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Abstract

Rational herd behaviour and informationally efficient security prices have long

been considered to be mutually exclusive but for exceptional cases. In this paper we

describe the conditions on the underlying information structure that are necessary

and sufficient for informational herding and contrarianism. In a standard sequential

security trading model, subject to sufficient noise trading, people herd if and only

if, loosely, their information is sufficiently dispersed so that they consider extreme

outcomes more likely than moderate ones. Likewise, people act as contrarians if and

only if their information leads them to concentrate on middle values. Both herding

and contrarianism generate more volatile prices, and they lower liquidity. They are

also resilient phenomena, although by themselves herding trades are self enforcing

whereas contrarian trades are self-defeating. We complete the characterization by

providing conditions for the absence of herding and contrarianism.
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1 Introduction

In times of great economic uncertainty, financial markets often appear to behave frantically,

displaying substantial price spikes as well as drops. Such extreme price fluctuations are

possible only if there are dramatic changes in behaviour with investors switching from

buying to selling or the reverse. This pattern of behaviour and the resulting price volatility

is often claimed to be inconsistent with rational traders and informationally efficient asset

prices and is attributed to investors’ animal instincts. We argue in this paper, however,

that such behaviour can be the result of fully rational social learning where agents change

their beliefs and behaviour as a result of observing the actions of others.

One example of social learning is herd behaviour in which agents switch behaviour (from

buying to selling or the reverse) following the crowd. So-called “rational herding” can occur

in situations with information externalities, when agents’ private information is swamped

by the information derived from observing others’ actions. Such “herders” rationally act

against their private information and follow the crowd.1

It is not clear, however, that such herd behaviour can occur in informationally efficient

markets, where prices reflect all public information. For example, consider an investor with

unfavorable private information about a stock. Suppose that a crowd of people buys the

stock frantically. Such an investor will update his information, and upon observing many

buys, his expectation of the value of the stock will rise. At the same time, prices also adjust

upward. Then it is not clear that the investor buys — to him the security may still be

overvalued. So, for herding private expectations and prices must diverge.

In models with only two states of the world, such divergence is impossible as prices

always adjust so that there is no herding.2 Yet two state models are rather special and

herding can emerge once there are at least three states. In this paper we characterize the

possibility of herding in the context of a simple, informationally efficient financial market.

Moreover, we show that (i) during herding prices can move substantially and (ii) herding

can induce lower liquidity and higher price volatility than if there were no herding.

Herd behaviour in our set-up is defined as any history-switching behaviour in the direc-

tion of the crowd (a kind of momentum trading).3 Social learning can also arise as a result

of traders switching behaviour by acting against the crowd. Such contrarian behaviour is

the natural counterpart of herding, and we also characterize conditions for such behaviour.

Contrary to received wisdom that contrarian behaviour is stabilizing, we also show that

1See Banerjee (1992) or Bikhchandani, Hirshleifer, and Welch (1992) for early work on herding.
2With two states the price will adjust so that it is always below the expectation of traders with favourable

information and above the expectation of those with unfavourable information irrespective of what is
observed. As we show, with more than two states, this strict separation no longer applies.

3We are concerned with short-term behavior. In the literature, there are also other definitions of herding;
see Section 4 for a discussion.
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contrarian behaviour leads to higher volatility and lower liquidity, just as herd behaviour.

The key insight of our characterization result is that social learning in financial markets

occurs if and only if investors receive information that satisfies a compelling and intuitive

property. Loosely, herding arises if and only if private information satisfies a property that

we call “U-shaped.” An investor who receives such information believes that extreme states

are more likely to have generated the information than more moderate ones. Therefore,

when forming his posterior belief, the recipient of such a signal will shift weight away from

the center to the extremes so that the posterior distribution of the trader is “fat-tailed.”

The recipient of a U-shaped signal thus discounts the possibility of the intermediate value

and as a consequence will update the probabilities of extreme values faster than an agent

who receives only the public information.

Contrarianism occurs if and only if the investor’s signal indicates that moderate states

are more likely to have generated the signal than extreme states. We describe such signals

as being “Hill-shaped.” The recipient of a Hill-shaped signal always puts more weight on

middle outcomes relative to the market so that this trader’s posterior distribution becomes

“thin-tailed.” He thus discounts the possibility of extreme states and, therefore, updates

extreme outcomes slower than the market maker.

We follow the microstructure literature and establish our results in the context of a

stylized trading model in the tradition of Glosten and Milgrom (1985). In such models, the

bid and ask prices are set by a competitive market maker. Investors trade with the market

maker either because they receive private information about the asset’s fundamental value

or because they are “noise traders” and trade for reasons outside of the model.

The simplest possible Glosten-Milgrom trading model that allows herding or contrarian-

ism is one with at least three states. For this case, we show that (i) a U-shaped (Hill-shaped)

signal is necessary for herding (contrarianism) and (ii) herding (contrarianism) occurs with

positive probability if there exists at least one U-shaped (Hill-shaped) signal and there is

a sufficient amount of noise trading. The latter assumption on the minimum level of noise

trading is not required in all cases and is made as otherwise the bid and ask spread may

be too large to induce appropriate trading. In Section 9 we show that the intuition for our

three states characterization carries over to a setup with an arbitrary number of states.

We obtain our characterization results without restrictions on the signal structure. In

the literature on asymmetric information, it is often assumed that information structures

satisfy the monotone likelihood ratio property (MLRP). Such information structures are

“well-behaved” because, for example, investors’ expectations are ordered. It may appear

that such a strong monotonicity requirement would prohibit herding or contrarianism. Yet

MLRP does not only admit the possibility of U-shaped signals (and thus herding) or Hill-

shaped signals (and thus contrarianism), but also the trading histories that generate herding
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and contrarianism are significantly simpler to describe with than without MLRP signals.

Our second set of results concerns the impact of social learning on prices. We first

show that the range of price movements can be very large during both contrarianism and

herding. We then compare price movements in our set-up where agents observe one another

with those in a hypothetical economy, that is otherwise identical to our set-up except that

the informed traders do not switch behaviour. We refer to the former as the transparent

economy and to the latter as the opaque economy. In contrast to the transparent economy,

in the opaque economy there is no social learning by assumption. We show, for the case

of MLRP, that once herding or contrarianism begins, prices respond more to individual

trades relative to the situation without social learning so that price rises and price drops

are greater in the transparent set-up than in the opaque one.4 As a corollary, liquidity,

measured by the inverse of the bid-ask-spread, is lower with social learning than without.

The price volatility and liquidity results may have important implications for the dis-

cussion on the merits of “market transparency.” The price path in the opaque economy

can be interpreted as the outcome of a trading mechanism in which people submit orders

without knowing the behaviour of others or the market price. Our results indicate that in

the less transparent setup, price movements are less pronounced and liquidity is higher.

While the results on price ranges, volatility and liquidity indicate similarities between

herding and contrarianism, there is also a stark difference. Contrarian trades are self-

defeating because a large number of such trades will cause prices to move “against the

crowd” thus ending contrarianism. During herding, on the other hand, investors continue

to herd when trades are “in the direction of the crowd,” so herding is self-enforcing.

Examples of situations that generate U- and Hill-shaped signals. First, a U-

shaped signal may be interpreted as a “volatility signal.”5 Very informally, an example

is a signal that generates a mean preserving spread of a symmetric prior distribution.

Conversely, a mean preserving signal that decreases the variance is Hill-shaped.

Second, U-shaped and Hill-shaped signals may also be good descriptions of situations

with a potential upcoming event that has an uncertain impact. For example, consider

the case of a company or institution that contemplates appointing a new leader who is an

uncompromising “reformer”. If this person takes power, then either the necessary reforms

take place or there will be strife with calamitous outcomes. Thus the institution will not be

the same as the new leader will be either very good or disastrous. Any private information

signifying that the person is likely to be appointed exemplifies a U-shaped signal and any

information revealing that this person is unlikely to be appointed (and thus the institution

4The increase in price-volatility associated with herding is only relative to a hypothetical scenario. Even
when herding is possible, in the long-run volatility settles down and prices react less to individual trades. It
is well known that the variance of Martingale price-processes such as ours is bounded by model primitives.

5We thank both Markus Brunnermeier and an anonymous referee for this interpretation.
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will carry on as before) represents a Hill-shaped signal.6

Third, consider a financial institution FI that is a competitor to a bank that has recently

failed. Suppose there are three possible scenarios: (i) FI will also fail because it has deals

with the failed bank that will not be honored and/or that the business model of FI is as

bad as that of the failed bank; (ii) FI’s situation is entirely unrelated to the bank and the

latter’s collapse will not affect FI; and (iii) FI may benefit greatly from the bank’s collapse

as it is able to attract the failed bank’s customers and most capable employees. Cases (i)

and (iii) resemble extreme outcomes and case (ii) a middle outcome.

In this environment, some investor’s information might have implied that the most likely

outcome is either that FI will also go down as well or that it will benefit greatly from the

failed banks’ demise. Such information is an example of a U-shaped signal. Alternatively,

some investors’ assessments might have implied that the most likely outcome is that FI is

unaffected. Such information is an example of a Hill-shaped signal.

It is conceivable that in the Fall of 2008 (after the collapse of Lehman) and early 2009

many investors believed that for individual financial institutions the two extreme states

(collapse or thrive) were the most likely outcomes. Then our theory predicts the potential

for herd behaviour, with investors changing behaviour in the direction of the crowd, caus-

ing strong short-term price fluctuations. Hill-shaped private signals, signifying that the

institutions were likely to be unaffected, may also have occurred, inducing contrarianism

and changes of behaviour against the crowd.

The mechanism that induces herding and contrarianism. Consider the above

banking example and assume that all scenarios are equally likely. Let the value of the stock

of FI in each of the three scenarios (i), (ii) and (iii) be V1 < V2 < V3, respectively. We

are interested in the behaviour of an investor, who has a private signal S, after different

public announcements. Specifically, consider a good public announcement G that rules out

the worst state, Pr(V1|G) = 0, and a bad public announcement B that rules out the best

state, Pr(V3|B) = 0. Assume that the price of the stock is equal to the expected value

of the asset conditional on the public information and that the investor buys (sells) if his

expectation exceeds (is less than) the price. Note that the price will be higher after G and

lower after B, compared to the ex-ante situation when all outcomes are equally likely.

Both G and B eliminate one state, so that, after each such announcement there are only

two states left. In two state models, an investor has a higher (lower) expectation than the

market if and only if his private information is more (less) favourable towards the better

state than towards the worse state. Thus, in the cases of G and B, E[V |G] ≶ E[V |S,G]

is equivalent to Pr(S|V2) ≶ Pr(S|V3) and E[V |S,B] ≶ E[V |B] is equivalent to Pr(S|V2) ≶

6Other examples are an upcoming merger or takeover with uncertain merits, the possibility of a govern-
ment stepping down, announcements of FDA drug approvals, outcomes of lawsuits etc; degenerate examples
for such signals were first discussed in Easley and O’Hara (1992) and referred to as “event uncertainty”.
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Pr(S|V1). Hence, for example, after good news G, an investors buys (sells) if he thinks,

relative to the market, that it is more (less) likely that FI will thrive than being unaffected.

It follows from the above that the investor buys after G and sells after B if and only if

Pr(S|V3) > Pr(S|V2) and Pr(S|V1) > Pr(S|V2). Such an investor, loosely, herds in the sense

that he acts like a momentum trader, buying with rising and selling with falling prices. The

private information (conditional probabilities) that is both necessary and sufficient for such

a behaviour has thus a U shape. Conversely, the investor sells after G and buys after B if

and only if Pr(S|V3) < Pr(S|V2) and Pr(S|V1) < Pr(S|V2). Such an investor, loosely, trades

contrary to the general movement of prices. The private information that is both necessary

and sufficient to generate such a behaviour has thus a Hill shape.7

There are several points to note about this example. First, the public announcements G

and B are degenerate as they each exclude one of the extreme states. Yet the same kind

of reasoning holds if we replace G by an announcement that attaches arbitrarily small

probability to the worst outcome, V1, and if we replace B by an announcement that attaches

arbitrarily small probability to the best outcome, V3. Second, in the above illustration, G

and B are exogenous public signals. In the security model described in this paper, on

the other hand, public announcements or, more generally, public information are created

endogenously by the history of publicly observable transactions. Yet the intuition behind

our characterization results is similar to the above illustration. The analysis in the paper

involves describing public histories of trades that allow investors to almost rule out some

extreme outcome, either V1 or V3.
8 Such histories are equivalent to public announcements G

and B (or, to be more precise, to perturbations of G and B), and demonstrating their

existence is crucial for demonstrating the existence of herding and contrarianism.

Overview. The next section discusses some of the related literature. Section 3 outlines

the setup. Section 4 defines herding and contrarian behaviour. Section 5 discusses the nec-

essary and sufficient conditions that ensure herding and contrarianism. Section 6 discusses

the special case of MLRP signals. Section 7 considers the resiliency, and fragility of herding

and contrarianism and describes the range of prices for which there may be herding and

contrarianism. Section 8 discusses the impact of social learning on prices with respect to

volatility and liquidity. Section 9 extends the result to a setting with an arbitrary number

of states. Section 10 discusses the relation of our findings to an earlier important paper on

financial market herding. Section 11 concludes. Proofs that are not in the text are either

in the appendix or in the supplementary material.

7In our formal definition of herding and contrarianism, we benchmark behaviour against the decision that
the trader would take at the initial history, but the switching mechanism is akin to what we describe here.

8In the asset market described in the paper, every state has a positive probability at all finite trading
histories because of the existence of noise traders. Therefore, we describe public histories at which the
probabilities of extreme states are arbitrarily small, but not zero.
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2 Related Literature

Extensive literature surveys on herding in financial markets are in Brunnermeier (2001),

Chamley (2004) and Vives (2008). Our work relates to the part of the literature that fo-

cusses on short-run herding. The work closest to ours is Avery and Zemsky (1998), hence-

forth AZ, who were the first to present an intuitively appealing example of informational

herding in financial markets. They argue that herd behaviour with informationally effi-

cient asset prices is not possible unless signals are “non-monotonic” and they attribute the

herding result in their example to “multidimensional uncertainty” (investors have a finer in-

formation structure than the market). In their main example, however, prices hardly move

under herding. To generate extreme price movements (bubbles) with herding AZ expand

their example to a second level of information asymmetry that leads to an even finer infor-

mation partition. Yet even with these further informational asymmetries, the likelihood of

large price movements during herding is extremely small (see Chamley (2004)).

The profession, for instance Brunnermeier (2001), Bikhchandani and Sunil (2000),

Chamley (2004), has derived three messages from AZ’s paper. First, with “uni-dimensional”

or “monotonic” signal structures, herding is impossible. Second, the information structure

needed to induce herding is very special. Third, herding does not involve violent price

movements except in the most unlikely environments.

AZ’s examples are special cases of our framework. Our paper demonstrates that the

conclusions derived from AZ’s examples should be reconsidered. First, we show that it

is U-shaped signals, and not multi-dimensionality or non-monotonicity of the information

structure, that is both necessary and sufficient for herding. Second, while AZ’s examples are

intuitively appealing, due to their extreme nature (with several degenerate features) it may

be argued that they are very special and therefore have limited economic relevance. Our

results show instead that herding may apply in a much more general fashion and therefore,

there may be a great deal more rational informational herding than is currently expected

in the literature. Third, we show that extreme price movements with herding are possible

under not so unlikely situations, even with MLRP signals and without “further dimensions

of uncertainty.” In Section 10 below, we discuss the above in detail by comparing and

contrasting the work and conclusions of AZ with ours.

A related literature on informational learning explains how certain facets of market or-

ganization or incentives can lead to conformism and informational cascades. In Lee (1998),

fixed transaction costs temporarily keep traders out of the market. When they enter sud-

denly and en masse, the market maker absorbs their trades at a fixed price, leading to large

price jumps after this “avalanche.” In Cipriani and Guarino (2008), traders have private

benefits from trading in addition to the fundamental value payoff. As the private and public

expectations converge, private benefits gain importance to the point when they overwhelm
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the informational rents. Then learning breaks down and an informational cascade arises. In

Dasgupta and Prat (2008) an informational cascade is triggered by traders’ reputation con-

cerns, which eventually outweigh the possible benefit from trading on information. Chari

and Kehoe (2004) also study a financial market with efficient prices; herding in their model

arises with respect to a capital investment that is made outside of the financial market.

Our work also relates to the literature that shows how public signals can have a larger

influence on stock price fluctuations than warranted by their information content. Begin-

ning with He and Wang (1995) who describe the relation between public information and

non-random trading volume patterns caused by the dynamic trading activities of long-lived

traders, this literature has identified how traders who care for future prices (as opposed

to fundamentals) rely excessively on public expectations (see also Allen, Morris, and Shin

(2006), Bacchetta and Wincoop (2006), Bacchetta and Wincoop (2008), Ozdenoren and

Yuan (2007), Goldstein, Ozdenoren, and Yuan (2010)).

All of the above contributions highlight important aspects, facets, and mechanisms that

can trigger conformism in financial markets. Our findings complement the literature in that

the effects that we identify may be combined with many of the above studies and they may

amplify the effects described there.

3 The Model

Wemodel financial market sequential trading in the tradition of Glosten and Milgrom (1985).

Security: There is a single risky asset with a value V from a set of three potential

values V = {V1, V2, V3} with V1<V2<V3. Value V is the liquidation or true value when the

game has ended and all uncertainty has been resolved. States V1 and V3 are the extreme

states, state V2 is the moderate state. The prior distribution over V is denoted by Pr(·).

To simplify the computations we assume that {V1, V2, V3} = {0,V, 2V}, V > 0 and that the

prior distribution is symmetric around V2; thus Pr(V1) = Pr(V3).
9

Traders: There is a pool of traders consisting of two kinds of agents: Noise Traders

and Informed Traders. At each discrete date t one trader arrives at the market in an

exogenous and random sequence. Each trader can only trade once at the point in time at

which he arrives. We assume that at each date the entering trader is an informed agent

with probability µ > 0 and a noise trader with probability 1− µ > 0.

The informed agents are risk neutral and rational. Each receives a private, condition-

ally i.i.d. signal about the true value of the asset V. The set of possible signals or types of in-

formed agents is denoted by S and consists of three elements S1, S2 and S3. The signal struc-

ture of the informed can therefore be described by a 3-by-3 matrix I = {Pr(Si|Vj)}i,j=1,2,3

where Pr(Si|Vj) is the probability of signal Si if the true value of the asset is Vj .

9The ideas of this paper remain valid without these symmetry assumptions.
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Noise traders have no information and trade randomly. These traders are not necessarily

irrational, but they trade for reasons not included in this model, such as liquidity.10

Market Maker: Trade in the market is organised by a market maker who has no

private information. He is subject to competition and thus makes zero-expected profits.

In every period t, prior to the arrival of a trader, he posts a bid-price bidt at which he is

willing to buy the security and an ask-price askt at which he is willing to sell the security.

Consequently he sets prices in the interval [V1, V3].

Traders’ Actions: Each trader can buy or sell one unit of the security at prices

posted by the market maker, or he can be inactive. So the set of possible actions for any

trader is {buy, hold, sell}. We denote the action taken in period t by the trader that arrives

at that date by at. We assume that noise traders trade with equal probability. Therefore,

in any period, a noise-trader buy, hold or sale occurs with probability γ = (1− µ)/3 each.

Public History: The structure of the model is common knowledge among all market

participants. The identity of a trader and his signal are private information, but everyone

can observe past trades and transaction prices. The history (public information) at any

date t > 1, the sequence of the traders’ past actions together with the realised past trans-

action prices, is denoted by H t = ((a1, p1), . . . , (at−1, pt−1)) for t > 1, where aτ and pτ are

traders’ actions and realised transaction prices at any date τ < t respectively. Also, H1

refers to the initial history before any trade takes place.

Public Belief and Public Expectation: For any date t and any history H t, denote

the public belief/probability that the true liquidation value of the asset is Vi by qti =

Pr(Vi|H
t), for each i = 1, 2, 3. The public expectation, which we sometimes also refer to

as the market expectation, of the liquidation value at H t is given by E[V |H t] =
∑

qtiVi.

Also, we shall respectively denote the probability of a buy and the probability of a sale

at any history H t, when the true value of the asset is Vi, by βt
i = Pr(buy|H t, Vi) and

σt
i = Pr(sell|H t, Vi). For instance, suppose that at history H t the only informed type

that buys is Sj. Then when the true value is Vi, the probability of a buy is given by

the probability that there is a noise trader who buys plus the probability that there is an

informed trader with signal Sj: β
t
i = (1− µ)/3 + µPr(Sj |Vi).

The Informed Trader’s Optimal Choice: The game played by the informed agents

is one of incomplete information; therefore the optimal strategies correspond to a Perfect

Bayesian equilibrium. Here, the equilibrium strategy for each trader simply involves com-

paring the quoted prices with his expected value taking into account both the public history

and his own private information. For simplicity, we restrict ourselves to equilibria in which

each agent trades only if he is strictly better off (in the case of indifference the agents do

10As is common in the microstructure literature with asymmetric information, we assume that noise
traders have positive weight (µ < 1) to prevent “no-trade” outcomes a la Milgrom and Stokey (1982).
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not trade). Therefore, the equilibrium strategy of an informed trader that enters the mar-

ket in period t, receives signal St and observes history H t is (i) to buy if E[V |H t, St] > askt,

(ii) to sell if bidt > E[V |H t, St], and (iii) to hold in all other cases.

The Market Maker’s Price-Setting: To ensure that the market maker receives zero

expected profits, the bid and ask prices must satisfy the following at any date t and any

history H t: askt = E[V |at = buy at askt, H t] and bidt = E[V |at = sell at bidt, H t]. Thus

if there is a trade at H t, the public expectation E[V |H t+1] coincides with the transaction

price at time t (askt for a buy, bidt for a sale).

If the market maker always sets prices equal to the public expectation, E[V |H t], he

makes an expected loss on trades with an informed agent. However, if the market maker

sets an ask-price and a bid-price respectively above and below the public expectation, he

gains on noise traders, as their trades have no information value. Thus, in equilibrium the

market maker must make a profit on trades with noise traders to compensate for any losses

against informed types. This implies that if at any history H t, there is a possibility that

the market maker trades with an informed trader, then there is a spread between the bid

and ask prices at H t and the public expectation E[V |H t], satisfies askt > E[V |H t] > bidt.

Trading by the Informed Types and No Cascade Condition: At any history H t

either informed types do not trade and every trade is by a noise trader or there is an

informed type that would trade at the quoted prices. The game played by the informed

types in the former case is trivial as there will be no trade by the informed from H t

onwards and an informational cascade occurs. The reason is that if there were no trades

by the informed at H t, no information will be revealed and the expectations and prices

remain unchanged; hence, by induction, we would have no trading by the informed and no

information revelation at any date after H t. In this paper, we thus consider only the case

in which at every history there is an informed type that would trade at the quoted prices.

Informative Private Signals: The private signals of the informed traders are infor-

mative at history H t if

there exists S ∈ S such that E[V |H t, S] 6= E[V |H t]. (1)

First note that (1) implies that at H t there is an informed type that buys and an informed

type that sells. To see this observe that by (1) there must exist two signals S ′ and S ′′ such

that E[V |H t, S ′] < E[V |H t] < E[V |H t, S ′′]. If no informed type buys at H t then there is

no informational content in a buy and askt = E[V |H t]. Then, by E[V |H t] < E[V |H t, S ′′],

type S ′′ must be buying at H t; a contradiction. Similarly, if no informed type sells at H t

then bidt = E[V |H t]. Then, by E[V |H t] > E[V |H t, S ′], type S ′ must be selling at H t; a

contradiction. Second, it is also the case that if there is an informed type who trades at H t,

then (1) must hold. Otherwise, for every signal S ∈ S, E[V |H t, S] = E[V |H t] = askt = bidt

and the informed types would not trade at H t.
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It follows from the above that (1) is both necessary and sufficient for trading by an

informed type at H t. Since we are interested in the case when the informed types trade,

we therefore assume throughout this paper that (1) holds at every history H t.11

One important consequence of condition (1) is that past behaviour can be inferred from

past transaction prices alone: since the bid and ask prices always differ by condition (1),

one can infer behaviour iteratively, starting from date 1. Therefore, all the results of this

paper are valid if traders observe only past transaction prices and no-trades.

Long-run behaviour of the model. Since price formation in our model is stan-

dard, (1) also ensures that standard asymptotic results on efficient prices hold. More

specifically, by standard arguments as in Glosten and Milgrom (1985) we have that trans-

action prices form a martingale process. Since by (1) buys and sales have some information

content (at every date there is an informed type that buys and one that sells), it also follows

that beliefs and prices converge to the truth in the long-run (see, for instance, Proposition 4

in AZ). However, here we are solely interested in short-run behaviour and fluctuations.

Conditional signal distributions. As we outlined in the introduction, the possibility

of herding or a contrarian behaviour for any informed agent with signal S ∈ S depends

critically on the shape of the conditional signal distribution of S. Henceforth, we refer

to the conditional signal distribution of the signal as the csd. Furthermore, we will also

employ the following terminology to describe four different types of csds:

increasing: Pr(S|V1) ≤ Pr(S|V2) ≤ Pr(S|V3); decreasing: Pr(S|V1) ≥ Pr(S|V2) ≥ Pr(S|V3);

U-shaped: Pr(S|Vi) > Pr(S|V2) for i = 1, 3; Hill-shaped: Pr(S|Vi) < Pr(S|V2) for i = 1, 3.

An increasing csd is strictly increasing if all three conditional probabilities for the signal

are distinct; a strictly decreasing csd is similarly defined.

For the results in our paper it is also important whether the likelihood of a signal is

higher in one of the extreme states V1 or V3 relative to the other extreme state. We thus

define the bias of a signal S as Pr(S|V3)− Pr(S|V1). A U-shaped csd with a negative bias,

Pr(S|V3) − Pr(S|V1) < 0, will be labeled as an nU-shaped csd and a U-shaped csd with a

positive bias, Pr(S|V3) − Pr(S|V1) > 0, will be labeled as a pU-shaped csd. Similarly, we

use nHill (pHill) to describe a Hill-shaped csd with a negative (positive) bias.

In describing the above properties of a type of csd for a signal we shall henceforth drop

the reference to the csd and attribute the property to the signal itself, when the meaning

is clear. Similarly, when describing the behaviour of a signal recipient we attribute the

behaviour to the signal itself.

11A sufficient condition for (1) to hold at everyHt is that all minors of order two of matrix I are non-zero.
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4 Definitions of Herding and Contrarian Behaviour

In the literature, there are several definitions of herding. Some require “action convergence”

or even complete informational cascades where all types take the same action in each state,

irrespective of their private information; see Brunnermeier (2001), Chamley (2004), Vives

(2008). The key feature of this early literature was that herding can induce, after some

date, the loss of all private information and wrong or inefficient decisions henceforth.

A situation like an informational cascade in which all informed types act alike may

not, however, be very interesting in an informationally efficient financial market setting. In

such a framework prices account for the information contained in the traders’ actions. If

all informed types act alike then their actions would be uninformative, and as result, prices

would not move. Therefore, such uniformity of behaviour cannot explain prices movements,

which is a key feature of financial markets. Moreover, if the uniform action involves trading,

then a large imbalance of trades would accumulate without affecting prices — contrary to

common empirical findings.12

Furthermore, as we have explained in the previous section, in our “standard” microstruc-

ture trading model, at any history uniform behaviour by the informed types is possible if

and only if all private signals are uninformative, in the sense that the private expectations

of all informed types are equal that of the market expectation (condition (1) is violated).

The case of such uninformative private signals is trivial and uninteresting as it implies that

no further information is revealed, that all informed types have the same expectation and

that, because we assume that informed agents trade only if trading makes them strictly

better off, a no-trade cascade results.

In this paper we thus focus on the social learning (learning from others) aspect of

behaviour for individual traders that is implied by the notion of herding from the earlier

literature. Specifically, we follow Brunnermeier (2001)’s (Ch. 5) description of herding as

a situation in which “an agent imitates the decision of his predecessor even though his

own signal might advise him to take a different action” and we consider the behaviour of

a particular signal type by looking at how the history of past trading can induce a trader

to change behaviour and trade against his private signal.13

Imitative behaviour is not the only type of behaviour that learning from others’ past

trading activities may generate: a trader may also switch behaviour and go against what

most have done in the past. We call such social learning contrarianism and differentiate it

from herding by describing the latter as a history-induced switch of opinion in the direction

of the crowd and the former as a history-induced switch against the direction of the crowd.

12See, for instance, Chordia, Roll, and Subrahmanyam (2002).
13Vives (2008) (Ch. 6) adopts a similar view of herding, defining it as a situation in which agents put

“too little” weight on their private signals with respect to a well-defined welfare benchmark.
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The direction of the crowd here is defined by the “recent” price movement. Thus, there is

a symmetry in our definitions, making herding the intuitive counterpart to contrarianism.

Definition Herding. A trader with signal S buy herds in period t at history H t if and

only if (i) E[V |S] < bid1, (ii) E[V |S,H t] > askt, (iii-h) E[V |H t] > E[V ]. Sell herding at

history H t is defined analogously with the required conditions E[V |S] > ask1, E[V |S,H t] <

bidt, and E[V |H t] < E[V ]. Type S herds if he either buy herds or sell herds at some history.

Contrarianism. A trader with signal S engages in buy contrarianism in period t at

history H t if and only if (i) E[V |S] < bid1, (ii) E[V |S,H t] > askt, (iii-c) E[V |H t] <

E[V ]. Sell contrarianism at history H t is defined analogously with the required conditions

E[V |S] > ask1, E[V |S,H t] < bidt, and E[V |H t] > E[V ]. Type S engages in contrarianism if

he engages either in buy contrarianism or sell contrarianism at some history.

Both with buy herding and buy contrarianism, type S prefers to sell at the initial history,

before observing other traders’ actions (condition (i)), but prefers to buy after observing the

history H t (condition (ii)). The key differences between buy herding and buy contrarianism

are conditions (iii-h) and (iii-c). The former requires the public expectation, which is the

last transaction price and an average of the bid and ask prices, to rise at history H t so that

a change of action from selling to buying at H t is with the general movement of the prices

(crowd), whereas the latter condition requires the public expectation to have dropped so

that a trader who buys at H t acts against the movement of prices.

Henceforth, we refer to a “buy herding history” as one at which some type, were they

to trade, would buy herd at that history; similarly for a “buy contrarianism history.”

Our definition of herding is identical to that in Avery and Zemsky (1998),14 and it has

also been used in other work on social learning in financial markets (see, for instance, Cipri-

ani and Guarino (2005) or Drehmann, Oechssler, and Roider (2005)). It describes histories

at which a trader acts “against his signal” (judgement) and follows “the trend”, where

“against his signal” is defined by comparing the herding action to the benchmark without

public information. “The trend” is identified by price movements based on the idea that

prices rise (fall) when there are more (less) buys than sales. The contrarianism definition,

on the other hand, captures the contra-trend action that is also against one’s signal.15

Our definitions also capture well-documented financial market trading behaviour. In

particular, our herding definition is a formalization of the idea of rational momentum trad-

14Avery and Zemsky (1998)’s definition of contrarianism is stronger than ours (they also impose an
additional bound on price movements that reflects the expectations that would obtain if the traders receives
an infinite number of draws of the same signal). We adopt the definition of contrarianism above because,
as we explained before, it is a natural and simple counterpart to the definition of herd behaviour.

15Herding and contrarianism here refer to extreme switches of behaviour from selling to buying or the
reverse. One could expand the definition to switches from holding to buying or to selling (or the reverse).
For consistency with the earlier literature, we use the extreme cases where switches do not include holding.
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ing. It also captures the situation in which traders behave as if their demand functions

are increasing. Contrarianism has a mean-reversion flavour. Both momentum and con-

trarian trading have been analyzed extensively in the empirical literature and have been

found to generate abnormal returns over some time horizon.16 Our analysis thus provides

a characterization for momentum and mean reversion behaviour and shows that it can

be rational.

As we have argued above, in our set-up we assume that trades are informative to avoid

the uninteresting case of a no-trade cascade. Thus, we cannot have a situation in which

all informed types act alike.17 Nevertheless, our set-up allows for the possibility that a

very large portion of informed traders is involved in herding or contrarianism. The precise

proportion of such informed traders is, in fact, determined exogenously by the information

structure through the likelihood that a trader receives the relevant signal. We discuss this

point further in Section 11 and show that this proportion can be arbitrarily large.

Although the informative trade assumption ensures that asymptotically the true value

of the security is learned, our definition of herding and contrarianism admits the possibility

of switches of trades “in the wrong direction” in the short run. For instance, traders may

buy herd even though the true value of the asset is V1 (the lowest).

Finally, social learning can have efficiency consequences. In any setting where agents

learn from the actions of others, an informational externality is inevitable as future agents

are affected when earlier agents take actions that reveal private information. For example,

in the early herding models of Bikhchandani, Hirshleifer, and Welch (1992) and Banerjee

(1992) once a cascade begins, no further information is revealed. However, in this paper

we do not address the efficiency element, because it requires a welfare benchmark, which

“is generally lacking in asymmetric information models of asset markets” (see Avery and

Zemsky (1998), p. 728). Instead, our definition is concerned with observable behaviour and

outcomes that are sensitive to the details of the trading history. Such sensitivities may

dramatically affect prices in financial markets.

16In the empirical literature, contrarian behaviour is found to be profitable in the very short run (1
week and 1 month, Jegadeesh (1990) and Lehmann (1990)) and in the very long run (3-5 years, de Bondt
and Thaler (1985))). Momentum trading is found to be profitable over the medium term (3-12 months,
Jegadeesh and Titman (1993)) and exceptionally unprofitable beyond that (the 24 months following the first
12, Jegadeesh and Titman (2001)). Sadka (2006) studies systematic liquidity risk and links a component
of it, which is caused by informed trading, to returns on momentum trading.

17Note that even though with no cascades (the market expects that) the different types do not take the
same actions, in degenerate settings when a particular type is not present in certain states, it is possible
that in these particular states all informed types that occur with positive probability take the same action.
An example of such a degenerate situation is the information structure in Avery and Zemsky (1998) that
we discuss in Section 10.
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5 Characterization Results: The General Case
The main characterization result for herding and contrarianism is as follows:

Theorem 1 (a) Herding. (i) Necessity: If type S herds, then S is U-shaped with a non-

zero bias. (ii) Sufficiency: If there is a U-shaped type with a non-zero bias, there exists

µh ∈ (0, 1] such that some informed type herds when µ < µh.

(b) Contrarianism. (i) Necessity: If type S acts as a contrarian, then S is Hill-shaped

with a non-zero bias. (ii) Sufficiency: If there is a Hill-shaped type with a non-zero bias,

there exists µc ∈ (0, 1] such that some informed type acts as a contrarian when µ < µc.

Theorem 1 does not specify when we have buy or sell herding or when we have buy

or sell contrarianism. In what follows, we first consider the necessary and then the suffi-

cient conditions for each of these cases. The proof of Theorem 1 then follows from these

characterization results at the end of this section.

We begin by stating three useful lemmas. The first lemma provides a useful character-

ization for the difference between private and public expectations.

Lemma 1 For any S, time t and history H t, E[V |S,H t]− E[V |H t] has the same sign as

qt1q
t
2 [Pr(S|V2)−Pr(S|V1)] + qt2q

t
3 [Pr(S|V3)−Pr(S|V2)] + 2qt1q

t
3 [Pr(S|V3)−Pr(S|V1)]. (2)

Second, as the prior on the liquidation values is symmetric, it follows that the expec-

tation of the informed is less (greater) than the public expectation at the initial history if

and only if his signal is negatively (positively) biased.

Lemma 2 For any signal S, E[V |S] is less than E[V ] if and only if S has a negative bias,

and E[V |S] is greater than E[V ] if and only if S has a positive bias.

An immediate implication of this lemma is that someone sells at the initial history only if

this type’s signal is negatively biased and buys only if the signal is positively biased.

Third, note that herding and contrarianism involve switches in behaviour after changes

in public expectations relative to the initial period. A useful way to characterize these

changes is the following.

Lemma 3 If E[V |H t] > E[V ] then qt3 > qt1 and if E[V ] > E[V |H t] then qt1 > qt3.

Thus the public expectation rises (falls) if and only if the public belief attaches a lower

(higher) probability to the lowest value, V1, than to the highest value, V3.

5.1 Necessary Conditions

Herding and contrarianism by a given signal type involve buying at some history and selling

at another. Our first result establishes that this cannot happen if the signal is decreasing

or increasing. Consider a decreasing type S. Since the ask price always exceeds the public
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expectation, it follows that, at any H t, type S does not buy if the expectation of S,

E[V |S,H t], is no more than the public expectation, E[V |H t]. The latter must indeed hold

because, for any two valuations Vℓ, Vh such that Vℓ < Vh, the likelihood that a decreasing

type S attaches to Vℓ relative Vh at any history H t cannot exceed that of the market:
Pr(Vl|S,H

t)
Pr(Vh|S,Ht)

= Pr(Vl|H
t)Pr(S|Vl)

Pr(Vh|Ht)Pr(S|Vh)
≤ Pr(Vl|H

t)
Pr(Vh|Ht)

. Formally, every term in (2) is non-positive when S

is decreasing; therefore, it follows immediately from Lemma 1 that E[V |S,H t] ≤ E[V |H t].

An analogous set of arguments demonstrates that an increasing type does not sell at

any history. Therefore, we can state the following.

Proposition 1 If S is decreasing then type S does not buy at any history. If S is increasing

then type S does not sell at any history. Thus recipients of such signals cannot herd or

behave as contrarians.

Proposition 1 demonstrates that any herding and contrarianism type must be either U or

Hill-shaped. We next refine these necessary conditions further and state the main result of

this subsection as follows.

Proposition 2 (a) Type S buy herds only if S is nU-shaped and sell herds only if S is

pU-shaped. (b) Type S acts as a buy contrarian only if S is nHill-shaped and acts as a sell

contrarian only if S is pHill-shaped.

A sketch of the proof of Proposition 2 for buy herding and buy contrarianism is as follows.

Suppose that S buy herds or acts as a buy contrarian. Then it must be that at H1 type S

sells and thus his expectation is below the public expectation. By Lemma 2, this implies

that S is negatively biased.18 Thus, by Proposition 1, S is either nU or nHill-shaped.

The proof is completed by showing that buy herding is inconsistent with an nHill-shaped

csd and that buy contrarianism is inconsistent with an nU-shaped csd. To see the intuition,

for example, for the case of buy herding, note that in forming his belief a trader with an

nHill-shaped csd puts less weight on the tails of his belief (and thus more on the center)

relative to the public belief; furthermore, the shift from the tails towards the center is more

for value V3 than for V1 because of the negative bias. When buy herding occurs, the public

belief must have risen and thus, by Lemma 3, the public belief attaches more weight to V3

relative to V1 (i.e. qt1 < qt3). Such a redistribution of probability mass ensures that S’s

expectation is less than that of the public. Hence an nHill-shaped S cannot be buying.

The arguments for sell herding and sell contrarianism are analogous except that here

the bias has to be positive to ensure that the informed type buys at the initial history.

5.2 Sufficient Conditions

The above necessary conditions — U shape for herding and Hill shape for contrarianism

— turn out to be almost sufficient as well. Before stating the sufficiency results, it will be

18The bias is only required because we assume that priors are symmetric.
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useful to discuss two of the ideas that provide insight into the analysis.

(I) With a U-shaped signal S, the difference between the private and the public expecta-

tion, E[V |S,H t]−E[V |H t], is positive at histories at which the public probability of state V1

is sufficiently small relative to the probability of the other states (both qt1/q
t
2 and qt1/q

t
3 are

close to zero) and is negative at histories at which the public probability of state V3 is suf-

ficiently small relative to the probability of the other states (both qt3/q
t
1 and qt3/q

t
1 are close

to zero). For a Hill-shaped signal S the sign of this difference is the reverse.

The intuition for this statement relates to the example from the introduction. Consider

first any history H t at which both qt1/q
t
2 and qt1/q

t
3 are close to zero. Then there are

effectively two states V2 and V3 at H t. This means that at such a history the difference

between the expectations of an informed type S and of the public (which has no private

information), E[V |S,H t]−E[V |H t], has the same sign as Pr(S|V3)−Pr(S|V2).
19 The latter

is positive for a U-shaped S and negative for a Hill-shaped S. Thus, at such history,

E[V |S,H t]− E[V |H t] is positive if S is U-shaped and is negative if S is Hill-shaped.

By a similar reasoning the opposite happens at any history H t at which both qt3/q
t
1

and qt3/q
t
2 are close to zero. At such a history there are effectively two states, V1 and V2;

therefore, E[V |S,H t]−E[V |H t] has the same sign as Pr(S|V2)−Pr(S|V1).
20 Since the latter

is negative for a U-shaped S and positive for a Hill-shaped S, it follows that at such a

history E[V |S,H t]−E[V |H t] is negative if S is U-shaped and is positive if S is Hill-shaped.

(II) The probability of noise trading may have to be sufficiently large to ensure that the

bid-ask spread is not too wide both at the initial initial history and later at the history at

which the herding or contrarian candidate changes behaviour.

In (I) we have compared the private expectation of the informed trader with that of the

public. To establish the existence of herding or contrarian behaviour, however, we must

compare the private expectations with the bid- and ask-prices. The difference is that bid-

and ask-prices form a spread around the public expectation. To ensure the possibility of

herding or contrarianism, this spread must be sufficiently “tight”. Tightness of the spread,

in turn, depends on the extent of noise trading: the more noise there is (the smaller the

likelihood of the informed types, µ), the tighter the spread.

More specifically, to ensure buy herding or buy contrarianism (the other cases are

similar) by an informed type, a minimal amount of noise trading may be necessary, so

that the informed type (i) sells initially and (ii) switches to buying after some history H t.

Below, we formalize these minimal noise trading restrictions by introducing two bounds,

19Formally, at any Ht at which both qt1/q
t
2 and qt1/q

t
3 are close to zero, the first and the third terms in (2)

are arbitrarily small; moreover, the second term in (2) has the same sign as Pr(S|V3)−Pr(S|V2); therefore,
it follows from from Lemma 1 that E[V |S,Ht]− E[V |Ht] has the same sign as Pr(S|V3)− Pr(S|V2).

20This claim also follows from Lemma 1: at such history, the second and the third terms in (2) are
arbitrarily small and the second term in (2) has the same sign as Pr(S|V3)− Pr(S|V2).
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one to ensure a tight spread for the initial sell and the second to ensure a tight spread for

the subsequent switch to buying, and require the likelihood of informed trading µ to be

less than both these bounds.

Appealing to the above ideas, we can now state a critical lemma. To save space we

state the result only for the case of buy herding and buy contrarianism.

Lemma 4 (i) Suppose that signal S is nU-shaped. Then there exist µi and µs
bh ∈ (0, 1]

such that S buy herds if µ < µbh ≡ min{µi, µs
bh} and if the following holds:

For any ǫ > 0 there exists a history H t such that qt1/q
t
l < ǫ for all l = 2, 3. (3)

(ii) Suppose signal S is nHill-shaped. Then there exist µi and µs
bc ∈ (0, 1] such that S acts

as a buy contrarian if µ < µbc ≡ min{µi, µs
bc} and if the following holds:

For any ǫ > 0 there exists a history H t such that qt3/q
t
l < ǫ for all l = 1, 2. (4)

Conditions (3) and (4) above ensure that there are histories at which the probability

of an extreme state, V1 or V3, can be made arbitrarily small relative to the other states.

Value µbh is the minimum of the two bounds µi and µs
bh, mentioned in (II), that respectively

ensure that spreads are small enough at the initial history and at the time of the switch

of behaviour by a buy herding type. Similarly, µbc is the minimum of the two bounds µi

and µs
bc that respectively ensure that spreads are small enough at the initial history and at

the time of the switch of behaviour by a buy contrarian type S. Below we will discuss how

restrictive these bounds are, and if they are necessary for the results.

A sketch of the proof for part (i) of Lemma 4 is as follows. First, by Lemma 2, S having

a negative bias implies that E[V |S] < E[V ]. Then it follows from the arguments outlined in

(II) above that one can find an upper bound µi > 0 on the size of the informed trading such

that if µ < µi then at H1 the bid price bid1 is close enough to the public expectation E[V ]

so that E[V |S] is also below bid1, i.e. S sells at H1.

Second, since S is U-shaped, it follows from the arguments outlined in (I) that at

any history H t at which qt1/q
t
2 and qt1/q

t
3 are sufficiently small E[V |S,H t] > E[V |H t] (by

condition (3) such history H t exists). Then, by the arguments outlined in (II) above, one

can find an upper bound µs
bh > 0 such that if µ < µs

bh then at H t the ask price askt is

sufficiently close to E[V |H t] so that E[V |S,H t] also exceeds askt, i.e. S switches to buying.

Finally, since qt1/q
t
3 is small at H t, by Lemma 3, E[V |H t] > E[V ]. Thus, the switch to

buying at H t by S is in the direction of the crowd.

The argument for contrarianism in part (ii) is analogous except that to ensure E[V |S,H t]

exceeds E[V |H t] at some history H t for a Hill-shaped S, by (I), H t must be such that qt3/q
t
1

and qt3/q
t
2 are sufficiently small (condition (4) ensures that such history H t exists). Then

by (II) there exists µs
bc > 0 such that if µ < µs

bc, ask
t is sufficiently close to E[V |H t] so that

E[V |S,H t] > askt. Furthermore, at such a history H t, S will be buying against the crowd

because when qt3/q
t
1 is small, which is the case at H t, by Lemma 3, E[V |H t] < E[V ].
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A similar set of results to Lemma 4 can be obtained for the cases of sell herding and sell

contrarianism except that to ensure sell herding the appropriate assumptions are that S

is pU and (4) holds, and to ensure sell contrarian we need that S is pHill and (3) holds.21

The sufficiency results in Lemma 4 are non-vacuous provided that conditions (3) and (4)

are satisfied. As these conditions depict properties of endogenous variables, to complete the

analysis we need to show the existence of the histories assumed by conditions (3) and (4).

In some cases, this is a straightforward task. The easiest case arises when at any t there

is a trade that reduces both qt1/q
t
2 and qt1/q

t
3 or both qt3/q

t
1 and qt3/q

t
2 uniformly (independent

of time). For example, suppose that the probability of a buy is uniformly increasing in the

liquidation value at any date and history:

for some ǫ > 0, βt
j > βt

i + ǫ for any j > i and any t, (5)

Since qt+1
i /qt+1

j = (qtiβ
t
i)/(q

t
jβ

t
j) when there is a buy at date t, it follows that in this case a

buy reduces both qt1/q
t
2 and qt1/q

t
3 uniformly. Thus if (5) holds, a sufficiently large number of

buys induces the histories described in (3). Similarly, with a sale qt+1
i /qt+1

j = (qtiσ
t
i)/(q

t
jσ

t
j).

Thus, if the probability of a sale is uniformly decreasing in the liquidation value at any H t,

for some ǫ > 0, σt
i > σt

j + ǫ for any j > i and any t, (6)

then a sale reduces both qt3/q
t
1 and qt3/q

t
2 uniformly. Thus, if (6) holds, a sufficiently large

number of sales induces the histories described in (4).22

Demonstrating conditions (3) and (4) generally, however, requires a substantially more

complex construction. In particular, in some cases there are no paths that result in both

qt1/q
t
2 and qt1/q

t
3 decreasing at every t or in both qt3/q

t
1 and qt3/q

t
2 decreasing at every t.23 For

these cases, we construct outcome paths consisting of two different stages. For example,

to ensure (3), the path is constructed so that in the first stage qt1/q
t
2 becomes small while

ensuring that qt1/q
t
3 does not increase by too much. Then in the second stage, once qt1/q

t
2 is

sufficiently small, the continuation path makes qt1/q
t
3 small while ensuring that qt1/q

t
2 does

not increase by too much. A similar construction is used for (4).

Such constructions work for most signal distributions. The exceptions are cases with

two U-shaped signals with opposite biases or two Hill-shaped signals with opposite biases.

In these cases we can show, depending on the bias of the third signal, that either (3) or (4)

21These differences arise because with sell herding or sell contrarianism the informed needs to buy initially
and switch to selling later. To ensure the former, by Lemma 2, we need to assume a positive bias and, to
ensure the latter, the appropriate “extreme” histories at which the switches happen are the opposite of the
buy herding and buy contrarian case. Also, the values for the bounds on the size of informed trading might
be different for sell herding and sell contrarianism from those for buy herding and buy contrarianism.

22These monotonicity properties of the probability of a buy and the probability of a sale as defined in (5)
and (6) are satisfied, for instance, by MLRP information structures; see the next section.

23For instance, if for every action at (=buy, sell or hold) the probability of at in state V1 is no less than
the probability of at in the other two states, there will not be a situation that reduces both qt1/q

t
2 and qt1/q

t
3.
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holds, but we cannot show both. For example, if one of the three signals is nU and another

is pU, then we can show that (3) holds if the third signal has a non-negative bias, and (4)

holds if the third signal has a non-positive bias. This implies, by Lemma 4 (i), that in the

former case the nU type buy herds, and in the latter case, by an analogous argument, the

pU type sell herds (similarly for the contrarian situation).

The next proposition is our main sufficiency result. It follows from the discussion above,

concerning (3) and (4), and Lemma 4 (for completeness, we state the result for buy and

sell herding and for buy and sell contrarianism).

Proposition 3 (a) Let S be nU-shaped. If another signal is pU-shaped, assume the third

signal has a non negative bias. Then there exists µbh ∈ (0, 1] such that S buy herds if µ<µbh.

(b) Let S be pU-shaped. If another signal is nU-shaped, assume the third signal has a non

positive bias. Then there exists µsh ∈ (0, 1] such that S sell herds if µ < µsh.

(c) Let S be nHill-shaped. If another signal is pHill-shaped assume the third signal has a

non positive bias. Then there exists µbc ∈ (0, 1] such that S is a buy contrarian if µ < µbc.

(d) Let S be pHill-shaped. If another signal is nHill-shaped, assume the third signal has a

non negative bias. Then there exists µsc ∈ (0, 1] such that S is a sell contrarian if µ < µsc.

Discussion of the Noise Restriction. For each of our sufficiency results above (Lemma 4

and Proposition 3) we assume that µ is less than some upper bound. We will now discuss

whether these bounds are necessary for our results, and whether they are restrictive.

Consider the case of buy herding by an nU-shaped type S as in Lemma 4 (i). For

this sufficiency result we assume two restrictions: µ < µi and µ < µs
bh. These conditions

respectively ensure that the spread is small enough at the initial history and at history H t

at which there is a switch in behaviour. In the appendix we show that there exists a unique

value for the first bound, µi ∈ (0, 1], such that µ < µi is also necessary for buy herding.

In general we cannot find a unique upper bound for the second value, µs
bh, such that µ <

µs
bh is also necessary for buy herding. The reason is that the upper bound that ensures that

the spread is not too large at the history H t at which S switches to buying may depend

on what the types other than S do at H t. Since there may be more than one history at

which S switches to buying, this upper bound may not be unique.

The above difficulty with respect to the necessity of the second noise condition µ < µs
bh

does not arise, for instance, when types other than S always take the same action.24 More

generally, we show in the supplementary material (Proposition 3a), that µ < µs
bh is also

necessary for buy herding provided there is at most one U-shaped signal.

A similar argument applies to contrarian behaviour. The noise restriction with respect

to the initial trade is necessary, whereas the noise restriction with respect to the switch of

behaviour is necessary as long as there is at most one Hill-shaped type.

24For example, this happens when the information structure satisfies MLRP; see the next section.
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Finally, note that the bounds on µ in our sufficiency results do not always constitute a

restriction. Consider again the case of buy herding for an nU type S. If at H1, type S has

the lowest expectation among all informed types, then his expectation must be less than

the bid price at H1, and thus, there is no need for any restriction on the size of the informed

at H1 (µi can be set to 1). Likewise, if at H t at which buy herding occurs type S has the

highest expectation (for example, this happens if no type other than S buys at H t), then

his expectation must be greater than the ask price atH t and therefore, no restriction on the

size of the informed is needed (µs
bh can be set to 1). Consequently, to obtain our sufficiency

results there are restrictions on the value of µ only if at H1 or at the switch history H t the

expectation of the herding candidate is in between those of the other signal types.25

5.3 Proof of Theorem 1

The necessity part in Theorem 1 follows immediately from Proposition 2. The proof of the

sufficiency part for case (a) of herding is as follows. Let µh = min{µsh, µbh}, where µbh

and µsh are the bounds for herding given in Proposition 3. Also, assume that µ < µh

and that there exist a U-shaped signal as in part (a) of Theorem 1. Then there are two

possibilities: either there is another U-shaped signal with the opposite bias or there is not.

If there is no other U-shaped signal with the opposite bias, then by part (a) of Proposition 3,

the U-shaped type buy herds if it has a negative bias and by part (b) of Proposition 3 the

U-shaped type sell herds if it has a positive bias. If there is another U-shaped signal with

the opposite bias, then by parts (a) and (b) of Proposition 3, one of the U-shaped signals

must herd. This is because if the third signal is weakly positive then the U-shaped signal

with a negative bias buy herds, and if the third signal is weakly negative then the U-shaped

signal with a positive bias sell herds. The reasoning for sufficiency in part (b) of Theorem 1

is analogous and is obtained by setting µc = min{µsc, µbc}, where µsc and µbc are the bounds

for contrarianism from Proposition 3.26 �

6 Social Learning with MLRP Information Structure
The literature on asymmetric information often assumes that the information structure is

monotonic in the sense that it satisfies the monotone likelihood ratio property (MLRP).

Here this means that for any signals Sl, Sh ∈ S and values Vl, Vh ∈ V such that Sl < Sh

and Vl < Vh, Pr(Sh|Vl)Pr(Sl|Vh) < Pr(Sh|Vh)Pr(Sl|Vl).

MLRP is very restrictive (it is stronger than first order stochastic dominance) and at

first might seem to be too strong to allow herding or contrarianism. This turns out to be

25Romano and Sabourian (2010) extend the present model to the case where traders can trade a contin-
uum of quantities. In this setting, they show that no restrictions on µ are needed because at each history,
each quantity is traded by a specific signal type.

26The bounds µbh, µsh, µsc, µbc in the proof of Proposition 3 are such that µh = µc.
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false. Not only does MLRP not exclude such possibilities, it actually enables one to derive

a sharper sets of results for the existence of herding and contrarianism. Moreover, with

MLRP the histories that can generate herding or contrarianism can be easily identified.

MLRP is a set of restrictions on the conditional probabilities for the entire signal struc-

ture and is equivalent to assuming that all minors of order two of the information matrix I

are positive. Herding or contrarianism, on the other hand, relate to the csd of a signal being

U- or Hill-shaped, i.e. to the individual row in matrix I that corresponds to the signal.

Therefore, to analyse the possibility of herding or contrarianism with MLRP, we need to

consider the csd of the different signals under MLRP. In the next lemma we describe some

useful implications of MLRP.

Lemma 5 Assume S1 < S2 < S3 and the information structure satisfies MLRP. Then

(i) E[V |S1, H
t] < E[V |S2, H

t] < E[V |S3, H
t] at any t and any H t.

(ii) In any equilibrium S1 types always sell and S3 types always buy.

(iii)S1 is strictly decreasing and S3 is strictly increasing.

(iv) The probability of a buy is uniformly increasing in the liquidation value as specified

in (5) and the probability of a sale is uniformly decreasing as specified in (6).

Part (i) states that MLRP imposes a natural order on the signals in terms of their condi-

tional expectations after any history. Part (iv) implies that with MLRP the probability of

a buy is uniformly increasing and the probability of a sell is uniformly decreasing in the

liquidation values. Parts (ii) and (iii) state that MLRP restricts the behaviour and the

shape of the lowest and the highest signals S1 and S3. In particular, these two types do

not change behaviour and they are decreasing and increasing respectively.

Lemma 5, however, does not impose any restrictions on the behaviour or the shape of

the middle signal S2. In fact, MLRP is consistent with a middle signal S2 that is decreasing,

increasing, Hill-shaped or U-shaped with a negative or a positive bias — Table 1 describes

a robust example of all these possibilities. Thus, with MLRP, S2 is the only type that can

display herding or contrarian behaviour. We can then state the following characterisation

result for MLRP information structures (again we omit the analogous sell herding and sell

contrarian cases).

Theorem 2 Assume S1 < S2 < S3 and the signal structure satisfies MLRP. (a) If S2 is

nU, there exists µbh ∈ (0, 1] such that S2 buy herds if and only if µ < µbh. (b) If S2 is nHill,

there exists µbc∈(0, 1] such that S2 acts as a buy contrarian if and only if µ<µbc.

Proof: Fix the critical levels µbh ≡ min{µi, µs
bh} for buy herding and µbc = min{µi, µs

bc} for

buy contrarianism, where µi is defined in Lemma 8 and µs
bh and µs

bc are respectively defined

in (12) and (13) in the appendix. The “if” part follows from Lemma 4: By Lemma 5 (iv),

conditions (5) and (6) hold. As outlined in the last section, both qt1/q
t
2 and qt1/q

t
3 can be made
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Pr(S|V ) V1 V2 V3

S1 δ(1− β)/(β + δ(1− β)) δ(1− α) 0
S2 β/(β + δ(1− β)) α β/(β + (1− δ)(1− β))
S3 0 (1− δ)(1− α) (1− β)(1− δ)/(β + (1− δ)(1− β))

Table 1
An Example of an MLRP Signal Distribution.

For α, δ ∈ (0, 1), and β ∈ (0, α) the above satisfies MLRP. Moreover, S2 is nU-shaped if β ∈ (αδ/(1 −

α(1 − δ)), α) and δ < 1/2, pU-shaped if β ∈ (α(1 − δ)/(1 − αδ), α) and δ > 1/2, nHill-shaped if β ∈

(0, αδ/(1−α(1− δ))) and δ < 1/2, pHill-shaped if β ∈ (0, α(1− δ)/(1−αδ)) and δ > 1/2, decreasing if β ∈

(αδ/(1−α(1−δ)), α(1−δ)/(1−αδ)) and δ < 1/2, and increasing if β ∈ (α(1−δ)/(1−αδ), αδ/(1−α(1−δ)))

and δ > 1/2.

arbitrarily close to zero by considering histories that involve a sufficiently large number of

buys, and both qt3/q
t
1 and qt3/q

t
2 can be made arbitrarily close to zero by considering histories

with a sufficiently large number of sales. Then conditions (3) and (4) hold and by Lemma 4,

an nU-shaped S2 buy herds and an nHill-shaped S2 acts as a buy contrarian.

The “only if” part follows from Proposition 3a in the supplementary material.27 �

The “if” part of the above proof demonstrates that with MLRP it is strikingly easy to

describe histories that induce herding by a U-shaped type or contrarianism by a Hill-shaped

type: an nU-shaped S2 buy herds after a sufficient number of buys and an nHill-shaped S2

acts as a buy contrarian after a sufficient number of sales.28

7 Resilience, Fragility and Large Price Movements

We now consider the robustness of herding and contrarianism and describe the range of

prices for which herding and contrarianism can occur. Throughout this section we assume

that signals satisfy the well-behaved case of MLRP (we will return to this later) and perform

the analysis for buy herding and buy contrarianism; the other cases are analogous.

We first show that buy herding persists if and only if the number of sales during an

episode of buy herding is not too large. This implies in particular that buy herding be-

haviour persists if the buy herding episode consists of only buys. We also show that during

27The “only if” part of the theorem also follows from the discussion in the previous section on noise
trading: if types other than S2 always take the same action, then there is a unique upper bound on the
size of the informed trading that ensures that the spreads are sufficiently tight for S2 to buy herd (or to
act as a buy contrarian). By Lemma 5, S3 always buys and S1 always sells. Therefore, with MLRP the
upper bound µbh is unique.

28Note that the bounds on the size of the informed µbh and µbc in Theorem 2 must be strictly below 1.
To see this, recall that by part (i) of Lemma 5, the expectation of the herding or contrarian candidate
type S2 is always between those of the other two types at every history. Also, by part (ii) of Lemma 5, S1

always sells and S3 always buys. Therefore, if µ is arbitrarily close to 1 then, to ensure zero profits for the
market maker, E[V |S1, H

t] < bidt < E[V |S2, H
t] and E[V |S2, H

t] < askt < E[V |S3, H
t] for every Ht. This

implies that S2 does not trade; a contradiction.
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a buy herding episode as the number of buys increases, it takes more sales to break the

herd. For buy contrarianism the impact of buys and sales work in reverse: in particular,

buy contrarianism persists if and only if the number of buys during an episode of buy

contrarianism is not too large. This means that buy contrarianism does not end if the buy

contrarianism episode consists of only sales. We also show that during a buy contrarianism

episode as the number of sales increase, it takes more buys to end buy contrarianism.

Proposition 4 Assume MLRP. Consider any history Hr = (a1, . . . , ar−1) and suppose

that Hr is followed by b ≥ 0 buys and s ≥ 0 sales in some order; denote this history by

H t = (a1, . . . , ar+b+s−1).29

(a) If there is buy herding by S at Hr then there exists an increasing function s̄(·)>1

such that S continues to buy herd at H t if and only if s < s̄(b).

(b) If there is buy contrarianism by S at Hr then there exists an increasing function

b̄(·)>1 such that S continues to act as a buy contrarian at H t if and only if b < b̄(s).

One implication of the above result is that herding is resilient and contrarianism is self

defeating. The reason is that when buy herding or buy contrarianism begins, buys become

more likely relative to a situation where the herding or contrarian type does not switch.

Thus, in both buy herding and buy contrarianism there is a general bias towards buying

(relative to the case of no social learning). By Proposition 4, buy herding behaviour persists

if there are not too many sales and buy contrarian ends if there is a sufficiently large number

of buys. Thus herding is more likely to persist whereas contrarianism is more likely to end.

To see the intuition for Proposition 4 consider the case of buy herding in part (a). At

any history the difference between the expectation of the herding type S and that of the

market is determined by the relative likelihood that they attach to each of the three states.

Since the herding type S must have an nU-shaped csd it follows that in comparing the

expectation of the herding type S with that of the market there are two effects: first, S

attaches more weight to V3 relative to V2 than the market and, second, S attaches more

weight to V1 relative to both V2 and V3 than the market. Since V1 < V2 < V3 and at any

history Hr with buy herding the expectation of the herding type S exceeds that of the

market, it then follows that at Hr the first effect must dominate the second one, i.e. qr1/q
r
2

and qr1/q
r
3 are sufficiently small so that the first effect dominates. Also, by Lemma 5 (iv),

when MLRP holds, buys reduce the probability of V1 relative to the other states. Therefore,

further buys after Hr make the second effect more insignificant and thereby ensure that

the expectation of the herding type S remains above the ask price.

On the other hand, by Lemma 5 (iv) when MLRP holds, sales reduce the probability

of V3 relative to the other states; thus sales after Hr make the first effect less significant.

29We will henceforth omit past prices from the history Ht to simplify the exposition.
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Therefore, with sufficiently many sales, the expectation of the herding type S will move

below the ask price so that type S will no longer buy. This ends herding.

The intuition for the buy contrarian case is analogous except that the effect of further

buys and further sales work in the opposite direction.

Next, we show that with MLRP large price movements are consistent with both herding

and contrarianism. In fact, the range of price movements in both cases can include (almost)

the entire set of feasible prices. Specifically, for buy herding the range of feasible prices

is [V2, V3] and for buy contrarianism the range is [V1, V2].
30 As argued above, with MLRP

buys increase prices, and sales decrease prices. Furthermore, by Proposition 4, buy herding

persists when there are only buys and buy contrarianism persists when there are only sales.

Thus, once buy herding starts, a large number of buys can induce prices to rise to levels

arbitrarily close to V3 without ending buy herding, and once buy contrarianism starts, large

numbers of sales can induce prices to fall to levels arbitrarily close to V1 without ending

buy contrarianism.

We complete the analysis by showing that there exists a set of priors on V such that

herding and contrarianism can start when prices are close to the middle value, V2. Together

with the arguments in the last paragraph, we have that herding and contrarian prices can

span almost the entire range of feasible prices. Formally, we have the following.

Proposition 5 Let signals obey MLRP.

(a) Consider any history Hr = (a1, . . . , ar−1) at which there is buy herding (contrarian-

ism). Then for any ǫ > 0, there exists history H t = (a1, . . . , at−1) following Hr such

that there is buy herding (contrarianism) at every Hτ = (a1, . . . , aτ−1), r ≤ τ ≤ t,

and E[V |Hr+τ ] exceeds V3 − ǫ (is less than V1 + ǫ).

(b) Suppose the assumptions in Theorem 2 that ensure buy herding (contrarianism) hold.

Then for every ǫ > 0 there exists a δ > 0 such that if Pr(V2) > 1− δ there is a history

H t = (a1, . . . , at−1) and a date r < t such that (i) there is buy herding (contrarianism)

at every Hτ =(a1, . . . , aτ−1), r ≤ τ ≤ t, (ii) E[V |Hr]<V2+ǫ (E[V |Hr] >V2−ǫ) and

(iii) E[V |H t] > V3 − ǫ (E[V |H t] > V1 + ǫ).

The results of this section (and the ones in the next section on volatility) assume that the in-

formation structure satisfies the well behaved case of MLRP. This ensures that the probabil-

ities of buys and the sales are uniformly increasing and decreasing in V (see Lemma 5 (iv)).

As a result, we have that the relative probability qt1/q
t
ℓ falls with buys and rises with sales

for all ℓ = 2, 3, and the opposite holds for qt3/q
t
ℓ for all ℓ = 1, 2. This monotonicity in the

relative probabilities of the extreme states is the feature that allows us to establish our

persistence and fragility results. If MLRP were not to hold, then the probability of buys

30The reason is, by Lemma 3, at any date t buy herding implies qt3 > qt1, buy contrarian implies qt1 > qt3.
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and sales may not be monotonic in V , and the results of this section may not hold.31 An

example of this is the herding example in Avery and Zemsky (1998); see Section 10.

8 The Impact of Social Learning on Volatility and Liquidity

In this section we are concerned with the impact of social learning on price movements. In

particular, we ask the following questions: Do buys move prices more with than without

social learning? Will sales move prices more with than without social learning?

To address these questions we compare price movements in our set-up with those in a

hypothetical benchmark economy in which informed traders do not switch behaviour. This

economy is identical to our set-up except that each informed type always takes the same

action as the one he chooses at the initial history (before receiving any public information).

Consequently, in the hypothetical benchmark economy informed traders act as if they do

not observe prices and past actions of others. We thus refer to this world as the opaque

market and discuss examples for such situations at the end of the section. In contrast,

in the standard setting traders observe and learn from the actions of their predecessors.

To highlight the difference, in this section we refer to the standard case as the transpar-

ent market. In both the transparent and the opaque economies, the market maker correctly

accounts for traders’ behaviour when setting prices.

Volatility. We show that with MLRP signals, at any histories at which either herding

or contrarianism occurs, trades move prices more in the transparent market than in the

opaque one. We found it interesting that larger price movements in the transparent market

occur both after buys and after sales. Moreover, the result holds for MLRP information

structures which, taken at face value, are “well-behaved.”

We present the result for the case of buy herding and buy contrarianism; the results

for sell herding and sell contrarianism are identical and will thus be omitted. Specifically,

fix any history Hr at which buy herding starts and consider the difference between the

most recent transaction price in the transparent market with that in the opaque market

at any buy herding history that follows Hr. Assuming MLRP signals, we show (a) that

the difference between the two prices is positive if the history since Hr consists of only

buys, (b) that the difference is negative if the history since Hr consists of only sales and

the number of sales is not too large,32 and (c) that the difference is positive if the history

following Hr is such that the number of buys is arbitrarily large relative to the number of

sales. We also show an analogous result for buy contrarianism.

31The monotonicity of the probability of buys and sales in V can hold under weaker conditions than
MLRP. For example, we could assume existence of a strictly increasing and a strictly decreasing signal.
All the results of this paper with MLRP also hold with this weaker assumption.

32Note that, by Proposition 5, buy herding cannot persist with an arbitrarily large number of sales.
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Formally, for any history H t let Eo[V |H t], qti,o, βt
i,o and σt

i,o be respectively the market

expectation, the probability of Vi, the probability of a buy in state Vi and the probability

of a sale in state Vi in the opaque market at H t. Then we can show the following.

Proposition 6 Assume MLRP. Consider any finite history Hr = (a1, . . . , ar−1) at which

the priors in the two markets coincide: qri = qri,o for i = 1, 2, 3. Suppose that Hr is followed

by b ≥ 0 buys and s ≥ 0 sales in some order; denote this history by H t = (a1 . . . , ar+b+s−1).

(1) Assume that there is buy herding at Hτ , for every τ = r, . . . , r + b+ s.

(a)Suppose s = 0. Then E[V |H t] > Eo[V |H t] for any b > 0.

(b) Suppose b = 0. Then there exists s ≥ 1 such that E[V |H t] < Eo[V |H t] for any s ≤ s.

(c) For any s there exists b such that E[V |H t] > Eo[V |H t] for any b > b.

(2) Assume that there is buy contrarianism at Hτ , for every τ = r, . . . , r + b+ s.

(a)Suppose b = 0. Then E[V |H t] < Eo[V |H t] for any s > 0.

(b) Suppose s = 0. Then there exists b ≥ 1 such that E[V |H t] > Eo[V |H t] for any b ≤ b.

(c) For any b there exists s such that E[V |H t] < Eo[V |H t] for any s > s.

The critical element in demonstrating the result is the U-shaped nature of the herding

candidate’s signal and the Hill-shaped nature of the contrarian candidate’s signal in com-

bination with the public belief once herding/contrarianism starts. To see this consider any

buy herding history H t = (a1, . . . , ar+b+s−1) satisfying the above proposition for the case

described in part (1) — the arguments for a buy contrarian history described in part (2) are

analogous. Then the prices in the transparent and opaque markets differ because at any buy

herding history in the transparent market the market maker assumes that the buy herding

candidate S buys whereas in the opaque market the market maker assumes that S sells.33

Since the buy herding type must have a U-shaped signal we also have Pr(S|V3) > Pr(S|V2).

Then the following must hold: (i) the market maker upon observing a buy increases his

belief about the likelihood of V3 relative to that of V2 faster in the transparent market

(where S is a buyer) than in the opaque market (where S is a seller) and (ii) the market

maker upon observing a sale decreases his belief about the likelihood of V3 relative to V2

faster in the transparent market than in the opaque market. Now if it is also the case that

the likelihood of V1 is small relative to that of V3 in both worlds, then it follows from (i)

and (ii), respectively, that the market expectation (which is the most recent transaction

price) in the transparent market exceeds that in the opaque market after a buy and it is

less after a sale.

At Hr in both markets the likelihoods of each state coincide (qri = qri,o); moreover the

likelihood of V1 in both markets is small relative to that V3 (to ensure buy herding). Then

the following two conclusions follow from the discussion in the previous paragraph: First,

if H t involves only a single buy after Hr (i.e. if s = 0 and b = 1) then E[V |H t] > Eo[V |H t].

33If we assume S1 < S2 < S3, then with MLRP the buy herding (buy contrarian) candidate must be S2.
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Second, if H t involves only a single sale after Hr (i.e. if b = 0 and s = 1) then E[V |H t] <

Eo[V |H t]. Part 1(b) follows from the latter. To complete the intuition for 1(a) and 1(c),

note that further buys after Hr reduce the probabilities of V1 relative to V3 in both markets

(see Lemma 5 (iv)). Thus if either the history after Hr involves no sales (as in part 1(a))

or if the number of buys is large relative to the number of sales (as in part 1(c)) then the

first conclusion is reinforced, and E[V |H t] remains above Eo[V |H t] after any such histories.

Notice that with MLRP, any sale beyond Hr increases the probability of V1 relative

to V3 (and relative to V2) both in the transparent and in the opaque market. Furthermore,

the increase may be larger in the latter than in the former. As a result, for the buy herding

case we cannot show that in general prices in the transparent market fall more than in the

opaque market after any arbitrary number of sales. However, if the relative likelihood of a

sale in state V1 to V3 in the transparent market is no less than that in the opaque market,

i.e. (σ1/σ3) ≥ (σ1,o/σ3,o), then we can extend the conclusion in part 1(b) to show that the

price in the transparent market falls more than in the opaque market after any arbitrary

number of sales (the proof is in the supplementary material).34

Proposition 6 of course does not address the likelihood of a buy or a sale after herding

or contrarianism begins. It is important to note, however, that once buy herding or buy

contrarianism starts there will also be more buys in the transparent market compared to the

opaque market because the herding type buys at such histories. Thus, given the conclusions

of Proposition 6, price paths must have a stronger upward bias in the transparent market

than in the opaque market.

Finally, it is often claimed that herding generates excess volatility whereas contrarian-

ism tends to stabilize markets because the contrarian types act against the crowd. The

conclusions of this section are consistent with the former claim but contradict the latter.

Both herding and contrarianism increase price movements compared to the opaque market

and they do so for similar reasons — namely because of the U-shaped nature of the herding

type’s csd and the Hill-shaped nature of the contrarian type’s csd.

Liquidity. In sequential trading models in the tradition of Glosten and Milgrom (1985),

liquidity is measured by the bid-ask-spread as a larger spread implies higher adverse selec-

tion costs and thus lower liquidity. Since at any date market expectations after a buy and

market expectations after a sale respectively coincide with the ask and the bid price at the

previous date, the next corollary to Proposition 6 follows:

Corollary At any history H t at which type S engages in buy herding or buy contrarianism,

(a) the ask price when the buy herding or buy contrarian candidate S rationally buys

exceeds the ask price when he chooses not to buy,

(b) the bid price when the buy herding or buy contrarian candidate S rationally buys

34The condition (σ1/σ3) ≥ (σ1,o/σ3,o) is satisfied if, e.g., the bias of the herding candidate is close to zero.
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is lower than the bid price when he chooses to sell.

Part (a) of the result follows from Proposition 6 (1a) and (2b) when b = 1 and Part (b)

follows from Proposition 6 (1b) and (2a) when s = 1.35 The above corollary implies that

in equilibrium liquidity (as measured by the bid-ask spread) is lower when some informed

types herd or act as a contrarian than when they do not.

Interpretation of the Opaque Market and the Volatility Result. One can

think of the traders in the opaque market as automata that always buy or sell depending

on their signals. One justification for such naive behaviour is that traders do not observe

or remember the public history of actions and prices (including current prices).

Alternatively, the non-changing behaviour may represent actions of rational traders in

a trading mechanism where traders submit their orders through a market maker some time

before the orders get executed. The market maker would receive these orders in some

sequence and he would execute them sequentially at prices which reflect all the information

contained in the orders received so far. The actions of other traders and the prices are

unknown at the time of the order submission and thus, as in the opaque market, the order of

each trader is independent of these variables.36 As traders effectively commit to a particular

trade before any information is revealed, the price sequence in this alternative model would

coincide with the price sequence in the opaque market that we depict above. Therefore,

Proposition 6 can also be used to claim that volatility is greater in the transparent market

than in this alternative set-up in which all orders are submitted before any execution.

A slightly more transparent market than the opaque one is one where each trader with

herding/contrarian signal S compares his prior expectations, E[V |S], with the current price

and buys if E[V |S] exceed the ask price, sells if E[V |S] is less than the bid price and does

not trade otherwise. In this “almost opaque” market there is a different kind of non-

transparency in that at each period the traders do not observe or recall past actions and

prices but they know the bid and ask prices at that period; furthermore they act semi-

rationally by comparing their private expectation with current prices without learning

about the liquidation value from the current price (e.g., for cognitive reasons).

For the case of herding, the same excess volatility result as in part (1) of Proposition 6

holds if we compare the transparent market with the above almost opaque market. To see

this note that at the initial history H1 every buy herding type sells. Also, at every buy

herding history the prices are higher than at H1; therefore in an almost opaque market the

35We show in the appendix, that the proof of Proposition 6 in these cases does not require MLRP. Thus,
the corollary is stated without assuming MLRP information structure; see footnotes 45 and 46.

36A possible example of such mechanism is a market after a “circuit breaker” is introduced. The latter
triggers a trading halt after “large” movements in stock prices. Before trading recommences, traders submit
their orders without knowing others’ actions. We thank Markus Brunnermeier for this interpretation.

28



herding type must also sell at every buy herding history.37 Since Proposition 6 compares

price volatility only at histories at which buy herding occurs, it follows that the same excess

volatility result holds if we compare the transparent with the almost opaque market.

9 Herding and Contrarianism with Many States

Our results intuitively extend to cases with more signals and more values. In fact, with

three states and an arbitrary number of signals our characterization results, in terms of U-

shaped signals for herding and Hill-shaped signals for contrarianism, and all our conclusions

in the previous two sections with respect to fragility, persistence, large price movements,

liquidity and price volatility remain unchanged.38

With more than three states, U shape and Hill shape are no longer the only possible

signal structures that can lead to herding and contrarianism. The intuition for our re-

sults with many states does, however, remain the same: the herding type must distribute

probability weight to the tails, the contrarian types must distribute weight to the middle.

Assume there are N > 2 states and N signals. Denote the value of the asset in state j

by Vj and assume that V1 ≤ V2 ≤ . . . ≤ VN . Signal S is said to have an increasing csd if

Pr(S|Vi) ≤ Pr(S|Vi+1) for all i = 1, . . . , N −1 and a decreasing csd if Pr(S|Vi) ≥ Pr(S|Vi+1)

for all i = 1, . . . , N − 1.

By the same reasoning as in Lemma 1 one can show that E[V |S,H t]− E[V |H t] has the

same sign as
N−1
∑

j=1

N−j
∑

i=1

(Vi+j − Vi) · qiqi+j [Pr(S|Vi+j)− Pr(S|Vi)]. (7)

For an increasing csd, (7) is always non-negative since Pr(S|Vi+j)−Pr(S|Vi) is non-negative

for all i, j; similarly, for decreasing csds, (7) is always non-positive since Pr(S|Vi+j) −

Pr(S|Vi) is non-positive for all i, j. Therefore, an increasing or decreasing type cannot switch

behaviour and we have the following necessity result which is analogous to Proposition 1.

Lemma 6 An increasing or decreasing S never switches from buying to selling or vice versa.

Next, we describe two sufficient conditions that yield herding and contrarianism that

have a similar flavour as our sufficiency results in Section 5. We will focus only on buy

herding and buy contrarianism; sell herding and sell contrarianism are analogous.

In line with the previous analysis we assume for the remainder of this section that

the values of the asset are distinct in each state and that they are on an equal grid.

37Since at a buy contrarian history prices are lower than at the initial history, the same claim cannot be
made for the contrarian case.

38With three states, Hill and U shape are still well-defined, irrespective of the number of signals; even
with a continuum of signals these concepts can be defined in terms of conditional densities.
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Moreover, we assume that the prior probability distribution is symmetric. Thus we set

{V1, V2, . . . , VN} = {0,V, 2V, . . . , (N − 1)V} and Pr(Vi) = Pr(VN+1−i) for all i.

We begin with the analysis of the decision problem of selling at H1 and generalize the

concept of a negative bias as follows. Signal S is said to have a negative bias if for any pair of

values that are equally far from the middle value, the signal happens more frequently when

the true value is the smaller one than when it is the larger one: Pr(S|Vi) > Pr(S|VN+1−i)

for all i < (N + 1)/2. In the supplementary material we show that this property ensures

that E[V |S] < E[V ]. This means, by a similar argument as with the three values case, that

a negatively biased S must be selling at H1 if µ is sufficiently small.

Next we generalize the sufficient conditions for switching to buying at some history.

Recall that in the three value case, we considered histories at which the probability of

one extreme value was small to the point where it can be effectively ignored. Then the

expectation of the informed exceeds that of the market if the informed puts more weight

on the larger remaining value than on the smaller remaining one.

The sufficient conditions that we describe for the switches in the general case have a

similar intuition and are very simple as we impose restrictions only on the most extreme

values. Specifically, to ensure buy herding we assume Pr(S|VN−1) < Pr(S|VN) and consider

histories at which the probabilities of all values are small relative to the two largest val-

ues VN−1 and VN . Since at such histories all but the two largest values can be ignored it

must be that the price must have risen and the expectation of type S must exceed that of

the public expectation if Pr(S|VN−1) < Pr(S|VN). If in addition the bid-ask spread is not

too large (enough noise trading), the expectation of S will also exceed the ask price at H t

and type S switches from selling to buying after a price rise. Similarly, to ensure buy con-

trarianism we assume Pr(S|V1) < Pr(S|V2) and consider histories at which the probabilities

of all values are small relative to the two smallest ones V1 and V2. Since at such histories all

but the two smallest values can be ignored and the price must have fallen, the expectation

of type S must exceed that of the public expectation if Pr(S|V1) < Pr(S|V2). If in addition

the bid-ask spread is not too large at such histories then S switches from selling to buying

after a price fall. Formally, we can show the following analogous result to Lemma 4.

Lemma 7 (i) Suppose S is negatively biased and satisfies Pr(S|VN−1) < Pr(S|VN). Then

there exists a µbh ∈ (0, 1] such that S buy herds if µ < µbh and if

For all ǫ > 0 exists H t such that qti/q
t
l < ǫ for all l = N − 1, N and i < N − 1. (8)

(ii) Suppose S is negatively biased and satisfies Pr(S|V1) < Pr(S|V2). Then there exists a

µbc ∈ (0, 1] such that S is a buy contrarian if µ < µbc and if

For all ǫ > 0 exists H t such that qti/q
t
l < ǫ for all l = 1, 2 and i > 2. (9)

The simplest way of ensuring the existence of histories that satisfy (8) and (9) is to assume

MLRP. Then, as in Lemma 5 (iv) for the three states case, the probability of a buy is
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increasing and the probability of a sale is decreasing in V . As a result, with MLRP we can

always ensure (8) by considering histories that contain a sufficiently large number of buys

and (9) by considering histories that contain a sufficiently large number of sales. Hence,

Lemma 7 yields the following for buy herding and buy contrarianism.39

Theorem 3 Assume MLRP and suppose signal S is negatively biased.

(a) If Pr(S|VN−1) < Pr(S|VN) then there exists µbh ∈ (0, 1] such that S buy herds if µ < µbh.

(b) If Pr(S|V1) < Pr(S|V2) there exists µbh ∈ (0, 1] such that S is a buy contrarian if µ < µbh.

The description in this section has assumed that each state is associated with a unique liq-

uidation value of the underlying security. There can be, however, other uncertainties that

do not affect the liquidation value but that do have an impact on the price. One example

is a situation in which some agents may have superior information about the distribution

of information in the economy (e.g., as in Avery and Zemsky’s (1998) “composition uncer-

tainty;” see the next section). In the supplementary appendix we prove all the sufficiency

results from this section for such a generalized set-up.

10 Avery and Zemsky (1998)

As mentioned in the literature review, Avery and Zemsky (1998), AZ, argue that herd

behaviour with informationally efficient asset prices is not possible unless signals are “non-

monotonic” and uncertainty is “multi-dimensional.” AZ reach their conclusions by (i)

showing that herding is not possible when the information structure satisfies their definition

of monotonicity and (ii) providing an example of herding that has “multi-dimensional

uncertainty.” In this section, we explain why our conclusions differ from theirs. We will

also discuss the issue of price movements (or lack thereof) in their examples.

AZ’s conclusion with respect to monotonicity arises because their adopted definition

is non-standard and excludes herding almost by assumption. Specifically, they define a

monotonic information structure as one that satisfies the following:

∀S, ∃w s.t. ∀H t, E(V |H t, S) is weakly between w and E(V |H t). (10)

This definition does not imply nor is implied by the standard MLRP definition of mono-

tonicity. Also, in contrast to MLRP, it is not a condition on the primitives of the signal

distribution. Instead, it is a requirement on endogenous variables that must hold for all

39Conditions that ensure sell herding and sell contrarian are defined analogously. In particular, to ensure
the initial buy we need to assume a positive bias Pr(S|Vi) < Pr(S|VN+1−i) for all i < (N + 1)/2. For the
switches we reverse the two conditions that ensure switching for buy herding and buy contrarian: for sell
herding we need Pr(S|V1) > Pr(S|V2), for sell contrarian we need Pr(S|VN−1) > Pr(S|VN ).
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trading histories.40 Furthermore, it precludes herding almost by definition.41

AZ’s example of herding uses Event Uncertainty, a concept first introduced by Easley

and O’Hara (1992). Specifically, in their example, the value of the asset and the signals can

take three values {0, 1
2
, 1} and the information structure can be described by the following:

Pr(S|V ) V1 = 0 V2 =
1
2

V3 = 1

S1 = 0 p 0 1− p

S2 =
1
2

0 1 0

S3 = 1 1− p 0 p

for some p > 1/2. The idea behind the notion of event uncertainty as used by AZ is that

first, informed agents know if something (an event) has happened (they know whether

V = V2 or V ∈ {V1, V3}). Second, they receive noisy information with precision p about how

this event has influenced the asset’s liquidation value. This two stage information structure

makes the uncertainty “multi-dimensional.” Thus multi-dimensionality is equivalent to

informed traders having a finer information partition than the market maker. AZ attribute

herding to this feature of their example.

Multi-dimensionality is, however, neither necessary nor sufficient for herding and it is

relevant to herding only to the extent that it may generate U-shaped signals. First, since

AZ’s example has three states and three signals, it is a special case of our main setup, and

our characterization results apply. Specifically, the two herding types in AZ’s example are

S1 and S3. In addition to having finer partitions of the state space than the market maker,

both types are also U-shaped and so our Proposition 3 explains the possibility of buy-

herding by S1 and sell-herding by S3.
42 Second, our Proposition 3 demonstrates that there

would also be herding if the AZ example is changed in such a way that all signals occur

with positive probability in all states, while maintaining the U-shaped nature of signals

S1 and S3.
43 Such an information structure is no longer multi-dimensional (the informed

trader’s partition would be the same as the market maker’s). Third, consider an information

40Condition (10) does not imply that each signal has a increasing or decreasing csd; however, one can to
show that if every signal has either a strictly increasing or a strictly decreasing csd then the information
structure satisfies (10).

41For example, for buy herding by type S to occur at some history Ht we must have E[V |S] < E[V ] and
a subsequent price rise E[V ] < E[V |Ht]; but then (10) implies immediately that w < E[V |Ht, S] < E[V |Ht]
and hence buy herding by S at Ht is not possible.

42In AZ’s example not all signals arise in all states (in states V1 and V3 only signals S1 and S3 arise, in
state V2 only signal S2 arises). Thus when there is herding (by types S1 or S3), all informed types that
occur with positive probability act alike. Nevertheless, it is important to note that in AZ’s example herding
does not constitute an informational cascade since at any history not all types take the same action. The
reason is that it is never common knowledge that there is herding. Instead, at any finite history the market
maker attaches non-zero probability to all three states and thus he always attaches non-zero probability
to the state in which some trades are made by type S2. Moreover, the market expects that when type S1

buy-herds, type S2 sells, when type S3 sell-herds, type S2 buys. See also our discussion in Footnote 17.
43For example, take Pr(Si|Vi) = p(1− ǫ) , Pr(S2|Vi) = Pr(Si|V2) = ǫ, for all i = 1, 3 for 0 < ǫ < (1−p)/2.
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structure for which signals S1 and S3 are such that informed traders know whether or not

V = 0 has occurred (and the market did not). Such signals are multidimensional (they

generate a finer partition), but they are not U-shaped and thus do not admit herding.

Our general analysis with three states also provides us with an appropriate framework to

understand the nature of histories that generate herding and contrarianism. For example,

as we explained in Section 7, to induce buy herding the trading history must be such

that the probabilities of the lowest state V1 is sufficiently small relative to the two other

states. With MLRP, such beliefs arise after very simple histories consisting of a sufficiently

large number of buys. In AZ’s example, one also needs to generate such beliefs, but the

trading histories that generate them are more complicated and involve a large number holds

followed by a large number of buys.44

Turning to price movements, in AZ’s event uncertainty example herding has limited

capacity to explain price volatility as herding is fragile and price movements during herding

are strictly limited. To allow for price movements during herding, AZ introduce a further

level of informational uncertainty to their event uncertainty example. Specifically, they

assume additionally that for each signal there are high and low quality informed traders.

They also assume that there is uncertainty about the proportion of each type of informed

trader. AZ claim that this additional level of uncertainty, which they label composition

uncertainty, complicates learning and allows for large price movements during a buy herding

phase (they do this by simulation).

A state of the world in AZ’s example with composition uncertainty refers to both the

liquidation value of the asset and the proportion of different types of informed traders in

the market (the latter influences the prices). Thus, there is more than one state associated

with a given value V of the asset. This example is, therefore, formally a special case of the

multi-state version of our model and the possibility of herding follows from Lemma IV in

the supplementary material. More specifically, our result establishes that to ensure herding

in AZ’s example with composition uncertainty we need the analogue of U-shaped signals

with the property that the probability of a signal in each state with V = 1/2 is less than

the probability of the signal in each of the states with V = 0 or with V = 1. This is indeed

the case in the example with composition uncertainty. Therefore, herding there is also due

to U-shaped signals. (See the discussion in Section F of the Supplementary Appendix.)

To understand the differences in price movements and persistence, recall our discussion

of fragility in Section 7 with regards to buy herding by type S at some history H t. The

probability of the lowest state V1 relative to those of the other two states, qt1/q
t
2 and qt1/q

t
3,

must be sufficiently small to start herding, and these relative probabilities need to remain

44The holds bring down the probability of V1 relative to V2 and the number of buys is chosen to bring
down the probability of V1 relative to V3 sufficiently while not increasing the probability of V1 relative to V2

by too much. Formally, their construction is similar to Subcase D2 in the proof of our Proposition 3.
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small for herding to persist beyond H t. With MLRP, since Pr(buy|V ) is increasing in V ,

further buys reduce both qt1/q
t
2 and qt1/q

t
3; at the same time further buys increase prices.

Thus herding can persist and prices can move significantly.

In AZ’s example without composition uncertainty, while buys result in price increases,

during any buy herding phase we have that Pr(buy|V2) < Pr(buy|V1) = Pr(buy|V3). Thus,

once buy herding begins, further buys cannot ensure that the relative probabilities of V1

remain low as buys increase qt1/q
t
2, while leaving qt1/q

t
3 unaffected. Hence, buys during

buy herding in AZ’s example without composition uncertainty are self-defeating. In AZ’s

example with composition uncertainty we have that Pr(buy|V2) < Pr(buy|V1) < Pr(buy|V3)

once herding starts. Further buys during herding thus reduce qt1/q
t
3 while increasing qt1/q

t
2.

As the former offsets somewhat the effect of the latter, buy herding may persist (and allow

price increases) for longer than without composition uncertainty.

In conclusion, what makes herding less fragile and more consistent with significant price

movements, are the relative probabilities of a specific trade in the different states of the

world and not so much the addition of extra dimensions of uncertainty. In fact, when the

probability of a buy is increasing in the value of the asset, buy herding is least fragile and

most consistent with large price movements. As we have shown, this can happen with

only three states, without different dimensions of uncertainty and with “well behaved”

information structures satisfying MLRP.

11 Extensions, Discussion and Conclusion

Herding and contrarian behaviour are examples of history-dependent behaviour that may

manifest itself in real market data as momentum or mean-reversion. Understanding the

causes for the behaviour that underlie the data can thus help interpret these important non-

stationarities. In the first part of this paper we characterized specific circumstances under

which herding and contrarian behaviour can and cannot occur in markets with efficient

prices. In the second part, we showed that both herding and contrarianism can be consistent

with large movement in prices and that they both can reduce liquidity and increase volatility

relative to situations where these kinds of social learning are absent.

In the early literature on informational social learning (e.g. Banerjee (1992)) herding

was almost a generic outcome and would arise, loosely, with any kinds of signals. Herding

as defined in our setup does not arise under all circumstances but only under those that

we specify here. Namely, the underlying information generating process must be such that

there are some signals that people receive under extreme outcomes more frequently than

under moderate outcomes. Therefore, to deter herding, mixed messages predicting extreme

outcomes (U-shaped signal) should be avoided.

It is important to note that, depending on the information structure, the prevalence
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of types who herd (or act as contrarians) can vary, and in some cases they can be very

substantial. For example, consider the MLRP information structure in Table 1 when S2 is

U-shaped. Then, in any state the likelihood that an informed trader is a herding type S2 has

lower bound α. This bound can range between zero and one. Thus, when α is sufficiently

close to 1, the likelihood that an informed trader is a herding type is arbitrarily close to 1

and the impact of herding switches can then be very significant.

In this paper, we have presented the results for which we were able to obtain clear-cut

analytical results. In the supplementary material, we also explore other implications with

numerical simulations. First, an important implication of our analysis for applied research is

that when social learning arises according to our definition, simple summary statistics such

as the number of buys and sales are not sufficient statistics for trading behaviour. Instead,

as some types of traders change their trading modes during herding or contrarianism, prices

become history-dependent. Thus as the entry order of traders is permutated, prices with

the same population of traders can be strikingly different, as we illustrate with numerical

examples. Second, herding results in price paths that are very sensitive to changes in some

key parameters. Specifically, in the case with MLRP, comparing the situation where the

proportion of informed agents is just below the critical levels described in Theorem 2 with

that where the proportion is just above that threshold (so there is no herding), prices

deviate substantially in the two cases. Third, herding slows down the convergence to the

true value if the herd moves away from that true value, but it accelerates convergence if

the herd moves into the right direction.

A Appendix: Omitted Proofs
A.1 Proof of Proposition 2

To save space we shall prove the result for the case of buy herding and buy contrarian; the

proof for the sell cases are analogous. Thus suppose that S buy herds or acts as a buy

contrarian at some H t. The proof proceeds in several steps.

Step 1: S has a negative bias: Buy herding and buy contrarian imply E[V |S] < bid1.

Since bid1 < E[V ] we must have E[V |S] < E[V ]. Then by Lemma 2, S has a negative bias.

Step 2: (Pr(S|V1) − Pr(S|V2))(q
t
3 − qt1) > 0: It follows from the definition of buy

herding and buy contrarian that E[V |S,H t] > askt. Since E[V |H t] < askt we must have

E[V |S,H t] > E[V |H t]. By Lemma 1, this implies that (2) is positive at H t. Also, by the

negative bias (Step 1), the third term in (2) is negative. Therefore, the sum of the first two

terms in (2) is positive: qt3(Pr(S|V3) − Pr(S|V2)) + qt1(Pr(S|V2) − Pr(S|V1)) > 0. But this

means, by negative bias, that (Pr(S|V1)− Pr(S|V2))(q
t
3 − qt1) > 0.

Step 3a: If S buy herds at H t then S is nU-shaped : It follows from the definition of

buy herding that E[V |H t] > E[V ]. By Lemma 3, this implies that qt3 > qt1. Then it follows
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from Step 2 that Pr(S|V1) > Pr(S|V2). Also, since S buy-herds, by Lemma 1, S cannot

have a decreasing csd and we must have Pr(S|V2) < Pr(S|V3). Thus, S is nU-shaped.

Step 3b: If S acts as a buy contrarian at H t then S is nHill shaped. It follows from

the definition of buy contrarian that E[V |H t] < E[V ]. By Lemma 3, this implies that

qt3 < qt1. But then it follows from Step 2 that Pr(S|V1) < Pr(S|V2). Since by Step 1 S has

a negative bias, we have Pr(S|V2) > Pr(S|V1) > Pr(S|V3). Thus S is nHill-shaped.

A.2 Proof of Lemma 4

First consider the decision problem of type S at H1. If S has a negative bias, by Lemma 2,

E[V |S] < E[V ]. Also, E[V ]− bid1 > 0 and limµ→0 E[V ]− bid1 = 0. We can thus establish:

Lemma 8 If S has a negative bias, then there exists µi ∈ (0, 1] such that E[V |S]−bid1 < 0

if and only if µ < µi.

Simple calculations (see the supplementary material for details) establish the following

useful characterization of the buying decision of type S at any H t.

Lemma 9 E[V |S,H t]− askt has the same sign as

qt1q
t
2[β

t
1Pr(S|V2)−βt

2Pr(S|V1)]+qt2q
t
3[β

t
2Pr(S|V3)−βt

3Pr(S|V2)]+2qt1q
t
3[β

t
1Pr(S|V3)−βt

3Pr(S|V1)]. (11)

To establish buy herding or buy contrarianism we need to show that (11) is positive at

some history H t. To analyze the sign of the expression in (11) we first show that the signs

of the first and the second term in (11) are respectively determined by the signs of the

expressions Pr(S|V2)−Pr(S|V1) and Pr(S|V3)−Pr(S|V2), if and only if µ is sufficiently small.

To establish this, let, for any i = 1, 2 and any signal type S ′, mi ≡Pr(S|Vi+1) − Pr(S|Vi),

M i(S ′)≡ Pr(S ′|Vi)Pr(S|Vi+1)− Pr(S ′|Vi+1)Pr(S|Vi) and

µi(S
′) ≡

{

mi

mi−3M i(S′)
if mi and M i(S ′) are non-zero and have opposite signs,

1 otherwise.

Clearly, µi(S
′) ∈ (0, 1]. Next lemma shows that for some S ′, µ1(S

′) and µ2(S
′) are respec-

tively the critical bounds on the value of µ that characterize the signs of the first and the

second terms in (11).

Lemma 10 In any equilibrium the following holds:

(i) Suppose that Pr(S|V3) > Pr(S|V2). Then at any H t at which S ′ buys and S ′′ 6= S, S ′

does not, the second term in (11) is positive if and only if µ < µ2(S
′).

(ii) Suppose that Pr(S|V2) > Pr(S|V1). Then at any H t at which S ′ buys and S ′′ 6= S, S ′

does not, the first term in (11) is positive if and only if µ < µ1(S
′).

Proof of Lemma 10: First we establish (i). By simple computation, it follows that the

second term in (11) equals γm2+µM2(S ′). Also, since in this case Pr(S|V3) > Pr(S|V2), we

have from the definition ofm2 andM2(S ′) that γm2+µM2(S ′) > 0 if and only if µ < µ2(S
′).

This completes the proof of (i).
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The proofs of (ii) is analogous: By simple computation, it follows that the first term

in (11) equals γm1 + µM1(S ′). Also, since in this case Pr(S|V1) < Pr(S|V2), we have from

the definition of m1 and M1(S ′) that γm1 + µM1(S ′) > 0 if and only if µ < µ1(S
′).

Each of the two cases in Lemma 10 provides a set of conditions that determine the sign

of one of the terms in (11). If the other terms in (11) are sufficiently small, then these

conditions also determine if S is a buyer. Specifically, if qt1 is arbitrarily small relative to qt2

and qt3 then the first and the last terms are close to zero (as they multiplied by qt1 and the

second term is not) and can be ignored; thus, at such a history type S buys if the second

term in (11) is positive. Also, if qt3 is arbitrarily small relative to qt1 and qt2 then the last

two terms are close to zero (as they multiplied by qt3 and the first term is not) and can be

ignored; thus, at such history type S buys if the first term in (11) is positive.

We can now prove Lemma 4 by appealing to Lemmas 3, 8, and 10 as follows:

Proof of Lemma 4: Consider case (i). Let µi be as defined in Lemma 8 and

µs
bh ≡ min

S′

µ2(S
′). (12)

Assume also that µ < µbh ≡ min{µi, µs
bh}. Since by assumption S has a negative bias

and µ < µi, it follows from Lemma 8 that S sells at the initial history. Also, since S is

U-shaped we have Pr(S|V3) > Pr(S|V2). Therefore, by µ < µs
bh and Lemma 10 (i), there

exists some η > 0 such that the second term in (11) always exceeds η.

By condition (3) there exists a history H t such that qt1/q
t
3 < 1 and

qt1
qt
3

+
2qt1
qt
2

< η. Then

by the former inequality and Lemma 3 we have E[V |H t] > E[V ]. Also, since the sum of the

first and the third term in (11) is greater than −q2q3(
qt
1

qt
3

+
2qt

1

qt
2

), it follows from
qt
1

qt
3

+
2qt

1

qt
2

< η

that the sum must also be greater than −η. This, together with the second term in (11)

exceeding η, implies that (11) is greater than zero, and hence S must be buying at H t.

The proof of (ii) is analogous. Let

µs
bc ≡ min

S′

µ1(S
′) (13)

and assume that µ < µbc ≡ min{µi, µs
bc}. Then by the same reasoning as above S sells

at H1. Also, since S has a Hill shape we have Pr(S|V1) > Pr(S|V1). Therefore, by µ < µs
bc

and Lemma 10 (ii), there exists some η > 0 such that the first term in (11) always exceeds η.

By condition (4) there exists a history H t such that qt3/q
t
1 < 1 and

qt
3

qt
1

+
2qt

3

qt
1

< η. Then

by the former inequality and Lemma 3 we have E[V |H t] < E[V ]. Also, since the sum of the

second and the third term in (11) is greater than −q1q2(
qt
3

qt
1

+
2qt

3

qt
2

), it follows from
qt
3

qt
1

+
2qt

3

qt
1

< η

that the sum must also be greater than −η. Since the first term in (11) exceeds η, this

implies that (11) is greater than zero, and hence S must be buying at H t.
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A.3 Proof of Proposition 3

Below we provide a proof for part (a) of the proposition; the arguments for the other parts

are analogous and therefore omitted.

The proof of part (a) is by contradiction. Suppose that S is nU-shaped and that all the

other assumptions in part (a) of the proposition hold. Also assume, contrary to the claim

in part (a), that S does not buy herd. Then, by Lemma 4 (i), we have a contradiction if

it can be shown that (3) holds. This is indeed what we establish in the rest of the proof.

First note that the no buy herding supposition implies that S does not buy at any

history H t. Otherwise, since S has a negative bias, by Step 2 in the proof of Proposition 2,

(Pr(S|V1)−Pr(S|V2))(q
t
3−qt1) > 0. Because S is U-shaped this implies that qt3 > qt1; but then

since by assumption µ < µi, it follows from Lemma 8 that S buy herds; a contradiction.

Next, we describe conditions that ensure that qt1/q
t
l are decreasing in t for any l = 2, 3.

Denote an infinite path of actions by H∞ = {a1, a2, . . .}. For any date t and any finite

history H t = {a1, . . . , at−1}, let atk be the action that would be taken by type Sk ∈ S\S

at H t; thus if the informed trader at date t receives a signal Sk ∈ S\S then at, the actual

action taken at H t, equals atk. Also denote the action taken by S at H t by at(S). Then we

have the following.

Lemma 11 Fix any infinite path H∞ = {a1, a2, . . .} and any signal Sk ∈ S\S. Let Sk′ ∈

S\S be such that Sk′ 6= Sk. Suppose that at = atk. Then for any date t and l = 2, 3 we have:

A. If atk = atk′ then qt1/q
t
l is decreasing.

B. If atk = at(S) and the inequality Pr(Sk′|Vl) ≤ Pr(Sk′|V1) holds then qt1/q
t
l is non-

increasing; furthermore, if the inequality is strict then qt1/q
t
l is decreasing.

C. If atk 6= atk′ and atk 6= at(S) and the inequality Pr(Sk|Vl) ≥ Pr(Sk|V1) holds then qt1/q
t
l is

non-increasing; furthermore, if the inequality is strict then qt1/q
t
l is decreasing.

Proof of Lemma 11: Fix any l = 2, 3. Since
qt+1

1

qt+1

l

=
qt1Pr(a

t|Ht,V1)

qt
l
Pr(at|Ht,Vl)

, to establish that qt1/q
t
l is

decreasing it suffices to show that Pr(at|H t, Vl) is (greater) no less than Pr(at|H t, V1). Now

consider each of the three cases A.− C.

A. Since signal S is nU-shaped, the combination of Sk and Sk′ is pHill-shaped. This

together with at = atk = atk′ imply that Pr(at|H t, Vl) exceeds Pr(a
t|H t, V1).

B. If Pr(Sk′|Vl) ≤ Pr(Sk′|V1) we have Pr(Sk|Vl)+Pr(S|Vl) ≥ Pr(Sk|V1)+Pr(S|V1). This,

together with at = atk = at(S) imply that Pr(at|H t, Vl) ≥ Pr(at|H t, V1). Furthermore, the

latter inequality must be strict if Pr(Sk′|Vl) were less than Pr(Sk′|V1).

C. If Pr(Sk|Vl) ≥ Pr(Sk|V1) and atk 6= atk′ and atk 6= at(S) we have immediately that

Pr(at|H t, Vl) ≥ Pr(at|H t, V1). Furthermore, the latter inequality is strict if Pr(Sk|Vl) were

less than Pr(Sk|V1). This concludes the proof of Lemma 11.

Now we show that (3) holds and thereby obtain the required contradiction. This will

be done for each feasible csd combination of signals.

38



Case A: Either there exists a signal that is decreasing or there are two Hill-

shaped signals each with a non-negative bias.

Consider an infinite path of actions consisting of an infinite number of buys. We demon-

strate (3) by showing that along this infinite history at any date t both qt1/q
t
2 and qt1/q

t
3 are

decreasing, and hence converge to zero (note that there are a finite number of states and

signals). We show this in several steps.

Step 1: If more than one informed type buys at t then qt1/q
t
2 and qt1/q

t
3 are both decreasing

at any t: Since S does not buy at any t, this follows immediately from Lemma 11.A.

Step 2: If exactly one informed type buys at period t then (i) qt1/q
t
2 is decreasing and (ii)

qt1/q
t
3 is decreasing if the informed type that buys has a non-zero bias, and is non-increasing

otherwise: Let Si be the only type that buys at t. This implies that Si cannot be decreasing;

therefore, by assumption, Si must be pHill-shaped and the step follows from Lemma 11.C.

Step 3: If a type has a zero bias he cannot be a buyer at any date t: Suppose not. Then

there exist a type Si with a zero bias such that E[V |H t, Si] − E[V |H t] > 0. By Lemma 1

we then have
[Pr(Si|V3)− Pr(Si|V2)](q

t
3 − qt1) > 0. (14)

Also, by Steps 1 and 2, qt1/q
t
3 is non-increasing at every t. Moreover by assumption q11/q

1
3 =

1. Therefore, qt1/q
t
3 ≤ 1. Since Si buys at t, Si must be Hill-shaped, contradicting (14).

Step 4: qt1/q
t
2 and qt1/q

t
3 are both decreasing at any t. This follows Steps 1-3.

Case B: There exists an increasing Si s.t. Pr(Si|Vk) 6= Pr(Si|Vk′) for some k and k′.

Let Sj be the third signal other than S and Si. Now we obtain (3) in two steps.

Step 1: If Pr(Si|V1) = Pr(Si|V2) then for any ǫ > 0 there exists a finite history Hτ =

{a1, . . . , aτ−1} such that qτ1/q
τ
2 < ǫ. Consider an infinite path H∞ = {a1, a2, . . .} such

that at = atj (recall that atj is the action taken by Sj at history H t = (a1, . . . , at−1)).

Note that S is nU-shaped and Pr(Si|V1) = Pr(Si|V2) < Pr(Si|V3). Therefore, Pr(Sj |V2) >

max{Pr(Sj|V1),Pr(Sj|V3)}.

Then it follows from Lemma 11 that qt1/q
t
2 is decreasing if at 6= at(S) and it is constant

if at = at(S). To establish the claim it suffices to show that at 6= at(S) infinitely often.

Suppose not. Then there exists T such that for all t > T, atj = at(S). Since type S does

not buy at any date and there cannot be more than one informed type holding at any date

(there is always a buyer or a seller), we must have Sj (and S) selling at at every t > T .

Then, by Lemma 1 we have

qt3
qt1
[Pr(Sj |V3)− Pr(Sj|V2)] + [Pr(Sj |V2)− Pr(Sj|V1)] + 2

qt3
qt2
[Pr(Sj |V3)− Pr(Sj |V1)] < 0. (15)

for all t > T . Also, by Pr(Si|V1) = Pr(Si|V2) < Pr(Si|V3) we have Pr(Sj |Vl) + Pr(S|Vl) >

Pr(Sj|V3) + Pr(S|V3) for l = 1, 2. Therefore,
qt3
qt
l

→ 0 as t → ∞ for any l = 1, 2. This,

together with Pr(Sj|V2) > Pr(Sj|V1), contradict (15).
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Step 2: For any ǫ > 0 there exists a history H t s.t. qt1/q
t
l < ǫ for any l = 2, 3: Fix

any ǫ > 0. Let Hτ be such that qτ1/q
τ
2 < ǫ if Pr(Si|V1) = Pr(Si|V2) (by the previous step

such a history exists) and be the empty history H1, otherwise. Consider any infinite path

H∞ = {Hτ , aτ , aτ+1, . . . .}, where for any t ≥ τ , at is the action that type Si takes at history

H t = {Hτ , aτ , . . . , at−1}; i.e. we first have the history Hτ and then we look at a subsequent

history that consists only of the actions that type Si takes.

Since Si is increasing it follows from Proposition 1 that at any history Si does not sell.

Also, by the supposition S does not buy at any history. Therefore, Si and S always differ

at every history H t with t ≥ τ (there cannot be more than one type holding). But since at

is the action that type Si takes at history H t, Si is increasing and Pr(Si|Vk) 6= Pr(Si|Vk′)

for some k and k′, it then follows from part A and C of Lemma 11 that for every t ≥ τ (i)
qt
1

qt
3

is decreasing, (ii)
qt
1

qt
2

is non-increasing. This, together with qτ1/q
τ
2 < ǫ when Pr(Si|V1) =

Pr(Si|V2), establishes that there exists t such that qt1/q
t
l < ǫ for any l = 2, 3.

Case C: There are two Hill-shaped signals and one has a negative bias.

Let Si be the Hill-shaped signal with the negative bias. Also, let Sj be the other

Hill-shaped signal. Since both S and Si have negative biases, Sj must have a positive bias.

Next fix any ǫ > 0 and define y and ϕlm, for any l, m = 1, 2, 3, as follows:

y :=
[Pr(Si|V2)− Pr(Si|V1)]

2[Pr(Si|V1)− Pr(Si|V3)]
> 0

ϕlm := max

{

γ + µPr(Si|Vl)

γ + µPr(Si|Vm)
,
γ + µ(1− Pr(S|Vl))

γ + µ(1− Pr(S|Vm))
,
γ + µPr(Sj |Vl)

γ + µPr(Sj|Vm)

}

. (16)

Since both Si and Sj are Hill-shaped we have ϕ12 < 1. This implies that there exists an

integer M > 0 and δ ∈ (0, ǫ) such that y(ϕ12)
M < ǫ and δ(ϕ13)

M < ǫ.

Consider the infinite path H∞ = {a1, a2, . . .} where at = atj at every t. Then we have:

Claim 1: qt1/q
t
3 is decreasing at every t: As Si and Sj have a negative and a positive

bias respectively, by Lemma 11, qt1/q
t
3 is decreasing at every t.

Claim 2: qt1/q
t
2 converge to zero if there exists T such that ati 6= atj for all t > T :

Since Sj is Hill-shaped this follows immediately from parts A and C of Lemma 11.

Claim 3: There exists a history Hτ s.t. qτ1/q
τ
3 < δ and qτ1/q

τ
2 < y: Suppose not; then

by Claims 1 and 2 there exists a date τ such that qτ1/q
τ
3 < δ and aτi = aτj . Since S

does not buy at any history, it follows that Si and Sj must be buying at τ (there is

always at least one buyer and seller; thus Si and Sj cannot both be holding at τ). Then,

E[V |Si, H
t]− E[V |H t] > 0. By Proposition 2, this implies

[Pr(Si|V3)− Pr(Si|V2)] +
qτ1
qτ3

[Pr(Si|V2)− Pr(Si|V1)] +
2qτ1
qτ2

[Pr(Si|V3)− Pr(Si|V1)] > 0.
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Since Si is nHill-shaped, it follows from the last inequality that

qτ1
qτ2

<
[Pr(Si|V3)− Pr(Si|V2)] +

qτ1
qτ
3

[Pr(Si|V2)− Pr(Si|V1)]

2[Pr(Si|V1)− Pr(Si|V3)]
<

qτ1
qτ
3

[Pr(Si|V2)− Pr(Si|V1)]

2[Pr(Si|V1)− Pr(Si|V3)]
. (17)

As qτ1/q
τ
3 < δ and δ < 1, we have qτ1/q

τ
2 < y. This contradicts the supposition.

To complete the proof for this case, fix any τ and Hτ such that qτ1/q
τ
3 < δ and qτ1/q

τ
2 < y

(by Claim 3 such a history exists). Consider a history H
t
that consists of path Hτ =

(a1, . . . , aτ−1) followed by M periods of buys. Thus t = τ +M and H t = {Hτ , a1, . . . , aM},

where for any m ≤ M , am = buy. Since a buy must be either from Sj or Si or both, it

then follows from the definitions of ϕ13,M and δ, and from qτ1/q
τ
3 < δ that

qt1/q
t
3 ≤ (ϕ13)

M(qτ1/q
τ
3 ) < (ϕ13)

Mδ < ǫ. (18)

Also, since qτ1/q
τ
2 < y we have

qt1/q
t
2 < (ϕ12)

M(qτ1/q
τ
2 ) < (ϕ12)

My < ǫ. (19)

Since the initial choice of ǫ was arbitrary, (3) follows immediately from (18) and (19).

Case D: There exists a U shaped signal Si ∈ S\S.

Since both S and Si are U shaped it follows that the third signal Sj is Hill shaped.

Moreover, by assumption Sj must have a non-negative bias. To establish (3) fix any ǫ > 0

and consider the two possible subcases that may arise.

Subcase D1: Si has a zero bias. We establish the result in two claims.

Claim 1: There exists a history Hτ such that qτ1/q
τ
3 < ǫ. Consider the infinite path

H∞ = {a1, a2, . . .} such that at = buy for each t. Since a buy must be either from Sj or

Si or both, and Si has a zero bias, it follows from parts A and C of Lemma 11 that qt1/q
t
3

is non-increasing at every t. Furthermore, qt1/q
t
3 is decreasing if at = atj . Therefore, the

claim follows if Sj buys infinitely often along the path H∞. To show that the latter is true

suppose it is not; then there exists T such that for all t ≥ T , atj 6= ati =buy. Then for all

t > T , by Lemma 9,

qt2
qt1

[βt
2Pr(Sj |V3)− βt

3Pr(Sj |V2)] +
qt2
qt3

[βt
1Pr(Sj |V2)− βt

2Pr(Sj |V1)] + [βt
1Pr(Sj |V3)− βt

3Pr(Sj |V1)] < 0, (20)

Also, since Si is U shaped both
qt
2

qt
1

and
qt
2

qt
3

must be decreasing at every t > T . But this

is a contradiction because at every t > T , the last term in (20) is positive: βt
1Pr(Sj|V3) −

βt
3Pr(Sj|V1) = γ(Pr(Sj |V3)− Pr(Sj|V1)) > 0 (the equality follows from Si’s zero bias).

Claim 2: There exists a history H t such that qt1/q
t
l < ǫ for all l = 2, 3: By the previous

claim there exists a history Hτ such that qτ1/q
τ
3 < ǫ. Next, consider a history H∞ =

{Hτ , aτ , aτ+1, . . .} that consists of path Hτ followed by a sequence of actions {aτ , aτ+1, . . .}

such that at = atj at every history H t = {Hτ , aτ , . . . , at−1}. Since Si has a zero bias,

it follows from Lemma 11 that at every t > τ , qt1/q
t
3 is non-increasing. Also, we have

qτ1/q
τ
3 < ǫ; therefore we have that at every t > τ , qt1/q

t
3 < ǫ. Furthermore, since S and
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Si are U shaped, and Sj is Hill shaped, by Lemma 11, qt1/q
t
2 is decreasing at every t > τ ;

hence there must exists t > τ such that qt1/q
t
2 < ǫ.

Since the initial choice of ǫ was arbitrary, (3) follows from Claim 2.

Subcase D2: Both Si and Sj have non-zero bias.

Consider first the infinite path H∞ = {a1, a2, . . .} such that at = atj at every history

H t = {a1, . . . , at−1}. Then the following claims must hold.

Claim 1: qt1/q
t
2 is decreasing at every t : Since Sj and Si are respectively Hill shaped

and U shaped, it follows from Lemma 11 that qt1/q
t
2 is decreasing.

Claim 2: If Si has a negative bias then qt1/q
t
3 is decreasing at every t: Since Sj has a

positive bias and Si has a negative bias, by Lemma 11, qt1/q
t
3 is decreasing at every t.

Claim 3: If Sj has a positive bias and there exists a period T such that, for all t > T,

atj = buy then qt1/q
t
3 is decreasing at every t > T : Since Sj has a positive bias and S does

not buy at any date, by Lemma 11, qt1/q
t
3 must be decreasing at every t > T .

Before stating the next claim, consider ϕml defined in (16). If both Si and Sj have

positive biases, ϕ13 < 1. Thus, if Si has a positive bias there exist an integer M such that

(i) (φml)
M < ǫ if Sj has a positive bias and (ii)

(

γ + µPr(Si|Vl)

γ + µPr(Si|Vm)

)M

< ǫ. (21)

Fix any such M . Then there also exists δ ∈ (0, ǫ) such that

δ(ϕ12)
M < ǫ. (22)

Claim 4: If Sj has a zero bias, then there exists a history Hτ s.t. qτ1/q
τ
2 < δ and

qτ1/q
τ
3 = 1: Since q11/q

1
3 = 1 it follows that at date 1, Sj holds. By recursion it follows that

at every history H t = {a1, . . . , at−1} we have qt1/q
t
3 = 1 and the claim follows from Claim 1.

Claim 5: If both Si and Sj have positive biases, then there exists a history Hτ s.t.

qτ1/q
τ
2 < δ and qτ1/q

τ
3 < x, where δ satisfies (21) and

x ≡
[Pr(Si|V3)− Pr(Si|V2)] + 2ǫ[Pr(Si|V3)− Pr(Si|V1)]

[Pr(Si|V1)− Pr(Si|V2)]
.

Suppose not. Then by Claims 1 and 3 there exists date τ such that qτ1/q
τ
2 < δ and

aτj 6= buy. Since S also does not buy at Hτ , it follows that only Si buys at τ . Then

E[V |Si, H
τ ] > E[V |Hτ ]. By Proposition 2, this implies

[Pr(Si|V3)− Pr(Si|V2)] +
qτ1
qτ3

[Pr(Si|V2)− Pr(Si|V1)] +
2qτ1
qτ2

[Pr(Si|V3)− Pr(Si|V1)] > 0.

Since qτ1/q
τ
2 < δ < ǫ and Si is pU shaped, we can rearrange the above to show that

qτ1
qτ3

≤
[Pr(Si|V3)− Pr(Si|V2)] +

2qτ
1

qτ
2

[Pr(Si|V3)− Pr(Si|V1)]

Pr(Si|V1)− Pr(Si|V2)
<

[Pr(Si|V3)− Pr(Si|V2)] + 2ǫ[Pr(Si|V3)− Pr(Si|V1)]

[Pr(Si|V1)− Pr(Si|V2)]
= x.

Claim 6: If Si has a positive bias and then there exists a history H
t
s.t. qt1/q

t
l < ǫ for
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any l = 2, 3. Fix any history Hτ = (a1, . . . , aτ−1) s.t. qτ1/q
τ
2 < δ and qτ1/q

τ
3 = 1 if Sj has

a zero bias and qτ1/q
τ
2 < δ and qτ1/q

τ
3 < x if Sj has a positive bias (by Claims 4 and 5

such histories exist). Next, consider a history H
t
that consists of path Hτ followed by M

periods of buys. Thus t = τ + M and H t = {hτ , a1, . . . , aM}, where for any m ≤ M ,

am = buy. Since a buy must be either from Sj or Si or both, it then follows from the

definitions of ϕ12 in (16), from (22) and from qτ1/q
τ
2 < δ that

qt
1

qt
2

≤
qτ
1

qτ
2

(ϕ12)
M < δ(ϕ12)

M < ǫ.

To show that qτ1/q
τ
3 < ǫ consider the two cases of Sj having a zero bias and Sj having a

positive bias separately. In the latter case, we have qτ1/q
τ
3 < x. Then, by (i) in (21), we

have
qt
1

qt
3

<
qτ
1

qτ
3

(ϕ13)
M < x(ϕ13)

M < ǫ. In the former case, since qτ1/q
τ
3 = 1 it must be that

am = at+1
i 6= aτ+m

j . Hence,
qt
1

qt
3

< 1. Recursively, it then follows that am
′

= at+1
i 6= aτ+m′

j for

all m′ ≤ m. Thus, by (ii) in (21),
qt1
qt
3

<
qτ1
qτ
3

( γ+µPr(Si|Vl)
γ+µPr(Si|Vm)

)M < ǫ.

Since the initial choice of ǫ was arbitrary, (3) follows from Claims 1,2 and 5.

A.4 Proof of Proposition 4

(a) At H t buy herding occurs if and only if E[V |S,H t]−askt > 0 and E[V |H t]−E[V ]> 0.

Thus, to demonstrate the existence of the function s, we need to characterize the expressions

E[V |S,H t]− askt and E[V |H t]− E[V ] for different values of b and s.

Let βi = Pr(buy|Vi) and σi = Pr(sale|V3) at every buy herding history (these proba-

bilities are are always the same at every history at which S buy herds). Note that, by

Lemma 9, E[V |S,H t]− askt has the same sign as

(

β1

β3

)b (
σ1

σ3

)s

qr2q
r
1[β1Pr(S|V2)− β2Pr(S|V1)] + qr3q

r
2[β2Pr(S|V3)− β3Pr(S|V2)]

+ 2
(

β1

β2

)b (
σ1

σ2

)s

qr3q
r
1[β1Pr(S|V3)− β3Pr(S|V1)].

(23)

Also, by MLRP and Lemma 5 (iv) we have

β1 < β2 < β3 and σ3 < σ2 < σ1. (24)

Since by Proposition 2, S must have an nU-shaped csd, it then follows that

β1Pr(S|V2)−β2Pr(S|V1) < 0, β1Pr(S|V3)−β3Pr(S|V1) < 0, β2Pr(S|V3)−β3Pr(S|V2) > 0. (25)

(The last inequality in (25) follows from the first two and from (11) being positive at Hr.)

Thus, the first and the third terms in (23) are negative, the second is positive. Hence

it follows from (24) that the expression in (23) satisfies the following three properties:

(i) it increases in b, (ii) it decreases in s and (iii) for any b it is negative for sufficiently

large s. By (24), the expression E(V |H t)− E(V ) must also satisfy (i)-(iii) (note that qt3/q
t
1

is increasing in b and decreasing in s). Since (23) and E(V |H t)− E(V ) are both increasing

in b and since by assumption there is buy herding at Hr, it must be that for any b both (23)

and E(V |H t) − E(V ) are positive when s = 0. Thus, it follows from (ii) and (iii) that for
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any b there exists an integer s > 1 such that both (23) and E(V |H t)−E(V ) are positive for

any integer s < s, and either (23) or E(V |H t)−E(V ) are non-positive for any integer s ≥ s.

To complete the proof of this part we need to show that s is increasing in b. To show

this suppose otherwise; then there exists b′ and b′′ such that b′ < b′′ and s′ > s′′ where s′

and s′′ are respectively the critical values of sales corresponding to b′ and b′′ described in

the previous paragraph. Now since s′ > s′′ it follows that both (23) and E(V |H t)−E(V ) are

positive if b = b′ and s = s′′. But since both (23) and E(V |H t)− E(V ) are increasing in b,

we must then have that both (23) and E(V |H t) − E(V ) are positive if b = b′′ and s = s′′.

By the definition of s′′ this is a contradiction.

(b) At H t buy contrarianism occurs if and only if E[V |S,H t] − askt > 0 and E[V ] −

E[V |H t] > 0. By Lemma 9, E[V |S,H t]− askt has the same sign as

qr2q
r
1[β1Pr(S|V2)− β2Pr(S|V1)] +

(

β3

β1

)b (
σ3

σ1

)s

qr3q
r
2[β2Pr(S|V3)− β3Pr(S|V2)]

+ 2
(

β3

β2

)b (
σ3

σ2

)s

qr3q
r
1[β1Pr(S|V3)− β3Pr(S|V1)].

(26)

Also, with buy contrarianism S must have an nHill-shaped csd and therefore β1Pr(S|V2)−

β2Pr(S|V1) > 0, β1Pr(S|V3)− β3Pr(S|V1) < 0, and β2Pr(S|V3)− β3Pr(S|V2) < 0. Thus, the

second and the third terms in (26) are negative, and the first is positive. Hence, by (24),

the expression in (26) satisfies the following: (i) it increases in s, (ii) it decreases in b and

(iii) for each s, it is negative for sufficiently large b.

The expression E(V )−E(V |H t) also satisfies the same three properties. The existence of

the function b is now analogous to that for part (a), with reversed roles for buys and sales.

A.5 Proof of Proposition 5

We show the proof for buy herding; the proof for buy contrarianism is analogous.

(a) In the proof of Proposition 4 we have shown for the case of buy herding that if

the history following Hr consists only of buys, then type S herds at any point during that

history. What remains to be shown is that for an arbitrary number of buys after herding

has started, the price will approach V3. Observe that E[V |H t] =
∑

i Viq
t
i = qt3

(

qt2
qt
3

V2 + V3

)

.

Also, qt2/q
t
3 is arbitrarily small at any history H t that includes a sufficiently large number of

buys as outlined following conditions (5) and (6). Consequently, for every ǫ > 0, there exists

a history H t consisting of Hr followed by sufficiently many buys such that E[V |H t] > V3−ǫ.

(b) Since the assumptions of Theorem 2 that ensure buy herding hold, S2 must be selling

initially and also µ < µs
bh ≤ µ2(S3). The latter implies that here exists η > 0 such that

[βt
2Pr(S2|V3)− βt

3Pr(S2|V2)] > η, for every t. (27)

By MLRP, type S1 does not buy at any history. Therefore, for any history Hr consisting

only of r−1 buys it must be that qr1/q
r
3 ≤

(

max{γ+µPr(S3|V1)
γ+µPr(S3|V3)

, γ+µ(1−Pr(S1|V1))
γ+µ(1−Pr(S1|V3))

)r−1

. Also, by

MLRP, S3 is strictly increasing and S1 is strictly decreasing. Thus, there must exist r > 1
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such that qr1/q
r
3 < η/2. Fix one such r. Then it follows from (27) that

[βr
2Pr(S2|V3)− βr

3Pr(S2|V2)] +
qr1
qr3
[βr

1Pr(S2|V2)− βr
2Pr(S2|V1)] > η/2. (28)

Next, fix any ǫ > 0. Note that there exists δ > 0 such that if q12 > 1 − δ then askr =

E[V |Hr, buy] = qr2V2 + qr3V3 ∈ (V2, V2 + ǫ) and

2
qr1
qr2
[βr

3Pr(S|V1)− βr
1Pr(S|V3)] < η/2. (29)

Fix any such δ. Then it follows from (28) and (29) that

qr2q
r
3[β

r
2Pr(S2|V3)−βr

3Pr(S2|V2)]+qr1q
r
2[β

r
1Pr(S2|V2)−βr

2Pr(S2|V1)]+2 qr1q
r
3[β

r
1Pr(S2|V3)−βr

3Pr(S2|V1)] > 0.

Since S2 sells initially and qr1/q
r
3 < η/2 < 1, it follows from the last inequality that S2 is

buy herding at Hr at an ask price that belongs to the interval (V2, V2 + ǫ).

Next, as shown in part (a), there must also exist a history H t with t = r+b following Hr

such that there is buy herding at any history Hτ , r ≤ τ ≤ t, and E[V |H t] > V3 − ǫ.

A.6 Proof of Proposition 6

We shall prove the two results for the case of buy herding; the proof for the buy contrarian

case is analogous and will be omitted.

Proof of part 1(a) of Proposition 6. Let βi and σi be respectively the probability

of a buy and the probability of a sale in the transparent world at any date τ = r, . . . , r +

b + s. Also, let βi,o and σi,o be the analogous probabilities in the opaque world. Then

E[V |H t]− Eo[V |H t] = V{(qt2 − qt2,o) + 2(qt3 − qt3,o)}

= V

{

qr2

(

βb
2σ

s
2

∑

i q
r
i β

b
iσ

s
i

−
βb
2,oσ

s
2,o

∑

i q
r
i β

b
i,oσ

s
i,o

)

+ 2qr3

(

βb
3σ

s
3

∑

i q
r
i β

b
iσ

s
i

−
βb
3,oσ

s
3,o

∑

i q
r
i β

b
i,oσ

s
i,o

)}

.

Therefore, E[V |H t]− Eo[V |H t] has the same sign as

qr2q
r
1[(β2β1,o)

b(σ2σ1,o)
s − (β2,oβ1)

b(σ2,oσ1)
s] + qr3q

r
2[(β3β2,o)

b(σ3σ2n)
s − (β3,oβ2)

b(σ3,oσ2)
s]

+ 2qr3q
r
1[(β3β1,o)

b(σ3σ1,o)
s − (β3,oβ1)

b(σ3,oσ1)
s].

(30)

Suppose that S buy herds at Hr. Then, by Lemma 9, we have

qr2q
r
1[β1Pr(S|V2)− β2Pr(S|V1)] + qr3q

r
2[β2Pr(S|V3)− β3Pr(S|V2)]

+ 2 qr3q
r
1[β1Pr(S|V3)− β3Pr(S|V1)] > 0.

(31)

By simple computation we also have

β2β1,o − β2,oβ1 = µ[β1Pr(S|V2)− β2Pr(S|V1)],

β3β1,o − β3,oβ1 = µ[β1Pr(S|V3)− β3Pr(S|V1)],

β3β2,o − β3,oβ2 = µ[β2Pr(S|V3)− β3Pr(S|V2)].

(32)

Therefore, it follows from (31) that

qr2q
r
1[β2β1,o − β2,oβ1] + qr3q

r
2[β3β2,o − β3,oβ2] + 2qr3q

r
1[β3β1,o − β3,oβ1] > 0. (33)
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To prove 1(a) in Proposition 6 suppose that s = 0 (thus t = b). Then by expanding (30)

it must be that E[V |H t]− Eo[V |H t] has the same sign as

qr2q
r
1

{

(β2β1,o − β2,oβ1)
∑b−1

τ=0
(β2β1,o)

b−1−τ (β2,oβ1)
τ
}

(34)

+qr3q
r
2[(β3β2,o)− (β3,oβ2)]

∑b−1

τ=0
(β3β2,o)

b−1−τ (β3,oβ2)
τ

+2qr3q
r
1

{

(β3β1,o − β3,oβ1)
∑b−1

τ=0
(β3β1,o)

b−1−τ (β3,oβ1)
τ
}

.

Also, by MLRP β3 > β2 > β1 and β3,o > β2,o > β1,o. Therefore,

b−1
∑

τ=0

(β3β2,o)
b−1−τ (β3,oβ2)

τ >

b−1
∑

τ=0

(β2β1,o)
b−1−τ (β2,oβ1)

τ , (35)

b−1
∑

τ=0

(β3β2,o)
b−1−τ (β3,oβ2)

τ >
b−1
∑

τ=0

(β3β1,o)
b−1−τ (β3,oβ1)

τ . (36)

Also, by (25) and (32) the first and the third terms in (34) are negative and the second

is positive. Therefore, by (33), (35), and (36), E[V |H t] − Eo[V |H t] > 0 for s = 0. This

completes the proof of part 1(a) of Proposition 6.45

Proof of part 1(b) of Proposition 6. Suppose that b = 0 and s = 1 (t = r + 1). Since

S buys in the transparent world, E[V |S,Hr]− bidr > 0. Simple computations analogous to

the proof of Lemma 9 show that this is equivalent to

qr2q
r
1[σ1Pr(S|V2)−σ2Pr(S|V1)]+ qr3q

r
2[σ2Pr(S|V3)−σ3Pr(S|V2)]+2qr3q

r
1[σ1Pr(S|V3)−σ3Pr(S|V1)]>0

(37)
Also, by the definition of σi and σi we have

σ3σ2,o − σ3,oσ2 = −µ[σ2Pr(S|V3)− σ3Pr(S|V2)],

σ3σ1,o − σ3,oσ1 = −µ[σ1Pr(S|V3)− σ3Pr(S|V1)],

σ2σ1,o − σ2,oσ1 = −µ[σ1Pr(S|V2)− σ2Pr(S|V1)].

(38)

Therefore, (37) is equivalent to

qr2q
r
1[σ2σ1,o − σ2,oσ1] + qr3q

r
2[σ3σ2,o − σ3,oσ2] + 2qr3q

r
1[σ3σ1,o − σ3,oσ1] < 0. (39)

Since the LHS of (39) is the same as the expression in (30) when b = 0 and s = 1, it follows

that in this case E[V |H t]− Eo[V |H t] < 0.46 This completes the proof of this part.

Proof of 1(c) in Proposition 6. First, note that (30) can be written as:

qr2q
r
1
(β2,oβ1)b

(β3β2,o)b

[

(β2β1,o)b

(β2,oβ1)b
(σ2σ1,o)

s − (σ2,oσ1)
s
]

+ qr3q
r
2

[

(σ3σ2n)
s −

(β3,oβ2)b

(β3β2,o)b
(σ3,oσ2)

s
]

+2qr3q
r
1
(β3,oβ1)b

(β3β2,o)b

[

(β3β1,o)b

(β3,oβ1)b
(σ3σ1,o)

s − (σ3,oσ1)
s
]

.
(40)

45Note that MLRP is assumed in the above proof in order to establish conditions (35), and (36). When
b = 1 and s = 0 these conditions, and hence MLRP, is not needed as E[V |Ht] − Eo[V |Ht] > 0 follows
immediately from (30) and (33).

46This claim also does not require the assumption of MLRP.
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Fix s and let b → ∞. Then since by (25) and (32) β3β2,o > β3,oβ2 we have that the second

term in (40) converges to qr3q
r
2(σ3σ2n)

s as b → ∞. Also, since β3 > β2 > β1 it follows

that β2,oβ1 < β2,oβ3 and β3,oβ2 > β3,0β1. The former, together with (25) and (32), imply

that the first term in (40) vanishes as b → ∞. The latter, together with (25) and (32),

imply that β3β2,o > β3,oβ1; therefore, using (25) and (32) again, the last term in (40) also

vanishes. Consequently, as b → ∞ the expression in (40) converges to qr3q
r
2(σ3σ2n)

s. Since

(σ3σ2n)
s > 0 and E[V |H t]−Eo[V |H t] has the same sign as the expression in (40), the claim

in 1(c) of the proposition is established.
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– Supplementary Material –

There are results in the paper that were not fully discussed or proven fully. This supple-

mentary material contains what was omitted or mentioned. We organize this appendix in

the same way as the sections in the main paper.

B Supplementary Material for Section 5

B.1 Proof of Lemma 1

Observe first that

E[V |S,H t]− E[V |H t] = Vqt2

(

Pr(S|V2)

Pr(S)
− 1

)

+ 2Vqt3

(

Pr(S|V3)

Pr(S)
− 1

)

.

The RHS of the the above equality has the same sign as

qt2

(

Pr(S|V2)
∑

j

qtj −
∑

j

Pr(S|Vj)q
t
j

)

+ 2 qt3

(

Pr(S|V3)
∑

j

qtj −
∑

j

Pr(S|Vj)q
t
j

)

= qt1q
t
2 (Pr(S|V2)− Pr(S|V1)) + qt2q

t
3 (Pr(S|V2)− Pr(S|V3))

+2 qt3
(

qt1(Pr(S|V3)− Pr(S|V1) + qt2 (Pr(S|V3)− Pr(S|V2))
)

.

B.2 Proof of Lemma 2

This follows by Lemma 1: By the symmetry assumption on the priors (q11 = q13), the (2) is

negative (positive) at t = 1 if and only if (Pr(S|V3)−Pr(S|V1))(q
1
2 +2q11)q

1
3 is less (greater)

than 0; the latter is equivalent to S having a negative (positive) bias.

B.3 Proof of Lemma 3

The claim follows from E[V |H t]− E[V ] = V[(1− qt1 − qt3) + 2qt3]− V = V(qt3 − qt1).

1



B.4 Proof of Lemma 9

The proof is analogous to the derivation in the proof of Lemma 1. To show (i) note that

E[V |S,H t]− askt = Vq2

(

Pr(S|V2)

Pr(S)
−

β2

Pr(buy|H t)

)

+ 2Vq3

(

Pr(S|V3)

Pr(S)
−

β3

Pr(buy|H t)

)

.

The RHS of the above has the same sign as

q2

(

Pr(S|V2)
∑

j

βjqj − β2

∑

j

Pr(S|Vj)qj

)

+ 2 q3

(

Pr(S|V3)
∑

j

βjqj − β3

∑

j

Pr(S|Vj)qj

)

= q1q2 (β1Pr(S|V2)− β2Pr(S|V1)) + q2q3 (β3Pr(S|V2)− β2Pr(S|V3))

+2 q3 (q1 (β1Pr(S|V3)− β3Pr(S|V1)) + q2 (β2Pr(S|V3)− β3Pr(S|V2))) .

B.5 Necessity of the Bounds on Noise Trading

In the paper we claimed that the bounds on noise trading are also necessary for some cases.

The following proposition outlines these scenarios.

Proposition 3a

(i) Suppose that S buy herds and that there is at most one U-shaped signal.

Then µ < min{µi, µs
bh}, where µi is defined in Lemma 8 and µs

bh is defined in (12).

(ii) Suppose that S acts as a buy contrarian and there is at most one Hill-shaped signal.

Then µ < min{µi, µs
bc}, where µi is defined in Lemma 8 and µs

bc is defined in (13).

Proof: We shall prove (i); the proof of (ii) is analogous. Assume S buy herds. Then S

sells initially. It follows from Lemma 5 that µ < µi.

To show that µ < µs
bh first note that by Proposition 2, S must be nU-shaped. Next

consider the different possibilities separately.

Case A. There is no signal S ′ 6= S such that Pr(S ′|V3) > Pr(S ′|V2). Then it must be

that µ2(S
′) = 1 for all S ′ and therefore it must be that µ < µs

bh = 1.

Case B. There is a signal S ′ 6= S such that Pr(S ′|V3) > Pr(S ′|V2). Since S is U-shaped it

must be that Pr(S|V3) > Pr(S|V2) and Pr(S ′′|V3) ≤ Pr(S ′′|V2) for S
′′ 6= S, S ′. This implies

that µ2(S
′′) = 1 and hence, µ2(S

′) = µs
bh.

Now there are two cases. First, if µ2(S
′) also equals 1 then clearly µs

bh = 1 and the

claim is trivially true.

Second, assume that µ2(S
′) = µs

bh < 1. Since S buy herds at H t, to show that µ <

min{µi, µs
bh} it suffices to show that S ′ also buys whenever S buys (the alternative is that S ′

does not buy so that µ2(S
′) = 1 > µs

bh). When S ′ buys, E[V |S ′, H t]− askt > 0. Suppose S ′

does not buy. As the sign of E[V |S ′, H t]− askt is given by equation (3), it must then hold

2



that

q1q2 [β1Pr(S
′|V2)− β2Pr(S

′|V1)] + q2q3[β2Pr(S
′|V3)− β3Pr(S

′|V2)]

+2 q1q3 [β1Pr(S
′|V3)− β3Pr(S

′|V1)] ≤ 0.
(B-1)

Also, since there is at most one U-shaped signal it must be that

Pr(S ′|V3) > Pr(S ′|V2) ≥ Pr(S ′|V1). (B-2)

By Proposition 1 this implies that S ′ does not sell. By supposition S ′ does not buy and

therefore S is the only buyer at H t (S ′′ is selling). Since S is nU-shaped we must also have

βt
1 > βt

3 ≥ βt
2. This, together with (B-2) imply that the first and the third term in (B-1)

are positive. Furthermore, the second term has the same sign as

γ(Pr(S ′|V3)− Pr(S ′|V2)) + µ(Pr(S|V2)Pr(S
′|V3)− Pr(S|V3)Pr(S

′|V2)). (B-3)

By (B-2) the first term in the last expression is positive; furthermore, since S is nU, we

have m2 = Pr(S|V3) > Pr(S|V2). Since µ2(S
′) < 1 we must have that M2(S ′) < 1 is

negative. But −µM2(S ′) is the second term in the last expression and it is thus positive.

Consequently, (B-3) is positive. Therefore, the second term in (B-1) must also be positive.

Therefore, S ′ must be buying at any H t at which S buys and thus µs
bh < 1 is unique.

C Supplementary Material for Section 6

Proof of Lemma 5: (i) By standard results on MLRP and stochastic dominance it must

be that E[V |Sl] < E[V |Sh]. By a similar reasoning, at any history H t, E[V |Sl, H
t] <

E[V |Sh, H
t] if the following MLRP condition holds at H t: for any Sl < Sh and any Vl < Vh

Pr(Sh|Vh, H
t)

Pr(Sl|Vh, H t)
>

Pr(Sh|Vl, H
t)

Pr(Sl|Vl, H t)
. (C-4)

To show this note first that Pr(V |H t, S) = Pr(V |S)Pr(H t|V )/
∑

V ′∈V Pr(V
′|S)Pr(H t|V ′).

Then we have by the following manipulations that the MLRP condition Pr(Sh|Vh)
Pr(Sl|Vh)

> Pr(Sh|Vl)
Pr(Sl|Vl)

implies the MLRP condition (C-4) at any H t:

Pr(Sl|Vl)Pr(Sh|Vh) > Pr(Sl|Vh)Pr(Sh|Vl)

⇔ Pr(Vl|Sl)Pr(Vh|Sh) > Pr(Vh|Sl)Pr(Vl|Sh)

⇔
Pr(Vl|Sl)Pr(H

t|Vl)
∑

V

Pr(V |Sl)Pr(Ht|V )

Pr(Vh|Sh)Pr(H
t|Vh)

∑

V

Pr(V |Sh)Pr(Ht|V )
>

Pr(Vh|Sl)Pr(H
t|Vh)

∑

V

Pr(V |Sl)Pr(Ht|V )

Pr(Vl|Sh)Pr(H
t|Vl)

∑

V

Pr(V |Sh)Pr(Ht|V )

⇔ Pr(Vl|H
t, Sl)Pr(Vh|H

t, Sh) > Pr(Vh|H
t, Sl)Pr(Vl|H

t, Sh).
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(ii) Suppose contrary to the claim, that an informed trader with signal S1 does not sell

at some history H t. Then by part (i) no informed trader sells at H t. This implies that

at history H t, bidt = E[V |H t]. But since, by part (i), E[V |H t] exceeds E[V |S1, H
t], we

have bidt > E[V |S1, H
t]. Hence, an informed trader with signal S1 sells at H t. This is a

contradiction.

The proof that informed traders with signal S3 always buy is analogous.

(iii) First we show that Pr(S1|V1) > Pr(S1|V3). Suppose otherwise; thus Pr(S1|V1) ≤

Pr(S1|V3). Then the two MLRP conditions Pr(S1|V1)Pr(S2|V3) > Pr(S2|V1)Pr(S1|V3) and

Pr(S1|V1)Pr(S3|V3) > Pr(S3|V1)Pr(S1|V3) imply respectively that Pr(S2|V1) < Pr(S2|V3)

and Pr(S3|V1) < Pr(S3|V3). Hence, since Pr(S1|V1) ≤ Pr(S1|V3) we have
∑3

i=1 Pr(Si|V3) >
∑3

i=1 Pr(Si|V1). But this contradicts
∑3

i=1 Pr(Si|Vj) = 1 for every j.

The same argument can be applied to show that Pr(S1|V1) > Pr(S1|V2) and Pr(S1|V2) >

Pr(S1|V3), and also in the reverse direction for Pr(S3|V1) < Pr(S3|V2) < Pr(S3|V3).

(iv) Consider any arbitrary history H t and any two values Vl < Vh. By (ii) type S1

always sells, type S3 always buys. There are thus two cases for a buy at H t: either only

S3 types buy or S2 and S3 types buy. In the former case, βt
i = γ + µPr(S3|Vi). As S3 is

strictly increasing, there exits ǫ > 0 such that βt
h − βt

l > ǫ. In the latter case,

βt
h − βt

l = µ (Pr(S3|Vh) + Pr(S2|Vh)− Pr(S3|Vl)− Pr(S2|Vl))

= µ (1− Pr(S1|Vh)− (1− Pr(S1|Vl))) = µ (Pr(S1|Vl)− Pr(S1|Vh)) .

Since S1 is strictly decreasing, there exists an ǫ > 0 such that βt
h − βt

l > ǫ.

By a similar reasoning it can be shown that there must exist ǫ > 0 so that σt
l − σt

h > ǫ.

D Supplementary Material for Section 8

Proposition 6a Assume MLRP. Consider any finite history Hr = (a1, . . . , ar−1) at which

the priors in the two markets coincide: qri = qri,o for i = 1, 2, 3. Suppose that Hr is followed

by s ≥ 0 sales; denote this history by H t = (a1, . . . , ar+s−1). If σ1/σ3 ≥ σ1,o/σ3,o then

E[V |H t] < Eo[V |H t].

Proof: First, note that, by (33) in the proof of Proposition 7, we have

σ3σ2,o − σ3,oσ2 = −µ2ρ2312 + µγ(Pr(S|V2)− Pr(S|V3)) < 0

σ2σ1,o − σ2,oσ1 > σ3σ1,o − σ3,oσ1

(D-5)

Also, since for herding we require E[V |S,H1] < bid1, it follows from Lemma 6 and (32)

that
q12q

1
1[σ2σ1,o − σ2,oσ1] + q13q

1
2[σ3σ2,o − σ3,oσ2] + 2q13q

1
1[σ3σ1,o − σ3,oσ1] > 0.

But then by (D-5) we have

σ2σ1,o − σ2,oσ1 > 0. (D-6)
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Since E[V |H t]− Eo[V |H t] has the same sign as the expression in (29), by simple expansion

of this expression we have that if b = 0 then E[V |H t]− Eo[V |H t] has the same sign as

qr2q
r
1

{

(σ2σ1,o − σ2,oσ1)
∑s−1

τ=0
(σ2σ1,o)

s−1−τ (σ2,oσ1)
τ
}

+qr3q
r
2

{

[(σ3σ2,o)− (σ3,oσ2)]
∑s−1

τ=0
(σ3σ2,o)

s−1−τ (σ3,oσ2)
τ
}

+2qr3q
r
1

{

(σ3σ1,o − σ3,oσ1)
∑s−1

τ=0
(σ3σ1,o)

s−1−τ (σ3σ1)
τ
}

.

Rearranging, E[V |H t]− Eo[V |H t] has the same sign as

qr2q
r
1

∑s−1
τ=0(σ2σ1,o)

s−1−τ(σ2,oσ1)
τ

∑s−1
τ=0(σ3σ2,o)s−1−τ (σ3,oσ2)τ

[σ2σ1,o − σ2,oσ1] + qr3q
r
1[σ3σ2,o − σ3,oσ2]

+ 2qr3q
r
1

∑s−1
τ=0(σ3σ1,o)

s−1−τ (σ3σ1)
τ

∑s−1
τ=0(σ3σ2,o)s−1−τ(σ3,oσ2)τ

[σ3σ1,o − σ3,oσ1]. (D-7)

Further manipulations show that
(

σ1

σ3

)s

>

∑s−1

τ=0
(σ2σ1,o)

s−1−τ (σ2,oσ1)
τ

∑s−1

τ=0
(σ3σ2,o)s−1−τ (σ3,oσ2)τ

⇔

s−1
∑

τ=0

σ2
s−1−τσ2,o

τ (σ1σ3)
τ
(

(σ1σ3,o)
s−1−τ − (σ3σ1,o)

s−1−τ
)

> 0.

Also, by assumption we have σ1

σ3
>

σ1,o

σ3,o
. Therefore, we must have

(

σ1

σ3

)s

>

∑s−1
τ=0(σ2σ1,o)

s−1−τ(σ2,oσ1)
τ

∑s−1
τ=0(σ3σ2,o)s−1−τ(σ3,oσ2)τ

. (D-8)

Similar manipulations show that
(

σ1

σ2

)s

<

∑s−1

τ=0
(σ3σ1,o)

s−1−τ (σ3σ1)
τ

∑s−1

τ=0
(σ3σ2,o)s−1−τ (σ3,oσ2)τ

⇔
s−1
∑

τ=0

σ3
s−1−τσ3,o

τ (σ1σ2)
τ
(

(σ2σ1,o)
s−1−τ − (σ1σ2,o)

s−1−τ
)

> 0.

This together with (D-6), implies that
(

σ1

σ2

)s

<

∑s−1
τ=0(σ3σ1,o)

s−1−τ (σ3σ1)
τ

∑s−1
τ=0(σ3σ2,o)s−1−τ(σ3,oσ2)τ

. (D-9)

Also, since E[V |S,H t]− bidt > 0, by Lemma 6

qr2q
r
1

(

σ1

σ3

)s

[σ2σ1,o − σ2,oσ1] + qr3q
r
2[σ3σ2,o − σ3,oσ2]

+2qr3q
r
1

(

σ1

σ2

)s

[σ3σ1,o − σ3,oσ1] < 0. (D-10)

Then it follows from (D-10), together with σ1

σ3
>

σ1,o

σ3,o
, (D-6), (D-8) and (D-9), that the

expression in (D-7) is negative. Thus E[V |H t]− Eo[V |H t] < 0 and the result follows.
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E Supplementary Material for Section 9

We prove Lemma 7 and Theorem 3 of Section 9 in a more general set-up than that described

in the main body of the paper. This more general set-up is of independent interest as it

allows for uncertainties other than those relating to the value of of the asset.

Specifically, suppose that there are N ≥ 3 states, where each state represents all ex-

ogenous variables that might influence the prices, and assume that there are N signals.

Without any loss of generality, order the states such that V1 ≤ V2 ≤ . . . ≤ VN , where

Vj denotes the value of the asset in state j = 1, . . . , N . Note that here, in contrast to

the model in the text, we allow for the possibility that the asset has the same values in

different states to reflect the idea that there may be factors, other than the value of the

asset, that may influence prices. In particular, we assume that the asset can have at most

I ≤ N different values. We denote the (public) probability of state j at date t by qtj and

the likelihood of signal S in state j by Pr(S|j).

We also restrict ourselves to a symmetric structure with respect to the values and the

initial beliefs on the distribution of values of the asset, as in the three states model of the

paper. Formally, we assume that the values are distributed on a symmetrical grid; thus

Vj ∈ {0,V, . . . , (I − 1)V} for all j = 1, . . . , N and V > 0. Further, for any r = 1, . . . , I, let

Cr := {j|Vj = (r− 1)V} be the set of states with valuations (r− 1)V and cr := |Cr| be the

number of states with valuation (r − 1)V. Assume (i) q1j = q1N+1−j for every j ≤ N/2 and

(ii) cr = cI+1−r for every r ≤ I/2.

We say that signal S is negatively biased if for all j≤ N
2
we have Pr(S|j) < Pr(S|N+1−j).

Notice that when cr = 1 for all r (hence I = N), this setup is identical to the one in

the main text.

We first prove that any informed type buys initially if it has a negative bias and if there

are enough noise traders.

Lemma II Let S be negatively biased. Then E[V |S] < E[V ]. Hence, there exists µi ∈ (0, 1]

such that S sells at the initial history if µ < µi.

Proof of Lemma II: Without loss of generality, we present the proof only for the case

when the number of value classes I is even so that I = 2k for some integer k. Then by the

symmetry of the prior E[V ] = V(2k − 1)/2. Also, E[V |S] = V
∑2k

r=1(r − 1)Pr(r|S), where

Pr(r|S) =
∑

j∈Cr
Pr(j|S). Thus, we need to show

2k
∑

r=1

(r − 1)Pr(r|S) <
2k − 1

2
. (E-11)

Next, since (a) Pr(S|j) > Pr(S|N + 1 − j), (b) q1j = q1N+1−j and (c) cr = cI+1−r, we have

Pr(r|S) > Pr(2k + 1 − r|S) for all r < (2k + 1)/2. Using this and
∑R

r=1 Pr(r|S) = 1, we
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have
∑k

r=1 Pr(r|S) >
1
2
>
∑2k

r=k+1 Pr(r|S). Therefore

(k − 1) +
2k
∑

r=k+1

Pr(r|S) < (k − 1) +
1

2
=

2k − 1

2
. (E-12)

Then by (E-11) it is sufficient to show that

k
∑

r=1

(r − 1)Pr(r|S) +

2k
∑

r=k+1

(r − 1)Pr(r|S) < (k − 1) +

2k
∑

r=k+1

Pr(r|S). (E-13)

But the second term on the left hand side of (E-13) satisfies the following:

2k
∑

r=k+1

(r − 1)Pr(r|S) =
2k
∑

r=k+1

Pr(r|S) +
2k
∑

r=k+1

(r − 2)Pr(r|S)

<

2k
∑

r=k+1

Pr(r|S) + (k − 1)Pr(k + 1|S) + [(k − 1)Pr(k + 2|S) + Pr(k − 1|S)]

+[(k − 1)Pr(k + 3|S) + 2Pr(k − 2|S)] + . . .+ [(k − 1)Pr(2k|S) + (k − 1)Pr(1|S)]

=

2k
∑

r=k+1

Pr(r|S) + (k − 1)

2k
∑

r=k+1

Pr(r|S) +

k
∑

r=1

(k − r)Pr(r|S).

Therefore, the LHS of (E-13) is less than

k
∑

r=1

(r−1)Pr(r|S)+
2k
∑

r=k+1

Pr(r|S)+(k−1)
2k
∑

r=k+1

Pr(r|S)+
k
∑

r=1

(k−r)Pr(r|S) = (k−1)+
2k
∑

r=k+1

Pr(r|S).

This demonstrates that (E-13) holds. Hence we must have that E[V |S] < E[V ]. To complete

the proof of the lemma we also need to show that there exists µi ∈ (0, 1] such that E[V |S] <

bid1 if µ < µi. As in Lemma 5 this follows immediately from E[V |S] < E[V ] and from

limµ→0 E[V ]− bid1 = 0. This completes the proof of Lemma II.

Next, we turn to the switching of behaviour. In our main characterization results for

the three state – three signal case to obtain switching by a herding type we assumed that

the signal is more likely when the value is highest than when the asset has the middle

value, and for the switching by a contrarian type we assumed that the signal is more likely

when the value is lowest than when the asset has the middle value. The analogue of those

conditions to the current setting with N states and I liquidation values are the following:

Pr(S|j) > Pr(S|i) for all j ∈ CI , i ∈ CI−1 (E-14)

Pr(S|j) < Pr(S|i) for all j ∈ C1, i ∈ C2 (E-15)
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In the three state case, a negatively biased signal that satisfies (E-14) is nU-shaped a

negatively biased signal that satisfies (E-15) is nHill-shaped.

Next we show that if the probability of informed trading is sufficiently small, then

conditions (E-14) and (E-15) can be used to establish the following.

Lemma III

(i) Let S satisfy (E-14). Then there exists µs
bh ∈ (0, 1] such that βt

iPr(S|j)−βt
jPr(S|i) > 0,

for all i ∈ CI−1, j ∈ CI, t and H t.

(ii) Let S satisfy (E-15). Then there exists µs
bc ∈ (0, 1] such that βt

iPr(S|j)−βt
jPr(S|i) > 0,

for all i ∈ C1, j ∈ C2, t and H t.

Proof of Lemma III: We show (i); the argument for (ii) follows analogously. Fix any

j ∈ CI and i ∈ CI−1. For any date t and history H t, let St be a set of signal types

that buy at history H t. Since βt
iPr(S|j)− βt

jPr(S|i) = (γ + µ
∑

S′∈St

Pr(S ′|i))Pr(S|j)− (γ +

µ
∑

S′∈St

Pr(S ′|j))Pr(S|i), it follows that βt
iPr(S|j)− βt

jPr(S|i) > 0 is equivalent to

Pr(S|j)− Pr(S|i) >
µ

γ

(

∑

S′∈St

Pr(S ′|j)Pr(S|i)−
∑

S′∈St

Pr(S ′|i)Pr(S|j)

)

(E-16)

By (E-14), the left hand side of (E-16) is positive. Also, since there is a finite number of

signals, the expression in parentheses on right hand side of (E-16) is uniformly bounded

in t. Therefore, there must exist µs
bh ∈ (0, 1] such that for any µ < µs

bh (E-16) holds for all

t and H t.

Next, we state out first characterization result in this general set-up (it is equivalent to

Lemma 7 when I = N).

Lemma IV

(i) Suppose S is negatively biased, satisfies (E-14) and let the following condition hold

∀ǫ > 0 ∃ H t such that qti/q
t
j < ǫ for all j ∈ CI−1 ∪ CI and i 6∈ CI−1 ∪ CI . (E-17)

Then there exists a µbh ∈ (0, 1] such that S buy herds if µ < µbh.

(ii) Suppose S is negatively biased, satisfies (E-15) and let the following condition hold

∀ǫ > 0 ∃ H t such that qti/q
t
j < ǫ for all j ∈ C1 ∪ C2 and i 6∈ C1 ∪ C2. (E-18)

Then there exists a µbc ∈ (0, 1] such that S is a buy contrarian if µ < µbc.

Proof of Lemma IV: We show part (i); part (ii) follows analogously. Assume that µ <

µbh ≡ min{µi
bh, µ

s
bh}, where µi

bh and µs
bh are respectively the bounds on the size of the

informed traders given in Lemmas II and III. Since S is negatively biased and µ < µbh, by

Lemma II, S sells at the initial history.
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Analogously to Lemma 9, by simple calculations, it can be shown that for any historyHt,

E[V |S,H t]− askt has the same sign as

∑

i<j

(Vj − Vi)
qtiq

t
j

ρtIρ
t
I−1

(βt
iPr(S|j)− βt

iPr(S|i)), (E-19)

where ρr =
∑

j∈Cr
qtj is the probability that the valuation is (r − 1)V, for all r. Consider

now all terms in (E-19) that pertain to both CI and CI−1. These are

∑

j∈CI

∑

i∈CI−1

qtiq
t
j

ρtIρ
t
I−1

(βt
iPr(S|j)− βt

jPr(S|i)). (E-20)

Since µ < µs
bh, by Lemma III, there exists an η > 0 such that βt

iPr(S|j)−βt
jPr(S|i) > η for

all i ∈ CI−1, j ∈ CI . Thus

(E-20) > η ·
∑

j∈CI

∑

i∈CI−1

qtiq
t
j

ρtIρ
t
I−1

= η. (E-21)

Furthermore, note that E[V |H t] > ρtI−1V(I − 2) + ρtIV(I − 1). Also, by the symmetries

assumed it must be that E[V ] ≤ V(I − 2). Therefore, E[V |H t] − E[V ] > ρtIV − (1 − ρtI −

ρtI−1)V(I − 2) = V
∑

j∈CI
qj − V(I − 2)

∑

j /∈CI∪CI−1
qj . This together with (E-17) and

finiteness of the state space imply that there exists a history H t such that the following

two conditions hold:

E[V |H t] > E[V ] (E-22)
∑

i<j,
i,j /∈CI−1∪CI

(Vj − Vi)
qtiq

t
j

ρtIρ
t
I−1

(βt
iPr(S|j)− βt

iPr(S|i)) > −η. (E-23)

The latter, together with (E-21), imply that at such a history (E-19)> 0. Thus, by (E-22),

type S buy herds at H t. This completes the proof of Lemma IV.

Notice that the above result is the analogue of Lemma 4 for our current set-up with N

and I values. Also, properties (E-17) and (E-18) are respectively analogous to (3) and (4)

for our set-up.

As with (3) and (4), conditions (E-17) and (E-18) are assumptions on endogenous

variables. One restriction on the information structure that ensures these properties is

MLRP. In particular, with MLRP one can show (as in the three states case) that the

probability of a buy is increasing in the liquidation values and the probability of a sale is

decreasing in the liquidation values; these relationship in turn ensure (E-17) and (E-18).
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Lemma V Suppose that the signals satisfy MLRP and assume that S1 < . . . < SN . Then

there exists δ < 1 such that for all i,j with i < j and all t, we have βt
i/β

t
j < δ and σt

j/σ
t
i < δ.

Proof of Lemma V: We will show only βt
1 < βt

2 < . . . < βt
N ; the result for σi follows

analogously. To show the former, observe that with MLRP signals, expectations are ordered

in signals: E[V |H t, Si] > E[V |H t, Sj] if i > j. Thus, if signal type Si buys, so will all Sl > Si

and for any t and any i < j, βt
i − βt

j has the same sign as

N
∑

l=k

Pr(Sl|j)−

N
∑

l=k

Pr(Sl|i) = 1−

k−1
∑

l=1

Pr(Sl|i)−

(

1−

k−1
∑

l=1

Pr(Sl|j)

)

=

k−1
∑

l=1

Pr(Sl|i)−

k−1
∑

l=1

Pr(Sl|j), for some k ≤ N.

Since MLRP implies First Order Stochastic Dominance and there are a finite number of

signals it follows that there exists ǫ > 0 such that
∑k−1

l=1 Pr(Sl|i)−
∑k−1

l=1 Pr(Sl|j) > ǫ for all

k and i < j. But then βt
i/β

t
j < 1− ǫ. This completes the proof of Lemma V.

Theorem 3a Assume that signals satisfy MLRP and let signal S be negatively biased.

(a) If Pr(S|VN−1) < Pr(S|VN) then there exists µbh ∈ (0, 1] such that S buy herds if µ < µbh.

(b) If Pr(S|V1) < Pr(S|V2) there exists µbh ∈ (0, 1] such that S is a buy contrarian if µ < µbh.

Note that Theorem 3a is more general than Theorem 3 as it applies to the general setup

depicted in this supplementary material.

Proof of Theorem 3a. Part (a): It remains to be shown that histories exists such that

(E-17) holds. Consider the infinite path consisting of only buys at every date. By MLRP

and Lemma V, there must exist δ ∈ (0, 1) such that for every H t and for any i and j with

i < j, we have βt
i/β

t
j < δ. Since

qt+1

i

qt+1

k

=
βt
i

βt
k

qti
qt
k

, it then follows that qti/q
t
j converges to zero

along this infinite path of buys, for all i /∈ CI−1∪CI and j ∈ CI−1∪CI . This together with

Lemma IV (i) concludes the proof for the existence of buy herding.

Part (b) follows analogously.

F Supplementary Material for Section 10

In this section we show how AZ’s composition uncertainty can be accommodated within

our N -state framework of the last section and why the types that herd in this set-up also

have U-shaped signals.

In AZ’s set-up there are three liquidation values 0, 1/2 and 1, as in their basic example.

When the liquidation values are 0 and 1, there are two levels of informativeness of the

market W and P . Thus, there are five states (0,W ), (0, P ), 1/2, (1, P ) and (1,W ), and

we enumerate them by 1, 2, 3, 4 and 5, respectively. Thus, in terms of the notation from

10



the previous section of this supplementary material, I = 3,V = 1/2 and N = 5. We also

denote the states with valuation i by Ci. Therefore, C0 = {(0,W ), (0, P )}, C1/2 = {1/2},

and C1 = {(1,W ), (1, P )}.

In terms of the private information of the traders, AZ’s description is as follows. There

are two kinds of informed traders. All have a common partition of the liquidation values

given by {(0, 1), 1/2}. When values 0 or 1 are realized, the two types have different preci-

sions with respect to the two valuations. Specifically, high “quality” type h has precision ph

and low “quality” type l has precision pl, with 1 ≥ ph > pl > 1/2. Thus, in this model there

five signals. We denote the signal that confirms valuation 1/2 by S3, and let S1 and S5

be the signals that high quality traders receive and S2 and S4 those that low quality types

receive. Finally, the proportion of different kind of traders depends on the informativeness

of the market; in particular, the likelihood of quality type i = h, l occurring in market j is

given by µj
i , i ∈ {h, l} and j ∈ {W,P}, with µW

h + µW
l = µP

h + µP
l = µ.

Using our notation, we can then describe the information structure as follows:

(0,W ) (0, P ) 1/2 (1, P ) (1,W )

P (S | i) i = 1 i = 2 i = 3 i = 4 i = 5

S1
µW
h

µ
ph

µP
h

µ
ph 0

µP
h

µ
(1− ph)

µW
h

µ
(1− ph)

S2
µW
l

µ
pl

µP
l

µ
pl 0

µP
l

µ
(1− pl)

µW
l

µ
(1− pl)

S3 0 0 1 0 0

S4
µW
l

µ
(1− pl)

µP
l

µ
(1− pl) 0

µP
l

µ
pl

µW
l

µ
pl

S5
µW
h

µ
(1− ph)

µW
h

µ
(1− ph) 0

µW
h

µ
ph

µW
h

µ
ph

To demonstrate buy herding consider signals S1 and S2 (sell-herding arguments are

analogous and involve considering S4 and S5). These signals are U-shaped in the sense

that Pr(Si|j) > Pr(Si|k) for every i = 1, 2 and j ∈ C0 ∪ C1 and k ∈ C1/2. By appealing to

the arguments of the previous section, the U-shaped nature of signals S1 and S2 allows us

to establish buy herding as follows.

Take the case of S1 and suppose that S1 does not buy herd. Note also that S1 is

negatively biased (in the generalized sense defined in the last section: Pr(S1|j) > Pr(S1|6−j)

for each j = 1, 2) and satisfies (E-14). Therefore, if (E-17) holds, Lemma IV applies and

types S1 buy herd when there are a sufficient amount of noise traders; a contradiction. The

last step is to construct histories that satisfy (E-17).

The proof of (E-17) is as in Proposition 3. (Since S3 is a Hill shaped signal, it cor-

responds to the case D2 of that proof.47) Specifically, one constructs a two-stage history.

47This sub-case proves the existence of the histories that yield (E-17) for the case with two U/Hill shaped
signals with opposing biases and a Hill/U shaped signal with a zero bias and it is the case for which our
results formally subsume AZ’s example of event uncertainty.
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During the first stage, the actions are such that qti/q
t
j for i ∈ C0, j ∈ C1/2 decrease while

qti/q
t
j , for i ∈ C0, j ∈ C1 do not change (during this stage the actions correspond to those

that S3 will take). The second stage involves buys only. During this stage qti/q
t
j for each

i ∈ C0, j ∈ C1 decrease while qti/q
t
j for i ∈ C0, j ∈ C1/2 may increase. Finally, the length

of the two stages are chosen appropriately so that (E-17) holds (if the second stage is long

enough then qti/q
t
j for each i ∈ C0, j ∈ C1 is sufficiently small and if the length of the first

stage is sufficiently long relative to the second stage then qti/q
t
j for each i ∈ C0, j ∈ C1/2 is

sufficiently small).

G Supplementary Material for Section 11

Simple History Dependence. The order of trades and traders does not affect the price

path as long as the model primitives do not allow any type of trader to change behaviour.

Clearly, herding or contrarian behaviour involve such a change of behaviour; changes from

buying to holding or selling to holding also qualify as a change of behaviour.

Without changes in behaviour, it suffices to study the order imbalance (number of buys

minus number of sales) to determine prices, but with changes, the order of arrival matters

a great deal. Consider the following numerical example48 of an MLRP signal structure with

an nU-shaped S2

Pr(S|V ) V1 V2 V3

S1
40
49

4
49

0

S2
9
49

9
490

243
12250

S3 0 9
10

12007
12250

µ = 1209
1600

,

V = (0, 10, 20), and

Pr(V ) = (1/6, 2/3, 1/6).

For illustrative purposes, assume that the first fifteen traders are all informed and each

signal Si, i = 1, 2, 3, is received by five of the first fifteen traders. Next, we compare the

price paths for different arrival orders of these traders.

Series 1: The arrival order is 5×S1–5 ×S2–5×S3 (meaning the first five receive S1,

the next five S2 and the last five S3). The S1 types, who move first, all sell and thus the

price drops. The S2 types also sell and the S3 types buy. Computations show that after

these 15 trades the public expectation will drop from 10 to .15.

Series 2: 5×S1–5×S3–5×S2. Here the outcome is the same as in the previous series

with S1 traders selling, S3 types’ buying and finally the S2 types selling. The public

expectation also drops from 10 to .15.

Series 3: 5×S3–5×S2–5×S1. The S3 traders move first and buy. The S2 types will

now behave differently from the previous two series and will be buy-herding. The public

48We chose the numbers so that there can be herding after a small number of trades.
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expectation now rises to about 13.5. Finally, the five S1 type sell, and then the public

expectation drops to 10.31.

The difference between the outcome for Series 3 with those of Series 1 and 2 illustrates

how the arrival order of traders matters: since there are S2 types who trade, this type’s

change in trading-mode (from selling to buying) strongly affects the price-path.

Note, however, that even if there are no S2-types directly involved in trading, the market

maker has to consider the possibility that this type trades and thus has to account for this

type’s change of trading mode. To illustrate this, we next compare the outcome when the

same number of buys and sales occurs, but in different orders.

Series 4: 20 buys followed by 20 sales. After 20 buys, the public expectation

is 15.36, after 20 subsequent sales it is 3.12.

Series 4: 20 sales followed by 20 buys. After 20 sales, the public expectation

is 1.16× 10−13, after 20 subsequent buys it is 10.0064.

In summary, the S2-type can change trading modes in response to observing the order

flow; thus the order flow affects prices and the frequency of different types of future trades.

In the short run, the fluctuations may thus be influenced by the precise order of trades.

Price Sensitivity. To further elaborate on the price sensitivity induced by herding, we

simulate price paths (Figure 1) using the following MLRP specification:

µs
bh = 0.7656 ≡ µbh

µi = 0.9215

V = (0, 10, 20),

Pr(V ) = (1/10, 4/5, 1/10), and

Pr(S|V ) V1 V2 V3

S1
40049
49000

4
49

0

S2
8951
49000

9
490

243
12250

S3 0 9
10

12007
12250

(G-24)

In the left panel, there are two relevant price paths: the first (in gray) is for a setting

with µ = µbh − ǫ, ǫ = 1/10, 000; in other words, there is just enough noise so that herding

is possible. The second price path (in red) is for µ = µbh so that there cannot be herding.49

The entry series for the graph is as follows: first, there is a long series of S3 types, who all

buy; this is followed by a group of S2 types and eventually by some S1 types. The point

when S2 types start entering is clearly marked; the S1 types enter at the point when both

curves peak. The point at which herding starts is marked too.

The series is constructed so that there are S3 types who enter during herding. When

the S2 types enter, in the herding case, they buy, in the no-herding case, they hold. Even

with holds, however, prices increase (this is due to the U-shaped csd).50

49The third price path (in blue) is for the case of the opaque economy as described in the Section 8. For
the opaque case the differences in prices for the two levels of µ are negligible.

50The same simulation for the case of the opaque economy as described in the Section 8 results in S2

types selling and prices falling for both levels of µ.
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Figure 1
Illustrations of the Sensitivity in Prices Paths with and without Herding.
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In the middle panel we plot prices for the same specifications, this time for a random

sequence of traders; both series have the same sequence of traders but due to herding their

actions may differ.51 In the right panel we plot the difference of the two rational price-series

from the middle panel. As the series with herding-prices has more noise (because µ < µbh),

initially, the price for the no-herding series is above the price of the herd series. Once herding

starts (here after 8 trades), and once an S2 type enters, this relation flips, illustrating that

due to herding prices move stronger in the direction of the herd than in the no-herding case.

Does Herding Hamper Learning? To explore this issue, we use Monte Carlo sim-

ulations and compare the two scenarios outlined when discussing price sensitivity. That

is, for the first series, there is just enough noise so that buy-herding can be triggered,

µ = µbh − ǫ, ǫ ≈ 1/10, 000. In the second series, herding cannot occur, because there is

too much informed trading, µ = µs
bh. We will refer to prices in the first setting as herding-

prices, irrespective of whether or not herding actually occurred; we refer to prices in the

second setting as no-herding prices. Comparing the speeds of convergence for our two sets

of simulations we note the following two observations:

1. if the true value is V1 or V2, then herding-prices converge slower;

2. if the true value is V3, then convergence with herding is faster.

These observations are based on the following: For the simulations we again used the

specification of the parameters given by (G-24). Fixing the true liquidation values, we

then drew 650 traders at random (noise and informed) assuming that µbh ≈ .766. Since

the proportion of the informed agents µ is large — approximately three quarters for both

simulations — the 650 trades are almost always sufficient to obtain convergence to the true

51There is also a series for the the opaque economy (Section 8) which, not surprisingly, is entirely below
both rational series. Again, the opaque economy price series for µ = µbh and µ = µbh−ǫ are almost identical.
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Figure 2
The Difference in Speeds of Convergence.

Each graph plots the difference of the negative of the average log-distance of the transaction prices of

herding and no-herding case. An up-sloping line thus indicates that for any t herding-prices are further

from the true value than no-herding prices. All graphs are scaled to fit the page. The underlying signal

distribution is listed in Appendix G-24.
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#650

trader
#650

.0097

trader
#650

-.0055

The true value is V1 The true value is V2 The true value is V3

value. Next, we computed the time series of the transaction prices for both the herding and

the no-herding case, and then recorded for each t and for both cases the absolute distance of

the transaction price from the true value (which we know). We then repeated this procedure

a large number of times, and calculated for each t and for each case the average distance

from the true value. Since prices converge to the true value, these average distances decline

in t. In the simulations, this distance declines approximately exponentially to zero. Thus

the slope of the logarithm of the average distance measures the speed of convergence.

As the final step, we subtract at each t the log-averages for the no-herding from the

herding series. A positive number indicates that the herding series is slower, i.e. that the

average herding price is further away from the true value. Figure 2 plots these differences

and the graphs are striking; they confirm our two observations mentioned above.52

To see the intuition for the these observations compare the effects of buy-herding on the

herding and no-herding prices. First, when buy-herding occurs, S2 types buy in the herding

case and thus there are more buys with herding than in the no-herding case. Second, in

the case of a buy, prices in the herding case tend to be higher than in the no-herding case.

Since the no-herding prices here are the similar or higher than the ones that arise in the

opaque economy of Section 8 (only S3 types buy in both cases), this second effect follows

from the same reasoning used in the previous simulation to explain why, in the case of a

52We have also made a formal analysis by regressing the log-distance on time and, using the Chow test,
checking if one slope is steeper than the other. The results were highly significant.
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buy, prices in the rational world, when herding starts, exceed those in the opaque economy

(see Proposition 6(1a)). Third, when there is a sale, prices in the herding and no-herding

cases are almost identical and unaffected by buy-herding. This is because in both cases

only S1 types sell: in the herding case this is so by definition and in the no-herding case,

the S2 type’s expectation is almost equal to the ask-price (expression (11) is almost zero)

and thus larger than the bid-price.53

Now it follows from the above that if the true value is V1 or V2, herding prices con-

verge slower: during herding, herd-buys move prices away from the true value by a larger

magnitude and there are more such buys than in the no-herding case (sales have a similar

effect in both cases). If, however, the true value is V3 then once herding starts, prices in

the herding-case move up more strongly because of the first two effects and thus they move

faster towards the true value. This leads to a higher speed of convergence in the herding

case. Figure 2 documents these three cases.

The Probability of the Fastest Herd. The shortest sequence of trades that leads to

buy-herding is one with only buys; this is the “fastest” herd. We now want get a sense of

how likely this sequence is. Keeping the csd and the prior distribution fixed but varying

the proportion of informed trading, we compute first how many buys are needed for buy-

herding to begin, and then we determine how likely this sequence of buys is. The same

type of analysis clearly applies to sell-herding.

As was explained before, S2 types buy at any history Ht if the expression in (11)

is positive. As the amount of informed trading increases from 0 to µbh, there are then

two opposing effects. First, as noise decreases, the positive term in expression (11) (the

first term) becomes smaller. This implies that for any history, the difference between the

market maker’s and the S2 type’s expectation becomes smaller; thus to get buy-herding one

needs more buys. Second, as noise decreases, the informational content of past behaviour

(public information) improves and this makes herding more likely. Formally, the second

and third terms in (11), the negative terms, decline as µ increases. This is because for any

i = 2, 3, β1

βi
= µPr(S3|V1)+γ

µPr(S3|Vi)+γ
, ∂(β1/βi)

∂µ
= (Pr(S3|V1)− Pr(S3|Vi))/βi

2 and thus, since S1’s csd is

decreasing, ∂(β1/βi)
∂µ

< 0.

While we do not have an analytical result on the net effect of increasing µ from 0

to µb, in all numerical examples that we computed the second effect dominates. Thus

53The herding and no-herding price paths may also differ even if no buy-herding occurs (if S2 types
behave the same way in the two cases) because the proportions of informed trading µ are different for
the two cases. In particular, when S2 types do not buy-herd, since µ is smaller in the herding case, each
price-movement in the herding-price series is smaller than than in the no-herding case, and as a result speed
of convergence is slower in the former series. However, since for the simulations the difference between the
values of µ is small (ǫ = 1/10, 000), the consequence of this effect is small relative to the first two effects
mentioned above.
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Figure 3
Trades needed for Herding the Probabilities for these trades.

The left panel plots the value of expression (11) as a function of µ, with µ ∈ (0, µbh), and of no-herd buys b.

Whenever the bend curve crosses the 0-surface from below, herding is triggered. The middle panel computes

the minimum integer number of no-herd buys that would trigger herding as a function of noise level µ.

The right panel computes two probabilities: the first is the probability of having exactly the threshold

number of buys at the beginning of trade (the thresholds are taken from the middle panel) conditional on

the true state being V3. The second probability is the unconditional likelihood of this threshold number.

The plots in the right panel are functions of the µ. The signal distribution that underlies these plots is

listed in line (G-24).
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as noise trading declines (µ increases to µbh) it takes fewer buys to trigger buy-herding.

Figure 3 plots the minimum number of such consecutive time-zero buys needed to trigger

buy-herding for our simulations. As the amount of noise decreases, ex ante it gets more

likely that these consecutive buy-trades occur. (Figure 3’s right panel illustrates these

probabilities.)
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