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Abstract

This paper is concerned with the semiparametric estimation of function
means that are scaled by an unknown conditional density function. Parame-
ters of this form arise naturally in the consideration of models where interest
is focused on the expected value of an integral of a conditional expecta-
tion with respect to a continuously distributed “special regressor” with un-
bounded support. In particular, a consistent and asymptotically normal esti-
mator of an inverse conditional density-weighted average is proposed whose
validity does not require data-dependent trimming or the subjective choice
of smoothing parameters. The asymptotic normality result is also rate adap-
tive in the sense that it allows for the formulation of the usual Wald-type
inference procedures without knowledge of the estimator’s actual rate of
convergence, which depends in general on the tail behaviour of the condi-
tional density weight. The theory developed in this paper exploits recent
results of Goh and Knight (2008) concerning the behaviour of estimated
regression-quantile residuals. Simulation experiments illustrating the appli-
cability of the procedure proposed here to a semiparametric binary-choice
model are suggestive of good small-sample performance.

JEL Classification: C14, C21, C24, C25
KEYWORDS: Semiparametric, identification at infinity, special regressor, rate-

adaptive, regression quantile
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1 Introduction
This paper is concerned with statistical inference regarding a parameter of inter-
est taking the form of an inverse conditional density-weighted expectation. In
particular, interest is assumed to be focused on an object of interest given by

θ0 ≡ E

[
1

f (vi|xi)
w (Zi,κ0)

]
, (1)

where
Zi ≡ (yi, vi,x

>
i )>, i = 1, . . . , n

denotes a sample from the corresponding population of random variates Z ≡
(y, v, x>)>, where for each i, yi and vi are scalar-valued and xi is d-variate. The
quantity f (vi|xi) appearing in (1) denotes the density function corresponding to
the conditional distribution of vi given xi, which is taken to be absolutely con-
tinuous with respect to Lebesgue measure on R. It is assumed that f (v|x) is
positive for all v ∈ R and x ∈ Rd. The object w (Zi, κ0) also appearing in (1) is
taken to be a realization of a known Rl-valued measurable function of Zi, while
κ0 denotes an unknown m-dimensional nuisance parameter.

The estimation of parameters of the form given in (1) is generally relevant
in the consideration of models where interest is directed at the expectation of an
integral of a conditional mean function with respect to a continuously distributed
“special regressor” with unbounded support. In particular, it is possible to equate
the parameter of interest given in (1) to the expectation of the integral of the condi-
tional mean function E [w (Z,κ0)| v, x] = E [w (y, v, x,κ0)| v, x] with respect
to v over the real line.1 In particular, we have

θ0 = E

[∫ ∞

−∞
E [w (y, v, x, κ0)| v, x] dv

]
.

1To see this, note that

E

[
1

f (v|x)
w (y, v, x, κ0)

]
= E

[
E

[
1

f (v|x)
w (y, v, x, κ0)

∣∣∣∣ x

]]

= E

[∫ ∞

−∞

∫ ∞

−∞

1

f (v|x)
w (y, v, x, κ0) f (y, v|x) dydv

]

= E

[∫ ∞

−∞

∫ ∞

−∞
w (y, v, x, κ0) f (y| v, x) dydv

]

= E

[∫ ∞

−∞
E [w (y, v, x, κ0)| v, x] dv

]
.
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As such, statistical inference regarding parameters taking the form of an in-
verse conditional density-weighted average as given by θ0 above is relevant in the
consideration of a large number of important models in econometrics. Notable ex-
amples include semiparametric models of qualitative choice2 as well as density-
weighted least squares,3 average derivatives,4 entropy measures of dependence5

and semiparametric models of willingness to pay6 and of consumer surplus.7

The form of the generic parameter of interest in (1) gives rise to at least two
nontrivial considerations from the point of view of formulating suitable estimation
and test procedures. The first and more fundamental is the fact that θ0 is essen-
tially point-identified by those points in the support of Z ≡ (y, v, x>)> such that
the inverse conditional density weight 1

f(v|x)
is arbitrarily large. Given the positiv-

ity of f (v|x) for all (v, x>)> ∈ R1+d, it follows that θ0 is determined by those
points in the support of Z with v taking values at the extremities of the support of
its conditional distribution given x. As such, parameters of the type θ0 as given
above in (1) can be generically labelled as “identified at infinity”.8 Parameters in
this class have the generic feature of not being estimable at a parametric rate.9 In
particular, the actual rate of convergence of any estimator of a parameter taking
the form in (1) can be shown to depend strongly on the tail behaviour of the condi-
tional density f (v|x),10 and is as such unknown from the standpoint of empirical
practice.

The second consideration for the development of estimation and test proce-
dures regarding an inverse conditional density-weighted average is perhaps more
immediately apparent—namely, it is how to deal with the unknown conditional
density of v given x. In this connection, it is natural to embed a suitable nonpara-
metric kernel density estimator in a semiparametric analogue estimator having the
form

1

n

n∑
i=1

τni

f̂in(vi)
w (Zi, κ̂n) , (2)

where τni is a data-dependent trimming function, κ̂n is an estimator of the finite-

2Cf. Lewbel (1998, 2000, 2007).
3Cf. Newey and Ruud (2005).
4Cf. Härdle and Stoker (1989).
5Cf. Hong and White (2005).
6Cf. Lewbel (1997); McFadden (1999).
7Cf. Hausman and Newey (1995); Newey (1997).
8Cf. Chamberlain (1986); Heckman (1990).
9Cf. e.g., Andrews and Schafgans (1998).

10Cf. Khan and Tamer (2009).
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dimensional nuisance parameter κ0 and where

f̂in(vi) ≡ f̂vixi,n (vi,xi)

f̂xi,n(xi)

for kernel density estimators f̂vixi,n(·, ·) and f̂xi,n(·) of the joint density fvixi
and

marginal density fxi
, respectively.11 The implementation and analysis of the large-

sample behaviour of estimators having the form (2) are clearly complicated by the
effects of any “rules of thumb” used to implement the kernel estimate f̂in and the
trimming function τni, tasks that are in turn further complicated by the fact that
the rate of convergence of the estimator given in (2) is generally unknown.

This paper proposes a semiparametric estimator for an inverse conditional
density-weighted average taking the general form given in (1). In addition to being
consistent and asymptotically normal, the proposed estimator also affords practi-
tioners the convenience of avoiding the need to select smoothing parameters or
implement trimming functions. The asymptotic normality result presented below
is rate adaptive in the sense that it permits the formulation of natural Wald-type
inference procedures without the need to specify the exact rate of convergence of
the estimator. 12

The remainder of this paper is organized as follows. The next section defines
the estimator and describes the procedure used to circumvent the need to embed
an explicit estimator of the conditional density of f (v|x) in the overall estima-
tion procedure. The consistency and asymptotic normality of a general inverse
conditional-density weighted average are established formally in Section 3. Sec-
tion 4 provides some numerical evidence on the finite-sample behaviour of the
proposed estimation procedure in the context of a semiparametric latent-variable
model of binary choice. Section 5 concludes.

11Examples of estimators having the form in (2) can be found in Lewbel (1998), Lewbel (2000),
Honoré and Lewbel (2002), Khan and Lewbel (2007) as well as in Lewbel (2007).

12The estimator proposed in this paper can also be viewed as a generalization of the procedure
proposed by Lewbel and Schennach (2007), which focused on the case where the parameter of
interest has the form θ0 = E

[
w

f(v)

]
, where both w and v are scalar valued, and where the marginal

density f(·) of v is such that θ0 is estimable at a parametric rate. In a manner similar to the
procedure proposed in this paper, the estimator of Lewbel and Schennach (2007) also does not
involve any requirement to select smoothing parameters or implement trimming functions.
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2 The Estimator
We again assume the existence of a random sample

{
Zi ≡ (yi, vi,x

>
i )> : i = 1, . . . , n

}
,

where yi and vi are scalar-valued and xi is d-variate.13 The random variables
v1, . . . , vn are assumed to have unbounded support. It is assumed that for each i,
the conditional distribution

Fi ≡ F (vi|xi)

of vi given xi is absolutely continuous with respect to Lebesgue measure on R.
For fi denoting the density function corrseponding to Fi, the parameter of interest
is given by

θ0 ≡ E

[
1

fi

wi

]
, (3)

where
wi ≡ w (Zi,κ0) , (4)

for some known measurable function w (·, κ0) : Rk → Rl and some unknown
m-dimensional nuisance parameter κ0. It is proposed in this paper to estimate θ0

using an estimator of the form

θ̂n ≡ 1

n

n∑
i=1

s∗n,τ (vi|xi) w (Zi, κ̂n) (5)

where κ̂n is a
√

n-consistent estimator of κ0 and where s∗n,τ (vi|xi) denotes a
“pseudo-estimator” such that s∗n,τ (vi|xi) w (Zi,κ) converges in distribution to

a random variable with mean E
[

1
f(vi|xi)

w (Zi,κ)
]

for all κ in an open neigh-
bourhood of κ0. Details concerning the construction and asymptotic behaviour of
s∗n,τ (vi|xi) are given as follows.

2.1 Inconsistent “estimation” of the inverse conditional density
function

The estimator θ̂n of the interest parameter θ0 given in (1) involves a non-standard
treatment of the unknown conditional density function of vi given xi. This non-
standard handling of the conditional density is bound up in the quantity denoted

13The sequence {xi}n
i=1 is permitted to be deterministic; see Remark 2 on p. 10 below.
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by s∗n,τ (vi|xi) in the expression for the estimator θ̂n given above in (5). This
section of the paper describes s∗n,τ (vi|xi) and its large-sample properties.

The quantity s∗n,τ (vi|xi) exploits a number of the large-sample properties
of the regression-quantile optimization problem considered by Goh and Knight
(2008). In this connection, for any constant α ∈ (0, 1), let F−1

vi|xi
(α) denote

the conditional α-quantile of vi given xi. When F−1
vi|xi

(α) is linear, i.e., when
F−1

vi|xi
(α) = x>i β(α) for some d-vector β(α), then it is customary to estimate the

parameter β(α) using the regression α-quantile estimator of Koenker and Bassett
(1978). In particular, the regression α-quantile β̂n(α) is defined to solve

min
b∈Rd

n∑
i=1

ρα

(
vi − x>i b

)
, (6)

where
ρα(u) ≡ u [α− 1 {u < 0}] .

In general, provided certain regularity conditions are met, the regression α-quantile
will be consistent for the quantity β(α), which is defined to be the solution of

min
b∈Rd

∥∥∥∥
∫ ∫

ψα

(
v − x>β(α)

)
xf (v|x) µ (dx) dv

∥∥∥∥ , (7)

where
ψα(u) ≡ α− 1 {u < 0} , (8)

and µ is a probability measure having a non-lattice component. This is a general
result that holds even when F−1

vi|xi
(α) 6= x>i β(α) for any non-zero value of β(α) ∈

Rd.14

It is well known that the regression α-quantile β̂n(α) may be easily computed
by solving a linear program.15 In particular, under certain regularity conditions on{
(vi, x

>
i )> : i = 1, . . . , n

}
,16 it is well-known that

vi = x>i β̂n(α)

for exactly d elements of the set
{
(vi, x

>
i )> : i = 1, . . . , n

}
. In other words, the

precise value of β̂n(α) is determined only by those observations with indices i

14Cf. Angrist et al. (2006).
15Cf. e.g., Koenker and d’Orey (1987); Koenker and Park (1996) and Koenker (2005, Chapter

6).
16Cf. e.g., Koenker (2005, §2.2.1).
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such that ε̂i(α) = 0, where

ε̂i(α) ≡ vi − x>i β̂n(α),

i.e., the corresponding fitted regression α-quantile residual. In this connection,
define the set

Hn(α) ≡ {i : ε̂i(α) = 0} .

The limiting behaviour of observations with indices i belonging to Hn(α) is
markedly different from those with indices lying in the complement of Hn(α).17

Consider a constant τ ∈ (0, 1). For any α ∈ [τ, 1 − τ ], it is shown that the
asymptotic behaviour of the pseudo-estimator s∗n,τ (vi|xi) depends on the asymp-
totic behaviour of observations with indices belonging solely to the complement
of Hn(α).

In this connection, consider the asymptotic behaviour of the sequence
{
(ε̂i(α), x>i )> : i 6∈ Hn(α)

}
.

This is bound up with the limiting behaviour of the point process

Mnα (A×B) ≡
∑

i6∈Hn(α)

1 {nε̂i(α) ∈ A, xi ∈ B} . (9)

The asymptotic behaviour of {Mnα} is spelled out below in Lemma 1. Regularity
conditions governing the validity of this result are first stated.

Assumption 1. The conditional distributions {Fi} of vi given xi are absolutely
continuous with respect to Lebesgue measure on R with density functions

fi(v) ≡ f (v|xi) ,

where for each i = 1, 2, . . . , fi is bounded away from zero and infinity in each
v ∈ R and also uniformly continuous in v ∈ R uniformly over the support of xi.

Assumption 2. For each α ∈ [τ, 1− τ ] ⊂ (0, 1), and fixed design sequence {xi},
the following hold for each b ∈ Rd and for κα(x) ≡ f

(
x>β(α)

∣∣ x
)
:

1.

max
1≤i≤n

∣∣∣∣fi

(
F−1

vi|xi
(α) +

1√
n

x>i b

)
− κα(xi)

∣∣∣∣ → 0

as n →∞.
17Further details are spelled out in Goh and Knight (2008); Knight and Goh (2008) and Knight

(2008).
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2.

1√
n

n∑
i=1

[
Fi

(
F−1

vi|xi
(α) +

1√
n

x>i b

)
− Fi

(
F−1

vi|xi
(α)

)]
xi

=
1

n

n∑
i=1

√
n

[
Fi

(
F−1

vi|xi
(α) +

1√
n

x>i b

)
− Fi

(
F−1

vi|xi
(α)

)]
xi

→ D1(α)b

as n →∞, where

D1(α) ≡
∫

κα(x)xx>µ (dx) < ∞

is positive-definite for a probability measure µ having a non-lattice compo-
nent.

3. The design sequence {xi} satisfies

max
1≤i≤n

1√
n
‖xi‖ → 0

as n →∞. In addition, there exists a constant δ > 0 such that
∫
‖x‖2+δ µ(dx) < ∞,

where µ is the same non-lattice probability measure used in the definition
of D1(α).

Remark 1. Parts 2 and 3 of Assumption 2 guarantee the continued convexity as
n →∞ of the localized regression α-quantile objective function

Z̃n(u) ≡
n∑

i=1

[
ρα

(
εi(α)− 1√

n
x>i u

)
− ρα(εi(α))

]
,

where εi(α) ≡ vi − x>i β(α), which in turn guarantees the uniqueness in large
samples of the solution to the regression α-quantile minimization problem given
above in (6) for all α ∈ [τ, 1− τ ].
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Assumption 3. For µ denoting the same non-lattice probability measure appear-
ing in Assumption 2,

1

n

n∑
i=1

1 {xi ∈ B} → µ(B)

for all sets B with µ(∂B) → 0.

Remark 2. Assumption 3 ensures that in large samples the design behaves essen-
tially like a random sample from a population with probability measure µ. This
holds even when the design sequence {xi} is deterministic.

Remark 3. Assumptions 1 and 3 jointly imply that the empirical measure Qn

given by

Qn(A) ≡ 1

n

n∑
i=1

1 {(xi, vi) ∈ A}

converges weakly to a measure Q with

Q (dx× dv) = µ (dx) f (v|x) dy.

Remark 4. Assumptions 1–3 jointly guarantee the convergence in large samples
of β̂n(α) to the quantity β(α), where β(α) is the solution of equation (7) above.
This convergence is also uniform for α ∈ [τ, 1−τ ], where τ ∈ (0, 1) may be made
arbitrarily small, as shown by Angrist et al. (2006, Theorem 3).

Remark 5. Assumptions 1–3 also jointly imply the convergence

√
n

(
β̂n(α)− β(α)

)
d→ N

(
0,D−1

1 (α)CαD−1
1 (α)

)
, (10)

where
Cα ≡

∫ ∫
ψ2

α

(
v − x>β(α)

)
xx>f (v|x) µ (dx) dv.

The convergence in (10) is also known to hold uniformly on arbitrary closed subin-
tervals [τ, 1− τ ] of (0, 1), where τ > 0.18

The asymptotic distribution of of the point process in (9) is given as follows.

18Further details are given in Angrist et al. (2006, Theorem 3).
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Lemma 1 (Goh & Knight (2008, Lemma 2)). Given the conditions of Assump-
tions 1–3, the point process {Mnα} for any α ∈ (0, 1) has a behaviour in large
samples that is approximable by that of the point process

M̄nα(A×B) ≡
n∑

i=1

1 {nεi(α) ∈ A, x ∈ B} ,

where
εi(α) ≡ vi − x>i β(α).

The process M̄nα converges in distribution with respect to the vague topology to
a Poisson process Mα with mean measure

mα (dε, dx) ≡ λ(dε)µ(dx)κα(x),

where λ denotes Lebesgue measure and µ is the same non-lattice probability mea-
sure appearing in the statement of Assumption 2.

Proof. The proof appears in Appendix A.1.

Once again, pick a constant τ ∈ (0, 1). For any α ∈ [τ, 1 − τ ], it is clear
that the conditional α-quantile of vi given xi need not be a linear combination
of the components of xi. This fact notwithstanding, it is nevertheless possible
to generate a perfect linear fit to each vi by adjusting α so as to make (vi, x

>
i )>

basic for the corresponding regression α-quantile optimization problem.19 In other
words, if one sets α = α∗ni,τ , where

α∗ni,τ ≡ sup
{

α ∈ [τ, 1− τ ] : x>i β̂n(α) = vi

}
, (11)

then vi = x>i β̂n(α∗ni,τ ) with probability one.20

In this connection, consider that for any α ∈ [τ, 1 − τ ], the points of the
limiting Poisson process Mα in Lemma 1 are given by

{
(Γk,X

>
k )> : k 6= 0

}
,

19In practice, this would require setting τ ∈ (0, 1) to small values in order to ensure the exis-
tence for each i ∈ {1, . . . , n} of a quantile αi ∈ [τ, 1− τ ] such that (vi, x

>
i )> belongs to a basic

solution for the corresponding regression αi-quantile β̂n(αi). It is generally appropriate to make
τ smaller when dealing with larger sample sizes.

20It should be noted that the supremum in the definition of α∗ni,τ in (11) is arbitrary in the sense
that it can be replaced with any other mapping that induces a means of selecting a quantile α∗i in
the interval [τ, 1− τ ] satisfying x>i β̂n(α∗i ) = vi for a given (vi, x

>
i )>.
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where {Xk} is an iid sequence with population measure µ and

Γk =
k∑

j=1

Ej,k,

Γ−k = −
k∑

j=1

E−j,k,

where, conditional on {Xk}, the {Ej,k} are independent exponential random vari-
ables with mean

1

κα(Xk)
=

1

f
(
X>

k β(α)
∣∣ Xk

) .

This fact motivates the definition of the pseudo-estimator s∗n,τ (vi|xi).
First consider a design point xi with i ∈ Hn(α∗ni,τ ). Then by construction,

x>i β̂n(α∗ni,τ ) = vi.

Arrange the non-zero regression α∗ni,τ -quantile residuals in order of magnitude. In
particular, define indices (i1) , . . . , (in−d) such that

∣∣ε̂(i1)(α
∗
ni,τ )

∣∣ ≤ · · · ≤
∣∣ε̂(in−d)(α

∗
ni,τ )

∣∣ ,

and consider the quantity

ε̂(in−d)(α
∗
ni,τ ) ≡ v(in−d) − x>(in−d)β̂n(α∗ni,τ ), (12)

where (v(in−d),x
>
(in−d))

> is the corresponding element of
{
(vi,x

>
i )> : i = 1, . . . , n

}
.

By Angrist et al. (2006, Theorem 3), we have that the regression-quantile pro-
cess α → β̂n(α) is uniformly consistent on arbitrary closed subintervals [τ, 1− τ ]
of (0, 1). From this it follows that for each observation i ∈ {1, . . . , n} and suf-
ficiently small τ > 0, there exists an α∗τ ∈ [τ, 1 − τ ], not necessarily unique
for each observation, such that β̂n(α∗ni,τ )

p→ β(α∗τ ). In addition, we have that
n

∣∣ε̂(in−d)(α
∗
ni,τ )

∣∣ is asymptotically equivalent to n
∣∣ε(in−d)(α

∗
τ )

∣∣, where the index
(in−d) denotes the same observation indicated above in (12).

By Lemma 1, however, we have that n
∣∣ε(in−d)(α

∗
τ )

∣∣ has a limiting distribution
given by the sum

∑n−d
j=1 Ej , where, conditional on a sample {Xj : j = 1, . . . , n− d}

drawn from µ, the corresponding sequence {Ej : j = 1, . . . , n− d} is a sequence
of independent exponential random variables with mean

1

κα∗τ (Xj)
=

1

f
(
X>

j β(α∗τ )
∣∣ Xj

) .
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In this connection, define the pseudo-estimator

s∗n,τ (vi|xi) ≡
n

∣∣ε̂(in−d)(α
∗
ni,τ )

∣∣
n− d

. (13)

Consider a value κ of the finite-dimensional nuisance parameter in some open
neighbourhood containing the true value κ0. By Lemma 1 and the uniform con-
sistency of the regression-quantile process α → β̂n(α) on closed subintervals of
(0, 1), the limiting distribution of s∗n,τ (vi|xi) w (Zi,κ) is approximable by that
of

n
∣∣ε(in−d)(α

∗
τ )

∣∣
n− d

w (Zi,κ) =
n

∣∣ε(in−d)(α
∗
τ )

∣∣
n− d

w (yi, vi, xi,κ) ,

which for a sample {Xj : j = 1, . . . , n− d} drawn from a population with mea-
sure µ, behaves asymptotically as a form of rescaled gamma random variable with
conditional mean given {Xj : j = 1, . . . , n− d} equal to

1

n− d

n−d∑
j=1

1

f
(
X>

j β(α∗τ )
∣∣Xj

)w (yi, vi,Xj, κ) . (14)

Note that the expression in (14) is asymptotically equivalent to

1

n− d

n−d∑
j=1

1

f
(

X>
j β̂n(α∗ni,τ )

∣∣∣Xj

)w (yi, vi,Xj,κ) ,

which in turn is asymptotically equivalent to

E


 1

f
(

x>i β̂n(α∗ni,τ )
∣∣∣xi

)w (yi, vi,xi,κ)


 = E

[
1

f (vi|xi)
w (Zi, κ)

]

for xi drawn from the limiting design measure µ. From this it would appear
that subject to additional regularity conditions, the specification of the pseudo-
estimator s∗n,τ (vi|xi) is sufficient to induce the estimator θ̂n as given above in (5)
to be consistent for θ0.

The next section of this paper provides a detailed consideration of the effect of
the large-sample behaviour of the pseudo-estimator s∗n,τ (vi|xi) on the asymptotic
behaviour of θ̂n.
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3 Consistency and Asymptotic Normality of θ̂n

This section of the paper is devoted to showing that the estimator θ̂n as given in (5)
above is consistent and asymptotically normal for the general estimand θ0 whose
expression is given in (1). In this connection, recall the notation

wi ≡ w (Zi,κ0) ,

and define
wi(κ) ≡ wi (Zi,κ) (15)

to be the quantity in (4) above with an arbitrary value κ of the m-dimensional
nuisance parameter appearing in place of the true value κ0.

Additional regularity conditions governing the analysis of the first-order be-
haviour of the estimator θ̂n are given as follows.

Assumption 4. wi(κ) as given in (15) is continuously differentiable for all κ ∈
K, where K ⊂ Rm is an open neighbourhood of the true value κ0.

Assumption 5.

E

[
sup
κ∈K

∥∥∥∥
1

f (vi|xi)
wi(κ)

∥∥∥∥
]

< ∞.

Assumption 6. As a function of κ,

E

[
1

f (vi|xi)
wi(κ)

]

is continuous at κ0, while

E

[
1

f (vi|xi)
∇κwi (κ0)

]
< ∞,

where ∇κ denotes the partial derivative operator with respect to the m-dimensional
nuisance parameter.

Assumption 7. The estimator κ̂n of κ0 is asymptotically linear and
√

n-consistent,
i.e.,

κ̂n − κ0 =
1

n

n∑
i=1

ψi + op

(
n−

1
2

)
, (16)

where E [ψi] = 0 and E
[‖ψi‖2] < ∞.
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An analysis of the first-order asymptotic behaviour of θ̂n is complicated by the
unboundedness of the inverse conditional-density weight at the extremities of the
support of the corresponding conditional distribution. This has the consequence
of potentially inducing the asymptotic variance of the summands in the expression
for θ̂n to be infinite. In this connection, define the functions

Λκ (vi| yi,xi) ≡ 1

f (vi|xi)
w (yi, vi,xi,κ) ,

and

Sκ (c| yi, xi) ≡ E
[‖Λκ (vi| yi,xi)‖2 1 {‖Λκ,γ (vi| yi,xi)‖ ≤ c}

∣∣ yi,xi

]
,

where κ is restricted to an open neighbourhood K containing the true value κ0.
The following condition is imposed to facilitate the development of the central
limit theory for the proposed estimator.

Assumption 8. For all κ ∈ K, where K ⊂ Rm is an open neighbourhood
of the true value κ0 of the finite-dimensional nuisance parameter, the quantity
Sκ (c| yi, xi), taken as a function of c, is slowly varying at infinity.

Assumption 8 is a domain of attraction condition and essentially imposes a
restriction on the tail thicknesses of the conditional densities of each component
of the vector 1

f(vi|xi)
w (yi, vi,xi,κ) given (yi, x

>
i )>. In particular, the condition

of Assumption 8 is equivalent to the restriction

c2 {P [‖Λκ (vi| yi,xi)‖ > c| yi, xi] + P [‖Λκ (vi| yi,xi)‖ ≤ −c| yi, xi]}
= o (Sκ (c| yi,xi))

as c → ∞. In particular, in cases where ‖w (y, v, x,κ)‖ tends to a finite limit as
v → ±∞ for arbitrary fixed values of y, x and κ, Assumption 8 essentially rules
out conditional densities f (vi|xi) with overly thin tails.21

Let
Ωn ≡ Cov

[
s∗n,τ (vi|xi) w (Zi,κ0)

]
.

The conditions of Assumptions 4–8, combined with those governing the large
sample behaviour of s∗n,τ (vi|xi) as spelled out in Lemma 1, yield the main result
of this paper.

21A leading example involves a binary choice model with a latent mean restriction. This exam-
ple serves as the immediate context for the simulation experiments presented in Section 4.
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Theorem 1. Suppose the conditions of Assumptions 1–8 hold. Then the estimator
θ̂n given above in (5) satisfies

θ̂n
p→ θ0

and √
nΩ

− 1
2

n

(
θ̂n − θ0

)
d→ N (0, I) .

Proof. The proof appears in Appendix A.2.

Note that the central limit result in Theorem 1 is rate adaptive in the sense
that it enables the construction of Wald-type inference procedures whose validity
does not require any assumptions regarding the rate of convergence of the estima-
tor.22 As such, this result is analogous to that of Andrews and Schafgans (1998,
Theorem 3), who consider the limiting distribution of Heckman (1990)’s semi-
parametric “identification at infinity” estimator of the sample-selection model.

4 Numerical Evidence
This section of the paper presents the results of a series of simulation experiments
designed to illustrate the sampling behaviour of the proposed estimator in the case
of samples of no more than moderate size. The precise context considered here is
that analyzed by Lewbel (2000), namely, a qualitative-response model originating
from a latent linear model with an unknown error distribution. The specific model
that is the subject of the simulations presented here involves a binary dependent
variable y, two scalar-valued covariates v and x and a latent disturbance term e, to
wit:

y = 1 {v + β1 + β2x + e > 0} ,

where the distributions of e and x satisfy the restrictions

E [e] = 0,

E [ex] = 0

and
0 < E

[
x2

]
< ∞.

The distribution of e is explicitly taken to be unknown, while the covariate v is
taken to be the “special regressor” in this context. In particular, it is shown in

22Note that Ωn is asymptotically equivalent to its sample analogue.
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Lewbel (2000, Theorem 1) that if the conditional distribution of v given the other
regressor x is absolutely continuous with respect to Lebesgue measure and has a
large support relative to that of β1 + β2x + e, and if the disturbance term e is con-
ditionally independent of v given x, then the parameter vector β ≡ ( β1 β2 )>

has the form

β =
(
E

[
xx>

])−1
E

[
x

y − 1 {v > 0}
f (v|x)

]
, (17)

where x ≡ ( 1 x )> and where f (v|x) is the conditional density of v given x.
The goal of the simulations presented here is to verify the suitability of the

nonstandard estimation procedure developed in this paper for

θ = E

[
x

y − 1 {v > 0}
f (v| x)

]

and by extension for β as given above in (17).23

The specific data-generating process used in the simulation experiments is as
follows. The covariate x was simulated from a uniform distribution on the interval
(−1, 1), while the special regressor v was drawn from a N(0, 4) distribution. The
error term e was set to be standard normal, and the parameters of interest were set
to be β1 = β2 = 1. Samples of sizes n = 50, 100, 200 were used, and the number
of Monte Carlo replications was set to 1000. When implementing the pseudo-
estimator of the inverse conditional-density weights according to the procedure
described above in Section 2.1, basic solutions for the regression-quantile opti-
mization problem were obtained by searching a grid of quantiles each separated
by a distance of .01 within the interval [.01, .99]. For a given observation indexed
by i ∈ {1, . . . , n}, the search algorithm starts from α = .99 and works its way
downwards until a quantile α∗ni,.01 satisfying

∣∣∣vi − x>i β̂n(α∗ni,.01)
∣∣∣ < .0001 (18)

is found. If searching a grid of points in the unit interval with uniform separation
widths of .01 doesn’t lead to a quantile α∗ni,.01 satisfying (18) for a given covariate
vector (vi,x

>
i )>, then the algorithm restarts at α = .99 and searches downward

along a grid of quantiles separated by width .005. Subsequent iterations of the
algorithm, if needed, involve the separation widths halving by what they were in

23In particular, nonstandard estimates of θ of the general form given above in (5) were simply
rescaled by the inverse of 1

n

∑n
i=1 xix

>
i to obtain (nonstandard) estimates of the parameter vector

β.
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the immediately previous iteration. The search algorithm was found not to require
a number of iterations greater than three for the series of simulations presented
here.

For purposes of comparison, the nonstandard estimates of β were set against
three other estimates generated by a series of more conventional procedures. The
first competing procedure was probit maximum-likelihood, which is efficient in
the case where the specific data-generating process used in these simulations is
taken to be true. The second and third procedures proceed from a consideration
of the representation of β given in (17). In particular, (17) suggests that β1 and β2

may be consistently estimated by applying ordinary least squares in a regression
of

ỹi ≡ yi − 1 {vi > 0}
f̂n (vi|xi)

(19)

on a constant and xi given the availability of a random sample
{
(yi, vi, xi)

> : i = 1, . . . , n
}

drawn from the joint distribution of (y, v, x)> and a suitable estimate f̂n (vi|xi)
of the conditional density of vi given xi. In this connection, one set of OLS results
involved an infeasible regression using the true value of the conditional density
of vi given xi in place of the estimated density in ỹi, while the other involved a
conditional density estimate of the form

f̂n (vi|xi) ≡ f̂vx,n (vi, xi)

f̂x,n (xi)
,

where f̂vx,n and f̂x,n denote kernel density estimates implemented using Epanech-
nikov kernels. The bandwidth used to implement the estimate of the joint density
of (v, x) was set to decay at rate n−

1
5 , while that used to implement the estimate

of the marginal density of x was set to be proportional to n−
1
4 . Leading constants

for both bandwidths were computed using the popular rule of thumb of Silverman
(1986).

The behaviour of the four estimators of β across the 1000 Monte Carlo replica-
tions considered for each of the three sample sizes used is summarized in Tables 1
and 2. In both tables the rows labelled “Nonstandard” correspond to the nonstan-
dard estimation procedure proposed in this paper, while “Probit” denotes probit
maximum-likelihood and “OLS” and “SP-OLS” denote the least-squares proce-
dure using the true and estimated conditional densities of v given x, respectively.
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Roughly the same qualitative pattern emerges in the results summarized in
both Tables 1 and 2. In particular, the nonstandard estimates dominate those ob-
tained using the semiparametric OLS procedure in terms of bias, while the semi-
parametric OLS estimator has a smaller variance. The bias of the semiparametric
OLS procedure appears to decay only slowly as the sample size is increased. Pro-
bit maximum-likelihood appears to be rather unstable in terms of both bias and
precision at the smallest sample size, but tends to outperform the other estimators
in larger sample sizes, particularly in the case of the slope estimate. The per-
formance of the nonstandard estimator is generally closer to the infeasible OLS
procedure than the infeasible OLS procedure is to its semiparametric counterpart.

The overall impression from the simulation study conducted here is that the
nonstandard procedure provides a feasible and computationally convenient alter-
native to more established methods, particularly when a normal latent-error as-
sumption may not be justified or when the researcher desires an estimator whose
finite-sample performance is unaffected by the choice of subjective smoothing
parameters.

5 Conclusion
This paper has proposed an approach to generating consistent and asymptotically
normal estimates of inverse conditional density-weighted expectations that cir-
cumvents both the computation of preliminary nonparametric estimates of the in-
verse conditional density weights and the implementation of data-dependent trim-
ming functions. The new approach proposed here exploits results concerning the
behaviour of fitted regression-quantile residuals developed in recent work by Goh
and Knight (2008). The asymptotic normality result for the proposed estimator
is expicitly rate adaptive in order to facilitate the formulation of suitable Wald-
type inference procedures. Simulation evidence in the context of a binary-choice
model originating from a linear latent-variable model indicates that the estimation
procedure proposed here provides a viable alternative to more established methods
requiring the choice of bandwidths or kernel functions.
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A Proofs

A.1 Proof of Lemma 1
Note that

Mnα(A×B) =
∑

i 6∈Hn(α)

1
{
nεi(α)− x>i W−1

n ξn ∈ A, xi ∈ B
}

,

where Wn is a d × d matrix with columns xj for indices j ∈ Hn(α) and ξn is a vector with
components nεj(α) for j ∈ Hn(α).

Argue conditionally given W−1
n ξn and observe that W−1

n ξn = Op(
√

n) in order to deduce
the desired result.

A.2 Proof of Theorem 1
Define

θ̃n ≡ 1
n

n∑

i=1

s∗n,τ (vi|xi) w (Zi, κ0) . (20)

Theorem 1 follows from the following three lemmas, which are shown in Appendices A.2.1–A.2.3
to hold under the conditions of Theorem 1:

Lemma 2.

θ̂n − θ̃n = op(1).

Lemma 3.

θ̃n
p→ θ0.

Lemma 4.
√

nΩ− 1
2

n

(
θ̃n − θ0

)
d→ N (0, I) .

A.2.1 Proof of Lemma 2
We have for some intermediate point κ̄n between κ̂n and κ0 that

θ̂n − θ̃n

=
1
n

n∑

i=1

s∗n,τ (vi|xi) (w (Zi, κ̂n)−w (Zi, κ0))

=

(
1
n

n∑

i=1

s∗n,τ (vi|xi)∇κw (κ̄n)

)
(κ̂n − κ0)

p
= E

[
1

f (vi|xi)
∇κw (κ̄n)

]
(κ̂n − κ0) ,

The desired result follows from Assumptions 6 and 7.
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A.2.2 Proof of Lemma 3
The restriction imposed by Assumption 8 on the conditional tail thicknesses of each component of

1
f( v|x)w (y, v, x, κ0) as v → ±∞ ensures that

1
n

n∑

i=1

s∗n,τ (vi|xi)w (Zi,κ0)
p
= E

[
s∗n,τ (vi|xi)w (Zi,κ0)

]
.

We note that E
[
s∗n,τ (vi|xi)w (Zi,κ0)

] → θ0 by construction.

A.2.3 Proof of Lemma 4
We have from Assumption 8 that

√
nΩ− 1

2
n

(
1
n

n∑

i=1

1
f (vi|xi)

w (Zi,κ0)− θ0

)
d→ N (0, I) . (21)

Observe that
√

nΩ− 1
2

n

(
θ̃n − θ0

)

= Ω− 1
2

n

[
1√
n

n∑

i=1

(
s∗n,τ (vi|xi)w (Zi, κ0)− θ0

)
]

= Ω− 1
2

n

[
1√
n

n∑

i=1

(
1

f (vi|xi)
w (Zi, κ0)− θ0

)
+

1√
n

n∑

i=1

(
s∗n,τ (vi|xi)− 1

f (vi|xi)

)
w (Zi, κ0)

]

≡ An1 + An2.

We have An1
d→ N (0, I) by (21), so it remains to show that An2 is asymptotically negligible.

In this connection, note that

E


 1

n2

∥∥∥∥∥
n∑

i=1

(
s∗n,τ (vi|xi)− 1

f (vi|xi)

)
w (Zi, κ0)

∥∥∥∥∥

2



≤ 1
n

E

[(
s∗n,τ (vi|xi)− 1

f (vi|xi)

)2

‖w (Zi, κ0)‖2
]

= o
(
n−1

)
.

From this it follows that
∥∥∥∥∥

1
n

n∑

i=1

(
s∗n,τ (vi|xi)− 1

f (vi|xi)

)
w (Zi, κ0)

∥∥∥∥∥ = op

(
1√
n

)
,

which in turn implies that

√
n ‖Ωn‖−

1
2 ·

∥∥∥∥∥
1
n

n∑

i=1

(
s∗n,τ (vi|xi)− 1

f (vi|xi)

)
w (Zi, κ0)

∥∥∥∥∥
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= ‖Ωn‖−
1
2 · op(1)

= op(1)

by virtue of the fact that ‖Ωn‖ = O(1).24 It follows that An2 is asymptotically negligible.

24Note that ‖Ωn‖ tends either to a finite positive limit or to infinity as n →∞.

22



Ta
bl

e
1:

Fi
ni

te
-s

am
pl

e
be

ha
vi

ou
ro

fs
lo

pe
es

tim
at

or
s,

bi
na

ry
ch

oi
ce

m
od

el

M
ea

n
SD

L
ow

er
qu

ar
til

e
M

ed
ia

n
U

pp
er

qu
ar

til
e

R
M

SE
M

ea
n

ab
so

lu
te

er
ro

r
M

ed
ia

n
ab

so
lu

te
er

ro
r

n
=

50
N

on
st

an
da

rd
.9

32
2

.3
85

6
.6

71
9

.9
05

3
1.

15
80

.3
91

4
.3

12
6

.2
63

7
Pr

ob
it

8.
01

35
79

.5
01

5
.8

91
4

1.
15

43
1.

54
57

79
.7

70
6

7.
17

86
.3

11
2

O
L

S
.9

95
3

.4
22

5
.7

06
8

.9
73

0
1.

24
78

.4
22

3
.3

28
4

.2
78

1
SP

-O
L

S
.7

30
6

.2
70

6
.5

49
7

.7
28

0
.8

92
5

.3
81

7
.3

19
7

.2
93

4
n

=
10

0
N

on
st

an
da

rd
.9

95
7

.3
01

4
.7

92
9

.9
79

5
1.

18
62

.3
01

3
.2

37
8

.2
00

4
Pr

ob
it

1.
12

55
.3

52
8

.8
99

2
1.

07
42

1.
28

41
.3

74
3

.2
57

0
.1

91
9

O
L

S
1.

01
87

.3
15

3
.8

03
4

.9
99

3
1.

21
29

.3
15

7
.2

49
6

.2
03

9
SP

-O
L

S
.8

24
1

.2
20

6
.6

79
3

.8
11

3
.9

64
0

.2
82

1
.2

33
1

.2
12

9
n

=
20

0
N

on
st

an
da

rd
1.

04
41

.2
24

9
.8

87
2

1.
03

05
1.

18
29

.2
29

1
.1

80
6

.1
51

5
Pr

ob
it

1.
04

10
.2

04
6

.8
92

5
1.

02
59

1.
16

58
.2

08
6

.1
62

9
.1

29
9

O
L

S
1.

00
95

.2
12

7
.8

61
2

1.
00

80
1.

14
04

.2
12

9
.1

67
9

.1
39

2
SP

-O
L

S
.8

96
9

.1
59

0
.7

86
0

.8
90

3
1.

00
59

.1
89

5
.1

53
8

.1
33

8

23



Ta
bl

e
2:

Fi
ni

te
-s

am
pl

e
be

ha
vi

ou
ro

fi
nt

er
ce

pt
es

tim
at

or
s,

bi
na

ry
ch

oi
ce

m
od

el

M
ea

n
SD

L
ow

er
qu

ar
til

e
M

ed
ia

n
U

pp
er

qu
ar

til
e

R
M

SE
M

ea
n

ab
so

lu
te

er
ro

r
M

ed
ia

n
ab

so
lu

te
er

ro
r

n
=

50
N

on
st

an
da

rd
.9

61
4

.3
94

8
.7

11
4

.9
25

8
1.

19
13

.3
96

4
.3

09
5

.2
57

1
Pr

ob
it

7.
27

19
64

.5
98

7
.8

75
7

1.
19

14
1.

62
18

64
.8

70
3

6.
43

87
.3

15
1

O
L

S
1.

01
29

.3
99

4
.7

48
6

.9
88

8
1.

25
05

.3
99

4
.3

11
7

.2
51

4
SP

-O
L

S
.7

62
3

.2
77

3
.5

75
7

.7
64

7
.9

35
1

.3
65

1
.2

97
5

.2
58

7
n

=
10

0
N

on
st

an
da

rd
.9

95
3

.3
04

9
.7

65
6

.9
84

6
1.

19
32

.3
04

8
.2

42
5

.2
10

1
Pr

ob
it

1.
11

09
.3

36
5

.8
91

1
1.

06
31

1.
28

47
.3

54
1

.2
51

4
.1

91
0

O
L

S
1.

00
37

.2
94

8
.7

96
7

.9
88

4
1.

19
24

.2
94

7
.2

35
6

.1
99

3
SP

-O
L

S
.8

30
7

.2
12

3
.6

78
8

.8
35

4
.9

76
5

.2
71

4
.2

22
0

.1
93

1
n

=
20

0
N

on
st

an
da

rd
1.

05
71

.2
45

4
.8

90
6

1.
04

43
1.

21
25

.2
51

8
.1

96
1

.1
62

1
Pr

ob
it

1.
03

95
.2

04
3

.9
05

2
1.

01
75

1.
15

41
.2

07
9

.1
56

9
.1

24
7

O
L

S
1.

00
97

.1
99

4
.8

67
1

1.
01

16
1.

13
95

.1
99

5
.1

59
6

.1
36

6
SP

-O
L

S
.9

03
3

.1
48

4
.8

08
8

.9
06

3
1.

00
25

.1
77

1
.1

42
5

.1
22

6

24



References
Andrews, D. W. K., and M. M. A. Schafgans (1998) ‘Semiparametric estimation of the intercept

of a sample selection model.’ Review of Economic Studies 65, 497–517

Angrist, J., V. Chernozhukov, and I. Fernández-Val (2006) ‘Quantile regression under misspecifi-
cation, with an application to the U.S. wage structure.’ Econometrica 74, 539–563

Chamberlain, G. (1986) ‘Asymptotic efficiency in semi-parametric models with censoring.’ Jour-
nal of Econometrics 32, 189–218

Goh, S. C., and K. Knight (2008) ‘Nonstandard quantile-regression inference.’ Econometric The-
ory, forthcoming.
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