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NONLINEAR COINTEGRATION, MISSPECIFICATION AND BIMODALITY

MARCELO C. MEDEIROS, EDUARDO MENDES, AND LES OXLEY

ABSTRACT. We show that the asymptotic distribution of the ordinary least squares estimator in a coin-

tegration regression may be bimodal. A simple case arises when the intercept is erroneously omitted

from the estimated model or in nonlinear-in-variables models with endogenous regressors. In the lat-

ter case, a solution is to use an instrumental variable estimator. The core results in this paper also

generalises to more complicated nonlinear models involving integrated time series.

KEYWORDS: Cointegration, nonlinearity, bimodality, misspecification, instrumental variables, asymp-

totic theory.

ACKNOWLEDGMENTS: This work was carried out while the first author was visiting the Department

of Economics at the University of Canterbury and its kind hospitality is gratefully acknowledged. The

authors are very grateful to Peter C.B. Phillips for many enlightening discussions. The research of the

first author is partially supported by CNPq/Brazil and the third by the Marsden Fund of New Zealand.

1. INTRODUCTION

One area of econometrics that has recently expanded is that of nonlinearmodeling and nonlin-

ear cointegration in particular see for example, Teräsvirta, Tjøstheim, and Granger (2009), Choi and

Saikkonnen (2004a,b), Juhl and Xiao (2005), Bierens and Martins (2009), Cai, Li, and Park (2009),

and Xiao (2009). These authors forcefully argue, and richly illustrate,why and how nonlinearities

form the basis of a variety of economic theories. Their illustrations include a wide range of disequi-

librium models; labour market models; exchange rate models; and productionfunction modelling.

In this paper we discuss several interesting issues that can emerge in possible nonlinear cointegra-

tion models. Although we focus on simple nonlinear-in-variables cointegratedregression models, our

core results can be easily generalised to more complex nonlinear formulations. We provide conditions

under which nonstandard asymptotic distributions arise when estimating the parameters of the model.

More specifically, we show that the ordinary least squares (OLS) estimator might be inconsistent and
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2 M. C. MEDEIROS, E. MENDES, AND L. OXLEY

with an asymptotic distribution which is bimodal. The existence of bimodality has recently been

considered by Phillips (2006), Hillier (2006) and Forchini (2006). In their work bimodality typically

occurs due to weak instrumentation. This is not the case presented here where bimodality arises anal-

ogously to that reported in Phillips and Hajivassiliou (1987) and Fiorio, Hajivassiliou, and Phillips

(2008). We derive a Instrumental Variables (IV) estimator which is consistent and asymptotically

distributed as a mixed normal.

Bimodality arises also in simpler models. For example, we show that when an intercept is erro-

neously omitted from a linear cointegrated regression, the distribution of the OLS estimator of the

slope parameter is bimodal. This has also an adverse effect in the converge rate of the estimator as

well as in the distribution of the t statistic.

The rest of the paper is organised as follows. Section 2 presents the simplest case arising from

the erroneous omission of the intercept in the cointegrating relationship. Section 3 presents the gen-

eral result which permits nonlinearity, potential endogeneity, and a generalised error structure. We

also discuss the IV estimator of the model. Section 4 presents the simulation resultsand Section 5

concludes.

2. A SIMPLE RESULT

In this section we report the results concerning a very simple misspecificationproblem: the omis-

sion of an intercept in a regression with cointegrated variables. More specifically, consider the fol-

lowing assumption.

ASSUMPTION1. Let xt = xt−1 + vt, wherext ∈ R
kx and vt ∼ IID(0,Ω). Furthermore,yt =

α + β′xt + ut, whereα 6= 0, ut ∼ IID(0, σ2
u), and E(vtuτ ) = 0, ∀ t, τ . Assume also that the

partial sum processesSv,T (r) =
∑[Tr]

i=1 vi and Su,T (r) =
∑[Tr]

i=1 ui, r ∈ [0, 1], constructed from

{vt}∞t=1 and{ut}∞t=1, respectively, satisfy the multivariate invariance principle1. Specifically, define

Xv,T (r) =
√

TSv,T (r) andXu,T (r) =
√

TSu,T (r), then

Xv,T (r) ⇒ Bv(r), as T → ∞,

Xu,T (r) ⇒ σ2
uWu(r), as T → ∞,

(1)

1[X] denotes the integer part ofX.
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whereBv(r) ∈ R
kx is a multivariate Brownian motion with covariance matrix

Ω = lim
T→∞

1

T
E
[
ST (r)ST (r)′

]

andWu(r) is a standard Brownian motion. Finally, assume thatWu(r) is independent ofBv(r).2

Now, suppose that an econometrician estimates the regression described inAssumption 1 by OLS

without including the intercept3. Proposition 1 presents the asymptotic distribution of the OLS esti-

mator.

PROPOSITION 1. Defineβ̂ =
(∑T

t=1 xtx
′
t

)−1∑T
t=1 xtyt, which is the OLS estimator when the

intercept is erroneously omitted from the estimated equation. Under Assumption 1

(2)
√

T
(
β̂ − β

)
⇒ α

[∫ 1

0
Bv(r)Bv(r)′dr

]−1 ∫ 1

0
Bv(r)dr.

Several interesting features emerge from the above result. First, the OLSestimator is no longer

super-consistent, as the convergence rate is
√

T . This will have serious implications in hypothesis

testing. Second, the distribution in Proposition (1) may display bimodality in certaincases. For ex-

ample, Figure 1, panel (a), displays the first marginal component of the asymptotic distribution in (2)

for different dimensions,kx, of the Brownian motionBv(r) 4. The distribution is clearly bimodal for

kx = 1 andkx = 2. However, the bimodality disappears as the dimension ofB(r) increases. Third,

there is a variance reduction askx grows. In order to compare with the standard result in cointegration

theory, in panel (b) we consider the case where the intercept is zero in the cointegration relationship,

such that the usual result holds, i.e.,T
(
β̂ − β

)
⇒
[∫ 1

0 Bv(r)Bv(r)′dr
]−1 ∫ 1

0 Bv(r)dWu(r). As

we can see, the distribution is, as expected, always unimodal and, contrary to the previous case, the

variance increases as thekx −→ ∞. Figure 2 displays the variance of the first component of the

asymptotic distribution of the OLS estimator as a function of the dimension of the vector Brownian

process. Panel (a) refers to the case whereα = 1 while Panel (b) refers to the case whereα = 0.

2This last assumption excludes the case where the multivariate random walkis endogenous with respect toβ. Generalizing
our results to the case of endogenousxt is considered in Section 3.
3When testing for the purchasing power parity (PPP) hypothesis (where the intercept is zero by definition) or synchronous
dynamics among commodity prices, for example, it is not rare to find empirical models omitting the intercept.
4In order to simulate the distributions we consider thatΩ in Assumption 1 is an identity matrix andα = 1. The Brownian
motions are generated from 10,000 observations and the simulations repeated 10,000 times.
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FIGURE 1. Asymptotic distribution of the OLS estimator of in a multiple cointegrat-
ing regression for different number of regressors. Panel (a)α 6= 0 and it is incorrectly
omitted from the estimated regression. Panel (b)α = 0.
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FIGURE 2. Scatter plot of the log variance of the first component of the asymptotic
distribution of the OLS estimator versus the log dimension of the Brownian process.
Panel (a)α 6= 0 and it is incorrectly omitted from the estimated regression. Panel (b)
α = 0.

To evaluate the effects of the above result in terms of inference, we consider the simple case of a

single regressor, i.e.,kx = 1. Under the misspecified model without an intercept, the distribution of

the t-statistic forH0 : β = β∗ is given in the following proposition.

PROPOSITION2. Suppose that Assumption 1 holds withkx = 1, such thatBv ≡ σvWv(r), where

Wv(r) is a standard Brownian process. Under the null hypothesisβ = β∗,

(3)
1√
T

tβ =
1√
T

β̂ − β∗

σ̂u

(∑T
t=1 x2

t

)−1/2
⇒ α

σu

∫ 1
0 Wv(r)dr

[∫ 1
0 Wv(r)2dr

]1/2
.
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TABLE 1. Empirical size of the t-test.

The table shows the rejection rates of the null hypothesisH0 : β = 1 when a t-test is used.

The nominal significance level is 5%.
Sample size α = 0 α = 0.01 α = 0.05 α = 0.1 α = 1 α = 10

50 0.052 0.051 0.056 0.088 0.850 0.991
100 0.044 0.045 0.064 0.124 0.919 0.997
250 0.049 0.049 0.083 0.188 0.953 0.997
500 0.040 0.041 0.104 0.332 0.963 0.995
1000 0.039 0.054 0.189 0.561 0.973 0.996
5000 0.042 0.066 0.626 0.885 0.995 1.000

As the denominator of the t-statistic isO(T ) and the numerator isO(
√

T ), the ratio will diverge as

T −→ ∞, such that it should be scaled by
√

T . Furthermore, the distribution of the scaled t-statistic

is not free from nuisance parameters as bothα andσu appear in the asymptotic distribution.

Although the above results are quite simple, the message is important and direct:Never omit the

intercept in a cointegrating regression. Furthermore, to our knowledge this is the first paper addressing

this issue.

2.1. Simulation Evidence. To illustrate the results above we conduct a simple simulation exercise.

Consider the following data generating process (DGP):

yt = α + xt + ut

xt = xt−1 + vt,

whereut ∼ NID(0, 1), vt ∼ NID(0, 1), andE(utvτ ) = 0, ∀ t, τ . The DGP was simulated for different

values ofα. We consider the estimation of the slope coefficient when the intercept is erroneously

omitted from the estimated regression. We study the effects on the empirical sizeof the t-test for the

null hypothesisH0 : β = 1 at the usual 5% significance level. The results are shown in Table 1. The

table shows the rejection rates of the null hypothesis when it is in fact true. As expected, whenα = 0,

the rejection rates are close to the nominal size of5%. However, the distortions tend to be large as

the value of the omitted intercept grows. For example, even for a reasonably small value ofα, such

asα = 0.05, the rejection rates can be as high as 8% for 250 observations or almost 19% for 1000

observations.
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3. A SIMPLE NONLINEAR-IN-VARIABLES MODEL

In this section we consider a cointegration regression with time-varying parameters. Our model

has a key feature that the cointegration relationship changes according toan observed state vector of

variableszt. We assume thatzt is observable and second-order stationary. More specifically consider

the following assumption.

ASSUMPTION2. The vectorY t = (yt, xt, z
′
t)
′ satisfy

yt = α0 + β0xt + α1g(zt) + β1xtg(zt) + ut,(4)

xt = xt−1 + vt,(5)

ut =
∞∑

j=0

πu,jε1,t−j = πu(L)ε1,t,(6)

vt =
∞∑

j=0

πv,jε2,t−j = πv(L)ε2,t, and(7)

zt =
∞∑

j=0

πz,jε3,t−j = πz(L)ε3,t,(8)

whereπu(L), πv(L), andπz(L) are lag polynomials,
∑∞

j=0 j|πu,j | < ∞,
∑∞

j=0 j‖πv,j‖ < ∞, and
∑∞

j=0 j‖πz,j‖ < ∞. Setεt =
(
ε1,t, ε2,t, ε

′
3,t

)′
such thatE(εt) = 0 andE(εtε

′
t) = Ωε, where

Ωε =




ω2
1 ω12 ω′

13

ω12 ω2 ω′
23

ω13 ω23 Ω3


 .

Assume also thatx0 = 0 or is randomly drawn from a density independent oft. Finally, g(zt) :

R
kz → R is a known function of the stationary vector processzt ∈ R

kz .

Model (4) may arise in a number of situations, as for example, in threshold cointegrating regres-

sions where the threshold is known are special cases of (4). Such kindof models are relevant when, for

instance, the long-run equilibrium changes according to the business cycle. Suppose thatg(zt) = dt

is a dummy variable indicating recessions, such as, for example the NBER recession indicator. In this

case, (4) becomesyt = α0 + β0xt + α1dt + β1xtdt + ut.
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ASSUMPTION3. The stochastic processg(zt) is such thatE [g(zt)] = µg < ∞ andE
[
g(zt)

2
]

=

m2
g < ∞. Furthermore, 1

T

∑T
t=1 g(zt)

p−→ µg and 1√
T

∑T
t=1 g(zt)

d−→ N(µg, ω
2
g), whereω2

g is

the long-run variance ofg(zt). Assume also thatE [g(zt)ut] = µgu < ∞ and µgu 6= 0. Finally,

1
T

∑T
t=1 g(zt)ut

p−→ µgu and 1√
T

∑T
t=1 g(zt)ut

d−→ N(µgu, ω2
gu), whereω2

gu < ∞.

Define the following stationary zero-mean process

w′
t =

[
ut, vt, g(zt) − µg, g(zt)

2 − m2
g, g(zt)ut − µgu

]′ ∈ R
k.

We make the following assumptions aboutwt.

ASSUMPTION4. Each element of the process{wt}∞t=1, satisfies:

(a) E|wit|a < ∞, i = 1, . . . , k, for 2 ≤ a < ∞;

(b) {ωit}∞t=1, i = 1, . . . , k, is either uniform mixing of size−a/(2a− 2) or strong mixing of size

−a/(a − 2), for a > 2.

ASSUMPTION5. The processwt has a continuous spectral density functionf
ww

(λ) which is bounded

away from zero, such that the partial sum processST (r) =
∑[Tr]

i=1 wi, r ∈ [0, 1], constructed from

{wt}∞t=1 satisfies the multivariate invariance principle. Specifically, defineXT (r) =
√

TST (r),

thenXT (r) ⇒ B(r), as T → ∞, whereB(r) =
[
Bu(r), Bv(r), Bg(r), Bg2(r), Bgu(r)

]′
is a

multivariate Brownian process with covariance matrixΩ = lim
T→∞

T−1
E [ST (r)ST (r)′] defined as

Ω =




ω2
u ωvu ωgu ωg2u ωguu

ωvu ω2
v ωgv ωg2v ωguv

ωgu ωgv ω2
g ωg2g ωggu

ωg2u ωg2v ωg2g ω2
g2 ωg2gu

ωguu ωguv ωggu ωg2gu ω2
gu




= Σ + Λ + Λ
′,(9)

accordingly to the partitions ofwt, whereΣ = E(w1w
′
1) andΛ = lim

T→∞

1
T

∑∞
t=2 E(w1w

′
t).
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Setθ = (α0, β1, α1, β1)
′ and consider the OLS estimator

θ̂ =




∑T
t=1 1

∑T
t=1 xt

∑T
t=1 g(zt)

∑T
t=1 g(zt)xt

·
∑T

t=1 x2
t

∑T
t=1 g(zt)xt

∑T
t=1 g(zt)x

2
t

· · ∑T
t=1 g(zt)

2
∑T

t=1 g(zt)
2xt

· · · ∑T
t=1 g(zt)

2x2
t




−1 


∑T
t=1 yt

∑T
t=1 xtyt

∑T
t=1 g(zt)yt

∑T
t=1 xtg(zt)yt




.

The distribution of̂θ changes according to the properties of the functiong(zt) as is illustrated in

the following theorem.

THEOREM 1. Under Assumptions 2–5 and the additional assumption thatµg 6= 0,

Γ

(
θ̂ − θ

)
⇒




1
∫ 1
0 Bv(r)dr µg µg

∫ 1
0 Bv(r)dr

·
∫ 1
0 Bv(r)

2dr µg

∫ 1
0 Bv(r)dr µg

∫ 1
0 Bv(r)

2dr

· · m2
g m2

g

∫ 1
0 Bv(r)dr

· · · m2
g

∫ 1
0 Bv(r)

2dr




−1 


N
[
0, ω2

1πu(1)2
]

∫ 1
0 Bv(r)dBu(r) + ∆vu

N(µgu, ω2
gu)

µgu

∫ 1
0 Bv(r)dr




,

where∆vu = σvc + λvu and

Γ =




T 1/2 0 0 0

0 T 0 0

0 0 T 1/2 0

0 0 0 T 1/2




.

On the other hand, ifµg = 0

Γ

(
θ̂ − θ

)
⇒




1
∫ 1
0 Bv(r)dr 0 0

·
∫ 1
0 Bv(r)

2dr 0 0

· · m2
g m2

g

∫ 1
0 Bv(r)dr

· · · m2
g

∫ 1
0 Bv(r)

2dr




−1 


N
[
0, ω2

1πu(1)2
]

∫ 1
0 Bv(r)dBu(r) + ∆vu

N(µgu, ω2
gu)

µgu

∫ 1
0 Bv(r)dr




,

where∆gv = σgv + λgv andΓ is as above.

Two important features emerge from Theorem 1. First, as expected, the OLS estimate ofα1 is not

consistent whenzt is endogenous. Second, the asymptotic distribution ofβ̂1 may also be bimodal.
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3.1. A Simple Solution. In this section we show how IV may be used in the present context. To

simplify the exposition, consider the case wherext is exogenous, such thatωvu = 0.

ASSUMPTION6. st ∈ R is a stochastic process such thatE [stg(zt)] 6= 0, E(stut) = 0, E(st) =

µs < ∞, andE
(
s2
t

)
= m2

s < ∞. Furthermore, the partial sum processSsu,T (r) =
∑[Tr]

i=1 siui con-

structed from{stut}∞t=1 satisfies the invariance principle. Specifically, defineXsu,T (r) =
√

TSsu,T (r),

thenXsu,T (r) ⇒ ωsuWsu(r), as T → ∞, whereWsu(r) is a standard Brownian motion andω2
su

is the long-run variance of the processstut.

Defineĝt = λ̂st, whereλ̂ =
(∑T

t=1 s2
t

)−1∑T
t=1 stg(zt). The IV estimator ofθ is given by

(10) θ̃ =




∑T
t=1 1

∑T
t=1 xt

∑T
t=1 ĝt

∑T
t=1 ĝtxt

· ∑T
t=1 x2

t

∑T
t=1 ĝtxt

∑T
t=1 ĝtx

2
t

· · ∑T
t=1 ĝ2

t

∑T
t=1 ĝ2

t xt

· · ·
∑T

t=1 ĝ2
t x

2
t




−1 


∑T
t=1 yt

∑T
t=1 xtyt

∑T
t=1 ĝtyt

∑T
t=1 xtĝtyt




.

THEOREM 2. Under Assumptions 2–6 and the additional assumption thatωvu = 0, if µs 6= 0 then

Γ

(
θ̃ − θ

)
⇒




1
∫ 1
0 Bv(r)dr λµs λµs

∫ 1
0 Bv(r)dr

·
∫ 1
0 Bv(r)

2dr λµs

∫ 1
0 Bv(r)dr λµs

∫ 1
0 Bv(r)

2dr

· · λ2m2
s λ2m2

s

∫ 1
0 Bv(r)dr

· · · λ2m2
s

∫ 1
0 Bv(r)

2dr




−1 


N
[
0, ω2

1πu(1)2
]

∫ 1
0 Bv(r)dBu(r)

N(0, λ2ω2
su)

λ
∫ 1
0 Bv(r)dWsu(r)




.

Otherwise, ifµs = 0 then

Γ

(
θ̃ − θ

)
⇒




1
∫ 1
0 Bv(r)dr 0 0

·
∫ 1
0 Bv(r)

2dr 0 0

· · λ2m2
s λ2m2

s

∫ 1
0 Bv(r)dr

· · · λ2m2
s

∫ 1
0 Bv(r)

2dr




−1 


N
[
0, ω2

1πu(1)2
]

∫ 1
0 Bv(r)dBu(r)

N(0, λ2ω2
su)

λ
∫ 1
0 Bv(r)dWsu(r)




.
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The matrixΓ is given by

Γ =




T 1/2 0 0 0

0 T 0 0

0 0 T 1/2 0

0 0 0 T




in both cases.

4. MONTE CARLO SIMULATIONS

In this section we present simulation evidence of the results in the previous sections. Consider two

cases of the general model described in equations (4)–(8).

(1) Model 1: Identity function.

yt = α0 + α1zt + β0xt + β1xtzt + ut

= 1 + xt + α1zt + xtzt + ut,

zt = st + ut,

xt = xt−1 + vt,

whereut ∼ NID(0, 1), vt ∼ NID(0, 1), st ∼ NID(0, 1), E(utvτ ) = 0, ∀ t, τ , andE(stuτ ) =

0, ∀ t, τ .

(2) Model 2: Threshold function.

yt = α0 + α1I(zt > 0) + β0xt + β1xtI(zt > 0) + ut

= 1 + xt + α1I(zt > 0) + xtI(zt > 0) + ut,

zt = st + ut,

xt = xt−1 + vt,

whereI(A) is an indicator function which equals one if the eventA occurs or zero otherwise,

ut ∼ NID(0, 1), vt ∼ NID(0, 1), st ∼ NID(0, 1), E(utvτ ) = 0, ∀ t, τ , andE(stuτ ) = 0,

∀ t, τ .
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For both DGPs, we consider two cases:α1 = 0 andα1 = 1. In Model 1,g(zt) = zt whereas in

Model 2,g(zt) = I(zt > 0). We simulate 5000 observations of each model over 1000 Monte Carlo

replications and evaluate the distribution of both the OLS and IV estimators of theparametersα0, α1,

β0, andβ1. In Model 1, the first stage regression for the IV estimator consists of regressingzt on st

while for the second model, in the first stage theI(zt > 0) is regressed onI(st > 0). The results are

shown in Figures 3–6. We also consider the distribution of the t-statistic underthe null hypothesis as

shown in Figures 7–10.

Several features emerge from the graphs. First, depending on the value of α1, bimodality may or

may not be present. Whenα1 = 1, the OLS estimator ofβ1 is always bimodal, while the IV estimator

is not. Furthermore, in this specific case (and for both models), the IV estimator has lower variance

than the OLS estimator. The t-statistics for the OLS estimators display bimodality, whereas the the

ones for the IV estimators are, as expected, normally distributed. Second,the OLS estimator ofβ1

is always consistent. In Model 1, as expected, the OLS estimator ofα1 is not consistent for the true

parameter, while the IV counterpart is. When Model 2 is considered, the OLS delivers inconsistent

estimators for bothα0 andα1 while the IV estimator is always consistent. The t-statistic for the IV

estimators are always distributed as a standard normal random variable.

5. CONCLUSION

The paper identifies a number of interesting cases that can arise in cointegration models. Bi-

modality is one such case. We show how bimodality arises; the consequences, including the loss of

super-consistency of the estimates in a simple case; and how the addition of regressors leads to disap-

pearance of the phenomena. Inclusion of an intercept removes both bimodality and inference related

problems arising from using a non-scaled t-statistic. Secondly, in the more general nonlinear case,

where endogeneity and a generalised error structure are considered, as expected, endogeneity leads

to the possibility of inconsistent OLS estimates, but also the potential for the asymptotic distribution

to be bimodal. The use of Instrumental Variables (IV) in these cases removes both bimodality and

inconsistency.
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APPENDIX A. L EMMA

LEMMA 1. Let {xt}T
t=1 be a stochastic process satisfyingxt = xt−1 + vt, whereE(vt) = 0.

Definewt = (ut − µu, vt)
′, whereut is a stationary process withE(ut) = µu < ∞. Assume
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FIGURE 5. Empirical distribution of the OLS and IV estimators in Model 2 with
α1 = 0. The data are simulated with 5000 observations and the Monte Carlo is
conducted with 1000 replications.

that the partial sum processST (r) =
∑[Tr]

j=1 wj , r ∈ [0, 1], constructed from the stationary in-

novation process{wt}T
t=1, satisfies the multivariate invariance principle. More specifically, define

XT (r) =
√

TST (r), such thatXT (r) ⇒ B(r), asT → ∞, whereB(r) = [Bu(r), Bv(r)]
′ ∈ R

2

is a vector Brownian process with covariance matrix

(11) Ω =


 ω2

u ωvu

ωvu ω2
v


 = E(w1w

′
1) +

∞∑

k=2

[
E(w1w

′
k) + E(wkw

′
1)
]

= Σ + Λ + Λ
′.

Define∆uv = σuv + λuv. Under the assumptions above, the following results hold:

(a) if µu 6= 0, thenT−2
∑T

t=1 x2
t ut ⇒ µu

∫ 1
0 B2

vdr;

(b) if ∆vu 6= 0 andµu = 0, thenT−3/2
∑T

t=1 x2
t ut ⇒

∫ 1
0 Bv(r)

2dBu(r) + ∆vu

∫ 1
0 Bv(r)dr;

(c) if ∆vu = 0 andµu = 0, thenT−3/2
∑T

t=1 x2
t ut ⇒

∫ 1
0 Bv(r)

2dBu(r);

(d) and, ifµu 6= 0, thenT−3/2
∑T

t=1 xtut ⇒ µu

∫ 1
0 Bv(r)dr.
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FIGURE 6. Empirical distribution of the OLS and IV estimators in Model 2 with
α1 = 1. The data are simulated with 5000 observations and the Monte Carlo is
conducted with 1000 replications.

Proof. First, defineu∗
t = ut − µu and write

T∑

t=1

x2
t ut =

T∑

t=1

x2
t (µu + u∗

t ) = µu

T∑

t=1

x2
t +

T∑

t=1

x2
t u

∗
t .

It is well-known thatµu
1

T 2

∑T
t=1 x2

t ⇒ µu

∫ 1
0 Bv(r)

2dr. Direct application of the results in Theorem

3.1 in Ibragimov and Phillips (2008) implies that

1

T 3/2

T∑

t=1

x2
t u

∗
t ⇒

∫ 1

0
Bv(r)

2dBu(r) + ∆vu

∫ 1

0
Bv(r)dr.

Hence, (a), (b), and (c) follow from the above convergence limits.

To prove (d) is enough to write
∑T

t=1 xtut =
∑T

t=1 xt (µu + u∗
t ) = µu

∑T
t=1 xt +

∑T
t=1 xtu

∗
t ,

and note thatµu
1

T 3/2

∑T
t=1 xt ⇒

∫ 1
0 Bv(r)dr and 1

T

∑T
t=1 xtu

∗
t ⇒

∫ 1
0 Bv(r)dBu(r)dr + ∆uv.

�
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FIGURE 7. Empirical distribution of t-statistic for the OLS and IV estimators in
Model 1 withα1 = 0. The data are simulated with 5000 observations and the Monte
Carlo is conducted with 1000 replications.

APPENDIX B. PROOF OFPROPOSITIONS ANDTHEOREMS

B.1. Proof of Proposition 1. The proof is very simple. First, note that

(
β̂ − β

)
=

(
T∑

t=1

xtx
′
t

)−1 T∑

t=1

xt(α + ut) =

(
T∑

t=1

xtx
′
t

)−1(
α

T∑

t=1

xt +
T∑

t=1

xtut

)
.

It is clear that 1
T 2

∑T
t=1 xtx

′
t ⇒

∫ 1
0 B(r)B(r)′dr, 1

T 3/2

∑T
t=1 xt ⇒

∫ 1
0 B(r)dr, and 1

T

∑T
t=1 xtut ⇒

∫ 1
0 B(r)dW (r). Hence, asT−3/2

∑T
t=1 xtut

p→ 0,

√
T
(
β̂ − β

)
=

(
1

T 2

T∑

t=1

xtx
′
t

)−1(
α

1

T 3/2

T∑

t=1

xt +
1

T 3/2

T∑

t=1

xtut

)

⇒ δ

(∫ 1

0
B(r)B(r)′dr

)−1 ∫ 1

0
B(r)dr.

�
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FIGURE 8. Empirical distribution of t-statistic for the OLS and IV estimators in
Model 1 withα1 = 1. The data are simulated with 5000 observations and the Monte
Carlo is conducted with 1000 replications.

B.2. Proof of Proposition 2. Write the t-statistic as

tβ =

∑T
t=1 xt(α + ut)∑T

t=1 x2
t

÷ σ̂u

(
T∑

t=1

x2
t

)−1/2

=
α
∑T

t=1 xt

σ̂u

(∑T
t=1 x2

t

)1/2
+

∑T
t=1 xtut

σ̂u

(∑T
t=1 x2

t

)1/2
.

Hence,

1√
T

tβ =
α 1

T 3/2

∑T
t=1 xt

σ̂u

(
1

T 2

∑T
t=1 x2

t

)1/2
+

1
T 3/2

∑T
t=1 xtut

σ̂u

(
1

T 2

∑T
t=1 x2

t

)1/2
⇒ α

σu

∫ 1
0 W (r)dr

[∫ 1
0 W (r)2dr

]1/2
.

�
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FIGURE 9. Empirical distribution of t-statistic for the OLS and IV estimators in
Model 2 withα1 = 0. The data are simulated with 5000 observations and the Monte
Carlo is conducted with 1000 replications.

B.3. Proof of Theorem 1. First, define the following matrices:

H =




√
T 0 0 0

0 T 0 0

0 0
√

T 0

0 0 0 T




andD =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0
√

T




.
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FIGURE 10. Empirical distribution of t-statistic for the OLS and IV estimators in
Model 2 withα1 = 1. The data are simulated with 5000 observations and the Monte
Carlo is conducted with 1000 replications.

Note that

D−1H
(
θ̂ − θ

)
=





H−1




∑T
t=1 1

∑T
t=1 xt

∑T
t=1 g(zt)

∑T
t=1 g(zt)xt

· ∑T
t=1 x2

t

∑T
t=1 g(zt)xt

∑T
t=1 g(zt)x

2
t

· · ∑T
t=1 g(zt)

2
∑T

t=1 g(zt)
2xt

· · · ∑T
t=1 g(zt)

2x2
t




H−1





−1

× D−1H−1




∑T
t=1 ut

∑T
t=1 xtut

∑T
t=1 g(zt)ut

∑T
t=1 xtg(zt)ut




.
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Hence,

D−1H
(
θ̂ − θ

)
=




1 1
T 3/2

∑T
t=1 xt

1
T

∑T
t=1 g(zt)

1
T 3/2

∑T
t=1 g(zt)xt

· 1
T 2

∑T
t=1 x2

t
1

T 3/2

∑T
t=1 g(zt)xt

1
T 2

∑T
t=1 g(zt)x

2
t

· · 1
T

∑T
t=1 g(zt)

2 1
T 3/2

∑T
t=1 g(zt)

2xt

· · · 1
T 2

∑T
t=1 g(zt)

2x2
t




−1

×




1√
T

∑T
t=1 ut

1
T

∑T
t=1 xtut

1√
T

∑T
t=1 g(zt)ut

1
T 3/2

∑T
t=1 xtg(zt)ut




.

Therefore, forµg = 0 we need to show the following: (a)1
T 3/2

∑T
t=1 xt ⇒

∫ 1
0 Bv(r)dr; (b)

1
T

∑T
t=1 g(zt)

p→ µg; (c) 1
T 3/2

∑T
t=1 g(zt)xt ⇒ µg

∫ 1
0 Bv(r)dr; (d) 1

T 2

∑T
t=1 x2

t ⇒
∫ 1
0 Bv(r)

2dr;

(e) 1
T 2

∑T
t=1 g(zt)x

2
t ⇒ µg

∫ 1
0 Bv(r)

2dr; (f) 1
T

∑T
t=1 g(zt)

2 p→ m2
g; (g) 1

T 3/2

∑T
t=1 g(zt)

2xt ⇒

m2
g

∫ 1
0 Bv(r)dr; (h) 1

T 2

∑T
t=1 g(zt)

2x2
t ⇒ m2

g

∫ 1
0 Bv(r)

2dr; (i) 1√
T

∑T
t=1 ut

d→ N
[
0, ω2

1πu(1)2
]
;

(j) 1
T

∑T
t=1 xtut ⇒

∫ 1
0 Bv(r)dBu(r) + ∆vu; (k) 1√

T

∑T
t=1 g(zt)ut

d→ N(µgu, ω2
gu); and finally

(l) 1
T 3/2

∑T
t=1 xtg(zt)ut ⇒ µgu

∫ 1
0 Bv(r)dr.

In the caseµg = 0, (c) and (e) should be replaced by the following: (c’)1
T 3/2

∑T
t=1 gtxt

p−→ 0

and (e’) 1
T 2

∑T
t=1 g(zt)x

2
t

p−→ 0.

First, definegt ≡ g(zt), g∗t = g(zt)−µg, g2
t ≡ g(zt)

2, andg2∗
t = g(zt)

2−m2
g. It is clear that (a),

(d), and (j) follow from standard results in the literature and (b), (f), (i), and (k) are trivially satisfied.

Next, write
∑T

t=1 gtxt =
∑T

t=1 (mg + g∗t ) xt = µg
∑T

t=1 xt +
∑T

t=1 g∗t xt.

It is clear that

µg
1

T 3/2

T∑

t=1

xt ⇒ µg

∫ 1

0
Bv(r)dr and

1

T

T∑

t=1

g∗t xt ⇒
∫ 1

0
Bv(r)dBg(r) + ∆gv.

Hence, ifµg 6= 0, 1
T 3/2

∑T
t=1 gtxt ⇒ µg

∫ 1
0 Bv(r)dr and (c) is proved. Otherwise, ifµg = 0,

1
T

∑T
t=1 gtxt ⇒

∫ 1
0 Bv(r)dBg(r) + ∆gv, such that 1

T 3/2

∑T
t=1 gtxt

p−→ 0 and (c’) is proved.
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Following the same reasoning, write

T∑

t=1

gtx
2
t =

T∑

t=1

(µg + g∗t )x2
t = µg

T∑

t=1

x2
t +

T∑

t=1

g∗t x
2
t .

From the results in Lemma 1, it follows that

µg
1

T 2

T∑

t=1

x2
t ⇒ µg

∫ 1

0
Bv(r)

2dr and

1

T 3/2

T∑

t=1

g∗t x
2
t ⇒

∫ 1

0
Bv(r)

2dBg(r) + ∆gv

∫ 1

0
Bv(r)dr.

Therefore, ifµg 6= 0, 1
T 2

∑T
t=1 gtx

2
t ⇒ µg

∫ 1
0 Bv(r)

2dr and (e) is proved. On the other hand, if

µg = 0, 1
T 3/2

∑T
t=1 gtx

2
t ⇒

∫ 1
0 Bv(r)

2dBg(r)+∆gv

∫ 1
0 Bv(r)dr, such that 1

T 2

∑T
t=1 gtx

2
t

p−→ 0 and

(e’) follows.

Now, let’s turn to
∑T

t=1 g2
t xt. Again,

∑T
t=1 g2

t xt =
∑T

t=1

(
m2

g + g2∗
t

)
xt = m2

g

∑T
0 xt + O(T ).

Hence, 1
T 3/2

∑T
t=1 g2

t xt ⇒ m2
g

∫ 1
0 Bv(r)dr and (g) follows.

Following similar arguments, it is straightforward to prove (h). To prove (l),defineηt = gtut−µgu

T∑

t=1

xtgtut =

T∑

t=1

(µgu + ηt) µgu

T∑

t=1

xt +

T∑

t=1

xtηt.

From Lemma 1, it follows that

µgu
1

T 3/2

T∑

t=1

xt ⇒ µgu

∫ 1

0
Bv(r)dr and

1

T

T∑

t=1

xtηt ⇒
∫ 1

0
Bv(r)dBgu(r) + ∆guv.

Therefore, ifµgu 6= 0,

1

T 3/2

T∑

t=1

xtgtut ⇒ µgu

∫ 1

0
Bv(r)dr

else
1

T

T∑

t=1

xtgtut ⇒
∫ 1

0
Bv(r)dBgu(r) + ∆guv.

�
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B.4. Proof of Theorem 2. Define

Γ =




T 1/2 0 0 0

0 T 0 0

0 0 T 1/2 0

0 0 0 T




and write

Γ

(
θ̃ − θ

)
=





Γ
−1




∑T
t=1 1

∑T
t=1 xt

∑T
t=1 ĝt

∑T
t=1 ĝtxt

· ∑T
t=1 x2

t

∑T
t=1 ĝtxt

∑T
t=1 ĝtx

2
t

· ·
∑T

t=1 ĝ2
t

∑T
t=1 ĝ2

t xt

· · · ∑T
t=1 ĝ2

t x
2
t




Γ
−1





−1

Γ
−1




∑T
t=1 ut

∑T
t=1 xtut

∑T
t=1 ĝtut

∑T
t=1 xtĝtut




.

Therefore, forµs = 0 we need to show: (a) 1
T 3/2

∑T
t=1 xt ⇒

∫ 1
0 Bv(r)dr; (b) 1

T

∑T
t=1 ĝt

p→ λµs;

(c) 1
T 3/2

∑T
t=1 ĝtxt ⇒ λµs

∫ 1
0 Bv(r)dr; (d) 1

T 2

∑T
t=1 x2

t ⇒
∫ 1
0 Bv(r)

2dr; (e) 1
T 2

∑T
t=1 ĝtx

2
t ⇒

λµs

∫ 1
0 Bv(r)

2dr; (f) 1
T

∑T
t=1 ĝ2

t
p→ λ2ω2

su; (g) 1
T 3/2

∑T
t=1 ĝ2

t xt ⇒ λ2m2
s

∫ 1
0 Bv(r)dr; (h) 1

T 2

∑T
t=1 ĝ2

t x
2
t ⇒

λ2m2
s

∫ 1
0 Bv(r)

2dr; (i) 1√
T

∑T
t=1 ut

d→ N
[
0, ω2

1πu(1)2
]
; (j) 1

T

∑T
t=1 xtut ⇒

∫ 1
0 Bv(r)dBu(r); (k)

1√
T

∑T
t=1 ĝtut

d→ N(0, λ2m2
sσ

2
u); and (l) 1

T

∑T
t=1 xtĝtut ⇒ λ

∫ 1
0 Bv(r)dWsu(r).

In the caseµs = 0, (c) and (e) should be replaced by (c’)1
T 3/2

∑T
t=1 ĝtxt

p−→ 0 and (e’)

1
T 2

∑T
t=1 ĝtx

2
t

p−→ 0. Items (a), (d), (i), and (j) follow trivially as in the proof of Theorem 1. Writing

gt = λ̂st and noting thatplim
T−→∞

λ̂ = λ, it is trivial to prove items (b), (f), and (k). The proof of the

remaining items are similar to the ones in Theorem 1.
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