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Abstract

Poverty measurement and the analysis of the progress (or otherwise) of the poor is

beset with difficulties and controversies surrounding the definition of a poverty line or

frontier. Here, using ideas from the partial identification literature and mixture models,

a new approach to poverty measurement is proposed which avoids specifying a frontier,

the price is that an agent’s poverty status is only partially identified. Invoking variants

of Gibrat’s law to give structure to the distribution of outcomes for homogeneous

subgroups of a population within the context of a finite mixture model of societal

outcomes facilitates calculation of the probability of an agent’s poverty status. From

this it is straightforward to calculate all the usual poverty measures as well as other

characteristics of the poor and non poor subgroups in a society. These ideas are

exemplified in a study of 47 countries in Africa over the recent quarter century which

reveals among other things a growing poverty rate and a growing disparity between

poor and non poor groups not identified by conventional methods.
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1 Introduction

Conventional poverty analysis identifies the poor by defining a poverty frontier in terms

of a variable or variables that reflect individual wellbeing so that individuals, house-

holds or countries below the frontier are poor with probability one. Societal poverty is

then measured using some aggregating function of agent distances below the poverty

frontier in terms of those variables. The definition of the frontier has long been a

matter of considerable debate across a spectrum of literatures1 and debates about the

progress of the poor have largely been about how the frontier is defined (Rogers and

Rogers, 1993; Sala-i-Martin, 2006; Slesnick, 1993), indeed this has been extended to

the notion of defining the poverty frontier as the boundary of a fuzzy set (Betti et

al., 2004). Furthermore, the debate has become more extensive as the dimensions in

which wellbeing, and consequently the poverty frontier, has been measured increased2.

Defining wellbeing in terms of what are often fundamentally unobservable concepts

of functionings and capabilities (see Sen, 1992 and chapters in Grusky and Kanbur,

2006) has complicated the situation even further. Atkinson (1987) and Duclos et al.

(2006) afforded some relief by developing stochastic dominance techniques which could

establish changes in poverty for any definition of the poverty frontier within a region.

Unfortunately these techniques do not appear to have been taken on to a great ex-

tent in the literature (or by practitioners) partly because the approach provides only a

partial ordering and thus precludes the comparison of all states which a poverty index

facilitates. Also policy makers like a “number” to hang their hat on which dominance

techniques do not provide. Here indices for analyzing the plight of the poor are de-

veloped without resort to a contentious, sometimes unobservable or hard to calculate

poverty frontier by a quite different approach to identifying poverty status. As indices

however they do represent a complete ordering of poverty states and will thus be of

use to analysts, practitioner’s and policy makers alike. The approach is based on the

presumption that a society is a collection of subgroups of agents where each subgroup

is governed by distinct sets of circumstances making some groups follow “poor” paths

1See Sen (1983) versus Townsend (1985) for examples in a relative versus absolute debate. Citro
and Michael (1995).

2See Bouguignon and Chackravarty (2003) for the union or intersection of sets in the multi-
dimensional case.
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and some follow “non-poor” paths. The problem is that these circumstances are not

directly observed for each individual, all that is observed is some economic outcome

(their income or consumption level for example). Thus the size distribution of the

economic outcome in the population is a mixture of the corresponding size distribu-

tions of the subgroups. When these paths (subgroup distributions) overlap the group

status of an individual is not directly discernable but resort can be made to concepts

in the partial identification literature (Manski, 2003) to estimate the “chance” that an

individual could belong to a particular group which in turn will permit more standard

measures of the status of the poor, such as poverty rates or depth of poverty measures

to be calculated.

Partial identification requires additional information in the form of theoretical re-

strictions or additional data in order to calculate the probability that an agent is a

member of a particular group, here the predictions of some elementary stochastic pro-

cess theory are employed. Their use can be justified as follows. The functionings

and capabilities approach (Sen, 1992) defines deprivation (poorness) in terms of the

boundaries set by the inherent circumstances of an agent (health, education, location,

freedoms, genetic endowments etc). This is undoubtedly appropriate conceptually but

frequently these boundaries and the circumstance characteristics are fundamentally un-

observable. However if the poor are characterized by a particularly limited set of such

circumstances (which the non poor are not), poor and non-poor observed economic be-

haviors (consumption or income for example) will follow distinct stochastic processes

which generate distinct behavior distributions, and any population distribution will be

a mixture of these. Poverty measurement then becomes a matter of identifying and

measuring aspects of the subdistributions driven by these processes.

Perhaps the best known relationship between a process and the distribution it en-

genders is Gibrat’s law (Gibrat, 1930; 1931) 3 recently employed in an application to

individual consumption and income patterns in Battistin et al. (2009). This very pow-

erful law, which is essentially a strong form of a statistical central limit theorem, tells

us that a starting value that is subjected to a sequence of independent proportionate

shocks over time will ultimately have a log normal size distribution, regardless of the

3See Sutton (1997) for a comprehensive discussion of the law and Kalecki (1945) for a modification
of the law pertinent to the application herein.
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nature of the distribution from which the shocks are drawn. If the measured wellbeing

of a group of agents is governed by such a process, the starting value and the average

shock (essentially the growth rate) will be determined by the groups’ circumstances

(essentially the limitations in their functionings and capabilities). Such processes will

differ between poor and rich groups rendering different log normal distributions for the

different groups. At a particular point in time the observed wellbeing size distribution

in the population will be a mixture of these sub distributions with the mixing coefficient

on the poor distribution corresponding to the poverty rate.

Articulated this way poverty measurement is about estimating various aspects of

the subdistributions in the mixture together with their mixing coefficients. The price

paid is that individual poverty status is no longer identified with probability one, all

that can be done is to attach a probability to (or partially identify in the sense of

Manski, 2003) individual poverty status4. The partial identification issue arises when

the estimated poor and non poor distributions overlap and some agents cannot be

unequivocally attributed to either the poor or non poor distributions. If the non-poor

distribution had a well defined lower bound those whose incomes are below this bound

can be definitively identified as poor. Those with incomes above the lowest non-poor

income and below the highest poor income can only be associated with a probability of

being poor. Those whose incomes are above the highest poor income can be definitively

identified as non-poor. The middle grouping, where the distributions overlap, have

an only partially identified status in that only the probability of being poor can be

calculated. However as will be seen this does not inhibit estimating various aspects of

the status of the poor (or other groups for that matter).

In what follows Section 2 develops the probability of being poor and how it can

be applied in calculating various poverty measures. Section 3 outlines the versions of

Gibrat’s law to be employed in specifying the mixture distribution and the technique

for estimating the mixtures is explained in Section 4. Section 5 reports an illustrative

application to African countries over the period 1985-2008 and Section 6 offers some

conclusions.

4Note that an advantage of this technique is that it can readily handle poverty measurement
couched in multivariate contexts without resort to defining a contentious poverty frontier–a subject
for future work.
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2 The Probability of Being Poor.

For expositional convenience suppose there are two groups in society each with distinct

limitations on their functionings and capabilities which govern the processes under

which an observable characteristic x proceeds. These two processes result in a poor

wellbeing distribution fp(x) of the observable characteristic x (again for expositional

convenience the analysis will be performed in terms of a univariate distribution but

it should be stressed that the analysis can be readily performed in a multivariate

environment), and a rich wellbeing distribution fr(x), the unobservable proportions of

agents under these distributions are wp and 1−wp respectively so that the observable

size distribution of incomes in this society is:

f(x) = wpfp(x) + (1− wp)fr(x) (1)

For understanding the plight of the poor the components of interest to be estimated

are wp (as the proportion of people governed by the poor process it can be viewed as the

real poverty rate) and the nature of the distribution of incomes among the poor, fp(x)

and the distributions of incomes among the non-poor fr(x). The mean of fp(x) yields

the average incomes of the poor, its variance gives us a measure of inequality amongst

the poor and the distribution itself will permit generation of indices akin to FGT2

and FGT3 indices (Foster et al., 1984) for particular choices of a poverty reference

point. The diagram in Figure (1) illustrating equation (1) highlights the identification

problem.

For x’s in the partially identified range all that can be established is P (x), the

probability that someone with x is poor since:

P (x) = limdx−→0(a/(a + b)) = wfp(x)/(wfp(x) + (1− w)fr(x)) (2)

Given estimates of the sub distributions and the weights, this can be estimated for

each agent. When the partially identified range is empty we have complete identifica-

tion which Yitzhaki (1994) refers to this as perfect stratification, i.e. no overlapping

between the two groups. When the overlap is complete and the two subdistributions

have common modes even partial identification becomes difficult if not impossible. It
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Figure 1: Diagram representing a society characterized by groups: poor and rich sub-
groups.
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follows that one minus a measure of the overlap (Anderson et al., 2009; 2009a) provides

an indicator of the extent of identification. In the present context:

1− 1

w

∫
min (wfp(x), (1− w)fr(x)) dx (3)

provides an index between 0,1 of the extent to which identification prevails.

One attraction of P (xi) is that it affords us a poverty ranking of agent i, just as

1−P (xi) yields a wellbeing ranking, this is especially useful when the analysis is multi-

variate in nature, i.e. x is a vector of attributes. Note also E(P (x)) =
∫

P (x)f(x) dx =
∫

wfp(x) dx = w, thus, given P (x) a whole range of sample equivalents for estimation

purposes is possible. Given a sample xi i = 1, · · · , n, the mean incomes of the poor

(Mp) and non poor (Mr) are
∑

P (xi) xi/w and
∑

(1− P (xi)) xi/(1−w), respectively.

Variances of poor and non poor incomes may be similarly respectively estimated as
∑

P (xi) (xi −Mp)
2/w and

∑
(1− P (xi)) (xi −Mr)

2/(1 − w). Various inequality and

polarization measures follow in a quite natural fashion. Suppose there is an announced

poverty line at z, FGT measures for I = 1, · · · with respect to the poor and non-poor

may be contemplated for example:

FGT(I)poor =
1

w

∫ z

−∞
((z − x)/z)I−1 P (x)f(x) dx

FGT(I)rich =
1

1− w

∫ z

−∞
((z − x)/z)I−1 (1− P (x))f(x) dx.

A variety of relative poverty measures of the poor could easily be generated by

making z some function of the rich distribution (e.g. some particular quantile of the

rich distribution). The sample analogues are obvious and simple to calculate.

Other population characteristics of the poor and non-poor are similarly easy to

identify for poor and rich groups using P (x) and (1−P (x)). Consider the characteristic

h (suppose it to be a “health” index for example) associated with income level x then

respective poor and rich means and variances of the poor and rich health status would

be given by:

E(Hpoor) =
1

w

∫ ∞

0
h(x)P (x)f(x) dx
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E(Hrich) =
1

1− w

∫ ∞

0
h(x)(1− P (x))f(x) dx

V(Hpoor) =
1

w

∫ ∞

0

(
h(x)− E(Hpoor)

)2
P (x)f(x) dx

V(Hrich) =
1

1− w

∫ ∞

0

(
h(x)− E(Hrich)

)2
(1− P (x)) f(x) dx.

All of which can be estimated by the corresponding sample equivalents.

In a situation where there is an announced poverty cutoff, relationships between

the truly poor and the identified poor can be established. Suppose identification of the

poor was pursued by employing an arbitrarily determined poverty cutoff c, then:

Prmp =
∫ c
−∞ fy(x) dx proportion of the rich miss-identified as poor

Ppmr =
∫−∞
c fp(x) dx proportion of the poor miss-identified as rich

and the calculated poverty rate would be wp(1−Ppmr)+ (1−wp)Prmp 6= wp (unless

the proportion of the misidentified that are rich identified as poor is equal to the real

poverty rate i.e. wp = Prmp/(Ppmr + Prmp). What may clearly be seen is that tracking

the progress of the poor defined by a poverty cutoff will result in part of the rich

group being tracked as a proxy for part of the poor group who are not being tracked.

Conditional on the extent of identification of the poor group this may be used as a

means of tracking how well frontier based poverty measures track the progress of the

poor.

3 The Stochastic Processes.

Without knowledge of which observations are in which group the subdistributions have

to be estimated, unfortunately all that is observed is the mixture distribution. Partial

identification (estimation of P (x)) can be achieved by employing some sort of theory

regarding the nature of the subdistributions. Here versions of Gibrat’s law are invoked.

Suppose that xt, the income of the representative agent at period t, follows the law
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of proportionate effects with δt its income growth rate in period t, T the elapsed time

period of earnings with x0 the initial income. Thus:

xt = (1 + δt−1) xt−1; and xT = x0

T−1∏

i=1

(1 + δi) (4)

Assuming the δ’s to be independent identically distributed random variables with

a small (relative to one) mean µ and finite variance σ2 it may be shown that for an

agents life of T years with starting income x0 the log income size distribution of such

agents would be linked systematically from period to period in terms of means and

variances in the form5 :

ln(xT ) ∼ N
((

ln(x0) + T (µ + 0.5σ2)
)
, Tσ2

)
(5)

Note that the distribution is governed by the initial condition ln(x0) and the growth

rate µ which in turn are dependent on the circumstances of the agent. These types of

models are very close to the cross - sectional growth (or Barro) regressions familiar in

the growth and convergence literature (see Durlauf et al. (2005) for details) except that

the properties of the error processes they engender are usually ignored in cross-sectional

comparisons, in particular the variance of the process is heteroskedastic increasing in

a cumulative fashion through time implying increasing absolute inequality. Note that

5 could also be the consequence of a process of the form:

ln(xy) = ln(xt−1) + ψ + et (6)

which had started at t = 0 and had run for T periods where et was an i.i.d. N(0, σ2)

and where ψ = µ + 0.5 σ2. Indeed the i.i.d. assumption regarding the δ’s s is much

stronger than needed, under conditions of 3rd moment boundedness, log normality can

be established for sequences of non-independent, heteroscedastic and heterogeneous δ

(see Gnedenko, 1962) where the variance of the process still grows as O(T ). The power

5The same result can be achieved in the continuous time paradigm by assuming a Geometric
Brownian Motion for the x process of the form:

dx = µx dt + σx dw

Where µx is the mean drift, σx is a variance factor and dw is the white noise increment of a Weiner
process.
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of the law, like all central limit theorems, is that a log normal distribution prevails in

the limit almost regardless of the underlying distribution of the δ’s (or e’s).

To somewhat muddy the waters Kalecki (1945) generated a lognormal size distri-

bution from a stationary process of the form:

ln(xt)− ln(xt−1) = λ (f(wt)− ln(xt−1)) + et (7)

with 0 < λ < 1 this corresponds to a partial adjustment model to some equilibrium

f(wt), (which in the context of incomes would be a “fundamentals” notion of long run

log incomes). This is essentially a reversion to mean type of process where the mean

itself could be a description of the average income level at time t (which incidentally may

well be trending through time) but here the variance of the process (and concomitantly

absolute inequality) stays constant over time. For et ∼ N(0, σ2) in the long run ln(xt) ∼
N(f(wt), σ

2/λ). There are several observations to be made.

Firstly the pure integrated process story associated with Gibrat’s law is not even

a necessary condition for lognormality of the income size distribution, such distribu-

tions can be obtained from quite different, more generally integrated or non-integrated

processes. Secondly stationary processes are in some sense memory-less in that the

impacts of the initial value of incomes f(w0) and the associated shock e0 disappear af-

ter a sufficient lapse of time. On the other hand integrated processes never forget, the

marginal impact of the initial size and subsequent shocks remain the same throughout

time. Thirdly, if f(wt) were itself an integrated process (if the w′s were integrated of

order one and f(w) was homogenous of degree one for example) 7 would correspond to

an error correction model and incomes would still present as an integrated process in its

own right with x and the function of the w’s being co-integrated with a co-integration

factor of 1. This is the key to distinguishing between Kalecki’s law and Gibrat’s law,

the cross-sectional distribution of the former only evolves over time in terms of its

mean f(wt), its variance (written as σ2/λ2) is time independent, whereas the cross

distribution of the latter evolves in terms of both its mean and its variance overtime.
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4 Finite mixture models and the EM algorithm.

Mixture models can be viewed as a semi-parametric alternative to the non-parametric

densities and, by controlling for the number of components, we can obtain a suit-

able compromise between the efficiency of parametric models and the flexibility of

non-parametric methods. We are interested in a parametric family of finite mixture

densities, i.e., a family of probability density functions of the form:

f(xi,Ψ) =
g∑

j=1

πjfj(xi, θj) (8)

where the vector Ψ = (π1, · · · , πg−1, Θ
′)′ contains all the unknown parameters in the

mixture model; πj, j = 1, · · · , g represent the mixing proportions and the vector Θ

contains all the parameters (θ1, · · · , θg) known a priori to be distinct; fj (xi, θj) denotes

the values of the univariate density specified by the parameter vector θj and g the

number of mixing components.

The mixture density estimation problem (Redner and Walker, 1984) consists in

estimating Ψ in (8) given the number g of component populations in the mixture. The

method of Maximum Likelihood (ML) has become the most commonly approach for

solving the the mixture density estimation problem. As is well known, a maximum-

likelihood estimate is a choice of parameters which maximizes the probability density

function of the sample and ensures important properties of the parameters. However,

there are two practical difficulties associated with ML estimation for mixture densities.

The first difficulty is that the log-likelihood function increases without bound and, as

first pointed out by Kiefer and Wolfowitz (1956), the global maximizer of the likelihood

function, might not exist for a mixture of two univariate normal distributions with

unequal variances. The second difficulty is related to the question of which root of the

likelihood equation corresponding to a local maximum of the likelihood function (i.e.

which local maximizer) to choose as the estimate of the vector of unknown parameters

Ψ. The log-likelihood function can, and in fact often does have, local maxima which

are not necessarily the global maxima. However, there is little one can do about

this problem and the non-existence of a global maximizer of the likelihood function

estimate does not place a caveat on the proceedings, as the essential aim of the likelihood

estimation is to find a sequence of roots of the likelihood equation that is consistent,
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and hence efficient if the usual regularity conditions hold. These conditions should

hold for many parametric families.

There are also computational difficulties associated with obtaining maximum-likelihood

(ML) estimates in the mixture models framework, essentially related to the strong

dependence of the likelihood function on the parameters to be estimated. For mix-

ture density problems, the likelihood equations are nonlinear and, consequently, we

cannot find analytical solutions but rather seek for approximate solutions via iterative

procedures. A particular iterative procedure for numerically approximating maximum-

likelihood estimates of the parameters in mixture density is the expectation-maximization

(EM) algorithm. The EM algorithm for mixture density estimation problems can be

viewed as a specialization of the general version as originally formalized by Dempster

et al. (1977) used to approximate ML estimates of the parameters for incomplete data

problems. In the mixture density estimation problem the incompleteness refers to the

assignments of data points to mixture components. At present, in the mixture-density

parameter estimation problem, the EM is being widely applied because of its superior

performances over other estimation procedures in finding a local maximum of the like-

lihood function (McLachlan and Peel, 2000). In fact, one of its more attractive feature

is that it produces sequences of iterates on which the log-likelihood function increases

monotonically. This monotonicity is the basis for producing iteration sequences with

good global convergence characteristics (Redner and Walker, 1984). The algorithm is,

however, guaranteed to converge to a local maximum of the likelihood function.

4.1 Estimation of mixture models.

In this paper we fit mixtures of Gaussians components, i.e. incomes (in logs) come

from a mixture of g normal distributions, with unrestricted variances. The vector

θj =
(
µj, σ

2
j

)
denotes the mean and the variance of the univariate normal component

j. The mixing proportions π1, · · · , πg, that are nonnegative and sum to one, give the

prior probability that a agent belongs to the gth component of the mixture, representing

an endogenous parameter which determines the relative importance of each component

in the mixture. The fitting of the mixture model provides a probabilistic clustering of n

agents in terms of their estimated ex post probabilities of membership of the individual

12



g components of the mixture of distributions. The posterior or conditional probability

τij is given by:

τij = Prob{C(i) = g | (xi;Ψ)} =
πjfj(xi)∑g

h=1 πhfh(xi)
(9)

where C(i) indicates the component to which agent i belongs, i = 1, . . . , n.

The estimation procedure throughout the EM algorithm provides ML estimation

of the parameters of the constituent populations and the proportions in which they

are mixed. Given current estimates of the model parameters, in the Estimation step

we used Bayes’ rule to calculate for each component j and for each data point i the

expected posterior or conditional probabilities τij. In the Maximization step we max-

imized the likelihood function under the assumption that the missing data are known

and we ML-estimate each density fj weighing the data by the marginal probabilities

πj. The pairs of E and M steps are applied iteratively6. Convergence problems are

encountered with the EM algorithm when the fraction of the information missing be-

cause of the unobserved C(i) is substantial, or the log-likelihood has ridges and similar

features. The number of iterations tends to increase with the complexity of the model

(number of components). In our analysis, we have had no problems with convergence

or multiple extremes.

We dealt with the problem of seeking for the largest local maxima by applying a

range of starting values. Typical initial values for a mixtures of Gaussian are equal

mixtures coefficients, components variances equal to that of data, components means

drawn from a normal distribution estimated from the data. In our analysis, we chose

different ways of specification of initial values, like random starts and k-means (crisp

and fuzzy) clustering based starting values.

4.2 Assessing the number of mixture components.

The mixture density estimation problem discussed in section 4.1 assumes g, the number

of components, to be known. Unless there is strong a priori information on g it becomes

a matter of choice and the choice of the “optimal” number of component densities is a

difficult problem which has not been fully solved (Aitkin and Wilson, 1980; Richardson

6All the computing was carried out in R. The software developed (functions) can be obtained from
the authors on request.
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and Green, 1997; McLachlan and Peel, 2000). Here we test for the minimum number

of components that are simultaneously compatible with the data, where compatibility

refers to the goodness of fit of the estimated model. An empirical comparison with

other well-known procedures is in Pittau et al. (2010). We compare the shape of

the hypothesized mixture distribution with the true unknown density, consistently

estimated by a kernel estimator. The two densities are compared by measuring the

integrated distance between the estimated mixture and the kernel estimated density.

Since the exact shape of the mixture density varies with the number of components, we

start comparing kernel density with a single normal distribution and we keep adding

constituents until the integrated distance between the estimated mixture and the kernel

density is not significantly different from zero.

Specifically, the goodness of fit of the mixture model is assessed by a measure

of global distance between the estimated true density and the estimated parametric

density:

J =
∫

x
[f̂(x)− f(x; Ψ̂0)]

2dx. (10)

f̂(x) is the estimated kernel density of the unknown density function f(x) obtained

by the kernel estimator:

f̂(x) =
1

nh

n∑

i=1

(
x−Xi

h

)
(11)

where h is the bandwidth that governs the degree of smoothing and K(·) is a kernel

function; f(x; Ψ̂0) is the mixture of normal components ML-estimated via the EM

algorithm under the null hypothesis of g = g∗ components.

The smoothing operation in kernel estimation produces bias. To avoid this smooth-

ing induced bias, following Bowman (1992), at each point x the kernel density is com-

pared with the kernel-smoothed parametric estimate under the assumption of a mixture

of g normal components. Formally, the test contrasts the density estimate with its es-

timated mean under the assumption of mixture, that is the expected value under the

null hypothesis of a mixture of g∗ components:

Ĵ =
∫

x

[
f̂(x)− Êf̂(x)

]2
dx. (12)

The test statistic is a measure of agreement between these two densities, the es-

timated integrated squared error (ISE) statistic. The hypothesis to be tested is: H0:
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g = g∗ against H1: g 6= g∗. Using the test sequentially starting from g∗ = 1 the

alternative becomes g > g∗. The estimated mean Êf̂(x) under the null hypothesis is

equal to a convolution of a kernel with a mixture of normal components.

When the kernel function is Gaussian, it is easy to show that the convolution

collapses into a mixture of normal densities with means equal to µj and variances equal

to (σ2
j + h2), j = 1, · · · , g, where h is the bandwidth used to compute f̂(x). Under the

null hypothesis of correct parametric specification, Fan (1994) proves that a center-free

test statistic based on Ĵ is asymptotically normally distributed (see also Fan and Ullah,

1999, for the properties of the test when observations are weakly dependent). However,

convergence is rather slow and the normal distribution is an accurate approximation

of the test statistic only for very large samples. A more powerful solution for small

sample is to calculate critical values for the test statistic by simulations. As in Fan

(1995), we use a parametric bootstrap procedure (with 1000 replications).

Starting from the null hypothesis of g = 1, the rejection of the null implies the

implementation of the test under the null hypothesis that the population density is a

mixture of g = 2 normal distributions, and so on until we cannot reject the null of

g = g∗, finding the smallest number of components compatible with the data.

The implementation of the procedure requires a good choice of the smoothing pa-

rameter h. Data-based smoothing value that achieves good estimation of the kernel

density irrespective of the null or the alternative hypothesis is true was considered and

the bandwidth obtained by using the Sheather and Jones method (1991) was preferred

because of its overall good performance (Jones et al., 1996)7.

Table 1 reports the ISE statistics and the corresponding bootstrapped p-values for

testing the null hypothesis of g = g∗ components for g∗ ranging from 1 to 4. In each

year the value of the ISE statistic implies rejection, at least at 10% significance level,

of the null hypotheses g = 1, g = 2 and g = 3, but it never rejects g = 4. That

is, the null of g = 4 is selected over the alternative that g = 2 and g = 3. These

results are corroborated by the good fitting provided by the four-components fitted

semi-parametric density versus the non-parametric smoothed density.

As a result of the curve fitting procedures Figure 2 and Figure 3 show the estimated

7These results are robust to the selection of the smoothing parameter h used in the kernel estimation
of the unknown density function. The results are available upon request.
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Table 1: The choice of the number of components according to the goodness of fit test.

m∗=1 m∗=2 m∗=3 m∗=4

year Ĵ p-value Ĵ p-value Ĵ p-value Ĵ p-value

1985 3.48 0.00 0.24 0.30 0.25 0.21 0.02 0.80
1990 2.96 0.00 0.24 0.32 0.24 0.09 0.06 0.17
1995 2.51 0.00 0.16 0.40 0.11 0.12 0.05 0.34
2000 4.12 0.00 0.28 0.24 0.15 0.08 0.05 0.38
2005 6.18 0.00 0.46 0.12 0.14 0.19 0.05 0.42
2008 8.22 0.00 0.60 0.12 0.20 0.15 0.06 0.48

The estimated ISE, Ĵ , is multiplied by 100

kernel and the bias-adjusted mixture densities per capita GDP (in $US 2000 constant

prices) for 47 African countries over the period 1985–2008 as well as the constituents

of a two and a four-component estimated mixture, respectively. Since the test statistic

is a simple measure of the distance between these two densities it facilitates a picture

on a density scale of how well the model with the minimum number of components fits

the data.

5 An Example: Africa 1985-2008.

As a result of the curve fitting procedures, a mixture distribution of four log normal

size distributions of per capita GDP (in $US 2000 constant prices) was estimated for

47 African countries (appendix 1 lists the countries, along with the ex-post estimated

probabilities to belong to the very Poor and to the Poor group) over the period 1985–

2008 for which data was available. The 47 countries are not equally sized in terms

of population, with some remarkable differences. In the year 2008, for example, the

population in Nigeria was over 151 million inhabitants, while the Seychellois citizens

were only 86 thousands in number. The variability across African countries is no-

table, though not comparable with differences in world population distribution and,

therefore, population-based weighting schemes were integrated into all the estimation

procedures. Figure 3 provides a comparison of the chosen mixture distribution and

its sub components with a kernel estimate of the overall size distribution and Table 2
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reports the means, standard deviations and mixture coefficients for the four component

distributions which may be associated with “very poor” (or “chronic”), “poor”, “mid-

dle income” and “rich” groups. As is obvious from the diagram the overall distribution

is bi-modal permitting the interpretation of the overall distribution being a mixture

of mixture distributions. This affords us two possible analyses one with the poverty

group being the poorest single component, the other with the poverty group being a

mixture of two lower distributions.

The four groups have economic growth rates of 1.27%, 1.31%, 2.54% and 1.6%

respectively indicative of a growing apart of the respective poor and rich groups however

they are defined. The standard deviations of the two poor components are growing over

time (consistent with Gibrat’s law) and the standard deviations of the non-poor groups

have stayed roughly constant over time (consistent with Kalecki’s law). The mixing

coefficients, reflective of proportionate group membership, have increased substantially

for the poorest group (20% to 30%) declined slightly for the next poorest group (44%

to 40%) and declined solidly for the two top groups so that defining the poor as the

bottom two groups it may be seen that the poverty rate has increased from 64% to

70%. Defining the poor as the bottom group the growth of the poverty rate over the

period has been 2.32% per annum, defining the poor as the bottom two groups the

growth in the poverty rate has been 0.45% per annum.

How well identified are these effects? Table 3 reports the identification index (equa-

tion (3)), i.e. one minus the overlap measure for the poorest group and the rest and

for the lower modal group and the upper modal group. The overlap measure of two

Normal distributions can be written as following. Letting x∗ be the intersection point

of two normals N
(
µp, σ2

p

)
and N (µr, σ2

r) withe respective weights w and 1−w where

µp < x∗ < µr, then the Overlap Measure (OV) is given by:

OV = (1− Φ ((x∗ − µp)/σp)) + (1− w)Φ ((x∗ − µr)/σr) /w (13)

being Ψ the cumulative normal distribution function and x∗ the solution to

w
e
−(x∗−µp)2

2σ2
p

√
2πσ2

p

= (1− w)
e
−(x∗−µr)2

2σ2
r

√
2πσ2

r
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Table 2: Means, Standard Deviations and Mixing Proportions of the 4-components:
Very Poor, Poor, Middle-income, Rich.

Means
Year Very Poor Poor Middle Rich
1985 4.996 5.681 6.875 7.726
1990 5.179 5.700 7.084 7.632
1995 4.915 5.695 7.153 7.861
2000 4.838 5.801 7.277 7.878
2005 5.245 5.914 7.333 7.908
2008 5.289 5.984 7.459 8.094

Standards deviation
Year Very Poor Poor Middle Rich
1985 0.248 0.251 0.167 0.498
1990 0.279 0.467 0.235 0.649
1995 0.287 0.463 0.155 0.509
2000 0.335 0.401 0.138 0.504
2005 0.601 0.408 0.025 0.467
2008 0.552 0.333 0.157 0.489

Components
Year Very poor Poor Middle Rich
1985 0.197 0.439 0.235 0.129
1990 0.191 0.484 0.210 0.116
1995 0.207 0.500 0.214 0.079
2000 0.247 0.467 0.200 0.087
2005 0.326 0.393 0.164 0.117
2008 0.302 0.403 0.207 0.088

which may be written as the following quadratic form in x∗ with the root between

µp and µr providing the intersection point:

(
1

σ2
r

− 1

σ2
p

)
x∗2 − 2

(
µr

σ2
r

− µp

σ2
p

)
x∗ +

(
µ2

r

σ2
r

− µ2
p

σ2
p

)
− 2ln

(
(1− w)σp

wσr

)
= 0

It is evident that identification is weak in the poorest group case but very strong in

the lower mixture subgroup case, not surprising given the almost perfect segmentation

in the latter case (see diagram 1).

The probability of being poor can also be used as an identifier to evaluate other

aspects of the poor and non-poor groups. Here as an illustration a health outcome–life
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Table 3: Identification index for the poorest group and the rest as well as for the lower
modal group and the upper modal group

Identification Index
Year Poorest group Lower modal group
1985 0.753 0.996
1990 0.171 0.958
1995 0.504 0.987
2000 0.734 0.994
2005 0.471 0.991
2008 0.548 0.995

Table 4: Life Expectancy for the chronic poor and for the poor group, years: 1985–
2005)

Life Expectancy (Chronic Poor)
1985 1990 1995 2000 2005

Poor Mean 48.589 48.183 44.960 41.748 50.244
Non-Poor Mean 52.935 54.379 55.954 57.646 56.337
Poor Std Deviation 3.753 3.967 4.262 7.141 4.659
Non- Poor Std Deviation 8.394 10.237 13.368 16.441 11.235

Life Expectancy (Poor)
1985 1990 1995 2000 2005

Poor Mean 50.078 50.982 51.390 51.622 53.001
Non-Poor Mean 55.575 57.788 59.208 58.956 57.798
Poor Std Deviation 4.453 5.338 5.322 5.047 5.426
Non- Poor Std Deviation 10.295 12.191 13.666 14.351 14.107

expectancy is considered (note only data through 2005 was available at time of writ-

ing). Table 4 reports the comparisons. As will be seen the outcomes are substantially

different for the two poor group definitions but notwithstanding these differences life

expectancy for the poor groups is decidedly inferior to that of the non poor groups

however defined with very little change in the life expectancy for the poorest group.

There also appears to be some growth in the variability of life expectancy for both

groups in both definitions.

It is also possible to examine the extent to which current practice of identifying the

poor by employing a poverty cut off actually captures the poor group. Two examples,
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Table 5: Poverty line based on 0.9 × overall mean poverty cut off, years: 1985–2005

Chronic Poverty Group Poor Group
Year Identified % Poor % Poor % Rich % Poor % Poor % Rich

poverty Identified Identified Identified Identified Identified Identified
rate as Poor as Rich as Poor as Poor as Rich as Poor

1985 29% 98% 3% 12% 45% 55% 0%
1990 33% 88% 12% 20% 49% 51% 0%
1995 33% 96% 4% 17% 47% 53% 0%
2000 32% 96% 4% 11% 45% 55% 0%
2005 30% 69% 31% 11% 41% 59% 0%
2008 28% 74% 26% 9% 40% 60% 0%

a poverty cut off at 0.9 of mean income (which may be thought of as a relative poverty

line) and a $2 per day cut off (which may be thought of as an absolute poverty line),

are reported in Tables 5 and 6 respectively. When the lowest component in the mixture

is considered the poor, both poverty lines (with a couple of exceptions), capture the

poor group pretty well, but they do miss-identify a substantial proportion of the non-

poor group in the calculus. When the two lowest components are considered the truly

poor the relative poverty line identifies less than 50% of the poor correctly whereas the

absolute poverty line does a pretty good job except that its effectiveness is declining

(largely due to the growth in incomes and the relatively stable standard deviation of

this grouping). This is because the $2 a day poverty line is close to the separation

point of the poor and non-poor distributions in this structure.

It is instructive to compare the growth in poverty rates obtained when identifica-

tion of the poor is achieved by employing a poverty line with those obtained in the

partially identified case. In both the relative poverty (-0.01%) and absolute poverty

(0.27%) cases the growth rates of the poor group are understated, this is largely due to

substantial portions of the rich being miss-identified as poor and substantial portions

of the poor being miss-identified as rich. The comparison that comes closest is that

between the absolute poverty line and the lower modal grouping of the poor but this is

because the absolute poverty line is very close to where the almost perfect segmentation

appears so that there is very little miss-identification in either direction.
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Table 6: Poverty line based on $2 a day poverty cut off, years: 1985–2005

Chronic Poverty Group Poor Group
Year Identified % Poor % Poor % Rich % Poor % Poor % Rich

poverty Identified Identified Identified Identified Identified Identified
rate as Poor as Rich as Poor as Poor as Rich as Poor

1985 65% 100% 0.00% 56% 99% 0.01% 3.38%
1990 67% 100% 0.00% 59% 98% 2.00% 3.12%
1995 69% 100% 0.00% 62% 98% 1.90% 0.18%
2000 70% 100% 0.00% 61% 98% 1.57% 0.16%
2005 70% 99% 1.24% 56% 97% 3.17% 0.10%
2008 69% 99% 0.91% 56% 98% 2.32% 0.03%

6 Conclusions

Drawing on ideas from the partial identification literature and using predictions from

various versions of Gibrat’s law a new approach to poverty measurement has been

proposed which avoids the many difficulties associated with defining poverty lines. The

cost is that no longer are the poor perfectly identified, individuals in the poor group

are only partially identified with a probability being attached to their poor status.

However this does not impede calculation of the usual poverty statistics such as the

poverty rate, the average income of the poor and the variability of the incomes of the

poor, nor does it impede the calculation of statistics relating to other characteristics of

the poor. The probability of being poor can also be used to elicit other characteristics

of the poor versus the non poor. Furthermore it is possible to calculate an index of the

extent to which identification of the poor group has been achieved.

The approach is illustrated in an application to 47 African countries over the period

1985–2008. Identification of the poorest group is limited in some years but identification

of the lowest modal group appears quite sound. In essence the incomes of the poor

countries are shown to be growing more slowly than those of the non-poor countries,

membership of the poor group is increasing (and that of the rich country group is

declining) and, though the life expectancies of the poor groups are increasing, the

gap between the life expectances of the chronically poor and the rest is widening.

Conventional methods of identifying the poor by specifying a poverty line appear to

understate the growth in the poor group in all instances.
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Appendix A: estimated ex post probabilities for each country of being
chronically poor and poor8

Year 1985 1990 1995 2000 2005 2008
Chronic Chronic Chronic Chronic Chronic Chronic

Country Poor Poor Poor Poor Poor Poor Poor Poor Poor Poor Poor Poor
Algeria 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Angola 0.00 0.00 0.00 0.31 0.00 1.00 0.00 0.99 0.15 0.88 0.00 0.01
Benin 0.00 1.00 0.11 1.00 0.01 1.00 0.01 1.00 0.26 1.00 0.21 1.00
Botswana 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Burkina Faso 0.76 1.00 0.56 1.00 0.40 1.00 0.21 1.00 0.44 1.00 0.46 1.00
Burundi 0.95 1.00 0.62 1.00 0.79 1.00 0.96 1.00 0.97 1.00 1.00 1.00
Cameroon 0.00 0.00 0.00 0.57 0.00 1.00 0.00 0.99 0.15 0.99 0.13 1.00
Cape Verde 0.00 0.00 0.00 0.17 0.00 0.10 0.00 0.01 0.03 0.09 0.00 0.00
Cent.Afr.Rep. 0.01 1.00 0.18 1.00 0.08 1.00 0.10 1.00 0.56 1.00 0.62 1.00
Chad 0.48 1.00 0.54 1.00 0.51 1.00 0.69 1.00 0.38 1.00 0.52 1.00
Comoros 0.00 1.00 0.01 0.99 0.00 1.00 0.00 1.00 0.22 1.00 0.20 1.00
CongoDemRep 0.10 1.00 0.46 1.00 0.82 1.00 0.99 1.00 0.99 1.00 1.00 1.00
CongoRep 0.00 0.00 0.00 0.02 0.00 0.05 0.00 0.10 0.08 0.33 0.02 0.05
Cote Ivoire 0.00 0.00 0.00 0.77 0.00 0.99 0.00 0.99 0.16 1.00 0.12 1.00
EgyptArabRep 0.00 0.00 0.00 0.02 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
Equat.Guinea 0.00 0.31 0.00 0.95 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00
Ethiopia 1.00 1.00 0.63 1.00 0.82 1.00 0.92 1.00 0.86 1.00 0.84 1.00
Gabon 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Gambia The 0.00 1.00 0.04 1.00 0.01 1.00 0.01 1.00 0.26 1.00 0.19 1.00
Ghana 0.43 1.00 0.39 1.00 0.12 1.00 0.08 1.00 0.34 1.00 0.26 1.00
Guinea 0.00 1.00 0.04 1.00 0.00 1.00 0.00 1.00 0.21 1.00 0.16 1.00
Guinea-Bissau 0.82 1.00 0.54 1.00 0.38 1.00 0.67 1.00 0.93 1.00 0.99 1.00
Kenya 0.00 1.00 0.00 0.98 0.00 1.00 0.00 1.00 0.19 1.00 0.13 1.00
Lesotho 0.01 1.00 0.05 1.00 0.00 1.00 0.00 1.00 0.18 1.00 0.12 1.00
Liberia 0.00 0.77 0.47 1.00 0.83 1.00 0.36 1.00 0.92 1.00 0.97 1.00
Madagascar 0.01 1.00 0.12 1.00 0.08 1.00 0.08 1.00 0.46 1.00 0.43 1.00
Malawi 0.93 1.00 0.64 1.00 0.70 1.00 0.79 1.00 0.90 1.00 0.93 1.00
Mali 0.41 1.00 0.41 1.00 0.19 1.00 0.11 1.00 0.36 1.00 0.34 1.00
Mauritius 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Morocco 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
Mozambique 0.96 1.00 0.53 1.00 0.38 1.00 0.15 1.00 0.30 1.00 0.20 1.00
Namibia 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Niger 0.43 1.00 0.50 1.00 0.52 1.00 0.70 1.00 0.79 1.00 0.88 1.00
Nigeria 0.00 1.00 0.02 0.99 0.00 1.00 0.00 1.00 0.19 1.00 0.13 1.00
Rwanda 0.05 1.00 0.32 1.00 0.31 1.00 0.22 1.00 0.41 1.00 0.29 1.00
Senegal 0.00 0.99 0.00 0.98 0.00 1.00 0.00 1.00 0.16 1.00 0.12 1.00
Seychelles 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Sierra Leone 0.03 1.00 0.26 1.00 0.33 1.00 0.79 1.00 0.49 1.00 0.47 1.00
South Africa 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Sudan 0.09 1.00 0.21 1.00 0.02 1.00 0.01 1.00 0.19 1.00 0.12 1.00
Swaziland 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
Togo 0.01 1.00 0.17 1.00 0.09 1.00 0.08 1.00 0.46 1.00 0.54 1.00
Tunisia 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Uganda 0.81 1.00 0.54 1.00 0.19 1.00 0.08 1.00 0.34 1.00 0.22 1.00
Zambia 0.00 1.00 0.02 0.99 0.01 1.00 0.02 1.00 0.25 1.00 0.18 1.00

8The first columns reports the probability of being in the very poor or chronic poverty group, the
second the probability of being poor, i.e. the probability of belonging to the lowest components of the
mixture.
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