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Abstract

This paper proposes new dynamic component models of realized covariance (RCOV)
matrices based on recent work in time-varying Wishart distributions. The specifica-
tions are linked to returns for a joint multivariate model of returns and covariance
dynamics that is both easy to estimate and forecast. Realized covariance matrices are
constructed for 5 stocks using high-frequency intraday prices based on positive semi-
definite realized kernel estimates. The models are compared based on a term-structure
of density forecasts of returns for multiple forecast horizons. Relative to multivariate
GARCH models that use only daily returns, the joint RCOV and return models pro-
vide significant improvements in density forecasts from forecast horizons of 1 day to 3
months ahead. Global minimum variance portfolio selection is improved for forecast
horizons up to 3 weeks out.
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1 Introduction

This paper proposes new dynamic component models of realized covariance (RCOV) matrices
based on recent work in time-varying Wishart distributions.1 The specifications are linked to
returns for a joint multivariate model of returns and covariance dynamics that is both easy to
estimate and forecast. The models are compared based on an out-of-sample term structure
of density forecasts of returns. While the existing literature has focused on the forecasting
of RCOV, this paper demonstrates the benefits to forecasts of the return distribution from
the joint modelling of RCOV and returns.

Multivariate volatility modelling is a key input into portfolio optimization, risk mea-
surement and management. There has arose a voluminous literature on how to approach
this problem. The two popular approaches based on return data are multivariate GARCH
(MGARCH) and multivariate stochastic volatility (MSV). Bauwens et al. (2006) provide a
recent survey of MGARCH modelling while Asai et al. (2006) review the MSV literature.
Despite the important advances in this literature there remain significant challenges. In
practise the covariance of returns is unknown and is either projected onto past data in the
case of MGARCH or is assumed to be latent in the case of MSV. For MSV sophisticated
simulation methods must be used to deal with the unobserved nature of the conditional
covariances. However, if an accurate measure of the covariance matrix could be obtained
many of these difficulties could be avoided.

Recently, a new paradigm has emerged in which the latent covariance of returns is re-
placed by an accurate estimate based upon intraperiod return data. The estimator is non-
parametric in the sense that we can obtain an accurate measure of daily ex post covariation
without knowing the underlying data generating process. Realized covariance (RCOV) ma-
trices open the door to standard time series analysis. See Andersen et al. (2003), Barndorff-
Nielsen and Shephard (2004b) and Bandi and Russell (2005b) for the theoretical foundations
and Andersen et al. (2009) and McAleer and Medeiros (2008) for surveys of the literature.

The purpose of this paper is to propose new joint models for time-varying RCOV matrices
and returns. Among the few models in the literature for RCOV matrices is the Wishart
autoregressive model of Gourieroux, Jasiak, and Sufana (2009). The process is defined by
the Laplace transform and naturally leads to method of moments estimation (see also Chiriac
(2006)) while the transition density is a noncentered Wishart. In a different approach Bauer
and Vorkink (2010) decompose the RCOV matrix by a log-transformation and then use
various time-series approaches to model the elements. Chiriac and Voev (2010) use a 3-step
procedure, by first decomposing the RCOV matrices into Cholesky factors and modelling
them with a VARFIMA process before transforming them back.

This paper is related to this literature but differs in that our model builds on the MSV
Wishart specifications of Asai and McAleer (2009) and Philipov and Glickman (2006). These
models specify a standard Wishart transition density for the covariance of returns.2 In
contrast to modelling the Cholesky factor or log-transformation of RCOV, contemporaneous

1The Wishart distribution is a generalization of the univariate gamma distribution to nonnegative-definite
matrices.

2An advantage to working with the Wishart distribution is that the pdf and simulation methods for ran-
dom draws are readily available, while this is not the case for the noncentral Wishart distribution (Gauthier
and Possamai 2009).
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covariances between elements in the RCOV matrix are straightforward to interpret and model
using a Wishart law of motion.

RCOV is estimated following Barndorff-Nielsen et al. (2008) to obtain an observable
MSV model.3 The empirical analysis of 5 stocks show the strong persistence of the daily time
series of RCOV elements. We propose new MSV Wishart specifications with components
to capture the persistence properties in realized covariances. A component is defined as a
sample average of past RCOV matrices based on a particular window of data. Different
windows of data give different components. Two types of time-varying Wishart model are
considered. The first assumes the components affect the scale matrix in a multiplicative
fashion while the second has the components enter additively. The additive specification
performs the best in our analysis. Relative to the Wishart MSV models based only on
returns the estimation is considerably simplified.

The models are estimated from a Bayesian perspective. We show how to estimate the
length of data windows that enter into the components of the model. For each of the
RCOV models the second component is associated with 2 weeks of data while the third
component is associated with about 3 months of past data. The component models deliver
a dramatic improvement in capturing the time series autocorrelations of the smallest and
largest eigenvalues of the RCOV matrices.

Besides providing new tractable models for multivariate observable SV we also evaluate
the models over a term structure of density forecasts of returns and a term structure of
global minimum-variance portfolios.4 It is important to consider density forecasts of returns
since this is the quantity that in principle enters into all financial decisions such as risk
measurement and management. In general the covariance of future returns is not a sufficient
statistic for the density of returns.5 Daily returns are common to both the MGARCH
and RCOV models and provide a common metric to compare models that use high and
low-frequency data. In contrast to the value-at-risk measures that focus on the tails of
a distribution the cumulative log-predictive likelihoods measure the accuracy of the whole
return distribution. A term structure of forecasts from 1 to 60 days ahead is considered in
order to assess model forecast strength at many different horizons. Our results on density
forecasts of returns are a new contribution to the literature and demonstrate the forecast
gains that joint modelling of RCOV and returns provide compared to traditional MGARCH
approaches.

The improvements from using high-frequency data are substantial. The RCOV compo-
nent models have the best multiperiod density forecasts as well as the smallest portfolio
variance. The best RCOV model provides significant improvements in density forecasts of
returns over MGARCH models for up to 3 months ahead. The gains from using high fre-
quency data for global minimum variance portfolio selection are important up to 3 weeks
ahead.

3Estimation of RCOV this way has several benefits including imposing the positive definiteness and
accounting for the bias that market microstructure and nonsynchronous trading can have.

4Maheu and McCurdy (2009) introduced the term structure of density forecasts for returns using joint
models for returns and realized volatility for individual assets. We extend this to include multivariate assets
and global minimum variance portfolios.

5For instance, the predictive density of returns in the models integrate out both parameter uncertainty
and uncertainty regarding future RCOV values, making the density highly non-Gaussian.
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In summary, we provide a new approach to modelling multivariate returns that consists
of joint models of returns and RCOV matrices. We find that it is critical to include the
components to obtain improved performance relative to MGARCH models. Compared to
MSV models, our specifications provide the additional flexibility of SV at a considerably
lower computational cost. This paper is organized as follows. In Section 2, we review the
theory and the procedures of constructing the RCOV estimator and the data. In Section 3,
two models for RCOV are introduced after briefly discussing two benchmark multivariate
GARCH models of volatility based on daily returns. Section 4 explains the estimation
procedure. Estimation results are reported in Section 5, followed by model comparison.
Section 6 concludes. The Appendix contains details on posterior simulation.

2 Realized Covariance

2.1 RCOV Construction

Suppose the k-dimensional efficient log-price Y (t), follows a continuous time diffusion process
defined as follows:

Y (t) =

∫ t

0

a(u)du +

∫ t

0

Φ(u)dW (u), (1)

where a(t) is a vector of drift components, Φ(t) is the instantaneous volatility matrix, and
W (t) is a vector of standard independent Brownian motions.6 The quantity of interest here
is

∫ τ

0
Φ(u)Φ′(u)du, known as the integrated covariance of Y (t) over the interval [0, τ ]. It is a

measure of the ex-post covariation of Y (t). For simplicity, we normalize τ to be 1. Results
from stochastic process theory (e.g. Protter (2004)) imply that the integrated covariance of
Y (t), ∫ 1

0

Φ(u)Φ′(u)du, (2)

is equal to its quadratic variation over the same interval,

[Y ](1) ≡ plimn→∞

n∑
j=1

{Y (tj) − Y (tj−1)}{Y (tj) − Y (tj−1)}′ (3)

for any sequence of partitions 0 = t0 < t1 < . . . < tn = 1 with supj{tj+1 − tj} → 0 for
n → ∞.

An important motivation for our modelling approach is Theorem 2 from Andersen, Boller-
slev, Diebold and Labys (2003). They show that the daily log-return follows,

Y (1) − Y (0)|σ{a(v), Φ(v)}0≤v≤1 ∼ N

(∫ 1

0

a(u)du,

∫ 1

0

Φ(u)Φ′(u)du

)
,

where σ{a(v), Φ(v)}0≤v≤1 denotes the sigma-field generated by {a(v), Φ(v)}0≤v≤1. In our em-
pirical work we will assume the drift term is approximately 0 while the integrated covariance

6Jumps are not considered in this paper. How to model individual asset jumps and common jumps among
several assets is an open question which we leave for future work.
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can be replaced by an accurate estimate using high-frequency intraday data. We discuss the
estimation of this next.

We are interested in obtaining an estimator of the quadratic variation of Y over a day,
which is a measure of the ex post daily covariation. This estimator is referred to as realized
covariance, or RCOV. We require RCOV to be positive definite. One way of constructing
RCOV for a particular day t is

R̂COVt =
nt∑
i=1

ri,tr
′
i,t,

where nt is the number of intraday log-returns for day t, ri,t is the ith intraday return:
ri,t = Yt,i − Yt,i−1, i = 1, 2, . . . nt. In the absence of market microstructure noise, Barndorff-

Nielsen and Shephard (2004b) shows that R̂COVt is a consistent estimator of quadratic
covariation as nt → ∞.

In the real world there is microstructure noise that affects the log price process, and
intraday prices for different stocks are not observed at the same time, nor the same frequency.
In other words, the price process is not synchronized, introducing another source of bias,
known as the Epps effect. In the presence of microstructure noise, Bandi and Russell (2005b)
show that the realized covariation estimator given above is not consistent. They propose
a method for selecting the optimal sampling frequency as a trade-off between bias and
efficiency. Instead of using all the intraday prices available, prices are sampled at a fixed
frequency, say every 15 minutes. This method does not come without a cost. A majority of
intraday information is discarded and a smaller sample size (the number of intraday prices
to construct RCOV) usually means larger variation in the estimator.

We follow the procedure in Barndorff-Nielsen et al. (2008) (BNHLS) to construct RCOV
using the high-frequency stock returns. BNHLS propose a multivariate realized kernel to
estimate the ex-post covariation of log-prices. They show this new estimator is consistent,
guaranteed to be positive semi-definite, can accommodate endogenous measurement noise
and can also handle non-synchronous trading. To synchronize the data, they use the idea of
refresh time. A kernel estimation approach is used to minimize the effect of the microstruc-
ture noise, and to ensure positive semi-definiteness. They choose the Parzen weight function
for the kernel. We review these key ideas.

The econometrician observes the log price process X =
(
X(1), X(2), . . . , X(k)

)′
, which

is generated by Y , but is contaminated with market microstructure noise. Prices arrive at
different times and at different frequencies for different stocks over the unit interval, t ∈ [0, 1].

Suppose the observation times for the i-th stock are written as t
(i)
1 , t

(i)
2 , . . . , i = 1, 2, . . . , k.

Let N
(i)
t count the number of distinct data points available for the i-th asset up to time t.

The observed history of prices for the day is X(i)(t
(i)
j ), for j = 1, 2, . . . , N

(i)
1 , i.e, the j-th

price update for asset i is X(i)(t
(i)
j ), it arrives at t

(i)
j . The steps to computing daily RCOV

are the following.

1. Synchronizing the data.
The first key step is to deal with the non-synchronous nature of the data. The idea

of refresh time is used here. Define the first refresh time as τ1 = max
(
t
(1)
1 , . . . , t

(k)
1

)
,

and then subsequent refresh times as τj+1 = max

(
t
(1)

N
(1)
τj

+1
, . . . , t

(k)

N
(k)
τj

+1

)
. τ1 is the
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time it has taken for all the assets to trade, i.e. all their posted prices have been
updated at least once. τ2 is the first time when all the prices are again updated,
etc. From now on, we will base our analysis on this new conformed time clock {τj},
and treat the entire k-dimensional vector of price updates as if it is observed at these
refreshed times {τj}. The number of observations of the synchronized price vector
is n + 1, which is no larger than the number of observations of the stock with the
fewest price updates. Then, the synchronized high frequency return vector is defined
as xj = X(τj) − X(τj−1), j = 1, 2, . . . , n, where n is the number of refresh return
observations for the day.

2. Compute the positive semi-definite realized kernel. Having synchronized the high fre-
quency vector returns {xj}, j = 1, 2, . . . , n, daily RCOVt is calculated as,

RCOVt =
n∑

s=−n

f

(
s

S + 1

)
Γs. (4)

The selection of the bandwidth S is discussed in BNHLS while

f(x) =


1 − 6x2 + 6x3 0 ≤ x ≤ 1/2
2(1 − x)3 1/2 ≤ x ≤ 1
0 x > 1.

Γs is the s-th realized autocovariance:

Γs =


∑n

j=|s|+1 xjx
′
j−s, s ≥ 0∑n

j=|s|+1 xj−sx
′
j, s < 0.

We apply this multivariate realized kernel estimation to our high-frequency data, obtain-
ing a series of daily RCOVt matrices, which will then be fitted by our proposed Wishart
Model. The j-th diagonal element of RCOVt is called realized volatility7 and is an ex
post measure of the variance for asset j. Realized correlation between asset i and j is
RCOVt,ij/

√
RCOVt,iiRCOVt,jj where RCOVt,ij is the element from the i-th row and j-th

column.

2.2 Data

We use high-frequency stock prices for 5 assets, namely Standard and Poor’s Depository
Receipt (SPY), General Electric Co. (GE), Citigroup Inc.(C), Alcoa Inc. (AA) and Boeing
Co. (BA). The sample period runs from 1998/12/04 – 2007/12/31 delivering 2281 days.
We reserve the data back to 1998/01/02 (219 observations) as conditioning data for the
components models. The data are obtained from the TAQ database. We use transaction
prices and closely follow Barndorff-Nielsen et al. (2008) to construct daily RCOV matrices.

7Also called realized variance in the literature.
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The data is cleaned as follows. First, trades before 9:30 AM or after 4:00 PM are removed
as well as any trades with a zero price. We delete entries with a corrected trade condition,
or an abnormal sale condition.8 Finally, any trade that has a price increase (decrease) of
more than 5% followed by a price decrease (increase) of more than 5% is removed. For
multiple transactions that have the same time stamp the price is set to the median of the
transaction prices. From this cleaned data we proceed to compute the refresh time and the
realized kernel discussed in the previous section. The daily return rt, is the continuously
compounded return from the open and close prices and matches RCOV. Table 1 reports the
average number of daily transaction for each stock. The average number of transactions
based on the refresh time is much lower at 1835. This represents just under 5 transactions
per minute. Based on this our sample is quite liquid.

Table 2 shows the sample covariance from daily returns along with the average RCOV.
Figure 1 displays daily returns while the corresponding realized volatilities (RV) are in Fig-
ure 2.

3 Models

First we review two representative multivariate volatility models that use daily returns and
will be compared to the RCOV models.

3.1 GARCH Models of Daily Returns

3.1.1 Vector-diagonal GARCH Model

Ding and Engle (2001) introduce the vector-diagonal GARCH (VD-GARCH-t) model to
which we add Student-t innovations as follows

rt|r1:t−1 ∼ t(0, Ht, ζ) (5)

Ht = CC ′ + aa′ ¯ rt−1r
′
t−1 + bb′ ¯ Ht−1, (6)

where rt is a k-dimensional daily return series, and r1:t−1 = {r1, . . . , rt−1}. The parameters
are C, a k×k lower trianglar matrix; a and b are k×1 vectors, and ζ is the degree of freedom
in the Student-t density. ¯ denotes the Hadamard product of two matrices. In estimation,

covariance targeting is achieved by replacing CC ′ with Cov(r) ¯
(

ζ−2
ζ

ιι′ − aa′ − ζ−2
ζ

bb′
)
,

where Cov(r) is the sample covariance matrix estimated from daily returns, and ι is a k × 1
vector of 1. This model assumes that the conditional covariance hij,t is only a function of the
past shock ri,t−1rj,t−1, and the past conditional covariance hij,t−1. The conditional covariance
of returns is ζ

ζ−2
Ht assuming ζ > 2.

8Specifically we remove a trade with CORR 6= 0, or a trade that has COND letter other than E or F in
the TAQ database.
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3.1.2 Dynamic Conditional Correlation Model

The second model is a dynamic conditional correlation (DCC-t) model of Engle (2002) with
Student-t innovations,

rt|r1:t−1 ∼ t(0, Ht, ζ) (7)

Ht = DtRtDt (8)

Dt = diag(σi,t) (9)

σ2
i,t = ωi + κir

2
i,t−1 + λiσ

2
i,t−1, i = 1, . . . , k (10)

εt =

(
ζ − 2

ζ

)1/2

D−1
t rt (11)

Qt = Corr(r)(1 − α − β) + αεt−1ε
′
t−1 + βQt−1 (12)

Rt = diag(Qt)
−1/2Qtdiag(Qt)

−1/2. (13)

Corr(r) is the sample correlation matrix estimated from daily returns. Dt, Rt, Qt are all k×k
matrices. The parameters are ω1, . . . , ωk, κ1, . . . , κk, λ1, . . . , λk, α, β, ζ. In this specification,
the unconditional mean of Qt is equal to Corr(r), the sample correlation. This is called
correlation targeting and in this way the number of parameters is greatly reduced from
k2+5k

2
+ 2 to 3k + 2. Equation (10) governs the dynamics of the conditional variances of

each individual return by a univariate GARCH process; equation (12) governs the dynamics
of the time-varying conditional correlation of the whole return vector. Because Corr(r)
is symmetric positive definite, and εtε

′
t is symmetric positive semi-definite, the conditional

correlation matrices are guaranteed to be symmetric positive definite.

3.2 Models of Realized Covariances

Compared to existing approaches which model factors of RCOV matrices (Cholesky factors,
Chiriac and Voev (2010), principle components, Bauer and Vorkink (2010)) an advantage of
the Wishart distribution is that it has support over symmetric positive definite matrices and
allows for the joint modelling of all elements of a covariance matrix. Conditional moments
between realized variances and covariances have closed form expressions.

Motivated by Philipov and Glickman (2006) and Asai and McAleer (2009), we propose to
model the dynamics of RCOV by a time-varying Wishart distribution. This choice is similar
to Gourieroux, Jasiak, and Sufana (2009) however they use a noncentered Wishart. We have
also explored the inverse Wishart density as another distribution to govern the dynamics of
realized covariances but found the Wishart provided superior performance.9

Two models are presented in which the scale matrix of the Wishart distribution follows a
multiplicative structure and an additive structure. Both models feature components, which is
important to providing gains against standard multivariate GARCH models, and accounting
for persistence in RCOV elements.

The approach to modelling components is related to Andersen, Bollerslev and Diebold
(2007), Corsi (2009), Maheu and McCurdy (2009) among others which uses the Heteroge-

9Note that the choice of the distribution governing the dynamics of Σt is unrelated to the Bayesian
conjugate analysis that uses the Wishart as a conjugate prior for Σ−1

t for Gaussian observations.
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neous AutoRegressive (HAR) model of realized variance in the univariate case in order to
capture long-memory like features of volatility parsimoniously.

3.2.1 A Multiplicative Component Wishart Model

Let Σt ≡ RCOVt, then the Wishart-RCOV-M(K) model with K ≥ 1 components is defined
as,

Σt|ν, St−1 ∼ Wishartk(ν, St−1)

St =
1

ν

[
1∏

j=K

Γ
dj
2

t,`j

]
A

[
K∏

j=1

Γ
dj
2

t,`j

]
(14)

Γt,` =
1

`

`−1∑
i=0

Σt−i (15)

1 = `1 < · · · < `K . (16)

Wishartk(ν, St−1) denotes a Wishart distribution over positive definite matrices of dimension
k with ν ≥ k degrees of freedom and scale matrix St−1. A is a positive definite symmetric
parameter matrix and dj is a positive scalar.

The components enter as a sample average of past Σt raised to a different matrix power
dk/2.10 The first component is assumed to be a function of only Σt, `1 = 1. The component
terms Γt,l allow for more persistence in the location of Σt while the different values of dj

allow the effect to be dampened or amplified. In (14) the order of the product operator is
important and differs in the two terms. The window width ` of each component Γt,l could
be preset or be estimated. We show how to estimate this in the next Section.

To discuss some of the features of this model consider the special case with K = 1
component, St = 1

ν
(Σ

d1/2
t )A(Σ

d1/2
t ). By the properties of the Wishart distribution, the

conditional expectation of Σt is:

E(Σt|Σt−1) = νSt−1 = (Σ
d1/2
t−1 )A(Σ

d1/2
t−1 ). (17)

Conditional moments are straightforward to obtain and interpret. The conditional variance
of element (i, j) is Var(Σt,ij|St−1, ν) = 1

ν
[S̃2

t−1,ij + S̃t−1,iiS̃t−1,jj] where S̃t−1,ij is element (i, j)

of (17). The conditional variance is increasing in S̃t−1,ij, S̃t−1,ii, and S̃t−1,jj. The conditional
covariance between elements has a similar form, Cov(Σt,ij, Σt,km|St−1, ν) = 1

ν
[S̃t−1,ijS̃t−1,km +

S̃t−1,iiS̃t−1,jj]. The degree of freedom parameter ν determines how tight the density of Σt

is centered around its conditional mean, with larger ν meaning the random matrices are
more concentrated around νSt−1. Thus, the modelling of the scale matrix and ν are the key
factors in affecting the conditional moments of Σt.

10We also examined a geometric average version using the following specification: Γd
t,` ≡

Σ
d
`

t−`+1Σ
d
`

t−`+2 · · ·Σ
d
`
t . We found this geometric average version, while it has similar performance in al-

most every aspect, is computationally more costly. We will hence focus our results on the sample average
version.
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The inverse of RCOV follows the inverse-Wishart distribution with the conditional ex-
pectation being:

E(Σ−1
t |Σt−1) = (ν − k − 1)−1S−1

t−1 =
ν

ν − k − 1
(Σ

−d1/2
t−1 )A−1(Σ

−d1/2
t−1 ). (18)

The elements of A determine how each element of Σt is related to elements of Σt−1. For
example, if W ∼ Wishartk(ν, Ik) then

Σt =
1

ν
(Σ

d1/2
t−1 )A1/2W (A1/2)

′
(Σ

d1/2
t−1 ). (19)

The scalar parameter d1 measures the overall influence of past RCOV on current RCOV.
This parameter is closely related to the degree of persistence present in the RCOV series,
with larger d1 the stronger the persistence. Suppose A is the identity matrix and d1 = 1,
then by equation (17), E(Σt|Σt−1) = νSt−1 = Σt−1, which is a random walk in matrix form.
If d1 = 0, then E(Σt|Σt−1) = A, so the RCOV matrix follows an i.i.d. Wishart distribution
over time.

By expanding to several components each with a different window lag length `j and
parameter dj, we obtain a richer model to capture the time series dependencies in realized
covariances. The components are shown to be important in Section 5.

3.2.2 An Additive Component Wishart Model

A very similar model assumes the K components affect St in a additive fashion (Wishart-
RCOV-A(K)),

Σt|ν, St−1 ∼ Wishartk(ν, St−1)

νSt = B0 +

[
K∑

j=1

Bj ¯ Γt,`j

]
(20)

Γt,` =
1

`

`−1∑
i=0

Σt−i (21)

Bj = bjb
′
j, j = 1, . . . , K (22)

1 = `1 < · · · < `K . (23)

Parameters are B0, ν, b1, . . . , bk, `2, . . . , `K . B0 is a k×k symmetric positive definite matrix,
and bj’s are k × 1 vectors making Bj rank 1. This specification ensures St is symmetric
positive definite. Instead of estimating B0, we implement RCOV targeting by setting B0 =
(ιι′−B1 −B2 −B3)¯Σt, where Σt is the sample mean of Σt. This ensures that the long-run
mean of Σt is equal to Σt. In estimation we impose the condition that every element of
(ιι′ − B1 − B2 − B3) is positive.

This model only differs from the previous one in the form of the scale matrix. Like the
VD-GARCH model, element (i, j) of the scale matrix is a function only of element (i, j)
of lagged Σt. Many other parameterizations could be considered but this specification is
reasonably parsimonious and performs well in the empirical work. All of the conditional
moments discussed in the previous subsection hold for this model using the scale matrix
St−1 from (20).
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3.2.3 Linking Returns and RCOV

Along with either the Wishart-RCOV-M or Wishart-RCOV-A specification for Σt the joint
model with returns is closed with

rt|Σt ∼ N(0, Σ
1/2
t Λ(Σ

1/2
t )

′
). (24)

Λ is a symmetric positive definite matrix and allows the covariance of returns to deviate
from the RCOV measure. Λ is estimated and to the extent that Λ is different than Ik it tells
us something about the bias in the RCOV estimator. Therefore, Λ provides a simple way to
adjust for estimation error in RCOV.

4 Model Estimation

We apply standard Bayesian estimation techniques to estimate the models using MCMC
methods for posterior simulation. The posterior distribution is unknown for all the models
considered, but a Markov Chain that has as its limiting distribution the posterior distribution
of the parameters of interest can be sampled from using MCMC simulations. Features of
the posterior density can then be estimated consistently based on the samples obtained from
the posterior. For example, we can estimate the posterior mean of model parameters by the
sample average of the MCMC draws. For more details on MCMC methods see Chib (2001).

To apply Bayesian inference, we need to first assign priors to the parameters. For the
parameters common to the different RCOV models we assume A−1 ∼ Wishartk(γ0, Q0), a
Wishart distribution with Q0 = Ik and γ0 = k + 1 set to reflect a proper but relatively
uninformative prior. Each dj follows a uniform prior, dj ∼ U(−1, 1), and ν ∼ exp(λ0)Iν>k,
an exponential distribution with support truncated to be greater than k. To make the prior
flat, λ0 is set to 100. The priors on the elements of bj’s and ν are all N(0, 100), except the
first element of each bj is truncated to be positive for identification purposes. In the empirical
work focus is given to K = 3 components as this was found to produce good results. The
priors for `2 and `3 are uniform discrete with support {2, 3, . . . , 200}, with the restriction
that `2 < `3 for identification. We assume independence among the prior distributions of
parameters.

If Σ1:t−1 = {Σ1, . . . , , Σt−1}, then the joint density of returns and realized covariances is
decomposed as

p(rt, Σt|Λ, Θ, r1:t−1, Σ1:t−1) = p(rt|Λ, Σt)p(Σt|, Θ, Σ1:t−1) (25)

where Θ is the parameters in the RCOV specification. p(rt|Λ, Σt) has a density in (24) while
p(Σt|Θ, Σ1:t−1) has the density from (14) for the Wishart-RCOV-M(K) model or (20) for the
Wishart-RCOV-A(K) model. Equation (25) implies that estimation of Λ and Θ can be done
separately.

Bayes’ rule gives the posterior for Θ in the Wishart models as

p(Θ|Σ1:T ) ∝

[
T∏

t=1

p(Σt|Θ, Σ1:t−1)

]
p(Θ) (26)
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where p(Θ) is the prior discussed above. Conditional distributions used in posterior simula-
tion are proportional to this density.

The Wishart-RCOV-M(3) model has parameters Θ = {A, d, `, ν}, with d = {d1, d2, d3}
and ` = {`2, `3}. MCMC sampling iterates making parameter draws from the following
conditional distributions.

• A−1|ν, d, `, Σ1:T

• di|A, d−i, `, ν, Σ1:T , i = 1, 2, 3

• `i|ν, d, `−i, Σ1:T , i = 2, 3

• ν|A, d, `, Σ1:T

Sampling A−1|ν, d, `, Σ1:T is a typical Gibbs sampling step from a Wishart density while the
remaining conditional densities are unknown and require a Metropolis-Hastings step. For
these a random walk proposal is used. Similar steps are used to simulate from the posterior
of the Wishart-RCOV-A(3) model.

Taking a draw from all of the conditional distributions constitutes one sweep of the sam-
pler. After dropping an initial set of draws as burnin we collect M draws to obtain {Θ(i)}M

i=1.
Simulation consistent estimates of posterior moments can be obtained as sample averages of
the draws. For instance, the posterior mean of Θ can be estimated as M−1

∑M
i=1 Θ(i).

Posterior simulation from Λ|r1:T , Σ1:T is based on recognizing that r̃t = Σ
−1/2
t rt ∼

N(0, Λ). Setting the prior density of Λ−1 to Wishart results in a standard conjugate re-
sult for the multivariate normal model. This is done separately from the estimation for the
RCOV models.

All of the details of the conditional distributions and proposal distributions along with
details for the multivariate GARCH are collected in the Appendix.

5 Results

All data is used for estimation of the models. In each case, the first 1000 draws are discarded
as burnin in posterior simulation and the next 5000 MCMC draws are used for inference.
Before the parameter estimates are discussed we consider some features of the Wishart-
RCOV(K)-M model and compare it to the DCC model.

To investigate the time-series persistence in RCOV, we plot the sample autocorrelation
function (ACF) of both the largest and smallest eigenvalues of the RCOV series observed, and
compare it to the posterior mean ACF obtained from the Wishart-RCOV-M(K) models.11

The interpretation of the eigenvalues follows Gourieroux, Jasiak, and Sufana (2009). The
largest (smallest) eigenvalue is equal to the maximum (minimum) risk from the portfolio
with variance ω′Σtω, given standardized portfolio weights ω′ω = 1. In Figure 3 and 4 both
the largest and smallest eigenvalues show strong persistence and are different from zero even

11The posterior mean of the ACF of the eigenvalues is obtained as follows. A parameter draw is taken
from the posterior density and used to simulate 2281 observations of Σt. From this the ACF is computed
and saved. This is repeated many times and the average ACF is displayed.

12



400 lags out. The one component Wishart-RCOV-M(1) is completely unable to match the
data.12 The K = 2, and 3 component models provide significant improvements. The kinks
in the ACF function from the simulated models occur at exactly the window width of the
components. For instance, the Wishart-RCOV-M(3) has posterior mean of `2 equal to 9 and
`3 equal to 64, and the change in the slope of the ACF can be seen at these locations. As we
shall see in the remaining results and those in the next section, capturing the persistence in
the RCOV matrices is critical to providing better in-sample and out-of-sample predictions.

Table 3 reports the in-sample mean square error (MSE) for the Wishart-RCOV-M(K)
model against the observed RCOV series. For each model, the MSE is calculated in the
following way: for each period t, we calculate the expected RCOV according to E(Σt|Σt−1) =
νSt−1, and subtract it from the observed RCOV, Σt. We then square each element of the
difference matrix and sum them. As a comparison, the MSE for another 3 models: a naive
model that sets the expected RCOV as last period’s RCOV (i.e. E(Σt|Σt−1) = Σt−1); a
model that sets the predicted RCOV equal to the sample covariance computed from daily
returns; and a DCC model are included. The DCC model (Section 3.1.2) is estimated using
daily returns to produce an in-sample estimate of the conditional covariance. The DCC
model provides an improvement over the sample covariance estimate and also beats the
naive RCOV model. However, each of the Wishart-RCOV-M(K) models provide significant
improvements relative to any method that uses daily returns. The 3-component has the
smallest MSE but this is only marginally smaller that the 2-component version.

To compare how the model tracks correlations, Figures 5 and 6 display realized correlation
computed from the elements of the RCOV matrix along with the fitted estimates from the
Wishart-RCOV-M(3) specification and the DCC model. For the realized covariance models,
the fitted correlation is extracted from E(Σt|Σt−1). The first figure is the correlation between
SPY and GE and the second is the correlation between GE and Citigroup. Both models
track the realized correlation closely with the RCOV model displaying a clear advantage. In
some episodes the DCC wanders away from the realized correlations. This is not surprising
since the DCC can only infer correlations from noisy daily returns.

Based on this discussion the remainder of the paper will focus on K = 3 components
in the Wishart-RCOV-M(K) and Wishart-RCOV-A(K) models. Estimates of the elements
of A are found in Table 4 for Wishart-RCOV-M(3) while the remaining parameters are in
Table 5. This table reports numerical standard errors based on the Newey-West estimator
for the long-run variance with a lag length of 1000. The inefficiency factors are the ratio
of the long-run variance estimate to the sample variance where the latter assumes an i.i.d.
sample. The lower the value is, the closer the sampling is to i.i.d. This shows that the chain
mixes well. The 95 percent density intervals are constructed using the 2.5th percentile and
97.5th percentile of the MCMC draws for the corresponding parameters.

The posterior mean of `2 and `3 are 9 and 64 respectively, and correspond to about
2 weeks and 3 months of data used in the second and third component. They are also
accurately estimated as their density intervals indicate. The estimates of di show that the
second component has relatively larger memory that the other two. Estimates of A show it
to be very close to a diagonal matrix.

Table 6 reports parameter estimates for the Wishart-RCOV-A(3) parameterization. The

12Similar results are obtained for the ACF of individual elements of the RCOV matrices.
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elements of the vectors b1, b2, and b3 are reported along with the estimated lag lengths of the
components. The posterior means for `2 and `3 are almost identical to the Wishart-RCOV-
M(3) model as is the degree of freedom at 14. Once again the parameters are accurately
estimated with tight density intervals.

In summary, the estimates provide strong evidence of components in RCOV with fairly
long lag lengths in the third component. The in-sample one-step ahead forecasts of RCOV
show improvements in using the RCOV models as compared to the multivariate GARCH. In
addition, the RCOV models are better able to track realized correlations. The next section
considers if these gains transfer to out-of-sample density forecasts of returns.

5.1 Density Forecasts

In this section, we compare the joint RCOV and returns models to the benchmark multi-
variate GARCH models, focusing on their out-of-sample performance. We compare each
candidate’s predictive density of returns through predictive likelihood, which is a popular
approach in the literature (Maheu and McCurdy (2009), Amisano and Giacomini (2007),
Bao, Lee, and Saltoglu (2007), Weigend and Shi (2000)).

It is important to consider density forecasts of returns since this is the quantity that in
principle enters into all financial decisions such as portfolio choice and risk measurement.13

Another reason for comparing models this way is that the daily returns are common to
both the GARCH and the joint RCOV and return models and provides a common metric
to compare models that use high and low frequency data. In contrast to the value-at-risk
measures that focus on the tails of a distribution the predictive likelihoods test the accuracy
of the whole distribution. Finally, a term structure of forecasts is considered in order to
assess model forecast strength at many different horizons.

From a Bayesian perspective the predictive likelihoods are a key input into model com-
parison through predictive Bayes factors (Geweke (2005)). Following Maheu and McCurdy
(2009) we evaluate a term structure of a model’s density forecasts of returns. This is the cu-
mulative log-predictive likelihood based on out-of-sample data for h = 1, ..., H period ahead
density forecasts of returns.

For a candidate model A, we compute the following cumulative log-predictive likelihood:

p̂Ah =
T−h∑

t=T0−h

log(p(rt+h|It,A)), (27)

for h = 1, 2, . . . , H and T0 < T . For each h, p̂Ah measures the forecast performance based on
the same common set of returns : rT0 , ..., rT . Therefore, p̂A1 is comparable with p̂A

10 and allows
us to measure the decline in forecast performance as we move from 1 day ahead forecasts to
10 day ahead forecasts using model A. We are also interested in comparing p̂Ah for a fixed
h with another specification B, using its cumulative log-predictive likelihood p̂Bh . Better
models, in terms of more accurate predictive densities, will have larger (27).

For the RCOV models It = {r1:t, Σ1:t} while for the MGARCH models It = {r1:t}.
The predictive likelihood p(rt+h|It,A), is the h-period ahead predictive density for model A

13In general the covariance of returns is not a sufficient statistic for the future return distribution except
with a Gaussian assumption.
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evaluated at the realized return rt+h,

p(rt+h|It,A) =

∫
p(rr+h|θ, Ωt+h,A)p(Ωt+h|θ, It,A)p(θ|It,A)dθdΩt+h. (28)

Parameter uncertainty from θ and the future latent covariance of returns Ωt+h are both
integrated out and will in general result in a highly non-Gaussian density on the left hand
side of (28). In the DCC-t and VD-GARCH-t models Ωt ≡ Ht while for the Wishart-RCOV-
M(3) and Wishart-RCOV-A(3) models Ωt ≡ Σt, while θ is the respective parameter vector.
The integration is approximated as∫

p(rt+h|θ, Ωt+h,A)p(Ωt+h|θ, It,A)p(θ|It,A)dθdΩt+h ≈ 1

M

M∑
i=1

p(rt+h|θ(i), Ω
(i)
t+h,A), (29)

where Ω
(i)
t+h ∼ p(Ωt+h|θ(i), It,A), and θ(i) ∼ p(θ|It,A). {θ(i)}M

i=1 are the MCMC draws from
the posterior distribution p(θ|It,A) for the model.

For the GARCH models, p(rt+h|θ(i), Ω
(i)
t+h,A) is the pdf of a multivariate Student-t density

with mean 0, scale matrix H
(i)
t+h and degree of freedom ζ(i) evaluated at rt+h. H

(i)
t+h is simulated

out from the last in-sample value H
(i)
t which is computed using the GARCH recursion and

the parameter draw θ(i) from the posterior density given data It = {r1:t}.
For the Wishart models, realized covariance dynamics are linked to returns through

equation (24). p(rt+h|θ(i), Ω
(i)
t+h,A) is the pdf of a multivariate Normal density with mean 0

and covariance (Σ
(i)
t+h)

1/2Λ(i)((Σ
(i)
t+h)

1/2)
′
evaluated at rt+h. Σ

(i)
t+h is simulated out using the

Wishart dynamics of the particular model and conditional on θ(i), Λ(i) from the posterior
density, given data It = {r1:t, Σ1:t}.

Note that for each term p(rt+h|It,A) in the out-of-sample period we re-estimate the model
to obtain a new set of draws from the posterior to compute (29). In other words the full set
of models is recursively estimated for t = T0 − H, . . . , T − 1.

Given a model A with predictive likelihood p̂A, and model B with predictive likelihood
p̂B, based on the common data {rT0 , . . . , rT}, the predictive Bayes factor in favor of model

A versus model B is BFAB = p̂A

p̂B
. The Bayes factor is a relative ranking of the ability of

the models to account for the data. A positive value means that model A is better able to
account for the data compared to model B. Kass and Raftery (1995) suggest interpreting
the evidence for A as: not worth more than a bare mention if 0 ≤ BFAB < 3; positive if
3 ≤ BFAB < 20; strong if 20 ≤ BFAB < 150; and very strong if BFAB ≥ 150.

Figure 7 plots p̂h for all the models against h = 1, 2, . . . , H = 60, giving each model
a cumulative log-predictive likelihood term structure. Included are Wishart-RCOV-M(3),
Wishart-RCOV-A(3) models using realized covariances computed from high frequency in-
traday data. The models based only on daily returns are a DCC with Gaussian innovations,
the DCC-t and VD-GARCH-t model which both have Student-t innovations.

The out-of-sample data begins at T0=2006/03/31 and ends at 2007/12/31 for a total of
441 observations. This is true for each model and each forecast horizon h. All specifications
have a downward sloping term structure. Intuitively, forecasting further out is more difficult.

Generally, the best model across the full term structure of density forecasts is the Wishart-
RCOV-A(3) model. The worst model is the DCC with normal innovations. Despite the fact
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that GARCH models with Normal innovations provide fat-tailed predictive densities for
h > 1 the Student-t density is critically important for long horizon forecasts as the DCC-t
model is uniformly better than the Gaussian DCC across all h.

The Wishart-RCOV-M(3) provide good short-term density forecasts (5 days ahead) but
after this its performance decays relative the the MGARCH alternatives that do not employ
RCOV data.

Are the differences in cumulative log-predictive likelihood values important? Figure 8
plots the log-predictive Bayes factors for the models that exploit intraday data versus the
MGARCH models that do not. This figure is computed by subtracting the the log-predictive
likelihood values in Figure 7. The top panel is the evidence supporting the RCOV models
against the VD-GARCH-t model. The Wishart-RCOV-A(3) everywhere dominates except
around 30 days ahead where the difference in forecast precision is very similar. The im-
provements for the Wishart-RCOV-A(3) are considerable. The log-Bayes factors in favor of
this specification are 15.19 (h = 1), 12.07 (h = 10), 4.07 (h = 30), and 24.88 (h = 60).
This means that for h = 1 the Wishart-RCOV-A(3) model is exp(15.10) times better at ac-
counting for the out-of-sample data than the VD-GARCH-t model, while the RCOV model
is exp(24.88) times better for h = 60. In other words, the RCOV model offers significant im-
provements in out-of-sample forecasts of the return distribution. The second plot in Figure 8
gives slightly stronger evidence for the RCOV model compared to the DCC-t model.

The evidence for the RCOV model is weaker using the Wishart-RCOV-M(3) specification.
For short-run forecasts up to 15 days ahead it beats the MGARCH models but thereafter
the evidence is mixed and often in support of the MGARCH.

Finally, the log-predictive Bayes factor found in Figure 9 compares the model of returns
(24) with Λ estimated versus Λ = I. The latter says that RCOV is perfectly synonymous
with the covariance of daily returns. The evidence across the term structure of forecasts is
in favor of Λ being a free estimated parameter.

5.2 Economic Evaluation

In this section, we evaluate the out-of-sample performance of the models from a portfolio
optimization perspective. We focus on the simple problem of finding the global minimum
variance portfolio, so the issue of specifying the expected return is avoided. The h-period
ahead global minimum variance portfolio (GMVP) is computed as the solution to

min
wt+h|t

w′
t+h|tΩt+h|twt+h|t

s.t. w′
t+h|tι = 1.

Ωt+h|t is the predictive mean of the covariance matrix at time t + h given time t information
for a particular model. Each model is re-estimated at each data point in the out-of-sample
period. From the posterior draws the predictive mean of the covariance matrix at time t+h
is simulated along the lines of the previous subsection. wt+h|t is the portfolio weight, and ι
is a vector with all the elements equal to 1. The optimal portfolio weight is

wt+h|t =
Ω−1

t+h|tι

ι′Ω−1
t+h|tι

. (30)
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It can be shown (Engle and Colacito (2006)) that if the portfolio weights, wt, are constructed
from the true conditional covariance, then the variance of a portfolio computed using the
GMVP from any other model must be larger.

We evaluate model performance starting at 2006/03/31 to 2007/12/31 for a total of 441
observations for h = 1, ..., H = 60. The specifications considered are: Wishart-RCOV-A(3),
Wishart-RCOV-M(3), DCC, DCC-t and the static sample covariance. As in the density
forecasts the models are estimated using data up to and including time t and weights are
computed from (30). For the MGARCH models Ωt+h|t = E[ ζ

ζ−2
Ht+h|r1:t] and for the RCOV

models Ωt+h|t = E[Σ
1/2
t+hΛ(Σ

1/2
t+h)

′ |r1:t, Σ1:t]. These terms are computed by simulation and
have parameter uncertainty integrated out. Observation t + 1 is added and the models are
re-estimated and the new weights computed, etc.

We report the sample variances of the GMVPs across models in Figure 10. As in the
density forecast exercise we use a common set of returns to evaluate the performance over
different h. As a result, the upwards sloping portfolio variances indicates that time-series
information is most useful for short term portfolio choice. All of the time-series models
improve upon the sample covariance. The Wishart-RCOV-M(3) model provides the lowest
portfolio variance across the term structure of forecasts. Both RCOV models provides gains
compared to the DCC for about 15 days out after which the portfolio variance is similar.

6 Conclusion

This paper proposes to model the dynamics of realized covariance matrices (RCOV) and
returns based on recent work in time-varying Wishart distributions. Realized covariance
matrices are constructed for 5 stock returns using high-frequency intraday prices based on
positive semi-definite realized kernel estimation introduced by Bardorff-Nielson et al. (2008).
We explore the time-series properties of our RCOV models and propose component models
to capture persistence. Out-of-sample performance of our models are compared to that of
multivariate GARCH (MGARCH) models that only uses daily returns. The best RCOV
models provide significant improvements over the MGARCH models in terms of density
forecasts of returns for up to 3 months ahead. The gains from using high frequency data for
global minimum variance portfolios is important up to 3 weeks ahead.

7 Appendix

7.1 Wishart-RCOV-M(K) Estimation

The parameters are {A, d, `, ν} = Θ.
Given the priors listed in Section 4 the conditional posterior distributions for the param-

eters are as follows.
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p(A−1|ν, d, `, Σt:T ) ∝ Wishartk(A
−1|γ0, Q0) ×

T∏
t=1

Wishartk(Σt|ν, St−1)

∝ |A−1|
γ0−k−1

2 |Q−1
0 |

γ0
2

2
γ0k
2

∏k
j=1 Γ(γ0+1−j

2
)
exp

(
−1

2
Tr(A−1Q−1

0 )

)

×
T∏

t=1

|Σt|
ν−k−1

2 |S−1
t−1|

ν
2

2
νk
2

∏k
j=1 Γ(ν+1−j

2
)
exp

(
−1

2
Tr(ΣtS

−1
t−1)

)

∝ |A−1|
Tν+γ0−k−1

2 exp

(
−1

2
Tr[A−1(Q−1

0 + ν
T∑

t=1

[
K∏

j=1

Γ
−dj
2

t−1,`j

]
Σt

[
1∏

j=K

Γ
−dj
2

t−1,`j

]
)]

)
∝ Wishartk(A

−1|γ̃, Q̃) (31)

Where Q̃−1 = ν
∑T

t=1

[∏K
j=1 Γ

−dj
2

t−1,`j

]
Σt

[∏1
j=K Γ

−dj
2

t−1,`j

]
+ Q−1

0 , γ̃ = Tν + γ0.

For di, i = 1, . . . , K we have,

p(di|A, d−i, `, ν, Σ1:T ) ∝ p(di) ×
T∏

t=1

Wishartk(Σt|ν, St−1)

= p(di)
T∏

t=1

|Σt|
ν−k−1

2 |S−1
t−1|

ν
2

2
νk
2

∏k
j=1 Γ(ν+1−j

2
)
exp

(
−1

2
Tr(ΣtS

−1
t−1)

)
∝ p(di) exp

(
−diνφi

2
− 1

2
Tr(νA−1Q−1)

)
, (32)

where φi =
∑T

t=1 log|Γt−1,`i
|, and Q−1 =

∑T
t=1

[∏K
j=1 Γ

−dj
2

t−1,`j

]
Σt

[∏1
j=K Γ

−dj
2

t−1,`j

]
. To sample

from this density we do the following. If di is the previous value in the chain we propose
d

′
i = di + u where u ∼ N(0, σ2) and accept d

′
i with probability

min

{
p(d

′
i|A, d−i, `, ν, Σ1:T )

p(di|A, d−i, `, ν, Σ1:T )
, 1

}
, (33)

and otherwise retain di. σ2 is selected to achieve a rate of acceptance between 0.3-0.5.
For `i, i = 2, . . . , K we have,

p(`i|A, d, `−i, ν, Σ1:T ) ∝ p(`i) ×
T∏

t=1

Wishartk(Σt|ν, St−1)

∝ p(`i) exp

(
−diνφi

2
− 1

2
Tr(νA−1Q−1)

)
, (34)

where φi and Q−1 are defined the same way as in the previous case. To sample from the
conditional posterior we use a simple random walk proposal. The proposal distribution is
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a Poisson random variable multiplied by a random variable that takes on values 1 and −1
with equal probability. The density of the proposal is

q(`) =


λ`e−λ

2`!
` = 1, 2, · · ·

e−λ ` = 0
λ−`e−λ

2(−`)!
` = −1,−2, · · ·

In the empirical work λ = 2. Given the value `i in the Markov chain, the new proposal
`
′
i ∼ q(`) is accepted with probability

min

{
p(`

′
i|A, d, `−i, ν, Σ1:T )

p(`i|A, d, `−i, ν, Σ1:T )
, 1

}
. (35)

Finally, ν has the conditional posterior density

p(ν|A, d, `, Σ1:T ) ∝ p(ν) × p(Σt:T |A, d, ν)

= p(ν)
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)
(36)

where Q−1 and φi are defined as in previous cases. This is a nonstandard distribution which
we sample using a Metropolis-Hastings step with a random walk proposal analogous to the
sampling in the previous step above.

7.2 Wishart-RCOV-A(K) Estimation

Parameters are Θ = {ν, b1, . . . , bk, `2, . . . , `K}. Given Θ the data density is the product of
the Wishart densities,

p(Σ1:T |Θ) =
T∏

t=1

Wishartk(Σt|ν, St−1). (37)

The joint posterior distribution of the parameters p(Θ|Σ1:T ) then is the product of the
data density and the individual priors for each parameter. We iteratively sample from the
conditional posterior distribution of each parameter conditional on the other parameters by
Metropolis-Hastings scheme. For each parameter, a random walk with normal proposal is
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applied, except for `i, i = 2, . . . , K, in which case the proposal distribution is a “symmetric
Poisson” as in Wishart-RCOV-M(K). For a particular parameter θi ∈ Θ, the conditional
posterior distribution is:

p(θi|θ−i, Σ1:T ) ∝ p(θi) ×
T∏

t=1

Wishartk(Σt|ν, St−1)

= p(θi) × p(Σ1:T |Θ)

= p(θi)
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exp
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2
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)
(38)

7.3 Sampling from Λ|r1:T , Σ1:T

To estimate Λ, define r̃t = Σ
−1/2
t rt, then r̃t ∼ N(0, Λ). We let the prior of Λ−1 be

Wishartk(γ1, Q1), and we set Q1 = I and γ1 = k + 1. The posterior distribution of Λ−1 is

p(Λ−1|r̃1:T ) ∝ Wishartk(Λ
−1|γ1, Q1) ×

T∏
t=1

N(r̃t|0, Λ)

∝ Wishartk(Λ
−1|γ̂, Q̂) (39)

by the conjugacy of the Wishart prior of the precision matrix with respect to a multivariate
Normal likelihood. Here γ̂ = T + γ1, and Q̂ = (

∑T
t=1 r̃tr̃

′
t + Q−1

1 )−1

7.4 DCC-t Estimation

The parameters are {ω1, . . . , ωk, κ1, . . . , κk, λ1, . . . , λk, α, β, ζ} = Ψ. All parameters are as-
signed an independent Normal prior with mean 0 and variance 100, with the following
restrictions are imposed:

ωi > 0, κi ≥ 0, λi ≥ 0, ζ > 2,
κiζ

ζ − 2
+ λi < 1, i = 1, ..., k, α ≥ 0, β ≥ 0, α + β < 1. (40)

The joint prior p(Ψ) is just the product of the individual priors. The likelihood function
p(r1:T |Ψ) is:

p(r1:T |Ψ) =
T∏

t=1

Γ[(ζ + k)/2][1 + 1
ζ
r′tH

−1
t rt]

−(ζ+k)/2

Γ(ζ/2)(ζπ)k/2|Ht|1/2
. (41)

The posterior of the parameters p(Ψ|r1:T ) is:

p(Ψ|r1:T ) ∝ p(Ψ)
T∏

t=1

Γ[(ζ + k)/2][1 + 1
ζ
r′tH

−1
t rt]

−(ζ+k)/2

Γ(ζ/2)(ζπ)k/2|Ht|1/2
. (42)

For the special case of DCC with Normal innovations, the parameters are

{ω1, . . . , ωk, κ1, . . . , κk, λ1, . . . , λk, α, β, } = Ψ.
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The restriction on the priors are similar:

ωi > 0, κi ≥ 0, λi ≥ 0, κi + λi < 1, i = 1, ..., k, α ≥ 0, β ≥ 0, α + β < 1. (43)

The posterior of the parameters p(Ψ|r1:T ) is:

p(Ψ|r1:T ) ∝ p(Ψ)(2π)
Tk
2

T∏
t=1

|DtRtDt|−
1
2 × exp

(
−1

2

T∑
t=1

r′t(DtRtDt)
−1rt

)
(44)

To sample from the joint posterior distribution p(Ψ|r1:T ), we do the following steps: We
first adopt a single move sampler. For each iteration, the chain cycles through the conditional
posterior densities of the parameters in a fixed order. For each parameter, a random walk
with normal proposal is applied. After dropping an initial set of draws as burnin, we collect
M draws and use them to calculate the sample covariance matrix of the joint posterior.
Then, a block sampler is used to jointly sample the full posterior. The proposal density is a
multivariate normal random walk with the covariance matrix set to the sample covariance,
obtained from the draws of the single-move sampler, scaled by a scalar. When the model
is recursively estimated as a new observation arrives the previous sample covariance is used
as the next covariance in the multivariate normal random walk. This results in fast efficient
sampling.

7.5 VD-GARCH-t Estimation

The parameters are {a1, . . . , ak, b1, . . . , bk, ζ} = Ψ. All parameters are assigned an indepen-
dent Normal prior with mean 0 and variance 100, with a1 and b1 restricted to be positive
for identification purpose. The joint prior p(Ψ) is just the product of the individual priors.
The likelihood function p(r1:T |Ψ) is:

p(r1:T |Ψ) =
T∏

t=1

Γ[(ζ + k)/2][1 + 1
ζ
r′tH

−1
t rt]

−(ζ+k)/2

Γ(ζ/2)(ζπ)k/2|Ht|1/2
(45)

The posterior of the parameters p(Θ|r1:T ) is:

p(Ψ|r1:T ) ∝ p(Ψ)
T∏

t=1

Γ[(ζ + k)/2][1 + 1
ζ
r′tH

−1
t rt]

−(ζ+k)/2

Γ(ζ/2)(ζπ)k/2|Ht|1/2
(46)

The sampling procedure is similar to that of the DCC.
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Table 1: Average daily number of transactions and average daily refresh time ( RT ) obser-
vations per day

SPY GE C AA BA RT
6985 7479 6121 3279 3745 1835

This table reports the average daily number of transactions (after data cleaning) for Standard and Poor’s
Depository Receipt (SPY), General Electric Co. (GE), Citigroup Inc.(C), Alcoa Inc. (AA) and Boeing Co.
(BA). The total number of days is 2281. RT reports the average number of daily observations according to
the refresh time.

Table 2: Summary statistics: Daily returns and RCOV

Sample covariance from daily returns Average of realized covariances
SPY GE C AA BA SPY GE C AA BA

SPY 0.963 1.078 1.172 0.834 0.751 0.907 0.972 1.099 0.822 0.718
GE 2.410 1.500 1.062 0.931 2.327 1.250 0.897 0.796
C 2.826 1.014 0.931 3.176 0.982 0.835

AA 3.900 0.993 3.921 0.734
BA 2.933 2.910

This table reports the sample covariance from daily returns and the sample average of the realized covariances.
The data are Standard and Poor’s Depository Receipt (SPY), General Electric Co. (GE), Citigroup Inc.(C),
Alcoa Inc. (AA) and Boeing Co. (BA). Total observations is 2281.

Table 3: Mean square error for different models

3-comp 2-comp 1-comp E(Σt|Σt−1) = Σt−1 DCC Sample covariance
70.21 70.80 75.12 102.03 85.20 118.52

Given a model’s in-sample fitted value Σ̂t and the data Σt this table reports∑T
t=1‖Σt − Σ̂t‖2, where ‖·‖ denotes the Frobenius matrix norm.

Table 4: Posterior mean and standard deviation of lower triangular elements of A for
Wishart-RCOV-M(3)

1.0480
(0.0100)
0.0129 1.0832

(0.0064) (0.0087)
0.0176 0.0010 1.0951

(0.0064) (0.0062) (0.0089)
0.0058 0.0059 0.0045 1.1138

(0.0061) (0.0060) (0.0061) (0.0102)
0.0029 0.0019 0.0018 0.0037 1.1082

(0.0060) (0.0060) (0.0061) (0.0062) (0.0093)
This table reports the posterior mean, and the posterior standard deviation
in parentheses for the lower triangle of A.
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Table 5: Estimation results for Wishart-RCOV-M(3)

Parameter Mean NSE 0.95 DI Ineff
d1 0.2553 0.0004 (0.2415, 0.2671) 17.6101
d2 0.4502 0.0006 (0.4303, 0.4715) 17.0676
d3 0.2651 0.0006 (0.2413, 0.2858) 15.5695
ν 14.6679 0.0032 (14.4736, 14.8603) 5.3509
`2 9.0280 0.0219 (8.0000, 10.0000) 13.5203
`3 64.1822 0.0294 (63.0000, 67.0000) 3.0019

This table reports the posterior mean, its numerical standard error (NSE), a 0.95
density interval (DI) and the inefficiency factor for model parameters.

Table 6: Estimation results for Wishart-RCOV-A(3)

Parameter Mean NSE 0.95 DI Ineff
b11 0.5744 0.0012 (0.5556, 0.5905) 55.6555
b12 0.5579 0.0019 (0.5354, 0.5783) 90.5498
b13 0.5995 0.0017 (0.5835, 0.6155) 138.5520
b14 0.4888 0.0005 (0.4628, 0.5127) 3.5098
b15 0.5878 0.0010 (0.5668, 0.6077) 25.4376
b21 0.6732 0.0010 (0.6518, 0.6932) 28.8173
b22 0.6536 0.0023 (0.6314, 0.6821) 104.4400
b23 0.6536 0.0013 (0.6381, 0.6691) 73.1365
b24 0.6918 0.0005 (0.6649, 0.7174) 3.7541
b25 0.5623 0.0017 (0.5290, 0.5963) 33.6903
b31 0.4242 0.0010 (0.3992, 0.4519) 16.6831
b32 0.4854 0.0024 (0.4544, 0.5111) 76.9035
b33 0.4410 0.0019 (0.4187, 0.4644) 85.4987
b34 0.4475 0.0010 (0.4066, 0.4833) 7.9212
b35 0.5384 0.0013 (0.5064, 0.5709) 17.9957
ν 14.6666 0.0037 (14.4875, 14.8439) 4.6488
`2 8.9967 0.0031 (9.0000, 9.0000) 8.7925
`3 63.8190 0.0379 (62.0000, 66.0000) 3.3739

This table reports the posterior mean, its numerical standard error (NSE), a 0.95
density interval (DI) and the inefficiency factor for model parameters.
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Figure 1: Daily returns
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Figure 3: Sample autocorrelation functions of the largest eigenvalues of RCOVs
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Figure 4: Sample autocorrelation functions of the smallest eigenvalues of RCOVs
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Figure 5: Correlation between SPYDER and GE
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Figure 9: Log Predictive Bayes Factor: Λ estimated vs Λ = I
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