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NONLINEAR COINTEGRATION, MISSPECIFICATION AND BIMODALITY
MARCELO C. MEDEIROS, EDUARDO MENDES, AND LES OXLEY

ABSTRACT. We show that the asymptotic distribution of the ordinary least squaresagstiin a coin-
tegration regression may be bimodal. A simple case arises when the piteregroneously omitted
from the estimated model or in nonlinear-in-variables models with endegeregressors. In the lat-
ter case, a solution is to use an instrumental variable estimator. The coifes i@ this paper also
generalises to more complicated nonlinear models involving integrated tias.se
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1. INTRODUCTION

One area of econometrics that has recently expanded is that of noniioeiling and nonlin-
ear cointegration in particular see for example @gsirta, Tjgstheim, and Granger (2009), Choi and
Saikkonnen (2004a,b), Juhl and Xiao (2005), Bierens and MartBE9)2 Cai, Li, and Park (2009),
and Xiao (2009). These authors forcefully argue, and richly illustrats, and how nonlinearities
form the basis of a variety of economic theories. Their illustrations includila mnge of disequi-
librium models; labour market models; exchange rate models; and prodéticiion modelling.

In this paper we discuss several interesting issues that can emergsitlgoasnlinear cointegra-
tion models. Although we focus on simple nonlinear-in-variables cointegraggdssion models, our
core results can be easily generalised to more complex nonlinear formulatenmovide conditions
under which nonstandard asymptotic distributions arise when estimating Hragtars of the model.

More specifically, we show that the ordinary least squares (OLS) estimégbt be inconsistent and
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2 M. C. MEDEIROS, E. MENDES, AND L. OXLEY

with an asymptotic distribution which is bimodal. The existence of bimodality hastligdeeen
considered by Phillips (2006), Hillier (2006) and Forchini (2006). keitlivork bimodality typically
occurs due to weak instrumentation. This is not the case presented tereehimodality arises anal-
ogously to that reported in Phillips and Hajivassiliou (1987) and Fiorio,Mdsgiliou, and Phillips
(2008). We derive a Instrumental Variables (IV) estimator which is ctersisand asymptotically
distributed as a mixed normal.

Bimodality arises also in simpler models. For example, we show that when arejpttéscerro-
neously omitted from a linear cointegrated regression, the distribution of ttiseeStimator of the
slope parameter is bimodal. This has also an adverse effect in the cemagegf the estimator as
well as in the distribution of the t statistic.

The rest of the paper is organised as follows. Section 2 presents the ®irtgue arising from
the erroneous omission of the intercept in the cointegrating relationshipos8gresents the gen-
eral result which permits nonlinearity, potential endogeneity, and a gksed error structure. We
also discuss the IV estimator of the model. Section 4 presents the simulation eeglBgction 5

concludes.

2. A SIMPLE RESULT

In this section we report the results concerning a very simple misspecifigatbfem: the omis-
sion of an intercept in a regression with cointegrated variables. Mowfigpdly, consider the fol-

lowing assumption.

ASSUMPTIONL. Leta; = x;_1 + v;, wherex; € RF+ andwv; ~ IID(0, ). Furthermore,y; =
a+ Bz + uy, Wherea # 0, uy ~ 11D(0,02), andE(vsu,) = 0, V¢, 7. Assume also that the
partial sum processeS, r(r) = zﬁql v; and .S, r(r) = zﬁi’ﬂ u;, v € [0,1], constructed from
{v:}72, and{u;}72,, respectively, satisfy the multivariate invariance princHnISpecifically, define
Xop1(r) = VTSyr(r) and X, r(r) = VTS, (r), then

Xo1(r) = By(r), asT — oo,

(1)

Xur(r) = JiWu(T), asT — oo,

1[X] denotes the integer part &f.
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whereB,,(r) € R*= is a multivariate Brownian motion with covariance matrix

Q= lim %IE [St(r)S7(r)]

T—o0

andW,(r) is a standard Brownian motion. Finally, assume thif(r) is independent oBv(r)H

Now, suppose that an econometrician estimates the regression descitsstimptior L by OLS
without including the interce[H[ Propositior L presents the asymptotic distribution of the OLS esti-

mator.

~ —1
PROPOSITION1. Define3 = (Zthl mt;cg) S°L | @y:, which is the OLS estimator when the

intercept is erroneously omitted from the estimated equation. Under Asismidp

@) VT (E} - ﬁ) = a [ /0 1 Bv(r)Bv(r)'dr] B /O 1 By (r)dr.

Several interesting features emerge from the above result. First, theeQirgator is no longer
super-consistent, as the convergence rat¢ds This will have serious implications in hypothesis
testing. Second, the distribution in Propositibh (1) may display bimodality in ceréaies. For ex-
ample, Figur¢ll, panel (a), displays the first marginal component oftregtotic distribution in[(2)
for different dimensionsk,,, of the Brownian motiorB,,(r) H The distribution is clearly bimodal for
k, = 1 andk, = 2. However, the bimodality disappears as the dimensiaB ©f) increases. Third,
there is a variance reductionasgrows. In order to compare with the standard result in cointegration
theory, in panel (b) we consider the case where the intercept is zere aoihtegration relationship,
such that the usual result holds, i.*é’.(fi — [3) = [fol Bv(r)Bv(r)’dr} B fol B, (r)dW,(r). As
we can see, the distribution is, as expected, always unimodal and,rgaotthe previous case, the
variance increases as thg — oo. Figure[2 displays the variance of the first component of the
asymptotic distribution of the OLS estimator as a function of the dimension of thern@mownian

process. Panel (a) refers to the case whete 1 while Panel (b) refers to the case where= 0.

2This last assumption excludes the case where the multivariate randoriswealfogenous with respectfb Generalizing
our results to the case of endogenauss considered in Sectidg 3.

SWhen testing for the purchasing power parity (PPP) hypothesis (whetattrcept is zero by definition) or synchronous
dynamics among commodity prices, for example, it is not rare to findregzapmodels omitting the intercept.

“4In order to simulate the distributions we consider tain AssumptioriLL is an identity matrix and= 1. The Brownian
motions are generated from 10,000 observations and the simulatieeedi0,000 times.
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FIGURE 1. Asymptotic distribution of the OLS estimator of in a multiple cointegrat-
ing regression for different number of regressors. Panel €a)0 and it is incorrectly
omitted from the estimated regression. Paneh(l} 0.
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FIGURE 2. Scatter plot of the log variance of the first component of the asymptotic
distribution of the OLS estimator versus the log dimension of the Brownian gsoce
Panel (ayx # 0 and it is incorrectly omitted from the estimated regression. Panel (b)
a=0.

To evaluate the effects of the above result in terms of inference, wédeorike simple case of a

single regressor, i.ek, = 1. Under the misspecified model without an intercept, the distribution of

the t-statistic forH, : 3 = * is given in the following proposition.

PROPOSITION2. Suppose that Assumptibh 1 holds with= 1, such thatB,, = o,W,(r), where

W,(r) is a standard Brownian process. Under the null hypothgsis 5*,

AL G5 - & Jo Wo(r)dr
VT T 2

fu(Siaad) T [
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TABLE 1. Empirical size of the t-test.

The table shows the rejection rates of the null hypoth®gis 6 = 1 when a t-test is used.
The nominal significance level is 5%.

Samplesize a=0 a=001 =005 a=01 a=1 a=10

50 0.052 0.051 0.056 0.088 0.850 0.991
100 0.044  0.045 0.064 0.124 0919 0.997
250 0.049  0.049 0.083 0.188 0.953 0.997
500 0.040 0.041 0.104 0.332 0.963 0.995
1000 0.039 0.054 0.189 0.561 0.973 0.996

5000 0.042  0.066 0.626 0.885 0.995 1.000

As the denominator of the t-statistici¥7") and the numerator i9(+/T), the ratio will diverge as
T — o0, such that it should be scaled bﬁ. Furthermore, the distribution of the scaled t-statistic
is not free from nuisance parameters as hotndo, appear in the asymptotic distribution.
Although the above results are quite simple, the message is important and Nigget: omit the

intercept in a cointegrating regression. Furthermore, to our knowledge the first paper addressing

this issue.

2.1. Simulation Evidence. To illustrate the results above we conduct a simple simulation exercise.

Consider the following data generating process (DGP):

yt:a+xt+ut
Ty = Ty—1 + Uy,

whereu; ~ NID(0,1), v+ ~ NID(0, 1), andE(u:v,) = 0, Vt, 7. The DGP was simulated for different
values ofa. We consider the estimation of the slope coefficient when the interceptoisesisly
omitted from the estimated regression. We study the effects on the empiricaf $iiwet-test for the

null hypothesisH, : 8 = 1 at the usual 5% significance level. The results are shown in Table 1. The
table shows the rejection rates of the null hypothesis when it is in fact treiexpected, whea = 0,

the rejection rates are close to the nominal siz8%f However, the distortions tend to be large as
the value of the omitted intercept grows. For example, even for a redgasmahbll value ofa, such

asa = 0.05, the rejection rates can be as high as 8% for 250 observations or almdegb£3000

observations.
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3. A SIMPLE NONLINEAR-IN-VARIABLES MODEL
In this section we consider a cointegration regression with time-varyingrgdeas. Our model
has a key feature that the cointegration relationship changes accordingtiserved state vector of

variablesz;. We assume that; is observable and second-order stationary. More specifically canside

the following assumption.

ASSUMPTION2. The vectolY'; = (y;, x4, z;)’ satisfy

4) Yt = ao + foxt + a1g(ze) + freg(ze) + g,
(5) Tt = T—1 + Vg,
[o.¢]
(6) Ut = Zﬂu,j&,t—j = Wu(L)€1,t7
§=0
(o, ¢]
(7) V¢ = ZTFUJ‘EQJ/_j = WU(L)€2¢, and
§=0
o0
(8) zt = Zﬂ'z,jéza,t—j = m(L)esy,
§=0

wherer, (L), m,(L), andm (L) are lag polynomialsy >, j|mu, ;| < oo, D272 jllmu ;|| < oo, and

Yz dllmagll < oo. Setey = (gl,t,gg,t,egi)’ such thatE(e;) = 0 andE(ee}) = Q., where

2 /

— !
Qe - w12 w9 Wog

wi3 woz 3

Assume also that, = 0 or is randomly drawn from a density independent ofFinally, g(z;) :

R*- — R is a known function of the stationary vector process R*-.

Model (4) may arise in a number of situations, as for example, in threshaitegoating regres-
sions where the threshold is known are special cases of (4). Suchfkimatiels are relevant when, for
instance, the long-run equilibrium changes according to the businegs 8uppose thaj(z;) = d,
is a dummy variable indicating recessions, such as, for example the NBE&Siaa indicator. In this

case,[(¥) becomeg = ag + Byt + ardy + Braeds + uy.
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AssuUMPTION3. The stochastic procesg z;) is such thatf [g(z;)] = pg < oo andE [g(z:)?] =
my < oco. Furthermore, 3>, g(z:) —— ug and = 37, (=) s N(ug,w2), wherew? is
the long-run variance o§(z;). Assume also thdk [g(z:)us] = pgu < oo and g, # 0. Finally,

d
T ie1 9(ze)ur = pgu @Nd = 370 g(ze)ur —= N(pgus wy, ), wherew,, < oo.

Define the following stationary zero-mean process
I _ 2 2 _ / k
w; = [utavtag(zt) tg, 9(2¢) mgag(zt)ut Mgu] € R".

We make the following assumptions abeui.

AssumMmPTION4. Each element of the proce$a; }7°,, satisfies:

(@) Elwy|* < oo,i=1,...,k for2 <a < oo;

(b) {wit}i2q,i=1,...,k, is either uniform mixing of sizea/(2a — 2) or strong mixing of size

—a/(a —2), fora > 2.

ASSUMPTIONS. The processv; has a continuous spectral density functipg,, () which is bounded
away from zero, such that the partial sum proc&sgr) = Zgﬁ] w;, r € [0, 1], constructed from
{w;}2, satisfies the multivariate invariance principle. Specifically, defe(r) = VT Sr(r),
thenXr(r) = B(r), asT — oo, where B(r) = [By(r), Bo(r), By(r), By (r), Bgu(r)] is a

multivariate Brownian process with covariance matfix= Tlim T~E[St(r)St(r)] defined as
—00

Wyy — Wgu  We2y  Wouu
Wy w, Wgy  We2y  Wauw
— _ /
(©) Q = wu we W owp, W | =ZTALA

Wg2q  Wg2y Wg2g  Woa  We2gy

Wouu  Wguw  Wggu  We2gu qu

accordingly to the partitions ofv;, whereX = E(w;w)) andA = Tlim 50 o E(wiw}).
— 00
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Setd = (ag, 81, o1, /1) and consider the OLS estimator

- -1 F -

Zf:l 1 Zthl T ZtT:1 9(zt) ZZLI 9(z1)e ZtT:I Yt
o Zthl xy EtT:1 9(z1)me Zt 1 9(z0)} Zthl Tty
Y9z Tl 9(z0) >im1 9(z0)y:
i ZtT:1 g(zt)% _Zthl $t9(zt)yt_

The distribution of® changes according to the properties of the functitn ) as is illustrated in

the following theorem.

THEOREM1. Under Assumptioris P+-5 and the additional assumptionhat 0,

_1 fol By(r)dr [y g fo r)dr 1 N [0, w2, (1)2] |
r(-o)= Jo Bulr)dr g Jy Bu(r)dr g Jy B ZdT Jy Bolr)dBu(r) + Au,
O NS
2fo 2d7" Hgu folB r)dr

whereA,, = oye + Ay, @and )
TY2 0 0 0
0 T 0 0

T =
0 0 TY2 0
0o 0 o0 T2
On the other hand, ifi, = 0 - _
_ L _
1 fol By(r)dr 0 0 N [0, wim,(1)?]
. (5—0) N Jiy Bu(r)?dr 0 0 Jo Bu(r)dBu(r) + Ayy |
my mg fy Bo(r)dr N(uguaaﬁu)
mg fol By (r)%dr Hgu fo r)dr

whereA,, = o4, + Agy andI is as above.

Two important features emerge from Theollegm 1. First, as expected| tBeQimate ofy; is not

consistent when; is endogenous. Second, the asymptotic distributiq@lahay also be bimodal.



COINTEGRATION, NONLINEARITY AND BIMODALITY 9

3.1. A Simple Solution. In this section we show how IV may be used in the present context. To

simplify the exposition, consider the case whegas exogenous, such that,, = 0.

ASSUMPTIONG. s; € R is a stochastic process such tHafs;g(z¢)] # 0, E(siut) = 0, E(s¢) =
ps < 00, andE (s?) = m? < co. Furthermore, the partial sum process,, r(r) = Zl | siu; con-
structed from{s;u; }$°, satisfies the invariance principle. Specifically, defiig +(r) = VT Sgu 1 (7),
then X, 7(r) = wsuWeu(r), asT — oo, whereWy,(r) is a standard Brownian motion and,,

is the long-run variance of the procesg:;.

1
Defineg; = As;, whereX = (Zt 1 s?) ST, s5:9(z¢). The IV estimator o is given by

_ -1 -
Zthl 1 Z?:l Tt Z?:l 9t Zthl iy 23:1 Yt
(10) 9 Zthl 7 ZtT—l giwe ZtT:1 grry Zthl TtYt
Zt 19 9t Zthl giwe EtT:1 geyt
i 23’21 /Q\?»’U%_ _Zthl l’tﬁt%_

THEOREM 2. Under Assumptioris P+6 and the additional assumptiondhat= 0, if us # 0 then

1 I By(r)dr ALt Mis fi By(r)dr 1 N [0, w}m, (1)?] ]
F@—ﬂ)é Jo Bo(r)2dr s [ By(r)dr s [ B 2m ) By(r)dBy(r)
: : A2m2 A2m?2 fo (r)dr N(0, \2w2,)
2f0 2d7“ )‘fo (r)dWu(r)

Otherwise, ifus = 0 then

— - _1 — -
1 [} By(r)dr 0 0 N [0, w?m,(1)2]
_ B 0 0 Jo Buo(r)dBu(r)
re-6)=
( ) . . A2m2 AZm? fol By(r)dr N(0, \?wZ,)
_ A2m2 [} By(r)?dr| |\ I By (r)dWe(r),
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The matrixI' is given by

TY2 0 0 0

O T 0 0
T =

0 0 TY?2 ¢

o 0 o0 T

in both cases.

4, MONTE CARLO SIMULATIONS

In this section we present simulation evidence of the results in the previctsse Consider two

cases of the general model described in equatidnd {4)—(8).

(1) Model 1: Identity function.

Yt = ap + a1zt + Poxe + iz + ue
— 1+$t+0é12t+$t2t+ut,

Zy = St + U,

Tt = Te—1 + V¢,

whereu; ~ NID(0,1), v; ~ NID(0,1), s; ~ NID(0,1), E(wv;) = 0,V¢t, 7, andE(s;u,) =
0,vt,r.
(2) Model 2: Threshold function.

yr = ao + arl(ze > 0) + Boxe + Braed (2 > 0) +
=14z +arl(z >0)+xI(z > 0) + wy,

2t = St + Ut,

Tt = Te—1 + Uy,

wherel(A) is an indicator function which equals one if the evdmiccurs or zero otherwise,
ut ~ NID(0,1), vy ~ NID(0,1), sy ~ NID(0,1), E(usv;) = 0, Vt, 7, andE(s;u,) = 0,
Vi, T.
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For both DGPs, we consider two cases: = 0 anda; = 1. In Model 1,9(z;) = 2z, whereas in
Model 2,g(z¢) = I(z: > 0). We simulate 5000 observations of each model over 1000 Monte Carlo
replications and evaluate the distribution of both the OLS and IV estimators patheetersy, a1,

8o, andBy. In Model 1, the first stage regression for the IV estimator consistsgoéssingz; on s;
while for the second model, in the first stage ffie; > 0) is regressed oi(s; > 0). The results are
shown in Figuregl3346. We also consider the distribution of the t-statistic tinel@ull hypothesis as
shown in Figuregl7=10.

Several features emerge from the graphs. First, depending on tleeofaly, bimodality may or
may not be present. When = 1, the OLS estimator of; is always bimodal, while the IV estimator
is not. Furthermore, in this specific case (and for both models), the IV estilmatdower variance
than the OLS estimator. The t-statistics for the OLS estimators display bimodalityeaghthe the
ones for the IV estimators are, as expected, normally distributed. Setten@LS estimator ofj;
is always consistent. In Model 1, as expected, the OLS estimatey f not consistent for the true
parameter, while the 1V counterpart is. When Model 2 is considered, g delivers inconsistent
estimators for botl, anda; while the 1V estimator is always consistent. The t-statistic for the IV

estimators are always distributed as a standard normal random variable.

5. CONCLUSION

The paper identifies a number of interesting cases that can arise in catitegnodels. Bi-
modality is one such case. We show how bimodality arises; the consequiembeding the loss of
super-consistency of the estimates in a simple case; and how the additignesis@'s leads to disap-
pearance of the phenomena. Inclusion of an intercept removes bothdlitpahd inference related
problems arising from using a non-scaled t-statistic. Secondly, in the mosrajenonlinear case,
where endogeneity and a generalised error structure are considsrexpected, endogeneity leads
to the possibility of inconsistent OLS estimates, but also the potential for timepasiic distribution
to be bimodal. The use of Instrumental Variables (1V) in these cases renbotk bimodality and

inconsistency.
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APPENDIXA. LEMMA

LEMMA 1. Let {z;}Z, be a stochastic process satisfying = z;, 1 + v;, whereE(v;) = 0.

Definew; = (u¢ — pu, v)’, Wherew; is a stationary process witht(u;) = p, < oco. Assume
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FIGURE 5. Empirical distribution of the OLS and IV estimators in Model 2 with
a1 = 0. The data are simulated with 5000 observations and the Monte Carlo is
conducted with 1000 replications.

that the partial sum procesSr(r) = Z[TTI] w;, r € [0,1], constructed from the stationary in-

novation procesgw;}._,, satisfies the multivariate invariance principle. More specifically, define

= VTSr(r), such thatX (r) = B(r), asT — oo, whereB(r) = [B,(r), B,(r)]’ € R?

is a vector Brownian process with covariance matrix

(11)

w o
Q= o E(wiw)) —1—2 (wiw},) + E(wpw))] =X+ A+ A
Wyy w?; k=2

DefineA,, = ouw + M. Under the assumptions above, the following results hold:

@) if p1, # 0, thenT 23 22u; = py, fol B2dr;

(b) if Ay, # 0andp, = 0, thenT 32T 2wy = [ B,(r)2dBy(r) + A fy Bu(r)dr;
() if Ay = 0andp, = 0, thenT3/25° T 42y, = jol By (r)2dB,(r);

(d) and, if i, # 0, thenT =327 | wyuy = py, [ Bo(r)dr.
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FIGURE 6. Empirical distribution of the OLS and IV estimators in Model 2 with
a1 = 1. The data are simulated with 5000 observations and the Monte Carlo is
conducted with 1000 replications.

Proof. First, defines; = u; — u,, and write

Itis well-known thatu, 1 371 27 =, fol B

3.1 in Ibragimov and Phillips (2008) implies that

1 1
T3/2 th ut = / BU(T)2dBu(T> + Avu/ Bv(r)dr
0 0

Hence, (a), (b), and (c) follow from the above convergence limits.

To prov:

and note t

e (d) is enough to writEtT,1 Trup =

hapUT3/2 zt 1Tt = fO

Muzl‘t +thut

(r)2dr. Direct application of the results in Theorem

Zzll Ty (oo +uf) = pu Zthl Tt + Zthl Tuf,
r)dr and & Zt | T = fo r)YdBy (r)dr + Ayy.
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FIGURE 7. Empirical distribution of t-statistic for the OLS and IV estimators in
Model 1 withay = 0. The data are simulated with 5000 observations and the Monte
Carlo is conducted with 1000 replications.

APPENDIXB. PROOF OFPROPOSITIONS ANDTHEOREMS

B.1. Proof of Proposition[dl The proof is very simple. First, note that

R T T -1 T T

Itis clear that; Y1, i@} = [y B(r)B(r)dr, m S @ = [y B(r)dr,andt Y1, yu, =

[y B(r)dW (r). Hence, ag"~*/2 ", @yuy 2 0,
T -1 T T
~ 1 , 1 1
\/T </8 — B) = (1_‘2 tz_; (Btil?t) <QT3/2 ; Ty + 7T3/2 tz_; a:tut)

=5 (/01 B(T)B(r)/dr)l /O1 B(r)dr.
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FIGURE 8. Empirical distribution of t-statistic for the OLS and IV estimators in
Model 1 witha; = 1. The data are simulated with 5000 observations and the Monte
Carlo is conducted with 1000 replications.

B.2. Proof of Proposition[2. Write the t-statistic as

ts 7

=1

T —1/2
_ 2;21 ri(o + ) -5 22 _ o Zthl Tt i Zthl Tt
— = Gu =
2221 .%'% t ' P~ T 2 1/2 ~ T 2
Tu (D=1 Ti Tu (D=1 Ti

T T 1
r, Ofﬁ D1 Tt ﬁ D i—1 Teug a  Jy W(r)dr

T (ertad)™ a(etaed) " W]

12"
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FIGURE 9. Empirical distribution of t-statistic for the OLS and IV estimators in
Model 2 withay = 0. The data are simulated with 5000 observations and the Monte
Carlo is conducted with 1000 replications.

B.3. Proof of Theorem[dl First, define the following matrices:

VT 0 0 0 100 0

0O T 0 0 010 0
H = andD =

0 0 VT 0 001 0

0O 0 0 T 00 0 VT




0.4r

COINTEGRATION, NONLINEARITY AND BIMODALITY

Model 2: a,

\%

03¢

- — —N(0,1)

oLs |

0.2t

0.1¢

0
—60

0.4,
03¢
0.2¢

0.1

-40

-20 20

Model 2: o,

oLs
v
- — —N(0,1)

e N

0 .
=20 0

20 40 60 80

Model 2: BO
0.4 / oLs
\Y
0.3t - — —N(O,1)
0.21
0.1r
0 n n n 3
-10 -5 0 5 10
Model 2: Bl
0.5 oLs
[\

0

0
-10

-5

5 10

19

FIGURE 10. Empirical distribution of t-statistic for the OLS and IV estimators in
Model 2 witha; = 1. The data are simulated with 5000 observations and the Monte
Carlo is conducted with 1000 replications.

Note that

D 'H (5 - 0) —

[T T
Yl D m
T
H_l ZtZI I‘%
Zthl Ut
T
(Dlg-l| e T

23;1 g(z¢)uy

Yii9(z) Y 9(z)m
S g(z)m Y g(z)a? -1
S 9(z) Y 9(z0)
: Zthl g(zt)Qa;f_

Zthl CUtg(Zt)Ut
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Hence,
- 4 -1
1 ﬁ Zthl Tt % ZtT:1 9(zt) ﬁ ZtT:1 9(zt)7y
D'H (/9\ B 9> _ % EtT:1 x? Ta?z Z;T:1 9(zt)zy % Zthl g(zt):c%
T D1 g(zt)2 ﬁ ZtT:1 Q(Zt)zxt
i % 23:1 Q(Zt)%% 1
ﬁ 23:1 ut
y T 2t Ty
ﬁ Zthl g(z¢)uy
_ﬁ Zthl ﬁftg(zt)ut_

Therefore, foru, = 0 we need to show the following: (3}372 Zt 1Ty = fo r)dr; (b)
T Zt 19(z1) LR Lg; (C) T3/2 Zt 1g(zt)xt = g fo r)dr; (d) 7 77 Zt |77 = fo r)2dr;
©) 7= Zt 19(z03} = g [y Bo(r)2dr; () 1 30 1g(zt) 2 mZ; (9) mZt 1g(zt)2rrt =

2f0 r)dr; (h) 77 Zt 1g(zt 23:? = m?2 fo r)2dr; (i) \th | Ut 4N [0 wim,(1 )2]

) th 1Tt = fg (r) (7") + Avu; (K) ﬁzt:1 9(ze)w 4 N(ugu,wﬁu): and finally
() 772 T3/2 Zt 1 Zeg(Ze)ur = fgu fo r)dr.

In the caseu, = 0, (c) and (e) should be replaced by the following: (%})/3 Zthl giry — 0
and (€)% S g(z)2? - 0.

First, definey: = g(z1), gf = g(21) — g, 97 = 9(2¢)?, andg?* = g(z¢)? — mg. Itis clear that (a),
(d), and (j) follow from standard results in the literature and (b), (f),ai)d (k) are trivially satisfied.
Next, write >/ gize = 1y (mg + 67) @0 = g Sy @ + 21— g7 e

It is clear that

T 1 T 1
1 1 §
Ho sy DT “9/0 By(r)dr and D gt = /0 By(r)dB,(r) + Ago.
t=1 t=1

Hence, ifpu, # 0, TS/Q Zt 19T = [ig fo r)dr and (c) is proved. Otherwise, ji; = 0,
T Zt 1 91T = fo r)dBy(r) + Agy, Such thaw thl iy L, 0and (c") is proved.
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Following the same reasoning, write

t=1
T 1 1
—3 > _9iw; = | By(r)’dBy(r) + Agy | By(r)dr.

1
T3/2 pot 0 0
Therefore, ify, # 0, 72 ST g = fO r)2dr and (e) is proved. On the other hand, if
pg =0, =t S gue? = [ Bo(r)?dBy(r) + Ago fo r)dr, such thatl; S| g;27 > 0 and

(e") follows.

Now, let's turn to3 ", g2z Again, >, g2y = S, (m2 + g7*) 2 = m2 g @ + O(T).
Hence 1> S0, g7z = m2 [} By(r)dr and (g) follows.

Following similar arguments, it is straightforward to prove (h). To proved@finen; = gius — pgu

Z Trgrur = Z (Hgu + 1) Hgu Z T+ Z LM

From LemmaL, it follows that

T
1
Hou 373 ZJUt = Mgu/ r)dr and met = / ")dBgu(r) + Aguv-
t=1
Therefore, ifpg,, # 0,

T 1
1
i TQely = ugu/ B, (r)dr

else

T thgtut :>/ ngu ) Aguv-
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B.4. Proof of Theorem[2. Define

TV2 0 0 0
O T 0 0

T =
0 0 TY? 0
0 0o 0 T
and write
S She Sha Shaw| | [ Shou
r(-0)={r- Yiat Y Gwe Tt | | o | Sem
ST Y i i G
i Z;f=1 /g\?x%_ _ZtT:1 $t§tut_
Therefore, fors = 0 we need to show: (:3\%;3—/2 Zt 1T = fo r)dr; (b) ~ T Zt 10t Lo s
(©) T3/2 Zt LG = Mis fo r)dr; (d) 77 Zt LT = fo er (e) - 77 Et LG =
/\Ns fo r)?dr; (f) 7 T Zt 191 = /\2 20 (9) T3/2 Zt L i = )\2 2 fo (r)dr; (h)ﬁ Zt | Gia =
2fo r)%dr; (i) fzt Lue = N (0,03, (1)7]; G) TZH Ty = fo By(r)dBy(r); (k)
ﬁ thl Jrug A N(0, \2m202); and (I) Zt 1 Tegrug = )\fo (r)dWy (7).

In the caseu; = 0, (c) and (e) should be replaced by (c—,}% S Gy = 0 and (e)
& S Gee? 5 0. Items (a), (d), (i), and (j) follow trivially as in the proof of Theoréin 1ritg
g = \s; and noting thatplim X = )\, itis trivial to prove items (b), (f), and (k). The proof of the
T—s00

remaining items are similar to the ones in Theokém 1.
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