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Abstract

This paper considers the problem of testing an expert who makes probabilistic fore-

casts about the outcomes of a stochastic process. I show that, under general conditions

on the tester’s prior, a likelihood test can distinguish informed from uninformed ex-

perts with high prior probability. The test rejects informed experts on data-generating

processes where the tester quickly learns the true probabilities by updating her prior.

However, the set of processes on which informed experts are rejected is topologically

small. These results contrast sharply with many negative results in the literature.

1 Introduction

In settings ranging from economics and politics to meteorology, ostensible experts offer

probabilistic forecasts of a sequence of events. Testing the reliability of these forecasts can

be problematic since probabilistic forecasts of individual events are not generally falsifiable.

It is tempting to think that this problem should disappear with the collection of enough

data; that is, that an appropriately designed test could reliably distinguish true experts
∗I am grateful to Martin Osborne, Marcin P ↪eski, Jakub Steiner, and seminar participants at SFU for

helpful comments. This work is supported by a SSHRC research grant.
†Department of Economics, University of Toronto. Email: colin.stewart@utoronto.ca
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from charlatans by comparing a long sequence of forecasts to the realized sequence of events.

However, recent work has shown that under very general conditions, no such test exists

(see Olszewski and Sandroni (2008) and Shmaya (2008)). Any test that passes experts who

know the true data-generating process can also be passed on any realized data by experts

who know nothing, but who choose their forecasts appropriately.

Negative results of this type usually require that an expert who knows the true data-

generating process be able to pass the test no matter what the true process is. In this

paper, I show that effective testing is generally possible if true experts are allowed to fail

with small probability relative to given prior beliefs over the data-generating process.

Consider a tester who believes that there is some true distribution P generating the

data, but who faces uncertainty about P captured by some distribution µ. The distinction

between the distributions µ and P can be understood in terms of the standard distinction

between epistemic and aleatory uncertainty. Epistemic uncertainty results from a lack of

knowledge of a physical process that could in principle be eliminated. Aleatory uncertainty

is inherent to the environment. In this terminology, the distribution P captures the aleatory

uncertainty whereas the prior distribution µ captures the tester’s epistemic uncertainty.

Two natural requirements arise for a tester who forms beliefs µ over the data-generating

process. First, true experts should pass the test with high probability relative to these

beliefs. More precisely, if the data are generated by a distribution P , an expert forecasting

according to P should pass the test on a set of outcomes with large P -probability, except

perhaps for a set of distributions P having small µ-probability. Second, an expert who

does not know the true process—but does know the tester’s prior—should not be able to

pass the test. That is, no matter what mixed forecasting strategy σ a false expert uses, she

should fail the test with high (σ, P )-probability for a set of distributions P having large

µ-probability.
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Designing a test with both of these properties is not possible for every prior µ. For

instance, if µ assigns probability 1/2 to each of two distributions P1 and P2, then a true

expert must pass with high probability on both distributions, in which case a false expert

can also pass with probability close to 1/2 simply by forecasting according to either one of

P1 or P2.

I show below that there exists a likelihood ratio test satisfying both desiderata whenever

forecasts derived from the tester’s prior do not converge to the true probabilities quickly,

or do so only with small µ-probability. The test is based on a comparison of the likelihood

assigned to the realized data by the expert’s forecasts to that assigned by the tester’s

forecasts (obtained through Bayesian updating of µ given the realized data to date). The

expert passes the test if two conditions are satisfied: (i) the likelihood associated with the

expert’s forecasts is eventually higher than that associated with the tester’s, and (ii) the

expert’s forecasts do not converge to those of the tester too quickly.1 For a true expert,

condition (i) is almost surely satisfied whenever condition (ii) holds. Thus a true expert

fails the test only when the tester learns the true probabilities independently of the expert’s

forecasts (in which case the tester may have no need for the expert). A false expert, on

the other hand, cannot manipulate this test. Regardless of the false expert’s forecasting

strategy, she fails the test with probability 1 with respect to the tester’s prior and her

own randomization. Intuitively, condition (ii) forces the false expert to make forecasts

that are very unlikely to outperform the tester’s own when the data-generating process is

distributed according to the tester’s beliefs.

One might worry that allowing true experts to fail with small probability with respect

to a fixed prior nonetheless allows them to fail on a large set of distributions, and thus

fails to be robust to incorrect priors. It turns out that, regardless of the prior µ, the true
1More precisely, the sum of the squared differences between the two forecasts diverges.
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expert fails the likelihood ratio test with positive probability only on a topologically small

set of distributions (in the sense of Baire category). Therefore, the test also has desirable

properties from the perspective of a non-Bayesian tester who wants to avoid manipulation

by false experts without failing true experts on a large set of distributions. Such a tester

can use the test corresponding to a prior µ chosen so that, under this prior, the tester does

not learn the true probabilities too quickly. The set of distributions on which true experts

fail the test is then small in both a topological and a measure-theoretic sense.

2 Related literature

Previous literature has identified an important distinction for tests that are required to pass

true experts on every data-generating process. Dekel and Feinberg (2006) and Olszewski

and Sandroni (2009a) have obtained strong positive results if the tester can ask the expert

to report the entire distribution P over infinite sequences of data. In many real-world

settings, however, the tester can observe only the single-period forecasts made by the

expert along the realized data sequence. In this case, Olszewski and Sandroni (2008) and

Shmaya (2008) have shown that every test that passes true experts can be manipulated by

false experts.2 Thus any non-manipulable test that passes true experts necessarily violates

the prequential principle (Dawid (1984)), which states that tests of forecasts should be

based only on the forecast probabilities along the realized path of data, not on forecasts

following hypothetical events that did not occur. In this paper, I restrict attention to this

sequential setting to highlight the contrast with these negative results.

Olszewski and Sandroni (2009b) were the first to consider tests that fail true experts

on some distributions, referring to the set on which they pass as a paradigm. They prove
2These results represent the culmination of a line of research considering various classes of tests, be-

ginning with Foster and Vohra (1998). See also Lehrer (2001), Olszewski and Sandroni (2009b), Sandroni
(2003), Sandroni et al. (2003), and Vovk and Shafer (2005).
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negative results when the paradigm is closed and convex, and identify a nonmanipulable

test that fails true experts only if the single-period probabilities are close to 50% too often.

Al-Najjar, Sandroni, Smorodinsky, and Weinstein (2008) propose an alternative paradigm

in which effective testing is possible. Fortnow and Vohra (2009) take a different approach,

obtaining positive results by restricting the class of strategies available to the false expert.

The likelihood test proposed here bears a close resemblance to the comparative test

suggested by Al-Najjar and Weinstein (2008). When the expert is uninformed, the tester’s

forecasts play a role akin to the informed expert’s forecasts in their setting. However, there

is an essential difference. In our setting, the uninformed expert knows the tester’s prior,

and hence can predict the tester’s forecasts, but is prevented from following these forecasts

by the definition of the test. In Al-Najjar and Weinstein’s setting, the uninformed expert

fails to manipulate the test because she is unable to predict the forecasts that the informed

expert will make and can only pass by making forecasts close to those of the informed

expert. Section 6 below elaborates on the relationship between the present setting and

tests of multiple experts.

Like the present paper, Olszewski and Sandroni (2009b) also consider the probability

of manipulation with respect to some prior measure, but in their case the prior is defined

directly over the set of realizations. Proposition 3 of their paper shows that a false expert

can pass on a set of realizations having large measure with respect to any fixed prior as long

as the test does not reject correct forecasts based on the data-generating process. Thus

it is crucial that our test does not pass true experts on every data-generating process.

Otherwise, taking the reduction of the tester’s prior µ to be the measure in Olszewski and

Sandroni’s result would show that the false expert can manipulate with high µ-probability.
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3 The test

An outcome is realized in each period t = 1, 2, . . .. For simplicity, the set of possible

outcomes in each period is taken to be {0, 1}. Let Ω = {0, 1}N denote the set of realizations

endowed with the product topology, where N = {1, 2, . . .}. We denote by ω = (ωt)∞t=1 a

generic element of Ω. The realization ω is generated according to a probability distribution

P ∈ ∆(Ω), where ∆(X) denotes the set of probability distributions defined on the Borel

subsets of a set X. The tester forms a prior belief about the distribution P according to

some µ ∈ ∆∆(Ω), where ∆(Ω) is endowed with the weak* topology. Given any Q ∈ ∆(Ω)

and any finite history ωt = (ω1, . . . , ωt) ∈ {0, 1}t of outcomes, we will write Q
(
ωt
)
∈

∆{0, 1} for the probability distribution over ωt+1 conditional on ωt having occurred.

In each period t = 1, 2, . . ., the expert reports a forecast (or prediction) pt+1 ∈ ∆{0, 1},

interpreted as the probability distribution over ωt+1 given the realized outcome so far.

Before reporting pt+1, the expert perfectly observes the history ωt = (ω1, . . . , ωt) of realized

outcomes to date. The tester also observes each realized outcome ωt.

There are two kinds of expert: true (or informed) and false (or uninformed). True ex-

perts observe the distribution P before choosing their forecasts and simply report the true

one-step-ahead probabilities given the history of realized outcomes to date. That is, fol-

lowing each finite history of realizations ωt, true experts report the forecast pt+1 = P (ωt).3

False experts know only the tester’s prior µ and may choose their forecasts according to

any mixed strategy. Fixing µ, a (behavioral) strategy for the false expert is therefore a

collection σ = {σt}∞t=1 of functions

σt : Ht−1 −→ ∆∆{0, 1},
3Note that, in order to employ this strategy, true experts need not know the full distribution P . It is

enough for them to know only the one-step-ahead conditional probabilities along the realized outcome path.
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where Ht−1 = {0, 1}t−1×(∆{0, 1})t−1 is the set of histories (ωt−1, (p1, . . . , pt−1)) of realized

outcomes and forecasts up to period t− 1. Thus the false expert’s forecast in each period

may depend on both the realized outcomes to date and the realizations of her own previous

randomized choices of forecasts.

Note that, by the Kolmogorov Extension Theorem, distributions P ∈ ∆(Ω) are in

direct correspondence (up to sets of measure zero) with complete families of one-step-

ahead forecasts P (ωt) ∈ ∆({0, 1}), one for each finite history ωt of outcomes. Thus a

distribution P ∈ ∆(Ω) corresponds to a pure forecasting strategy for a false expert.

The present paper focuses on a likelihood ratio test that, given the tester’s prior µ,

passes or fails the expert depending only on the realized outcome ω ∈ Ω and the sequence

(p1, p2, . . .) of forecasts reported by the expert. The test compares the likelihood the

expert’s predictions assign to the realized data to that of the tester’s predictions (given

by expectations based on the tester’s posterior beliefs in each period). The expert passes

the test only if her predictions assign a higher likelihood to the data and are sufficiently

different from the tester’s forecasts. Formally, given µ, define the mean distribution P =∫
∆(Ω) Pdµ(P ). The test score following any finite history ht ∈ Ht of outcomes and expert

forecasts is defined to be

S(ht) =
p1(ω1) · · · pt(ωt)
p1(ω1) · · · pt(ωt)

,

where ps(ωs) denotes the probability that the expert’s forecast assigned to the realized

outcome in period s and ps(ωs) = P (ωs−1)(ωs) denotes the one-step-ahead conditional

probability assigned to the realized outcome ωs by the mean distribution conditional on

the realized history ωs−1 to date. Note that the event that pt (ωt) = 0 for some t occurs

with µ-probability 0; in that case, the expert passes the test. Otherwise, the expert passes

the test if

1. lim inft→∞ S(ht) > 1, and
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2.
∑

t(pt(1)− pt(1))2 diverges.

This test fails true experts if the tester’s forecasts converge to the correct probabilities

sufficiently quickly. If the tester uses the forecasts to choose an actions in some decision

problem in each period, then when this convergence occurs, the additional value of the

expert’s forecasts becomes small even when they are correct, so failing to pass a true

expert causes little harm to the tester (see Echenique and Shmaya (2008), who show that,

as a tester becomes patient, using an incorrect theory is harmful only if the likelihood ratio

is unbounded).

If the test was based only on the likelihood ratio without the additional condition

that forecasts differ from those of the tester, then the test could be easily manipulated

with positive probability simply by choosing forecasts different from the tester’s until the

likelihood ratio exceeds 1, then choosing forecasts identical to the tester’s forever after.

Some such strategy succeeds with positive probability as long as the tester does not assign

probability 1 to some Dirac measure.

It is worth noting that, while the test has properties that are desirable from the per-

spective of a Bayesian tester, the test itself is not Bayesian insofar as it is does not depend

on the tester’s belief about the expert’s knowledge. An alternative approach would be for

the tester simply to update the probability that the expert knows the true distribution

based on the forecasts and the realized data. In order to do so, however, the tester would

have to form beliefs about the false expert’s forecasting strategy. Instead, the likelihood

ratio test proposed here is independent of these beliefs and exhibits the desired properties

for every strategy a false expert might use (and hence with respect to any beliefs the tester

might form about the false expert’s strategy).
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3.1 The tester’s decision problem

The typical requirement in the literature that true experts must pass with high probability

for every true distribution is very strong and difficult to justify in terms of the tester’s

decision problem. For natural payoffs, this requirement arises only if the tester has an

extreme form of ambiguity aversion. To see this, consider a tester whose preferences are

represented by the maxmin expected utility of Gilboa and Schmeidler (1989). For simplic-

ity, suppose that the tester’s belief about the type of the expert is constant and assigns

positive probability to each of the two types. The tester forms a set S of priors over the set

∆(Ω) of possible true distributions. Suppose moreover that the tester receives a positive

payoff for passing a true expert, a positive payoff for failing a false expert, and a payoff of

0 for failing a true expert or passing a false expert.

Consider a test T with no type I error that requires the expert to report a full distri-

bution P ∈ ∆(Ω) (as opposed to a sequence of one-step-ahead forecasts). For any fixed

distribution Q, let TQ be the test that delivers the same verdict as T whenever the expert

forecasts a distribution other than Q but fails the expert if she forecasts Q (regardless of

the realized data). In order for the tester to strictly prefer T to TQ, Q must be an atom of

some prior in S. The requirement that there be no type I error therefore corresponds to

this setting if for every Q ∈ ∆(Ω), there exists some prior in S having Q as an atom. This

property assumes that the tester has a strong form of ambiguity aversion.

In this paper, I (implicitly) consider a tester who is a classical expected utility maxi-

mizer. As above, the tester’s payoff depends only on the type of the expert and whether the

expert passes or fails the test. I assume that the tester prefers to pass the true expert and

fail the false expert. The tester has a prior belief over the set of possible distributions and

a fixed prior belief over the type of the expert that is independent of the true distribution.

In this setting, the tester’s goal is to pass true experts and fail false experts, both with
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high probability with respect to her prior.

4 Properties of the test

A Bayesian tester with prior µ should desire the following properties of a test:

1. A true expert should pass the test with high P -probability for a set of distributions

P having large µ-probability.

2. No matter what strategy σ she uses, a false expert should fail the test with high

(P, σ)-probability for a set of distributions P having large µ-probability.

As noted above, for some priors µ it is not possible to satisfy both of these criteria si-

multaneously. The following result indicates that these properties can be satisfied under

a general condition on µ, namely that the µ-probability that the tester learns the true

probabilities sufficiently quickly is small. Under this condition, the second property holds

in a strong form: the false expert almost surely fails to manipulate the test.

Let ε = Prµ
(∑

t (pt(1)− pt(1))2 converges
)

, where pt denotes the true probability

density in period t. The following proposition shows that, when ε is small, the likelihood

ratio test from Section 3 satisfies both of the above desiderata.4

Proposition 1. For the likelihood ratio test described above, (i) a true expert passes the

test with µ-probability 1− ε, and (ii) for any forecasting strategy σ, the false expert passes

the test with (µ, σ)-probability 0.

Proof. The proof begins by extending one direction of Kakutani’s Theorem for Product

Martingales (see, e.g., Williams (1991)) to allow for dependence among the factors. First
4For many priors we have ε = 0, in which case Proposition 1 implies that the test almost surely gives

a correct verdict on whether or not the expert is informed. Section 5 provides a natural example in which
ε = 0 even though the tester learns the true probabilities in the limit as t→∞.
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consider the case of a false expert using a pure forecasting strategy. Given any sequence

of forecasts qt, the single-period ratio Yt = qt (ωt) /pt (ωt) satisfies Eµ (Yt|Y1, . . . , Yt−1) = 1

for all t. The product Xt =
∏
k≤t Yk is a non-negative martingale that is bounded in L1.

By the martingale convergence theorem, (Xt)∞t=1 converges almost surely to some random

variable X∞.

Let at (Y1, . . . , Yt−1) = Eµ
(√
Yt|Y1, . . . , Yt−1

)
and let

Zt =
∏
k≤t

√
Yk

ak(Y1, . . . , Yk−1)
.

Then Zt is a nonnegative martingale. Moreover, by inductively applying the law of iterated

expectations, one sees that Eµ(Zt) = 1 for all t. In particular, (Zt)∞t=1 is bounded in L1,

and hence converges almost surely to some Z∞ by the martingale convergence theorem. It

follows that if
∏
t at(Y1, . . . , Yt−1) = 0 then

∏
t

√
Yt = 0 almost surely, and hence

∏
t Yt = 0

almost surely. Therefore, Xt almost surely converges to zero whenever
∏
t at(Y1, . . . , Yt−1)

converges to zero.

It remains to show that
∏
t at(Y1, . . . , Yt−1) = 0 whenever

∑
t (qt(1)− pt(1))2 diverges.

Note that

at (Y1, . . . , Yt−1) = Eµ

(√
Yt|Y1, . . . , Yt−1

)
= pt(1)

√
qt(1)
pt(1)

+ (1− pt(1))

√
1− qt(1)
1− pt(1)

=
√
pt(1)qt(1) +

√
(1− pt(1)) (1− qt(1)).

Letting δt = qt(1)− pt(1), we have

at (Y1, . . . , Yt−1) =
√
pt(1)2 + δtpt(1) +

√
(1− pt(1))2 − δt(1− pt(1)).
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For fixed δ, the function

f(p) =
√
p2 + δp+

√
(1− p)2 − δ(1− p)

is maximized when p = 1−δ
2 , with maximum value

√
1− δ2. Hence we have

∏
t

at(Y1, . . . , Yt−1) ≤
∏
t

√
1− δ2

t ,

so it suffices to show that
∏
t

√
1− δ2

t = 0 whenever
∑

t (qt(1)− pt(1))2 =
∑

t δ
2
t diverges.

Note that
∏
t

√
1− δ2

t = 0 if and only if
∑

t log
(
1− δ2

t

)
diverges. Since

lim
x→0

− log(1− x)
x

= lim
x→0

1
1− x

= 1,

the limit comparison test implies that
∑

t log
(
1− δ2

t

)
converges if and only if

∑
t δ

2
t does,

as needed.

We have shown that for any pure forecasting strategy, a false expert µ-almost surely fails

the test whenever
∑

t (qt(1)− pt(1))2 diverges. Since the test always fails the expert if this

sum converges, it follows that the expert almost surely fails the test for any pure forecasting

strategy. Therefore, the expert also fails almost surely with any mixed forecasting strategy.

The same argument with the roles of the numerator and denominator reversed shows

that, conditional on
∑

t (pt(1)− pt(1))2 diverging, a true expert passes the test P -almost

surely.

Proposition 1 shows that there exists a test that effectively distinguishes between true

and false experts as long as ε is small. Moreover, the test perfectly satisfies the desired

criteria when ε = 0. In order for ε to be positive, the tester must possess considerable

knowledge of the data-generating process: not only must the tester’s forecasts approach
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the true probabilities (with positive probability), they must do so quickly. Indeed, the

condition that
∑

t (pt(1)− pt(1))2 converges implies that t1/2 |pt(1)− pt(1)| vanishes as

t→∞ on some density one sequence,5 which is the usual standard for fast convergence of

forecasts (see, e.g., Sandroni and Smorodinsky (1999)).

As an alternative to the decision problem described in Section 3.1, in which the tester

simply wants to know whether or not the expert is informed, Echenique and Shmaya (2008)

and Olszewski and P ↪eski (2008) consider a tester who is directly interested in predicting

outcomes in each period. In their settings, in each period t, the tester chooses an action at

before observing the realized outcome ωt and receives a flow payoff depending on the pair

(at, ωt). Accurate forecasts may help the tester to choose actions generating higher payoffs.

One can show that if
∑

t (pt(1)− pt(1))2 converges, then the payoff loss to the tester from

following her own predictions instead of those of a true expert vanish as the tester becomes

very patient. Proposition 1 thus offers a counterpoint to the “you won’t harm me if you

fool me” result of Echenique and Shmaya (2008), which shows the existence of a test that

passes true experts and creates little loss for a patient tester if a false expert passes. Here

true experts may fail, but again there is little loss for the tester.

The tester’s prior imposes more structure on the testing problem than is the norm in

the literature. In particular, every prior assigns probability 1 to some topologically small

set (in the sense of Baire category). One might worry, then, that the test rejects true

experts on many distributions. However, this is not the case; the set of distributions on

which true experts fail the test is topologically small. In order to prove this, we begin

with a general result on merging of opinions. This result may be of independent interest

in light of the central role played by merging in the literature on learning and reputation

in repeated games (see, e.g., Kalai and Lehrer (1993) and Sorin (1999)).
5The density of an increasing sequence (tk)∞k=1 with tk ∈ N is defined to be lim supk→∞ k/tk.

13



Given distributions P,Q ∈ ∆(Ω), we say that Q weakly merges with P at ω if for every

δ > 0 there exists some T such that

|pt(1)− qt(1)| < δ for all t > T ,

where pt and qt denote the one-step-ahead distributions along ω associated with P and Q

respectively. The distribution Q is said to weakly merge with P with probability π if

P ({ω | Q weakly merges with P at ω}) = π.

Most work on merging has focused on global concepts that require merging to occur with

probability one.6 The notion of weak merging introduced by Kalai and Lehrer (1994)

corresponds to almost sure weak merging in our terminology.

Proposition 2. For any distribution Q ∈ ∆(Ω), the set of distributions P such that Q

weakly merges with P with positive probability is category I.

Proof. The proof follows an approach similar to that of Feinberg and Stewart (2008),

Proposition 2. Choose any δ ∈ (0, 1/4). For each finite history h and ε ∈ (0, 1), let

S(h, ε) ⊂ ∆(Ω) be the set of distributions P such that P (h) ≥ ε and

PrP (|pt(1)− qt(1)| < δ for all t ≥ τ | h) ≥ ε, (1)

where τ is the length of h and pt and qt denote one-step-ahead distributions as above. The

set of distributions to which Q weakly merges with positive probability is contained in the

countable union ⋃
finite histories h

⋃
n

S(h, εn),

6Lehrer and Smorodinsky (2000) is an exception. They study a weaker notion of pointwise merging.
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so it suffices to show that each S(h, ε) is nowhere dense.

First we will prove that S(h, ε) is closed by showing that its complement is open. Con-

sider P /∈ S(h, ε). Either P (h) < ε or (1) fails. If P (h) < ε, then the set {P ′ | P ′(h) < ε}

contains P , is open in ∆(Ω), and is disjoint from S(h, ε). If (1) fails, then there exists

some T > τ such that

PrP (|pt(1)− qt(1)| < δ for all t = τ, . . . , T | h) = ε′ < ε.

The set

{
P ′ | |P ′(E)− P (E)| < ε− ε′ for all events E determined by time T

}
contains P , is open, and is disjoint from S(h, ε).

All that remains is to show that S(h, ε) has empty interior. Again let τ denote the length

of h. Fixing P ∈ S(h, ε), we want to construct a sequence of distributions Pn /∈ S(h, ε)

converging to P . Choosing Pn so that the one-step-ahead forecasts agree with P in every

period t ≤ τ + n and differ from P by at least 2δ following every history of length τ + n

does the job.

Corollary 1. The set of distributions P ∈ ∆(Ω) for which a true expert fails the test with

positive P -probability is category I.

Proof. Suppose that a true expert fails with positive P -probability when the distribution is

P . Then the sum
∑

t (pt(1)− pt(1))2 converges with positive P -probability. In particular,

for any δ > 0, there exists some finite history hτ of length τ such that P (hτ ) > 0 and, with

positive probability, |pt(1)− pt(1)| < δ for all t ≥ τ . Therefore, P weakly merges with P

with positive probability.
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Proposition 2 improves upon the infinite horizon analogue of the test studied by Ol-

szewski and Sandroni (2009b) that rejects experts who forecast close to 50% too often.

Their test cannot be manipulated but rejects true experts on a set of distributions that is

topologically small in a weaker sense than category I. One might think that forecasts close

to 50% are relatively uninformative, and hence rejecting experts who make such forecasts

is reasonable. Relative to a given prior, however, a forecast close to 50% can be very

informative. The above test accounts for this feature by only failing true experts if their

forecasts are uninformative relative to the tester’s prior.

5 Example

The following example illustrates the power of the test even when the tester learns the true

probabilities (but not too quickly). Suppose that the tester’s prior µ can be parameterized

by a uniform distribution over π ∈ [0, 1], and for each π the true process is i.i.d. with

probability π in each period. In this case, one can easily devise non-manipulable tests that

pass true experts with µ-probability 1. One example is the test that passes the expert if and

only if the empirical frequency converges to her first-period forecast p1. However, this test

is not robust to incorrect priors in the sense of Proposition 2; true experts almost surely fail

the test on a large set of distributions. The likelihood ratio test proposed above is robust

in this sense and passes true experts with µ-probability equal to the probability with which

the sum
∑

t (pt − π)2 diverges. Even though the tester almost surely asymptotically learns

the true probabilities in this setting (see, e.g., Doob (1949)), it turns out that this learning

occurs sufficiently slowly for the test to be effective. The following claim, together with

Proposition 1, shows that the test passes true experts with P -probability 1 for µ-almost

every P , and false experts with probability 0.

Claim. For each π ∈ (0, 1), the sum
∑

t (pt − π)2 diverges with probability 1.
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Proof. Following any finite history ωt = (ω1, . . . , ωt), let nt =
∑t

s=1 ωt. It is straightforward

to show that pt+1(ωt) = nt+1
t+2 . Accordingly, consider

∑
t

(
nt + 1
t+ 2

− π
)2

.

By the limit comparison test, this sum converges if and only if

∑
t

(nt
t
− π

)2

does.

Define the density of a sequence (xt) ∈ {0, 1}N to be lim supT
∑T

t=1 xt

T . For ε > 0, define

a random variable xεt by

xεt =


1 if t

(
nt
t − π

)2
> ε

0 otherwise.

Note that since
∑

t

(
nt
t − π

)2 =
∑

t
1
t t
(
nt
t − π

)2 and
∑

t
1
t diverges, the sum

∑
t

(
nt
t − π

)2
diverges whenever the sequence (xεt )t has positive density. Thus it suffices to show that, as

ε vanishes, the probability that the sequence (xεt )t has positive density tends to 1.

Let Eεt denote the event that xεt = 0. For each k and T , we have

Pr

(
T∑
t=1

(1− xεt ) ≥ k

)
≤ 1
k

T∑
t=1

Pr(Eεt )

since the left-hand side is the probability that Eεt occurs at least k times up to time T , and

whenever Eεt occurs k times, the right-hand side counts (upper bounds on) the associated

probabilities at least k times. Note that, by the Central Limit Theorem, given δ > 0, there

exist T ′ large enough and ε > 0 small enough so that Pr(Eεt ) < δ/2 for all t > T ′. Thus in
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the limit as T →∞, we have

Pr

(
T∑
t=1

(1− xεt ) ≥ ηT

)
≤ 1
ηT

T
δ

2

for η ∈ (0, 1). In particular, for η > 1/2, we have

Pr

(
T∑
t=1

xεt ≤ (1− η)T

)
≤ δ (2)

as T tends to ∞.

I claim that (2) implies that (xεt )t has density at least 1 − η with probability at least

1 − δ. Since the choice of δ was arbitrary, this claim completes the proof. To prove the

claim, suppose that it does not hold. Then there exists a set of sequences (xεt )t with

probability greater than δ each with density less than 1− η. Hence there must exist some

T ′′ such that for a subset of these sequences (xεt )t of measure greater than δ, the frequency

of ones in (xεt )t up to time T is less than 1− η for all T > T ′′, violating (2).

6 Discussion

The test studied here may be thought of as a test of two experts in which one of the experts

forecasts according to the tester’s prior µ. The test adds to a simple likelihood ratio test

a condition that the expert passes only if her forecasts are sufficiently different from the

tester’s. More generally, one could consider modifying any test of two experts so as to make

the experts fail if their forecasts converge sufficiently quickly. The positive results above

rely on the property of the original likelihood ratio test (without this modification) that a

Bayesian who reports truthfully expects to pass the test against any fixed strategy of the

other forecaster—in other words, against any false expert—unless the forecasts of the two
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experts converge sufficiently quickly. In our setting, once the closeness condition is added,

this property ensures that a true expert passes unless the tester’s forecasts converge quickly

to the true probabilities. This property also ensures that, for distributions generated by

the tester’s prior, a false expert cannot outperform the tester in terms of the likelihood

ratio unless her forecasts converge quickly to those of the tester, in which case she fails the

modified test.

Al-Najjar and Weinstein (2008) and Feinberg and Stewart (2008) propose multiple

expert tests that cannot be manipulated. Both tests derive their power from properties

similar to those described above. More precisely, true experts pass both tests, and in the

presence of a true expert, a false expert can pass only if her forecasts are eventually close

to those of the true expert. By modifying these tests to reject experts whose forecasts

become close, and treating the tester as one of the two forecasters, positive results similar

to Proposition 1 and Corollary 1 above could be obtained beginning from either test,

although the precise closeness condition that must be added may differ.

It may seem counterintuitive that the proposed test encounters problems when the

tester learns the truth. After all, a tester who knows the true probabilities can very easily

check the validity of the expert’s forecasts. The reason is that in this case the false expert

also learns the truth since she knows the tester’s prior. If the false expert makes forecasts

that converge rapidly to the tester’s forecasts then the data cannot reliably distinguish

which of the two is closer to the truth.

To gain a partial intuition for the contrast between the positive results presented

here and the negative results in the literature, consider the problem of designing a non-

manipulable test with no type I error. The negative results can be understood by reformu-

lating this testing problem as a zero-sum game between a forecaster who wants to choose

forecasts to pass a given test and malevolent Nature who wants to choose the realization to
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make the forecaster fail. If the Minmax Theorem holds in this setting, then the worst-case

expected payoffs for true and false experts must be equal. It follows that if a true expert

passes almost surely for any distribution chosen by Nature, then a false expert must also

pass almost surely. For the above likelihood ratio test, given any prior for the tester, true

experts fail on some distributions. This feature makes the worst-case payoff for a true

expert equal to that of failure, which suffices to prevent manipulation by a false expert

even if the set of distributions on which a true expert fails has small prior probability.
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