decreasing with respect to z0 if 
 � 1. Likewise, q is a function of z

that is positive, bounded above by one, and weakly increasing, so the expression ez0�1z0,

which using the de�nition of ez in (24) is equal to
h
1� �(1� �)1�q0

z0
i�1

; is a positive and

weakly decreasing function of z0. Therefore, the product [v(z0)z0]1�
 ez0�1z0
; which is

equal to [v(z0)]1�
 ez0�1z0; is a positive an weakly decreasing function of z0 if 
 � 1.

Let [�z; ẑ] be the space of the stochastic variable z and F (z) its distribution function

(z is i.i.d. in this special case). The contingent prices  F and  I ; respectively de�ned in

(28) and (29), are functions of z0 and E
h
 F (z0)

i
= E

h
 I(z0)

i
= 1. Therefore, to prove

that  I is a mean preserving spread of  F ; we must show that

Z �z

�z

h
 I(z0)�  F (z0)

i
dF (z0) � 0; for all �z 2 [�z; ẑ]: (36)

The weak inequality in (36) holds trivially for �z = �z and �z = ẑ: Suppose there is a �z

2 [�z; ẑ] for which condition (36) does not hold. This supposition implies the existence of

a pair z0 and z1, z0 � �z < z1; that satis�es  I(z0) <  F (z0) and  I(z1) >  F (z1). Using

the de�nitions of  F and  I in (28) and (29), these inequalities imply that the value

of [v(z0)z0]1�
 ez0�1z0
 for z0 = z0 is smaller than its value for z0 = z1: This implication

contradicts that [v(z0)z0]1�
 ez0�1z0
 is a weakly decreasing function of z0:

Using (22) and (24), the di�erence between the risk premia in an irreversible and in
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a 
exible economy is:

E
"�

1�  I� ez0
q

#
� E h�1�  F� z0i =

E
"�

1�  I� z0
q

#
� E h�1�  F� z0i+

�(1� �)
q

E
h�

1�  I� (q0 � 1)
i
: (37)

The term E
h�

1�  I� z0
q

i�E h�1�  F� z0i is nonnegative, because q � 1, both
�
1�  I�

and
�
1�  F� are increasing functions of z0, and

�
1�  I� is a mean preserving spread of�

1�  F� : Likewise, the �nal term �(1��)
q E

h�
1�  I� (q0 � 1)

i
in (37) is nonnegative, be-

cause
�
1�  I� has conditional mean 0 and is nonnegatively correlated with (q0 � 1) (both

are non decreasing with z0). Consequently, the right-hand side of (37) is nonnegative.
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Notes

1. See Pindyck [1991], Dixit and Pindyck [1994] and Hubbard [1994] for an introduc-

tion and survey to this literature.

2. Other examples are: Dow and Olson [1992], Caplin and Leahy [1993], Bertola [1994],

Boldrin, Christiano and Fisher [1995], Christiano and Fisher [1995], Ricketts and

McCurdy [1995], Veracierto [1997], Hu�man and Wynne [1995], and Christiano and

Fisher [2000].

3. See Abel and Eberly [1999] for the importance of this e�ect on the long-run distri-

bution of capital stocks in a partial equilibrium framework.

4. This result does not depend on constant marginal products of capital. With several

types of capital, as the model allows, the marginal products of capital vary depend-

ing on the set of binding irreversibility constraints. Consequently, irreversibility

discourages capital creation if the inter-temporal elasticity of substitution is higher

than one. (This elasticity is implicitly in�nite in analyses that maximize the ex-

pected present value of pro�ts). However, irreversibility encourages capital creation

when no constraints are binding, if the inter-temporal elasticity of substitution is

less than one.

5. See Ejarque [1998] for an study on how increased uncertainty may increase invest-

ment in the presence of irreversibilities due to an increase in precautionary savings.

6. This formula is valid for � 6= 1 and 
 6= 1. For � = 1, use a Cobb-Douglas

aggregator. For 
 = 1, use exp fE [ln(u0)]g instead of [E (u01�
)]
1

1�
 :
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7. In the model of this paper, invariant distributions of the capital stocks in general do

not exist because these stocks are not bounded. However, invariant distributions

of the rate of growth of the capital stocks exist as long as z is bounded.

8. A simple numerical example in which the 
exible economy grows faster the ir-

reversible economy even if cF (k; z) � cI(k; z) for all (k; z) is: In both economies,

N = M = 2; G(k; z) = z(k1 + 0:8k2) + k1 + k2, �1 = �2 = 0; z is iid, z1 = 0:08,

z2 = 0:04, Pr(z1) = Pr(z2) = 0:5; � = 0:98; � = 
 = 2. In the 
exible economy,

�1 = �2 = 0: In the irreversible economy, �1 = 1, and �2 = 0: Using numerical

methods to compute invariant distributions, we �nd that the average continuously

compounded rates of growth of the capital stocks are: 0.019 for the 
exible economy

and 0.013 for the irreversible economy.

9. The condition �i = � for all i can be easily relaxed to �i � � for all i: The conditions

for strict inequality between investment in these two economies are those at the

end of Proposition 1.

10. See Eberly and Mieghem [1997] for a similar result in a partial equilibrium context.

11. For example, � = 0.99, � = 0.2, 
 = 2, � = 0.99, and z i,i.d. with two equally

likely values 1.1 and 1.04 implies that in an invariant distribution E
�
rI
�
= 1.076

and rF = 1.068. In contrast, with these parameters except for 
 = 4, it implies

E
�
rI
�

= 1.060, and rF = 1.067.
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