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Abstract: This paper considers a model of a rating agency with multiple clients, in

which each client has a separate market that forms a belief about the quality of the client

after the agency issues a rating. When the clients are rated separately (individual rating),

the credibility of a good rating is limited by the incentive of the agency to exaggerate

the quality of its client. In centralized rating, the agency rates all clients together and

shares the rating information among all markets. This allows the agency to coordinate

the ratings and achieve a higher average level of credibility than in individual rating. In

decentralized rating, the ratings are again shared among all markets, but each client is rated

by a self-interested rater of the agency with no access to the quality information of other

clients. When the underlying qualities of the clients are correlated, decentralized rating

leads to a smaller degree of rating inflation and hence a greater level of credibility than in

individual rating. Centralized rating dominates decentralized rating for the agency when

the underlying qualities are weakly correlated, but the reverse holds when the qualities are

strongly correlated.
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1. Introduction

Consider a rating agency that issues a report on each of its clients. The rating agency is

informed of the quality of each client and its report on the client is received as a signal

by the market that the client faces. The agency cares about the payoff to each client.

Examples of a rating agency with multiple clients include an economics department that

evaluates its PhD graduates, a stock brokerage firm that deals with multiple stocks, and a

consumer electronics magazine that issues ratings on multiple products. We are interested

in an environment in which the payoff to each client depends only on the perceived quality

of that client, and not on the perceived qualities of other clients, so that there is no direct

payoff link among the clients. The only possible link is informational: when the markets

are given access to all client ratings, the perceived quality of each client can depend on

the ratings of other clients, either exogenously through some statistical correlation among

client qualities, or endogenously through the reporting strategy of the agency, or both.

In the economics department example, the payoff link is likely to be absent if the PhD

graduates are in different fields so that their markets are separate, or if the markets are

sufficiently thick that each graduate receives a competitive wage, while the informational

link will be present if there are strong cohort effects in the graduate program or if the

department ranks the students by comparing them. Similarly, for the stock brokerage firm

example and the consumer magazine example, there may be little demand substitutability

or complementarity in the aggregate so that the price of a rated stock or an electronic

product depends only on the valuation of that stock or product,1 but a positive correlation

among the client qualities can still arise, for example, if the future returns of all the stocks

are affected by an economy-wide shock or the electronic products share significant common

parts or designs. In our model, because the agency cares about the perceived qualities of its

clients, credibility of the ratings is at issue. The objective of this paper is to compare the

credibility of ratings under three schemes that differ in whether the markets have access

1 The literature on asset pricing focuses on the case where the price of a stock depends on the probability
distribution of the future cash flow and some “pricing kernel.” In a large market, the cash flow on any
single stock does not affect the pricing kernel, and so the payoffs for different stocks are separable. For
the electronics example, payoff separability is a more appropriate assumption if the products belong to
different categories, or if consumers have strong brand loyalty.
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to all the reports and in whether the raters in the agency share the knowledge about client

qualities.

In “individual rating,” the market for each client does not observe the ratings for

other clients. This is a natural benchmark due to the absence of any direct payoff linkage.

The rating scheme can be analyzed as a simple signaling model with one sender (the rating

agency with a single client) and a receiver (the market for the client), with the market only

interested in making the right inference about the client’s underlying quality. We make

assumptions on the payoff function of the agency regarding its reputational concerns and

how these concerns interact with the derived benefits from an improved perception of the

client quality. These assumptions imply that the incentive to exaggerate the quality always

outweighs the reverse incentive to downplay it. This “single crossing” property allows us

to focus on the “inflationary equilibrium,” which is a semi-pooling equilibrium where the

client’s quality is truthfully revealed whenever it is good and sometimes exaggerated when

it is bad. The benchmark model of individual rating can be interpreted as a model of

credibility. The equilibrium perception of a good rating measures credibility and there is

a one-to-one correspondence between credibility and the equilibrium ex ante payoff of the

agency. The inability of the rating agency to commit to an honest rating policy dilutes the

meaning of a good rating without changing the meaning of the bad rating, and therefore

reduces the rating agency’s ex ante payoff. We ask the following question in the rest of

the paper: can the rating agency obtain a higher ex ante payoff than in the inflationary

equilibrium in individual rating by improving the credibility of good ratings?

In “centralized rating,” the agency rates all clients together and shares the reports

among all markets. Each market can use the ratings of other clients as well as its own

client to make inference about the quality of the latter. When the rating information is

shared among all markets, the agency can effectively coordinate the ratings of its client. For

example, the agency can employ a correlated randomization strategy between good and bad

ratings across clients of bad quality, even when client qualities are statistically independent.

It turns out that correlated randomization is necessary to improve the agency’s payoff

beyond the benchmark inflationary equilibrium under individual rating. We show that

there exists an equilibrium that weakly dominates the benchmark inflationary equilibrium

2



for the agency, and that an equilibrium that strictly dominates it exists when the prior

probability that no client has good quality is small.

In “decentralized rating,” the ratings are shared among all markets, as in centralized

rating, but each client is rated by a self-interested rater of the agency with no access to

the quality information of other clients. This means that only independent randomization

across clients of bad quality is possible, as in individual rating. However, unlike individual

rating, ratings information is shared among all markets, thus the perception of a good

rating depends on the total number of good ratings in all markets. This endogenous payoff

link among the clients makes it more difficult for each rater to fool the market with an

exaggerated rating. As a result, the equilibrium probability of an inflationary rating can

be lower and the average credibility of a good rating can be higher than in the benchmark

inflationary equilibrium under individual rating, leading to a greater equilibrium payoff for

the agency.

Comparison between centralized rating and decentralized rating in terms of equilib-

rium credibility of good ratings and ex ante payoff to the agency depends on the degree of

correlation. When the underlying qualities are independently distributed, any inflationary

equilibrium under decentralized rating is payoff-equivalent to the benchmark inflationary

equilibrium under individual rating, as the ratings of other clients cannot discipline each

individual rater and thus there is no gain in credibility. In contrast, with independent

qualities, an equilibrium that strictly dominates the benchmark equilibrium typically ex-

ists under centralized rating. With correlation across the underlying qualities, there is less

room to manipulate ratings under both centralized rating and decentralized rating. When

the underlying qualities are almost perfectly correlated, under centralized rating there is no

inflationary equilibrium that strictly dominates the benchmark equilibrium under individ-

ual rating, as the strong correlation across client qualities severely reduces the credibility

of coordinated rating. In contrast, under decentralized rating the discipline on credibility

imposed by strong correlation allows the construction of an inflationary equilibrium that

is arbitrarily close to truth-telling. Thus, centralized rating is dominated by decentralized

rating for the agency with strong correlation.

Our comparison results regarding individual rating, centralized rating and decentral-

ized rating have strong implications for how an agency can gain credibility of its ratings
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and improve its welfare. Since there exist inflationary equilibria that weakly dominate

the benchmark under either centralized or decentralized rating schemes, it is always to the

advantage of the agency to share ratings information among all markets it serves. Whether

the agency should share information about client qualities among its raters or commit to a

policy that restricts information access and preserves the raters’ independent concerns for

career reputation, depends on the underlying correlation structure across client qualities.

Our results suggest that the agency should group together clients with weakly correlated

qualities and centralize their rating, but for clients with strongly correlated qualities the

agency should decentralize their rating among the raters.

It is interesting to interpret our comparison results between centralized rating and

decentralized rating in terms of different market structures for rating agencies as opposed

to different information structures for a single rating agency. The centralized rating scheme

naturally corresponds to the monopoly market structure, while the decentralized scheme

can be equivalently viewed as the competitive market structure. Although under the

decentralized scheme there is no direct competition among the agencies because the clients

have separate markets, the agencies indirectly compete for credibility as the ratings are

observed by all markets. Our results then suggest that the comparison between the two

market structures depends on the degree of correlation across the underlying states of

nature. The monopoly structure performs better due to an economy of scale when the

states are weakly correlated. When the states are strongly correlated, the competitive

structure does better because competing ratings constrain the incentive to inflate and

improve the credibility of good ratings.

The paper is organized as follows. Section 2 presents the basic ingredients of our model

of rating agencies. We introduce the out-of-equilibrium belief refinement used throughout

the paper, and characterize an inflationary equilibrium under individual rating that serves

as the benchmark of comparison. In Section 3 we deal with centralized rating. This

turns out to be a signaling model with one-dimensional private information and multi-

dimensional signals. We establish the existence of an inflationary equilibrium that weakly

dominates the benchmark inflationary equilibrium of individual rating for the agency in

terms of expected payoff. We provide a sufficient condition for the existence of an equilib-

rium that strictly dominates the benchmark inflationary equilibrium. Section 4 presents the
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model of decentralized rating. We introduce a correlation structure that accommodates

possibilities of both positive and negative correlation across client qualities in a multi-

dimensional setting. With this structure, and under further assumptions on the payoff

functions of the agency, we show that there exists an inflationary equilibrium that weakly

dominates the benchmark inflationary equilibrium of individual rating for the agency in

terms of expected payoff. In Section 5 we study how the comparison between centralized

rating and decentralized rating depends on the correlation across client qualities. Using

a specific correlation structure and focusing on the limit case when the number of clients

is arbitrarily large, we show that increasing correlation leads to more ratings inflation,

lower credibility of good ratings and lower equilibrium payoff to the agency under central-

ized rating, while the opposite occurs under decentralized rating. Section 6 provides some

remarks on related literature. Proofs of all lemmas can be found in the appendix.

2. A Model of Rating Agencies

A rating agency deals with N clients. In our model the N sets of relationship between

each client i, i = 1, . . . , N , and the corresponding market (end-user of the rating for the

client) are identical. The underlying quality Si of each client i is either good (G) or bad

(B); the rating si for the client is either good (g) or bad (b). The objective function of

market i is to minimize the expectation of the squared difference between a real-valued

decision variable δi and a random variable which is equal to 1 if Si = G and 0 if Si = B.

Let qi denote the market’s (endogenous) belief that the quality of the client is good. The

optimal decision for market i is to set δi equal to qi. The realized loss is (1−qi)2 if Si = G,

and q2
i if Si = q2

i . We write the rating agency’s payoff function from client i as U(Si, si, qi)

for Si = G,B and si = g, b.2 The total payoff to the agency is the sum
∑N

i=1 U(Si, si, qi).

For the statistical distribution of client qualities, at this point we assume only that

the client qualities are exchangeable random variables: the probability of any realization

of the random vector (S1, . . . , SN ) depends only on the number of clients of good quality.

2 In our model ratings are not cheap talk. Further, we make the implicit assumption that for each
client the message space is the same as the type space and we focus on the comparison between centralized
and decentralized rating schemes. The analysis of games in which a richer set of costly signals is available
requires additional setup and is beyond the scope of this paper.

5



The joint probability distribution of (S1, . . . , SN ) can then be represented by a vector

(π0, . . . , πN ), where πn is the probability that there are exactly n clients of good quality.

We assume that πn > 0 for each n = 0, 1, . . . , N . Define π as the probability that any

given client is of good quality, which satisfies

π =
1
N

N∑
n=1

nπn. (1)

The assumption of exchangeability introduces symmetry across clients that simplifies our

analysis without imposing statistical independence. In the applications of the model that

we have in mind, correlated client qualities might be an important feature. For exam-

ple, student qualities might be correlated through peer effects, stock valuations through

some underlying common fundamental, and electronic products through common design

features. It turns out that the specific correlation structure does not play any role in our

equilibrium construction under centralized rating scheme. We will need to make further

assumptions on the correlation structure when we analyze decentralized rating.

A few remarks about the setup are in order. First, the specific preference function

adopted here for the markets is meant to capture the idea that each client faces competitive

bids after the market updates its belief about the quality of the client based on the reports

of the agency. This reduces the role of the receiver in our signaling model to forming

rational expectations of the client quality, and allows us to focus on the signaling incentives

of the agency. Second, the payoff of the agency in the relationship with client i is assumed

to depend on the market’s belief qi about client i’s quality, which summarizes the payoff to

the client. This models the idea that the agency is not an impartial provider of information,

in that it cares about the payoff to the client. Third, both the underlying quality Si and the

signal si enter the payoff function of the agency. This form allows for any two-state, two-

signal setup. The general idea is that the payoff of the agency is affected both by the payoff

to the client and by its own reputational concerns, and we are using the function U as a

reduced-form representation of the agency’s payoff. Later we will make further assumptions

on how the concern for the client’s payoff and the reputational concerns interact with each

other. Finally, the payoff of the agency is assumed to be additively separable in the utilities

from the N sets of client relationships. This separability assumption is justified if the payoff
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to each client i only depends on the belief qi about the client’s quality. As mentioned in

the introduction, there are environments in the labor market, the financial market and the

goods market in which this assumption is reasonably appropriate. We do not claim that

it holds in all relevant situations for rating agencies. Rather, the separability assumption

is made to focus exclusively on informational issues of ratings.

We need to make further assumptions on the common payoff function U . We drop the

subscript i for now as there is no risk of confusion. First, we assume that the derivative of

U(S, s, q) with respect to q, Uq(S, s, q), exists and is strictly positive for each q ∈ (0, 1).3

Assumption 1. Uq(S, s, q) exists and is strictly positive for each S = G, B, s = g, b and

q ∈ (0, 1).

Signaling games often have a multiplicity of equilibria. One way to minimize the

equilibrium selection issue is to ensure that if the agency weakly prefers g to b when the

quality is B, then it strictly prefers g to b in state G, and conversely, if the agency weakly

prefers b to g in state G, then it strictly prefers b to g when the quality is B. This condition

may be referred to as “single-crossing.” It will be used to construct equilibria that involve

only one form of misrepresentation, referred to as “inflationary rating,” which is issuing

a good rating when the quality is bad, rather than “deflation,” or issuing a bad rating

when the quality is good. For the single-crossing result to be effective in constructing

inflationary equilibria, we will need it to hold regardless of how different ratings induce

different beliefs:

U(G, g, q)− U(G, b, q′) > U(B, g, q)− U(B, b, q′) (2)

for all q, q′ ∈ [0, 1]. Condition (2) can be thought of as payoff complementarity between

the underlying quality S and the rating g, modified to suit the signaling model so that it

holds whenever a switch of the underlying quality for the same rating does not affect the

belief q while a switch of the rating for the same quality generally will affect q.4

3 This rules out situations where the market’s response to the agency’s rating is discrete, for example,
where the only choice of the market is whether or not to acquire the client’s service at some fixed wage.

4 Condition (2) is stronger than we need for the purpose of the analysis; single-crossing requires it to
hold only when the right-hand-side is non-negative.
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The following assumption on payoff functions U(S, s, q), together with Assumption 1,

immediately leads to condition (2).5

Assumption 2. Uq(G, g, q) > Uq(B, g, q), Uq(G, b, q) < Uq(B, b, q) for any q ∈ (0, 1), and

U(G, g, 0)− U(G, b, 0) > U(B, g, 0)− U(B, b, 0). (3)

One may interpret the difference U(G, g, ·) − U(B, g, ·) as a measure of the agency’s rep-

utational concern for honesty. Given the same rating g and any belief q, U(B, g, q) differs

from U(G, g, q) because the agency is concerned that the true quality of the client may be

discovered, thus revealing a dishonest rating. Similarly, the difference U(B, b, ·)−U(G, b, ·)
is a measure of the agency’s reputational concern for competence: for the same rating b

and any q, U(G, b, q) differs from U(B, b, q) because when the true quality of the client is

discovered, it reveals an inaccurate rating. Assumption 2 requires both differences to be

increasing in the client’s perceived quality q. This assumption is motivated by the idea

that it is more likely (or faster) that the market learns the true quality of the client when

the perceived quality is higher. For the consumer magazine example mentioned in the

introduction, if an electronic product is new to the market and is of an experience good

variety, a higher perceived quality will lead to greater sales and faster consumer learning

about its true quality. Similarly, a higher market belief about the quality of a job candidate

is more likely to result in a better and more challenging job placement, which can quickly

reveal the true quality of the candidate, and a higher valuation about a rated stock may

lead to a greater transaction volume, which motivates more subsequent research.

Assumption 3. U(B, g, 1) > U(B, b, 0) > U(B, g, 0).

The above assumption makes the individual rating scheme, analyzed in the next subsection,

5 To see this, note that since Uq(G, g, q) > Uq(B, g, q), we have U(G, g, q)− U(B, g, q) ≥ U(G, g, 0)−
U(B, g, 0) for any q. Similarly, since Uq(G, b, q) < Uq(B, b, q), we have U(G, b, q′)−U(B, b, q′) ≤ U(G, b, 0)−
U(B, b, 0) for any q′. Condition (2) then follows from inequality (2.2) in Assumption 2. Also, the inequal-
ities are sufficient but not necessary for the single-crossing condition (2). Our analysis of individual rating
and decentralized rating goes through so long as (2) holds, but the two inequality conditions on Uq are
used for equilibrium construction in the case of centralized rating.
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a benchmark model of credibility.6 When the quality is B, the agency has incentive to

issue an inflationary rating if it results in a sufficiently favorable belief, but there is no

incentive to inflate if beliefs cannot be favorably manipulated. Together with Assumption

1, it implies that there is a unique q∗ ∈ (0, 1) that satisfies

U(B, g, q∗) = U(B, b, 0). (4)

The value of q∗ can be thought of as an inverse measure of the incentive to inflate when

the client quality is bad.

The final assumption is a strengthening of the single-crossing condition (2). It turns

out that under decentralized rating, the single-crossing condition is sufficient for the ex-

istence of an inflationary equilibrium, just as under individual rating. However, under

centralized rating, the condition needs to be strengthened to ensure the construction of

inflationary equilibria.

Assumption 4. For any q ∈ (q∗, 1),

U(G, g, q)− U(G, b, 0)
U(B, g, q)− U(B, b, 0)

>
Uq(G, g, q)
Uq(B, g, q)

.

By Assumption 3, the denominator of the left-hand-side of the above inequality is positive.

It then follows from Assumption 2 that the numerator is also positive, and in fact, both

the left-hand-side and the right-hand-side are greater than 1. Assumption 4 strengthens

condition (2) for market beliefs that are more favorable than the benchmark belief defined

by equation (4). Alternatively, the assumption can be viewed as imposing an upper bound

on U(G, b, 0), which is the payoff to the agency from a client of quality G when it issues

the rating b. Assumption 4 thus requires the payoff to be sufficiently low, or the repu-

tational concerns for competence to be sufficiently great. This assumption is used in the

construction of inflationary equilibria under centralized rating to regulate the incentives

to issue deflationary ratings.

6 If the first inequality of the assumption is violated, the agency always prefers to report truthfully
when the client quality is bad. If the second inequality is violated, then regardless of the prior belief about
the client quality, under individual rating it is an equilibrium to issue a good rating whether the client
quality is good or bad, and this is the only inflationary equilibrium. Neither case provides an interesting
benchmark model of credibility. Note that the assumption below does not rule out a pooling inflationary
equilibrium.
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Specific examples where all four assumptions are satisfied can be easily constructed.

For example, suppose that U(S, s, q) is linear in q for each S = G,B and s = g, b. Then, as

long as misreporting entails some cost for the agency and the cost is not so large that makes

truthtelling a dominant strategy, that is, U(G, g, q) > U(G, b, q) and U(B, b, q) > U(B, g, q)

for all q ∈ [0, 1] but U(B, g, 1) > U(B, b, 0), then all assumptions are satisfied when the

slope restrictions in Assumption 2 are respected. Alternatively, consider a simple model

where the agency’s payoff from truthtelling depends only on the market belief q, and its

payoff from misreporting is a fraction of the truthtelling payoff because with a positive

probability the misreporting is discovered and the agency’s payoff is zero. That is, there

exists a strictly increasing and positive-valued function τ(q) and a number κ between 0

and 1, such that U(G, g, q) = U(B, b, q) = τ(q), and U(G, b, q) = U(B, g, q) = (1− κ)τ(q).

Then, Assumptions 1, 2, 4 and the second inequality of Assumption 3 are immediately

satisfied. As long as κ is not so large that the agency always prefers to report truthfully,

then also the first part of Assumption 3 is satisfied.7

2.1. Individual rating: A model of credibility

Under individual rating, the market for each client has no access to ratings for other

clients. Since the clients are exchangeable, the model reduces to N identical signaling

games involving the agency and the market. In each such game, an inflationary rating

strategy is such that the agency issues g under quality G and randomizes between g and

b under quality B. Suppose that there exists p ∈ (0, 1) such that

π

π + (1− π)p
= q∗, (5)

where π is given in equation (1). Then, we have a semi-separating equilibrium in which

the agency issues g under B with probability p: by equation (4) the agency is indifferent

between g and b under quality B, which by the single-crossing condition (2) implies that

the agency strictly prefers g to b under quality G. We refer to this type of inflationary

equilibrium as “full support inflationary equilibrium,” as the support of the equilibrium

7 The example can be modified to make the agency’s payoff depend on the client’s underlying quality,
and to allow different probability of discovering misreporting when the agency is inflating or deflating.
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strategy is the same as the space of the signals. Since equation (5) can be satisfied by some

p ∈ (0, 1) only if π < q∗, a full support equilibrium does not exist if π ≥ q∗. Instead, we can

construct a “non-full support equilibrium,” in which the agency issues g with probability 1

under B. This is accomplished by specifying the out-of-equilibrium belief that the quality

of the client is B with probability 1 when b is observed. Since the equilibrium belief

that the quality is G when g is observed is equal to the prior probability π, the agency

weakly prefers g to b under quality B, which implies that it strictly prefers g to b under

G by (2). Further, due to the same single-crossing condition (2), the above specification

of the out-of-equilibrium belief is the only one consistent with the refinement concept of

“Divinity” (Banks and Sobel, 1987).8 We use this refinement throughout the paper, and

we refer to a sequential equilibrium that passes the refinement test simply as equilibrium.

It follows that there is a unique inflationary equilibrium under individual rating, which is

full support if q∗ > π and non-full support if q∗ ≤ π.9

The model of individual rating can be interpreted as a model of credibility. Upon

observing a good rating, the market’s perception of the client’s quality is q∗ in a full support

equilibrium, and is π in a non-full support equilibrium. This market belief quantifies

equilibrium credibility in our model. From the equilibrium indifference condition (4),

we see that the value of q∗ depends only on the function U(B, g, ·) and the value of

U(B, b, 0). When the prior probability of good quality is higher than q∗, an increase in

the prior translates into an increase in the equilibrium credibility of good ratings by the

same amount, which allows the agency to simply pass any client of bad quality as one of

good quality. In contrast, when the prior probability is lower than q∗, an increase in the

prior has no effect on the equilibrium credibility. The increase in the prior probability

means that a good rating is too attractive if the agency keeps the probability of reporting

g in state B unchanged, and so the probability of an inflated good rating must increase

8 More precisely, for any out-of-equilibrium belief q̂ that the quality is G after b is observed, U(G, b, q̂) ≥
U(G, g, π) implies that U(B, b, q̂) > U(B, g, π). Thus, q̂ = 0 under the refinement of Banks and Sobel.

9 With additional assumptions, we can show that no other equilibrium exists under individual rating.
In particular, if U(G, g, 1) > U(G, b, 1), then we can rule out all “deflationary” equilibria in which the
agency issues b with a positive probability under quality G. However, since the focus of this paper is on
the credibility of good ratings, we are only interested in constructing inflationary equilibria under different
rating schemes.
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to restore the equilibrium indifference condition. As a result, the equilibrium credibility,

and hence the payoff to the agency, is pinned down by the indifference condition so long as

the agency reports b with a positive probability in equilibrium. In equilibrium the agency

gets its complete information payoff U(B, b, 0) under quality B, but its equilibrium payoff

under quality G is U(G, g, q), which is strictly lower than the complete information payoff

U(G, g, 1). Thus, the ex ante payoff to the agency (before the client’s quality is revealed)

is lower than what it would obtain if it could commit to truthful revelation of the quality.

Our definition of credibility corresponds one-to-one with the expected marginal value

of information provided by the rating in equilibrium. In the absence of any rating, the

optimal decision of each market i is to set δi to π. The expected loss is therefore π(1−π).

In a full support inflationary equilibrium, when the client quality is good the realized loss

of the market is (1− q∗)2; when the quality is bad the realized loss is (q∗)2 if g is issued,

and 0 if b is issued. Using equation (5), the equilibrium expected loss is π(1− q∗). Thus, a

greater value for q∗ means a lower expected loss to the market, and a greater marginal value

of the information provided by the rating. Of course, in a non-full support equilibrium,

there is no information in the equilibrium rating.

3. Centralized Rating: A Model of Multi-dimensional Signals

This section considers centralized rating, in which a single rater of the agency rates all

N clients and shares the rating information among all markets. Although the payoff to

each client depends only on the market’s perception of the quality of this client, under

centralized rating all the reports are used to make inference about the quality of each

client. This means that the agency can potentially coordinate the N ratings in an attempt

to influence market perception.

It may not be intuitive that centralized rating creates opportunities for the agency

to increase the credibility of good ratings relative to individual rating, especially if the

client qualities are statistically independent. Indeed, it is easy to see that in the case of

independent qualities, the equilibrium outcome of individual rating can be supported under

centralized rating if the agency independently randomizes between g and b for each client of

bad quality with the same probability of choosing b as in individual rating. In this case, the
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market belief about the quality of any client i with a good rating remains q∗, regardless of

the other ratings, as they provide no information about client i’s quality under independent

qualities and independent randomization. Moreover, this is the only equilibrium outcome

under independent randomization. Indeed, a more general result is established below: even

when the qualities are correlated and randomizations are coordinated among the clients,

any inflationary equilibrium is payoff-equivalent to the benchmark inflationary equilibrium

with belief q∗ as long as N bad ratings are issued with a positive probability in equilibrium.

The key to improved credibility under centralized rating relative to individual rating is to

construct an inflationary equilibrium in which the agency never reports N bad ratings,

and we provide a characterization of the structure of any such equilibrium. The main

result of this section establishes a necessary and sufficient condition for the existence of

an equilibrium with improved credibility. This condition requires the prior probability of

having N bad qualities to be sufficiently low, so that it is credible for the agency never to

issue N bad ratings.

Formally, for the rating agency, the state is now an N -dimensional vector (S1, . . . , SN )

where Si ∈ {G,B} for i = 1, . . . , N . The signal is similarly an N -dimensional vector

(s1, . . . , sN ) where si ∈ {g, b} for i = 1, . . . , N . Given that S1, . . . , SN are exchangeable,

we impose a symmetry requirement that the market belief about any client i’s quality

depend only on the rating si of the client and the total number good ratings issued by

the agency. For any i = 1, . . . , N , let q(m) be the market belief that Si = G when si = g

and #{j : sj = g} = m. Similarly, define q̂(m) to be the market belief that Si = G

when si = b and #{j : sj = g} = m. Given the state, the agency chooses the signal

vector (s1, . . . , sN ) to maximize the sum of utilities
∑N

i=1 U(Si, si, qi) where qi = q(m) if

si = g and qi = q̂(m) if si = b for all m = #{j : sj = g}. It directly follows from the

single-crossing condition (2) that while the agency may have an incentive to mislead the

markets about the total number of clients of good quality, it has no incentive to mislead

the markets about the identity of clients of good quality. That is, for any i = 1, . . . , N ,

when #{j : Sj = G} ≤ #{j : sj = g}, then Si = G implies si = g.10 The same is true

10 To see this, let #{j : Sj = G} = n and #{j : sj = g} = m. If #{j : Sj = G and sj = g} = n,
the expected payoff to the agency is nU(G, g, q(m)) + (m − n)U(B, g, q(m)) + (N −m)U(B, b, q̂(m)). If
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about the identity of clients of bad quality when the agency deflates the number of clients

of good quality. As a result, we can reduce the state space to a one-dimensional variable

representing the number of clients of good quality. Denote the signaling strategy of the

agency as p(m; n), the probability of giving m good ratings when n clients are of good

quality. Note that the strategy is multi-dimensional because for each number n we need to

specify a vector of probability numbers p(m; n) for m = 0, . . . , N . Obviously, we require
∑N

m=0 p(m; n) = 1 for all n = 0, . . . , N .

Let W (m; n) be the expected payoff to the agency when it chooses m good ratings

and the number of good quality clients is n. For m ≥ n, we have

W (m; n) = nU(G, g, q(m)) + (m− n)U(B, g, q(m)) + (N −m)U(B, b, q̂(m)).

For m ≤ n, we have

W (m; n) = mU(G, g, q(m)) + (n−m)U(G, b, q̂(m)) + (N − n)U(B, b, q̂(m)).

An inflationary strategy satisfies p(m; n) = 0 for all n and all m < n. Using Assump-

tion 2, we have the following restriction on equilibrium strategies:11

Lemma 1. For any n < n′ ≤ m,m′ and q(m′) > q(m), if W (m′; n) ≥ W (m; n), then

W (m′; n′) > W (m; n′).

Thus, in any inflationary equilibrium, the incentive to inflate to a signal with a more

favorable belief about good ratings is stronger when there are more clients of good quality.

Note that the relative incentive to inflate depends on how favorably the signal is received,

and not directly on how many good ratings the signal contains. Given an inflationary

equilibrium let T = {m :
∑N

n=0 p(m;n) > 0} be the set of all signals which are issued

with positive probability, and let l = min T be the smallest signal (with the lowest number

instead #{j : Sj = G and sj = g} = n′ < n, the expected payoff to the agency is reduced by (n − n′)
times [U(G, g, q(m))−U(G, b, q̂(m))]− [U(B, g, q(m))−U(B, b, q̂(m))], which is positive by condition (2).

11 In the appendix, the lemma also establishes that for any m ≤ n < n′ ≤ m′, if W (m′; n) ≥ W (m; n)
then W (m′; n′) > W (m; n′), and for any m, m′ ≤ n′ < n and q̂(m′) > q̂(m), if W (m′; n) ≥ W (m; n), then
W (m′; n′) > W (m; n′). These two additional parts are needed for restricting out-of-equilibrium beliefs in
inflationary equilibria.
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of good ratings). Define Tn = {m : p(m;n) > 0} as the set of signals sent with positive

probabilities when there are n clients of good quality. In an inflationary equilibrium, for

each m ∈ T , the market beliefs upon observing m good ratings are

q(m) =
∑N

n=0 πnp(m;n)n

m
∑N

n=0 πnp(m;n)
, (6)

and q̂(m) = 0.

The following lemma distinguishes two types of inflationary equilibria, one that is

payoff-equivalent to the full support inflationary equilibrium under individual rating with

q(m) = q∗ for each equilibrium message m ∈ T , and the other payoff-superior.

Lemma 2. In any inflationary equilibrium, (i) if l = 0, then q(m) = q∗ for all m > 0 and

m ∈ T ; and (ii) if l > 0, then either q(m) = q∗ for all m ∈ T or q(m) > q(m′) > q∗ for

m,m′ ∈ T and m < m′.

An inflationary equilibrium with l = 0 does not have full support if T 6= {0, 1, . . . , N}.
However, part (i) of Lemma 2 establishes that any inflationary equilibrium with l = 0

is payoff-equivalent to the full support inflationary equilibrium under individual rating.

Although each market can use the ratings of other clients as well as its own client to make

inference about the quality of the latter, the rating agency gains no credibility relative to

individual rating. In any such equilibrium, when all clients have bad quality, the agency

is indifferent between issuing zero good rating and issuing any number of good ratings in

T . These indifference conditions reduce centralized rating to individual rating in terms of

payoff to the agency.12 Part (ii) of the above lemma establishes that in an equilibrium

with l > 0, either the same indifference conditions are again at work and the market belief

corresponding to a good rating is the same regardless of the number of good ratings issued

and equal to q∗, or the market beliefs are all strictly greater than q∗. In the second case,

the beliefs decrease in the number of good ratings issued, for otherwise the agency would

12 The proof of this result (in the appendix) is more complicated than indicated by this reasoning,
because we have to allow for non-full support strategies. This requires the use of the refinement. Later,
we will show that all inflationary equilibria have the threshold property that T = {l, ..., N}. However, if
we restrict to strategies that satisfy this property, then Lemma 2 and part (i) through part (iii) of Lemma
3 below can be established using the equilibrium conditions, without resorting to the refinement.
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inflate as much as possible. The second type of inflationary equilibria are more interesting,

because the agency’s ex ante payoff is higher than in the benchmark full support individual

rating case.13 From now on, we distinguish equilibria according to whether they are payoff-

equivalent to the full support equilibrium under individual rating: equilibria with l > 0

and q(l) > q∗ are referred to as non-full support equilibria, and those with q(m) = q∗ for

all m ∈ T are referred to as full support equilibria regardless of whether l = 0 or l > 0.

The next lemma provides a partial characterization of the structure of the equilibrium

signaling strategy in a non-full support equilibrium.

Lemma 3. In any non-full support equilibrium, (i) Tl 3 l; (ii) Tm = {m} if m ∈ T and

m > l; (iii) min Tm ≥ maxTm+1 for all m < l; (iv) T = ∪m≤lTm; and (v) q(m) = 1 and

q̂(m) = 0 for all m < l.

The structure of the equilibrium strategy described by Lemma 3 is illustrated in Figure

1. In the figure, an arrow from node n to m indicates that p(m; n) > 0. When the number

of clients of good quality is greater than the minimum number l of good ratings issued,

the agency issues a truthful report with probability 1. When the number of clients of

good quality is less than l, the agency exaggerates the number of good quality clients;

indeed it issues more good ratings when there are fewer clients of good quality.14 This

characterization follows from the result in Lemma 2 that the credibility of a good rating

decreases with the total number of good ratings, and the result in Lemma 1 that the agency

has a stronger incentive to inflate to a more credible signal when there are more clients

of good quality. Part (iv) of the above lemma establishes that in any non-full support

equilibrium the aggregate support of the equilibrium strategy, T , satisfies the threshold

property that all signals m ≥ l are sent with positive probability. Finally, part (v) of

the lemma specifies a unique set of out-of-equilibriums beliefs q(m) and q̂(m) for m 6∈ T

13 In a mechanism design setup in which the designer cannot fully commit to an outcome function,
Bester and Strausz (2001) show that any Pareto efficient equilibrium allocation can be achieved with an
equilibrium in which each type reports truthfully with a positive probability. Their result requires messages
to be cheap talk in a signaling setting such as the present model where there is no commitment at all, and
therefore it does not apply here.

14 When the number of clients of good quality is equal to l, the agency may tell the truth in equilibrium,
or it may randomize between issuing l or issuing more than l good ratings (as depicted in Figure 1).
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that satisfy the refinement. It is established by showing that if the agency finds it weakly

optimal to send an out-of-equilibrium signal m < l when there are n 6= m good quality

clients, then the signal is strictly optimal when there are exactly m good quality clients.

The main result of this section is Proposition 1 below. Since the proof in the appendix

is rather involved, it is useful here to describe the main steps. We start by showing

that the restrictions imposed by Lemma 3 on the structure of Tn in each state n > 0,

together with necessary equilibrium conditions that there are no profitable deviations,

result in certain iterative constraints on the equilibrium reporting strategy p(m;n) given

the reporting strategies in states n + 1, . . . , N (Definition A.1 and Lemma A.1 in the

appendix). Next we show that, given the reporting strategies in state n = 1, . . . , N , all

the equilibrium conditions can be satisfied by choosing the value of p(m; 0) appropriately

for each m = 0, . . . , N , and an equilibrium obtains when such values satisfy
∑

p(m; 0) = 1

(Definition A.2 and Lemma A.2). Then, we show that the set of reporting strategies for

state 1, . . . , N satisfying the necessary conditions of an equilibrium is closed and connected

(Lemma A.3 and Lemma A.4). In the final step of the proof we show that the set of

values p(m; 0) that completes the equilibrium conditions has the property that
∑

p(m; 0)

is continuous over the collection of reporting strategies in state 1, . . . , N satisfying the

necessary equilibrium conditions (Lemma A.5). We use this property to establish that

an inflationary equilibrium always exists, and there is a non-full support equilibrium with

l > 0 if q∗ < 1− π0.

Proposition 1. An inflationary equilibrium exists under centralized rating. Further, a
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non-full support equilibrium exists if q∗ < 1− π0.

The condition for the existence of a non-full support equilibrium has a simple inter-

pretation.15 If the likelihood π0 that there is no client of good quality is sufficiently small,

then by inflating exclusively in the state when there are no good clients, it is not possible

to drive down the market beliefs q(m) to q∗ for each positive number of good ratings m.

In this case, a randomization strategy p(m; n) with non-full support and p(0; 0) = 0 is

credible. Further, more probability mass from low states (small numbers of good quality

clients) may be credibly distributed to higher states through the randomization described

in the proof of Proposition 1, leading to a higher threshold l. Recall that a non-full support

equilibrium exists under individual rating if and only if q∗ < π, which implies q∗ < 1−π0.

Thus, correlated randomization under centralized rating can allow the agency to credibly

apply a non-full support signaling strategy and achieve a higher average level of credibil-

ity, when independent randomization under individual rating implies that the credibility

of good ratings is fixed at q∗.

The construction of our inflationary equilibrium in Proposition 1 applies to any prior

distribution of the client qualities. This is in contrast to the equilibrium construction un-

der decentralized rating in the next section, which relies on a natural correlation structure

of quality distribution. We conclude this section by pointing out that the equilibrium

structure under centralized rating generally depends both on the incentive structure as

represented by properties of the payoff functions, and on the correlation structure of the

quality distribution, and these two factors can be disentangled only in special cases. For

example, the sufficient condition for a non-full support inflationary equilibrium in Propo-

sition 1 depends on the quality distribution captured by the probability π0, and on the

incentive to inflate represented by q∗. Under reasonable specifications of the correlation

structure, an increase in quality correlation increases π0, and thus makes it harder to sat-

isfy the condition for fixed q∗. At the other end, the necessary and sufficient condition for

the existence of an equilibrium with l = N is given by

(N − 1)U(G, g, 1) + U(B, b, 0) ≤ (N − 1)U(G, g, π) + U(B, g, π),

15 The proof of Proposition 1 considers just one particular kind of full support equilibrium, with l = 0
and p(n; n) = 1 for all n > 1. There are typically multiple equilibria with l = 0 and q(m) = q∗, and they
can also coexist with a non-full support equilibrium.
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since from the proof of Proposition 1 the incentive of state N − 1 not to deviate from

reporting N to reporting N − 1 determines the equilibrium. Whether the above condition

holds or not depends only on the incentive structure and π, but not on the correlation

structure. More generally, the effects of the incentive structure and the quality correlation

on the equilibrium structure cannot be studied separately.16 Later in section 5, we will use

a specific model of correlation structure to give a definitive characterization of the effects

of correlation when the number of clients is arbitrarily large.

4. Decentralized Rating: A Model of Competing Signals

In decentralized rating, rating information is shared among all markets, as in centralized

rating, but each client is rated by a self-interested rater of the agency with no access to the

quality information of other clients.17 We implicitly assume that as an alternative to cen-

tralized rating, the agency can limit the information about client quality available to each

rater to the single client that the rater is assigned to, and at the same time tie the incentive

of the rater to the agency’s payoff from that client. As pointed out in the introduction,

the decentralized rating scheme may also be thought of a decentralized market structure

in which each rater represents an independent rating agency. In terms of strategy space,

decentralized rating is the same as individual rating, as only independent randomization

across clients is feasible. If the underlying client qualities are independently distributed,

decentralized rating produces identical equilibrium outcome as in individual rating. How-

ever, since ratings information is shared among all markets, when the underlying qualities

16 Examples can be constructed in which an increase in quality correlation can either increase or
decrease the equilibrium threshold. Details of the argument can be provided upon request.

17 The two features of decentralized rating, namely the restricted information and independent payoffs,
that set it apart from centralized rating, are jointly responsible for our comparison results regarding these
two rating schemes. It is possible to consider a hybrid model in which the state vector is observed by all
raters, but each rater maximizes its own payoff. In such a model an inflationary equilibrium is given by
{p(n)} such that for each n a rater with a bad quality client inflates with probability p(n), and {q(m)}
such that each client rated g is believed to be good with probability q(m) when the total number of clients
rated g is m. In contrast to the results we establish below, in such a hybrid model q(m) is not necessarily
monotone in m and it is always true that for every realized n the incentives to issue a good rating are
stronger for a rater with a good quality client than with a bad quality client. The analysis of the model
is beyond the scope of this paper.

19



are correlated, each market can use the other ratings to make inference about the quality

of its own client.

In this section we construct an inflationary equilibrium under decentralized rating.

Unlike the case of centralized rating, the analysis of decentralized rating requires a model

of quality correlation across the clients. In Definition 1 below, we give precise formulations

for positive and negative correlations among client qualities. These formulations allow us to

give sharp characterizations of inflationary equilibria: under positive (negative) correlation

each rater expects a greater number of good ratings conditional on G than conditional on B,

in the sense of first order stochastic dominance, and credibility of a good rating is increasing

(decreasing) in the total number of good ratings issued. The main result of this section

establishes the existence of a symmetric inflationary equilibrium under decentralized rating,

and the necessary and sufficient condition for a full support equilibrium. It turns out that

this condition is identical to the condition under individual rating. We postpone to the

next section a discussion of how in a decentralized scheme the rating agency can gain in

credibility under correlated qualities and therefore become better off relative to individual

rating.

Define a random variable Xi, i = 1, . . . , N , such that Xi = 1 if Si = G and Xi = 0 if

Si = B. Let f(X1, . . . , XN ) represent the joint probability mass function of the random

vector X = (X1, . . . , XN ).

Definition 1. We say that X is multivariate totally positive of order 2 (MTP2) if, for all

x, y ∈ {0, 1}N ,

f(x ∨ y)f(x ∧ y) ≥ f(x)f(y),

where x ∨ y = (max{x1, y1}, . . . , max{xN , yN}); x ∧ y = (min{x1, y1}, . . . , min{xN , yN}).
We say that X is multivariate reverse rule of order 2 (MRR2) if the above inequality is

reversed.

The definition of MTP2 is the same as log-supermodularity, also referred to as affili-

ation. It is a commonly used concept of positive dependence among random variables in

the statistics literature (see, for example, Joe, 1997) and in the auction literature (see, for

example, Milgrom and Weber, 1982). Similarly, MRR2 can be used to capture the idea
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of negative dependence among random variables. These dependence concepts are stronger

than the notion of positive or negative “quadrant dependence” used by Lehmann (1966).

We focus on symmetric inflationary equilibria in which for each i = 1, . . . , N , the

common signaling strategy satisfies Pr[si = g | Si = G] = 1 and Pr[si = g | Si = B] = p

for some p ∈ [0, 1].18 Define the random variable Yi, i = 1, . . . , N , such that Yi = 1 if

si = g and Yi = 0 if si = b. Also let Zi =
∑

j 6=i Xj and Z̃i =
∑

j 6=i Yj .

Fix some i = 1, . . . , N . For each m = 1, . . . , N , let rG(m) be the probability of a total

number m of good ratings conditional on Si = G and si = g:

rG(m) = Pr[Z̃i = m− 1 | Xi = 1, Yi = 1].

Similarly, let

rB(m) = Pr[Z̃i = m− 1 | Xi = 0, Yi = 1].

Note that rG(0) = rB(0) = 0. Intuitively, for any fixed p, under MTP2 each individual

rater expects to find more good ratings when the quality of his own client is good than

when it is bad, while the reverse is true under MRR2. This idea is formalized in the

following lemma.

Lemma 4. In any inflationary equilibrium, {rG(m)} first order stochastic dominates

{rB(m)} under MTP2; the reverse is true under MRR2.

Given any inflationary equilibrium, the beliefs q(m), m = 1, . . . , N , are given by

q(m) = Pr[Xi = 1 | Yi = 1, Z̃i = m− 1].

Let β(t, k, p) represent the probability of k successes out of t Bernoulli trials with indepen-

dent probability of success p; that is,

β(t, k, p) =
(

t

k

)
pk(1− p)t−k.

18 In the proof of Proposition 2 below, we use Assumption 2 to establish that the indifference condition
between g and b under B is sufficient to imply truth-telling under G. But this result presumes the signaling
structure of inflationary equilibria. The single crossing condition of Assumption 2 is generally insufficient
to rule out deflationary strategies.
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Then, q(m) can be written more explicitly as

q(m) =
∑m

n=0 πnβ(N − n,m− n, p)n
m

∑m
n=0 πnβ(N − n,m− n, p)

. (7)

The above formula is valid so long as the denominator is strictly positive, which happens

if p < 1. We refer to an inflationary equilibrium with p < 1 as a full support equilibrium.

Lemma 5. In any full support inflationary equilibrium, q(m) is increasing in m under

MTP2 and is decreasing in m under MRR2.

The above result is quite intuitive. In an inflationary equilibrium the perception of a

good rating depends on the total number of good ratings in all markets: the perception

improves with more good ratings when the client qualities are positively correlated, and it

deteriorates when the qualities are negatively correlated. We are now ready to use Lemma

4 and Lemma 5 to establish existence of an inflationary equilibrium. Note that in any

inflationary equilibrium, q̂(m) = 0 for all m = 0, . . . , N − 1.

Proposition 2. There exists an inflationary equilibrium under decentralized rating. Fur-

ther, if π < q∗, there is a full support inflationary equilibrium.

Proof. A necessary and sufficient condition for the existence of a full support inflationary

equilibrium is that there exists p ∈ (0, 1) such that (i) si = g is weakly preferred to si = b

if Si = G:
N∑

m=1

rG(m)U(G, g, q(m)) ≥ U(G, b, 0);

and (ii) si = g and si = b yield the same expected payoff if Si = B:

N∑
m=1

rB(m)U(B, g, q(m)) = U(B, b, 0). (8)

Under MTP2, Lemma 4 states that {rG(m)} first order stochastic dominates {rB(m)},
while Lemma 5 states that q(m) is increasing m. Therefore,

N∑
m=1

rG(m)U(G, g, q(m)) ≥
N∑

m=1

rB(m)U(G, g, q(m)).
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It follows from Assumption 2 that condition (ii) implies condition (i). Under MRR2,

{rB(m)} first order stochastic dominates {rG(m)} while q(m) is decreasing m, so again

condition (ii) implies condition (i) by Assumption 2. Now, consider the indifference con-

dition (ii). If p = 0, we have q(m) = 1 for all m = 1, . . . , N . By Assumption 3,

N∑
m=1

rB(m)U(B, g, q(m)) > U(B, b, 0)

when p = 0. If p = 1, we have q(N) =
∑

n πnn/N = π and the left-hand-side of condition

(ii) becomes U(B, g, π). Under Assumption 2, the refinement implies that the out-of-

equilibrium belief q̂(N − 1) is equal to 0. Thus, if U(B, g, π) < U(B, b, 0), or equivalently

π < q∗, then by the intermediate value theorem there exists p ∈ (0, 1) such that the equi-

librium condition (ii) is satisfied, and hence there is a full support inflationary equilibrium.

If instead π ≥ q∗, with the out-of-equilibrium belief q̂(N−1) set to 0, g is weakly preferred

to b under quality B, implying that g is strictly preferred to b under G. We thus have a

non-full support equilibrium with p = 1. Q.E.D.

The condition for the existence of a full support inflationary equilibrium is identical

to the condition for the existence of the unique full support inflationary equilibrium under

individual rating. This is perhaps not surprising, because the only difference between

decentralized rating and individual rating is informational, in that the market for each

client observes the ratings for other clients as well as its own and can use these ratings

to make inference about the quality of the client it cares about. Such difference is not

relevant in a non-full support equilibrium of decentralized rating, as the markets always

observe a total of N good ratings. The informational difference between decentralized

rating and individual rating is similarly irrelevant with independent client qualities. In

that case, we have πn = β(N, n, π) for each n = 0, . . . , N . Then, for each m = 1, . . . , N ,

direct calculations reveal that

q(m) =
∑m

n=1(π/(1− π)p)n(1/((m− n)!(n− 1)!))
m

∑m
n=0(π/(1− π)p)n(1/((m− n)!n!)

=
π

π + (1− π)p
.

Thus, under independence, decentralized rating reduces to individual rating.
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The equilibrium probability of ratings inflation is determined by the indifference con-

dition (8). Generally both the incentive structure as represented by the payoff function

U(B, g, ·) and the entire client quality distribution affect the equilibrium behavior. As un-

der centralized rating, increasing quality correlation does not always have the same effects

on the equilibrium probability of inflation. In the next section, using a specific model of

correlation structure and considering the limit case when the number of clients is arbitrarily

large, we can characterize the effects of correlation on the equilibrium behavior.

5. Comparing Rating Schemes: Credibility and Welfare

Comparison between centralized rating and decentralized rating in terms of equilibrium

credibility of good ratings and ex ante payoffs to the agency generally depends on the

underlying correlation structure. In Proposition 1, we have established that there always

exists an inflationary equilibrium under centralized rating that does at least as well as the

full support inflationary equilibrium under individual rating. Moreover, when q∗ < 1−π0,

there is a non-full support equilibrium that does strictly better. This condition is rather

weak, and is easily satisfied when the qualities are independently distributed, as long as

N is not too small. In contrast, with independently distributed qualities, the unique

inflationary equilibrium under decentralized rating is payoff-equivalent to the full support

inflationary equilibrium under individual rating. Thus, we expect centralized rating to

dominate decentralized rating for the agency when there is weak correlation among the

qualities.

The next set of results shows that both equilibrium credibility of good ratings and ex

ante payoff to the agency under decentralized rating improve relative to the benchmark of

individual rating when the qualities are correlated. First, we introduce a definition of equi-

librium credibility of good ratings under decentralized rating. For any p (the probability

of inflating), consider the following expression:

N∑
n=0

nπn

Nπ

N∑
m=n

β(N − n,m− n, p)q(m). (9)

The above may be thought of as an average measure of credibility of good ratings under

decentralized rating, as the credibility of a single given good rating depends on the total
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number of good ratings. It is an average across states, with each state weighted both

by the prior probability of the state and by the number of good quality clients in the

state. Under individual rating, the same expression (9) applies, but q(m) is constant

and equal to q because the markets are separate. Since
∑N

m=n β(N − n, m − n, p) = 1,

the above definition of credibility is consistent with the definition given under individual

rating. Further, if we replace β(N − n, m − n, p) with p(m; n) in (9), we have a measure

of credibility under centralized rating.

As in individual rating, in decentralized rating the definition (9) of credibility, and

correspondingly the expression with p(m;n) replacing β(N − n,m − n, p) for centralized

rating, corresponds one-to-one with the average expected loss of the N markets, and one-

to-one with the expected average marginal value of information provided by the ratings in

equilibrium. To see this, note that the total expected loss in equilibrium is given by

N∑
n=0

πn

N∑
m=n

β(N − n,m− n, p)(n(1− q(m))2 + (m− n)q2(m)).

From equation (7) we have

m∑
n=0

β(N − n,m− n, p)q(m)m =
m∑

n=0

πnβ(N − n, m− n, p)n,

and therefore by equation (1) the total loss is equal to Nπ(1−Q), where Q is our credibility

measure given by equation (9). Recall that the average expected loss in a full support

equilibrium in individual rating is π(1− q∗), and is π(1− π) in the absence of any ratings

information. Thus, the credibility measure as given by (9) corresponds one-to-one with

the expected average marginal value of information provided by the ratings in equilibrium.

To make comparison of equilibrium credibility between decentralized rating and indi-

vidual rating, we first note that

rG(m) =
N∑

n=1

Pr[Z̃i = m− 1 | Xi = 1, Yi = 1, Zi = n− 1] Pr[Zi = n− 1 | Xi = 1, Yi = 1]

=
m∑

n=1

β(N − n, m− n, p)
n

N

πn

π
.

25



Hence the credibility measure is simply

N∑
n=0

nπn

Nπ

N∑
m=n

β(N − n,m− n, p)q(m) =
N∑

m=1

rG(m)q(m).

Thus, the average measure of credibility of good ratings under decentralized rating is equal

to the market belief expected by a rater with a good quality client. Next, recall that under

individual rating, the market’s belief upon observing g is given by π/(π + (1− π)p) if p is

the probability that rating g is issued under quality B. The lemma below captures the idea

that for any probability of ratings inflation, under decentralized rating correlation across

client qualities imposes a discipline on incentives to inflate by making it harder for each

individual rater to fool its own market.

Lemma 6. Under decentralized rating, for any p < 1,

N∑
m=1

rB(m)q(m) ≤ π

π + (1− π)p
.

The above result is the key to our comparison results below. Under decentralized

rating the weighted average of the market belief conditional on a bad quality client is lower

than the market belief under individual rating for the same probability of rating inflation.

That is, a rater that issues an inflated rating on a bad quality client expects on average a less

favorable market belief under either positive or negative correlation than when qualities are

statistically independent. The intuition is that under either positive correlation (MTP2)

or negative correlation (MRR2), for the rater with a bad quality client, the weights are

smaller for higher market beliefs q, so that the weighted average is lower than the average

when the qualities are independently distributed for independent randomizations with the

same probability of inflation p. For example, under positive correlation, a higher market

belief q is associated with a greater number of good ratings, but since a rater with a bad

quality client expects statistically fewer good quality clients and thus fewer good ratings,

a higher market belief receives a smaller weight.

Our first comparison result is that when U(B, g, q) is weakly concave in q, then at any

full support inflationary equilibrium in decentralized rating, the equilibrium probability of
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inflation is lower than the full support equilibrium probability of inflation under individual

rating.19 Furthermore, under the same concavity condition, the equilibrium credibility is

higher under decentralized rating than under individual rating.

Proposition 3. Suppose U(B, g, q) is concave in q. In any full support inflationary equi-

librium under decentralized rating, the probability of inflation is lower and the credibility

is higher than in the full support inflationary equilibrium under individual rating.

Proof. In a full support inflationary equilibrium, for each i = 1, . . . , N , we must have

the indifference condition between si = g and si = b. This condition gives

N∑
m=1

rB(m)U(B, g, q(m)) = U(B, g, q∗). (10)

Since U(B, g, q) is concave in q, we have

U(B, g,

N∑
m=1

rB(m)q(m)) ≥ U(B, g, q∗). (11)

It then follows from Lemma 6 that

U(B, g, π/(π + (1− π)p)) ≥ U(B, g, q∗),

where p is the equilibrium probability of inflation. Comparing the above inequality to

equation (5) in a full support inflationary equilibrium under individual rating, we imme-

diately obtain that the equilibrium probability of inflation is lower under decentralized

rating than under individual rating.

By Lemma 4 and Lemma 5, {rG(m)} first order stochastically dominates {rB(m)}
and q(m) is increasing under MTP2, while {rB(m)} stochastically dominates {rB(m)} and

q(m) is decreasing under MRR2. In either case, we have

N∑
m=1

rG(m)q(m) ≥
N∑

m=1

rB(m)q(m).

19 This comparison between equilibrium probabilities of inflation under decentralized and individual
rating holds so long as the function is not too convex.
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From inequality (11) we then have

N∑
m=1

rG(m)q(m) ≥ q∗,

implying that the equilibrium credibility is higher under decentralized rating. Q.E.D.

For welfare comparison between decentralized rating and individual rating, we say

that U(B, g, ·) is “more concave” than U(G, g, ·) if there is a weakly concave function H

such that U(B, g, q) = H(U(G, g, q)). We have the second comparison result.

Proposition 4. Suppose U(B, g, q) is more concave in q than U(G, g, q). Then, the

agency’s payoff in a full support inflationary equilibrium under decentralized rating is

higher than the full support inflationary equilibrium under individual rating.

Proof. If U(B, g, q) is more concave in q than U(G, g, q), the indifference condition (10)

implies
N∑

m=1

rB(m)U(G, g, q(m)) ≥ U(G, g, q∗).

Under MTP2, {rG(m)} first order stochastically dominates {rB(m)} and q(m) is increas-

ing, and so
N∑

m=1

rG(m)U(G, g, q(m)) ≥ U(G, g, q∗).

Under MRR2, q(m) is decreasing but {rB(m)} stochastically dominates {rB(m)}, so again

the inequality is true. Q.E.D.

Compared to individual rating, in decentralized rating each client i is exposed to a

greater risk when Si = G because of the uncertainty regarding the ratings of other clients.

However, the beliefs are more favorable under G than under B in the sense of first order

stochastic dominance. Thus, welfare improves so long as the agency is not too much more

risk-averse when Si = G than when Si = B.

Since the strategy space in decentralized rating is the same as in individual rating,

the above results show that the gains in credibility and welfare in decentralized rating

come from sharing ratings information among the markets. We expect that the gains
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are larger when the correlation is stronger. Indeed, the next proposition establishes that

when the correlation across client qualities is almost perfect, there is a limit inflationary

equilibrium with “truth-telling,” i.e., the equilibrium probability of inflation converges to

0. Let {πk
0 , . . . , πk

N} be a sequence of probability distributions that satisfy MTP2, such that

(i) limk→∞
∑N−1

n=1 πk
n = 0; and (ii) limk→∞ πk

N/(πk
N + πk

0 ) < q∗. The first condition means

that the states become almost perfectly positively correlated as k becomes arbitrarily large.

The second condition guarantees that there exists no pooling equilibrium with p(N ; n) = 1

for all n when k is large.

Proposition 5. Under decentralized rating, truth-telling is a limit inflationary equilib-

rium when k goes to infinity.

Proof. Equation (8) is necessary and sufficient for an inflationary equilibrium under

decentralized rating. As in the proof of Proposition 2, for p = 0, the left-hand-side of

(8) is strictly larger than the right-hand-side for any k. Next, for all p > 0, the limit of

left-hand-side as k goes to infinity is strictly less than

pN−1U(B, g, 1) + (1− pN−1)U(B, g, 0).

This is because in the limit when the correlation is perfect, from equation (7) we have

q(m) = 0 for all m < N , while q(N) < 1. Let p̃ be the value of p that solves

pN−1U(B, g, 1) + (1− pN−1)U(B, g, 0) = U(B, b, 0).

Then, for all 0 < p < p̃, the limit of the left-hand-side of (8) as k goes to infinity is

strictly smaller than the right-hand-side. Hence, for each p there exists k(p) such that for

all k > k(p) there is an inflationary equilibrium with the probability of inflation strictly

between 0 and p. Since this construction of p̃ and k(p) holds for all p, by taking p arbitrarily

close to 0, we can establish truth-telling (i.e., p = 0) as a limit point of a sequence of

inflationary equilibria for k going to infinity. Q.E.D.

While strong correlation enhances credibility and improves welfare in decentralized

rating, the opposite is true in centralized rating. To see this, note that the conditions
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made on the convergence of the sequence of the distributions πk imply that in the limit of

k going to infinity, there is no non-full support equilibrium by Proposition 1. Thus, cen-

tralized rating cannot improve upon individual rating when correlation is almost perfect.

Correlation of the underlying qualities reduces the manipulation room both under decen-

tralized rating and under centralized rating. Under decentralized rating the constraint

imposed by correlation makes it harder for a rater to fool the market with a good rating,

and forces the individual raters to tone down the exaggeration. This then results in a

greater ex ante payoff relative to individual rating. In contrast, strong correlation makes

correlated randomization under centralized rating less effective.

5.1. Correlation, credibility and welfare: An example

For analysis involving non-extreme values of correlation, the notion of quality correlation

is ambiguous, and a more specific description of the multivariate probability distribution

is required. We illustrate how quality correlation affects the equilibrium behavior and the

welfare properties of centralized rating versus decentralized rating using the following sim-

ple model of correlation. With probability α, the client qualities are perfectly correlated, in

which case π is the probability that all clients have good quality and 1− π the probability

that all have bad quality; with probability 1−α, the client qualities are independent, and π

is the probability that each client is of good quality. In this model, the quality distribution

satisfies MTP2, and the parameter α measures the degree of correlation. When the number

of clients is arbitrarily large, the quality distribution converges to three mass points: with

probability απ all clients have good quality, with probability α(1− π) no client has good

quality, and with the remaining probability 1 − α a fraction arbitrarily close to π of all

clients have good quality. We analyze the limit case of N going to infinity for centralized

rating and decentralized rating separately before comparing the two schemes.

Centralized rating

We assume that q∗ < 1−α(1− π); otherwise, in the limit case the equilibrium outcome is

equivalent to the full support equilibrium under individual rating with all beliefs given by

q∗. Further, we assume that for all µ ∈ (π, 1]

πU(G, g, 1) + (µ− π)U(B, b, 0) > πU (G, g, π/µ) + (µ− π)U (B, g, π/µ) . (12)
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In words, the agency strictly prefers truthful rating to issuing any higher fraction µ of good

ratings when it is common knowledge that with probability 1 a fraction π of the clients is

of good quality.20

Claim: There is a unique limit threshold fraction λ, such that when all clients have bad

quality, the limit equilibrium message λ is either equal to π, or strictly below it. Using

equation (12), in the appendix (Lemma A.6) we formally state and establish that in any

equilibrium there is approximate truth-telling as long as it is not the case that all clients

have bad quality. Intuitively, for any α < 1, because in the limit the probability mass of

all states other than n = 0 and n = N is concentrated around Nπ, if in these states the

agency issues a fraction µ of good ratings bounded away from π, then the market belief

upon observing µ cannot exceed π/µ in the limit. This inflation also implies that the

market belief upon observing a fraction close to π of good ratings approaches 1, which

is inconsistent with equilibrium by condition (12). As a result, the equilibrium threshold

fraction lN/N cannot be strictly above π in the limit. Which case arises depends only on

the incentives to inflate when all client qualities are bad.

Case 1: λ = π. If

U(B, g, π) > πU(B, g, 1) + (1− π)U(B, b, 0), (13)

then in state n = 0 the agency strictly prefers issuing all good ratings to pooling with states

close to Nπ, implying λ = π. In this case, changes in α have no effect on the equilibrium

behavior, but since the the agency reports truthfully when there is a fraction π of good

quality clients, the equilibrium outcome approaches truth-telling as α goes to 0.21

20 If this assumption is violated, truth-telling will not obtain even when the qualities are independent
(α = 0) and the number of clients is arbitrarily large, so that the market beliefs depend on the fraction of
observed good ratings, and not on the signaling strategy. In this case, ratings inflation occurs for reasons
unrelated to the issue of credibility. If the markets could jointly commit in their actions, then truth-telling
in the limit of α = 0 and N going to infinity can be easily obtained, by having the markets assign the
belief of 1 to exactly a fraction π of all clients and a belief of 0 to the rest. This observation is an example
of the general result given by Jackson and Sonnenschein (2007), in which case the assumption (12) is not
needed.

21 The inequality (13) implies that q∗ < π, and therefore under individual rating we have a non-full
support equilibrium. Since in state n = 0 the agency issues all good ratings with probability 1, centralized
rating yields the same payoff in state n = 0 and state n = N as in individual rating. The comparison
between the schemes depends only on what happens when there is a fraction π of good quality clients.
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Case 2: λ < π. If the inequality (13) is reversed, then under the beliefs in (13), in state

n = 0 the agency would strictly prefer to pool with states close to Nπ. This cannot be an

equilibrium, as the beliefs upon observing the messages close to Nπ would fall below 1,

leading to deviations in states close to Nπ, because by Lemma 3 the belief upon observing

out-of-equilibrium messages just below Nπ is 1. Instead, in the state n = 0 the agency

is indifferent among issuing three different fractions of good ratings, λ, π and 1, and

distributes the probability mass α(1 − π) between the latter two fractions. The value of

λ < π and the probability mass θ > 0 assigned to the fraction π are uniquely determined

by the indifference conditions:22

πU (B, g, (1− α)/(1− α + α(1− π)θ)) + (1− π)U(B, b, 0)

= λU(B, g, 1) + (1− λ)U(B, b, 0) = U (B, g, π/(π + (1− π)(1− θ))) .
(14)

In this case, as α increases, the equilibrium value of θ decreases, because a greater prob-

ability mass α(1 − π) in state n = 0 to be allocated between the fraction of π and the

fraction of 1 depresses the market belief upon observing a fraction π of good ratings but

not the belief upon observing all good ratings. As a result, the equilibrium belief upon

observing all good ratings decreases, implying that the equilibrium threshold fraction λ

must decrease to restore the indifference in state n = 0 between issuing all good ratings

and issuing a fraction λ of good ratings. Thus, as in the case of λ = π, a greater degree

of correlation reduces all equilibrium beliefs. Regardless of α, centralized rating strictly

improves on individual rating: if q∗ ∈ (π, 1− α(1− π)), then we have a full support equi-

librium with belief q∗ under individual rating while a non-full support equilibrium with

beliefs strictly larger than q∗ under centralized rating; if instead q∗ < π, then we have a

non-full support equilibrium under individual rating with belief equal to π, while under

centralized rating the beliefs are uniformly higher because the belief upon observing all

good ratings is strictly larger than π for θ > 0.

Decentralized rating

We assume that q∗ > π; otherwise, the equilibrium has non-full support as under individual

rating. In a full support equilibrium, the equilibrium probability of inflation is p < 1,

22 The value of λ determined below is strictly positively because by assumption q∗ < 1− α(1− π).
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which implies that the markets can perfectly infer the state from the realized fraction of

good ratings. From each individual rater’s point of view, conditional on having a bad

quality client, the probability that the state is n = 0 is α(1 − π)/(1 − απ), and with the

complementary probability there is a fraction arbitrarily close to π of good quality clients.

Case 1: p = 0. If

α(1− π)
1− απ

U(B, g, 0) +
1− α

1− απ
U(B, g, 1) < U(B, b, 0), (15)

then in the limit we have p = 0 and truth-telling. An increase in α makes the above

inequality more likely to hold, but otherwise has no effect on the equilibrium behavior.

Case 2: p > 0. If the opposite of (15) holds, we have p > 0 in the limit and it uniquely

satisfies

α(1− π)
1− απ

U(B, g, 0) +
1− α

1− απ
U (B, g, π/(π + (1− π)p)) = U(B, b, 0). (16)

As α increases, the equilibrium value of p decreases. This is because with a greater condi-

tional probability that that all clients have bad quality, a good rating becomes less credible,

and the probability of inflation must decrease to restore the indifference condition. As a

result, an increase in α improves the equilibrium belief upon inferring that there is a frac-

tion π of good quality clients. When α becomes large, the indifference condition can no

longer hold, and we have p = 0 and truth-telling in equilibrium. On the other hand, when

α goes to 0, the value of equilibrium p is such that the equilibrium belief upon inferring

that the fraction of good quality clients is π converges to q∗, which gives the same outcome

as individual rating.

Centralized vs. decentralized rating

To make payoff and welfare comparisons of centralized and decentralized rating schemes

as α varies, we note that under either individual rating or truth-telling, the payoff to

agency and the payoff loss to the markets as represented by our credibility measure (9)

are invariant to α. Under centralized rating, if q∗ ≥ 1−α(1−π), the equilibrium payoff is

πU(G, g, q∗) + (1 − π)U(B, b, 0), and the credibility is q∗, the same as in the full support
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equilibrium in individual rating. If instead q∗ < 1 − α(1 − π), the equilibrium payoff to

the agency is

α(1− π)U (B, g, π/(π + (1− π)(1− θ))) + απU (G, g, π/(π + (1− π)(1− θ)))

+ (1− α) (πU (G, g, (1− α)/(1− α + α(1− π)θ)) + (1− π)U(B, b, 0)) ;

and the credibility measure (9) becomes

(1− α)
1− α

1− α + α(1− π)θ
+ α

π

π + (1− π)(1− θ)
,

where θ = 0 if (13) is satisfied, and is given by (14) otherwise. Under decentralized rating,

if q∗ ≤ π, the equilibrium payoff is πU(G, g, π) + (1 − π)U(B, g, π), and the credibility is

π, the same as in the non-full support equilibrium in individual rating. If instead q∗ > π,

then the equilibrium payoff to the agency is

π

(
1− α

1− α(1− π)
U (G, g, π/(π + (1− π)p)) +

απ

1− α(1− π)
U(G, g, 1)

)
+ (1− π)U(B, b, 0);

and the credibility measure becomes

1− α

1− α(1− π)
π

π + (1− π)p
+

απ

1− α(1− π)
,

where p is the equilibrium probability of inflation given by (16).

Comparison case 1: q∗ ≤ π. In this case, decentralized rating is equivalent to the indi-

vidual rating, but centralized rating does better both in terms of payoff to the agency

and credibility. When α approaches 0, centralized rating achieves the first best; as α in-

creases, both the payoff to the agency and the credibility of good ratings decrease; and

as α approaches 1, the equilibrium outcome of centralized rating approaches the non-full

support equilibrium of individual rating, at which point centralized rating coincides with

decentralized rating.

Comparison case 2: q∗ > π. In this case, as α approaches 0, again centralized rating

achieves the first best while decentralized rating approaches the full support equilibrium

of individual rating. As α increases, the payoff to the agency and credibility decrease

under centralized rating but increase decentralized rating. When α is sufficiently large,
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centralized rating becomes equivalent to the full support equilibrium of individual rating,

while as α approaches 1, decentralized rating achieves the first best outcome of truth-

telling.

6. Concluding Remarks

Providers of information often care about the way their information is used. The desire

to create favorable beliefs about its clients may cause the rating agency to inflate its

assessment of the quality of its clients. The exuberant stock recommendations made during

the internet boom, and the failure of auditors to raise alerts in a number of recent corporate

scandals have heightened the public’s concern about the potential conflict of interests

inherent in situations where raters are advocates for the rated. Moore et al. (2005) study

this kind of problems and their possible solutions from a variety of perspectives. Gentzkow

and Shapiro (2006) study how competition and the concern for reputation may constrain

biased reporting by the mass media. Chan, Li and Suen (2007) use a signaling model to

understand why grades in academia tend to be exaggerated. None of these papers, however,

examines how the credibility of ratings can be improved by coordinating or decentralizing

the rating decisions, which is the main focus of our paper.

In the literature on reputational cheap talk, a bad sender type may provide useful in-

formation to the receiver to establish the credibility as a good sender type so as to extract

future surplus (Sobel 1985; Benabou and Laroque 1992; Morris, 2001; Morgan and Stock-

ton, 2003). This effect arises in a cheap talk game where the sender has private information

on both the relevant state-of-world and his personal bias. As a costly signaling model of

credibility, our model of individual rating has a single source of private information. The

equilibrium credibility of a good rating is quantifiable in our model and corresponds one-

to-one with the welfare of the rating agency. These features make our model of credibility

a natural benchmark for comparisons with centralized and decentralized rating schemes.

This paper is related to the small literature on multi-dimensional signaling (Quinzii

and Rochet, 1985; Engers, 1987). This literature focuses on the conditions under which

separation of types occurs. Technically, the models in the existing literature are concerned

with multi-dimensional private information for the sender and one-dimensional signals.
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Our signaling model of centralized rating assumes exchangeability of the components of

the state vector, so that the private information is the number of good clients, which

is one-dimensional. However, the signal space is multi-dimensional, as a strategy spec-

ifies a number of good ratings for each number of good clients. As a result, the single

crossing condition in the benchmark case of individual rating is not completely effective

in either centralized rating or decentralized rating. This feature complicates the analysis

but enriches the comparison analysis for the different schemes of rating. Chakraborty and

Harbaugh (2007) show that in a cheap talk game where a sender and a receiver interact on

several unrelated issues, the sender can credibly communicate to the receiver the ranking

of the private signals even if the conflicts between them are too great to permit credible

communication of the signal on any single issue.23 Their result has the interpretation that

bundling independent reports may help information transmission, which is related to our

result for centralized rating. However, their result follows from the observation that the

sender has no incentive to deceive the receiver about the ranking of the signals, while our

analysis is based on coordination of the reports in a costly signaling model.

In the literature on signaling games, there are a few models that involve multiple

senders (Bagwell and Ramsey, 1991; Hertzendorf and Overgaard, 2001). In these models,

the senders know each other’s types and interact with each other directly through their

signals. In contrast, the raters in our model of decentralized rating have private information

about their own types and have no direct interaction except that their signals are jointly

used by the receivers to make inference about the types of the senders. Our model of

decentralized rating is therefore a model of competing signals, rather than a model of

competing senders.

23 The idea that linking decisions can be payoff-improving also appears in the literature on bundling
in monopoly pricing (Adam and Yellen, 1976; McAfee, McMillan, Whinston, 1979) and incentive design
(Maskin and Tirole, 1990; Jackson and Sonnenschein, 2007).
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Appendix

Lemma 1 and Proof

Lemma 1. (i) For any m ≤ n < n′ ≤ m′, if W (m′;n) ≥ W (m; n) then W (m′;n′) >

W (m;n′); (ii) for any n < n′ ≤ m,m′ and q(m′) > q(m), if W (m′;n) ≥ W (m;n),

then W (m′;n′) > W (m; n′); and (iii) for any m,m′ ≤ n′ < n and q̂(m′) > q̂(m), if

W (m′; n) ≥ W (m;n), then W (m′; n′) > W (m; n′).

(i) The difference of differences [W (m′;n′)−W (m; n′)]− [W (m′;n)−W (m;n)] is equal to

(n′ − n) times

[U(G, g, q(m′))− U(G, b, q̂(m))]− [U(B, g, q(m′))− U(B, b, q̂(m))],

which is positive by equation (2).

(ii) The difference between W (m′; n′)−W (m; n′) and W (m′; n)−W (m; n) is (n′−n)

times

[U(G, g, q(m′))− U(G, g, q(m))]− [U(B, g, q(m′))− U(B, g, q(m))],

which is positive by Assumption 2 since q(m′) > q(m).

(iii) The difference between W (m′;n′)−W (m; n′) and W (m′;n)−W (m; n) is (n−n′)

times

[U(B, b, q̂(m′))− U(B, b, q̂(m))]− [U(G, b, q̂(m′))− U(G, b, q̂(m))],

which is positive by Assumption 2 since q(m′) > q(m).

Proof of Lemma 2

Let m1 = N, and iteratively define mk as the smallest integer such that {mk, . . . , mk} ⊆ T

and mk+1 as the largest integer smaller than mk such that mk+1 ∈ T . We have the

following claims regarding equilibrium and out-of-equilibrium beliefs.

(1) In any inflationary equilibrium, if q(m) < q∗ for some m ∈ T and m − 1 ∈ T , then

q(m− 1) < q(m) < q∗. Otherwise, W (m− 1; n) > W (m;n) for all n ≤ m− 1, and either

m 6∈ T or q(m) = 1, a contradiction in either case.
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(2) If q(m) < q(m′) for all m,m′ ∈ {mk, . . . , mk} and m < m′, then p(n; n) < 1 for all

n ∈ {mk, . . . , mk− 1}. Otherwise, W (n; n) ≥ W (n+1; n) implies W (n; n′) > W (n+1; n′)

for all n′ < n by part (ii) of Lemma 1, implying that either n + 1 6∈ T or q(n + 1) = 1, a

contradiction in either case.

(3) For any x 6∈ T , if for each k such that mk > x we have q(m) < q(m′) < q∗ for

all m, m′ ∈ {mk, . . . , mk} and m < m′, then the out-of-equilibrium belief is q̂(x) = 0.

Suppose instead q̂(x) > 0. We will show that W (x; n) ≥ W (tn; n) for any n > x and

tn ∈ Tn implies that W (x; n − 1) > W (tn−1; n − 1) for any tn−1 ∈ Tn−1. An iteration of

this result then leads to q̂(x) = 0 by the refinement, a contradiction that establishes the

claim. For any n > x, there are two cases. In the first case, either there is no k with

n = mk + 1, which by claim (2) above implies that there exists a tn−1 ∈ Tn−1 such that

tn−1 ≥ n, or n = mk + 1 for some k but p(n − 1; n − 1) < 1, which implies again that

there exists a tn−1 ∈ Tn−1 such that tn−1 ≥ n. Then, since W (x; n) ≥ W (tn; n), we have

W (x;n) ≥ W (tn−1; n) by optimality, which implies W (x; n− 1) > W (tn−1;n− 1) by part

(i) of Lemma 1. In the second case, n = mk + 1 for some k and p(n− 1;n− 1) = 1. Since

q̂(x) > 0 and q̂(n− 1) = 0, by part (iii) of Lemma 1, W (x; n) ≥ W (n− 1;n) implies that

W (x;n− 1) > W (n− 1; n− 1).

(4) If for some mk > 0 we have q(m) < q∗ for all m > mk, then q(mk) < q∗. To see this,

suppose that q(mk) ≥ q∗. By construction mk + 1 6∈ T and by claim (3) q̂(mk + 1) = 0.

Next, for any n ≤ mk and any tn ∈ Tn, W (mk + 1; n) ≥ W (tn;n) implies W (mk + 1; n) ≥
W (mk; n). Since q̂(mk +1) = 0, and q(mk) ≥ q∗ by assumption, W (mk +1; n) ≥ W (mk; n)

implies q(mk + 1) ≥ q∗. It follows that W (mk + 1; mk + 1) > W (tmk+1;mk + 1) for any

tmk+1 ∈ Tmk+1. The refinement then implies q(mk + 1) = 1, a contradiction.

Using the above four claims, we now establish that in any equilibrium q(m) ≥ q∗ for

all m ∈ T . Suppose instead q(m) < q∗ for some m ∈ T . Then, q(N) < q∗; otherwise,

W (N ; n) > W (m; n) for all n ≤ m, contradicting the assumption that m ∈ T . Claims

(1) and (4) above then imply that q(m) < q∗ for all m ∈ T and m > 0. If l > 0, we

have W (0; 0) > W (m; 0) for all m ∈ T regardless of q̂(0), a contradiction. If l = 0 and

1 ∈ T , we then have p(0; 0) = 1 and q(1) = 1, again a contradiction. Finally, if l = 0

and 1 6∈ T , since q̂(1) = 0 by claim (3) above and q(t1) < q∗ for any t1 ∈ T1, we have
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that W (1; 1) > W (t1; 1) whenever W (1; 0) ≥ W (0; 0), which then implies q(1) = 1 by the

refinement, again a contradiction.

(i) For the first part of the lemma, note that if q(m) > q∗ for some m > 0 and m ∈ T ,

then W (m; 0) > W (0; 0). This contradicts the assumption that l = 0. Thus, q(m) = q∗

for all m > 0 such that m ∈ T .

(ii) For the second part, note that if q∗ ≤ q(m′) < q(m) or if q∗ < q(m′) = q(m) for

some m,m′ ∈ T, and m > m′, we have W (m; n) > W (m′;n) for all n ≤ m′, contradicting

the assumption that m′ ∈ T . Thus, it remains to prove that if q(m) = q∗ for some

m ∈ T , then q(m′) = q∗ for all m ∈ T and 0 < m′ < m. To establish this last claim,

suppose q(m) = q∗ for some m ∈ T . There are two cases. First suppose m − 1 ∈ T . If

q(m − 1) > q∗, then W (m − 1; n) > W (m;n) for all n ≤ m − 1. This implies q(m) = 1,

a contradiction. Thus q(m − 1) = q∗. Next suppose m − 1 6∈ T . Let m be the largest

signal in T that is smaller than m. Since q(m′) = q∗ for all m′ ∈ T and m′ ≥ m,

we have W (tm+1; m + 1) = W (m′; m + 1) for any tm+1 ∈ Tm+1. For all n > m + 1,

since W (m + 1;n) ≥ W (tn;n) for tn ∈ Tn implies W (m + 1; m + 1) > W (tn; m + 1) =

W (tm+1, m+1), it follows from the refinement that q̂(m+1) = 0. Given this, if q(m) > q∗,

then W (m + 1; n) ≥ W (tn; n) for any n ≤ m and any tn ∈ Tn implies q(m + 1) > q∗. It

then follows that W (m + 1; m + 1) > W (tm+1; m + 1), and therefore q(m + 1) = 1 by the

refinement, a contradiction. Thus, q(m) = q∗.

Proof of Lemma 3

(i), (ii) Suppose p(m′; m) > 0 for some m,m′ ∈ T and m′ > m ≥ l. By optimality we have

W (m′; m)−W (m; m) ≥ 0. Since q(m) > q(m′) by Lemma 2, part (ii) of Lemma 1 implies

W (m′; n) − W (m; n) > 0 and hence p(m;n) = 0 for all n < m. Part (i) of the lemma

follows by setting m = l and noting that p(l; l) = 0 implies l 6∈ T , a contradiction. Part

(ii) follows by noting that for any m ∈ T and m > l, p(m; m) < 1 implies that q(m) = 1,

contradicting Lemma 2.

(iii) By optimality W (minTm;m) ≥ W (n;m) for all n ≥ min Tm. Since from Lemma

2 we have q(min Tm) > q(n), part (ii) of Lemma 1 implies that W (min Tm; m′) > W (n; m′)

for all m′ such that m < m′ ≤ l ≤ min Tm. Hence p(n;m′) = 0, and max Tm′ ≤ min Tm.
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(iv) Let x > 0 be the largest signal such that x 6∈ T . Note that in any inflationary

equilibrium x < N . We first show by contradiction that q̂(x) = 0. This claim follows

from the refinement if W (x; n) ≥ W (tn; n) for any n > x and tn ∈ Tn implies that

W (x;x) > W (tx; x) for any tx ∈ Tx. To establish the latter claim, note that for any

n > x + 1, by optimality W (x; n) ≥ W (tn;n) implies that W (x; n) ≥ W (x + 1; n). Since

q̂(x) > 0 and q̂(x+1) = 0, part (iii) of Lemma 1 implies that W (x;x+1) > W (x+1; x+1).

Since x + 1 ∈ Tx+1 by (i) and (ii) above, we have W (x;x + 1) > W (tx+1;x + 1) for all

tx+1 ∈ Tx+1, which by optimality implies W (x; x + 1) > W (tx; x + 1). Since tx ≥ x + 1,

by part (i) of Lemma 1, we have W (x;x) > W (tx; x).

Next, we claim that q(x) = 1. To see this, note that for each n < x and any tn ∈ Tn, by

optimality W (x;n) ≥ W (tn; n) implies W (x;n) ≥ W (x + 1; n). Since q̂(x) = q̂(x + 1) = 0,

if W (x;n) ≥ W (x + 1; n) then q(x) > q(x + 1). Since tx ≥ x + 1, from Lemma 2 we have

q(x) > q(tx). It then follows from part (ii) of Lemma 1 that W (x; x) > W (tx;x). By the

refinement, q(x) = 1. Thus there is no m < x such that m ∈ T .

(v) First, consider q̂(0). By (ii) and (iii) above, p(N ; 0) > 0; otherwise, q(N) = 1,

which is a contradiction. For any n > 0 and tn ∈ Tn, if W (0; n) ≥ W (tn;n) then by

optimality W (0; n) ≥ W (N ;n). By part (i) of Lemma 1, we have W (0; 0) > W (N ; 0). It

follows from the refinement that q̂(0) = 0.

Next, we show that q̂(m) = 0 for any m = {1, . . . , l − 1}. Suppose instead q̂(m) > 0.

We will show that W (m; n) ≥ W (tn; n) for any n > m and tn ∈ Tn implies W (m;m) >

W (tm;m) for any tm ∈ Tm, which leads to a contradiction by the refinement. First,

for any n > l, by optimality W (m;n) ≥ W (tn; n) implies W (m;n) ≥ W (l; n). Since

q̂(m) > 0 and q̂(l) = 0, by part (iii) of Lemma 1, W (m; l) > W (l; l). Second, for any n

such that m < n ≤ l, we have tm ≥ n. If W (m;n) ≥ W (tn;n), optimality implies that

W (m;n) ≥ W (tm; n). It then follows from part (i) of Lemma 1 that W (m; m) > W (tm; m).

Combining these two cases, we have q̂(m) = 0, as desired.

Finally, consider q(m) for any m = {1, . . . , l − 1}. Suppose that W (m;n) ≥ W (tn; n)

for some n < m and tn ∈ Tn. By optimality W (m; n) ≥ W (tm; n), which implies q(m) >

q(tm) as q̂(m) = 0. It then follows from part (ii) of Lemma 1 that W (m; m) > W (tm; m).

By the refinement, q(m) = 1.
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Proof of Proposition 1

Denote as pn a reporting strategy in state n (i.e., the vector (p(0; n), ..., p(N ;n))), and

let Pn be a sequence (pn, ..., pN ). For a given pn, we use tn (tn) to denote the largest

(smallest) m such that p(m; n) > 0. Although Pn is not a complete strategy, we construct

the market beliefs under the assumption that p(m; n′) = 0 for all m and all n′ < n and

denote it q(m | Pn). When q(m | Pn) cannot be obtained using Bayes’ rule, it is defined

as 1, while q̂(m|Pn) is defined as 0. Finally, we denote as W (m; n | P k) the expected

payoff to the agency that issues m good ratings and has n clients of good quality when the

market beliefs are given by q(m | P k) and q̂(m | P k) for each m = 0, . . . , N .

Definition A.1 . We say pn for some n > 0 is compatible with l given Pn+1 if it satisfies:

(i) p(n; n) = 1 in case n > l;

(ii) in case n = l: (a) p(m; n) = 0 for all m < l; (b) W (n; n|Pn) = W (t;n|Pn) for all n <

t < tn; (c) W (n;n|Pn) ≤ W (tn; n|Pn) if tn < N ; and (d) p(N ; n) = 1−∑
m<N p(m;n);

(iii) in case n < l: (a) tn+1 + 1 ≥ tn ≥ tn+1; (b) W (tn; n|Pn) = W (t; n|Pn) for all

tn < t < tn; (c) W (tn; n|Pn) ≤ W (tn; n|Pn) if tn < N ; (d) p(N ;n) = 1−∑
m<N p(m;n);

(e) W (tn′−1; n′|Pn) ≤ W (tn′ ; n
′|Pn) for all n ≤ n′ ≤ l if tn < N ; (f) W (tn+1; n+1|Pn) ≥

W (tn; n + 1|Pn) if tn > tn; and (g) W (tn′ ;n
′|Pn) = W (tn′ ; n′|Pn) for all n′ > n if

tn > tn+1.

We say Pn is compatible with l if pk is compatible with l given P k+1 = (pk+1, ..., pN )

for each k such that N > k ≥ n, and Pn is compatible if it is compatible with some

l = 0, . . . , N .

Lemma A.1 . If P = (p0, ..., pN ) is the reporting strategy in an equilibrium with threshold

l, then P 1 = (p1, ..., pN ) is compatible with l.

Proof of Lemma A.1. We show that, if Pn+1 is compatible with l and P is an

equilibrium strategy, then pn is compatible with l given Pn+1. The lemma then follows

from observing that there is only way of constructing an equilibrium strategy pN and it is

compatible with all l.

Part (i) of Definition A.1 follows immediately from the definition of equilibrium.
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Part (ii). (a) follows immediately from the definition of equilibrium. Next, note that

part (iii) of Lemma 3 implies that in any equilibrium with threshold l and each n ≤ l,

W (t; n|Pn) = W (t; n) for all t < tn and W (tn;n|Pn) ≥ W (tn; n). Thus by Lemma 3, (b)

and (c) must hold in equilibrium. (d) is clearly necessary.

Part (iii). (a) follows from part (iii) and (iv) of Lemma 3. The proof of (b), (c) and

(d) is the same as for part (ii) above. (e) is necessary for equilibrium because W (tn′ −
1; n′|Pn) = W (tn′ − 1; n′) and W (tn′ ; n

′|Pn) ≥ W (tn′ ;n
′) for all n ≤ n′ ≤ l. (f) and (g)

follow because W (m; n′|Pn) = W (m; n′) for all n′ and all m < tn. Q.E.D.

Lemma A.1 establishes that compatibility of P 1 is a necessary condition for P =

(p0, P
1) to be an equilibrium. However, it is not sufficient since no restriction is imposed

on p0. Next we give a definition of compatibility of a vector p0 = (p(0; 0), ..., p(N ; 0)) given

a compatible P 1. This definition ensures that all the equilibrium conditions are satisfied

but does not require
∑

m p(m; 0) = 1 or p(m; 0) ≥ 0 for all m = 0, ..., N , so that p0 may

not be a valid reporting strategy.

Definition A.2. Given P 1 compatible with l, we say that p0 is compatible with P 1 if,

when l > 0:

(i) p(m; 0) = 0 for all m < t1;

(ii) p(t1; 0) is such that W (tn; n|p0, P
1) = W (tn; n|p0, P

1) and W (tn − 1; n|p0, P
1) ≤

W (tn; n|p0, P
1), for all n ≤ l;

(iii) p(m; 0) for t1 < m ≤ N satisfies: (a) if p(t1; 0) > 0, then p(m; 0) is the value such

that W (t1; 0|p0, P
1) = W (m; 0|p0, P

1); and (b) if p(t1; 0) = 0, then p(t1 + 1; 0) satisfies

W (t1; 0|p0, P
1) ≤ W (t1 + 1; 0|p0, P

1) and W (t1; 1|p0, P
1) ≥ W (t1 + 1; 1|p0, P

1), and

p(m; 0) is such that W (t1 + 1; 0|p0, P
1) = W (m; 0|p0, P

1) for m > t1 + 1;

and, when l = 0, p(0; 0) ∈ [0, 1] and for each m > 0, p(m; 0) satisfies (iii) with t1 = 0.

By definition, if P 1 is compatible with l and p0 is compatible with P 1 we have that

W (tn; n|p0, P
1) = W (t;n|p0, P

1) ≥ W (m; n|p0, P
1), ∀n ≤ l, m ≥ l, tn ≤ t ≤ tn. (A.1)

Moreover, for any vector p0 that is not compatible with P 1, (A.1) is violated and hence P =

(p0, P
1) is not an equilibrium. By Definition A.1 and A.2, only p(N ; 0) can be negative in a
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compatible vector p0 and, in that case p(m; 0) = 0 for each m < N . Thus, if
∑

m p(m; 0) =

1, the vector p0 is a reporting strategy and P = (p0, P
1) satisfies all properties of Lemma

3. It follows that P = (p0, P
1) is an equilibrium only if p0 is compatible with P 1 and

∑
m p(m; 0) = 1. The following lemma verifies that these two conditions are also sufficient

for an equilibrium.

Lemma A.2. Let P 1 = (p1, ..., pN ) be compatible. Then P = (p0, P
1) is an equilibrium if

and only if p0 is compatible with P 1 and
∑

m p(m; 0) = 1.

Proof. Since (A.1) holds, we only need to argue that: (a) given P there are no profitable

deviation to out of equilibrium messages; and (b) in all states n > l, the agency has no

incentive to deviate from the reporting strategy p(n; n) = 1.

(a) The most profitable deviation among the out-of-equilibrium signals is always m =

l − 1. Part (iii) (e) of Definition A.1 and part (ii) of Definition A.2 imply that

W (l; l − 1) ≥ W (l − 1; l − 1), (A.2)

because either tl−1 = l or q(l) = 1. By part (i) of Lemma 1 (A.2) implies that W (l; l) >

W (l−1; l), and, since q(l−1) ≥ q(l), by (ii) of Lemma 1 it implies that W (l; n) ≥ W (l−1; n)

for all n < l − 1. Finally, since W (l; l) > W (l − 1; l) and since W (l; n) − W (l − 1; n) =

W (l; l) − W (l − 1; l) for all n > l because q̂(l − 1) = q̂(l) = 0, we have that W (l; n) >

W (l − 1; n) for all n > l.

(b) The claim is trivial if l = 0 since in that case p0 compatible with P 1 implies that

q(m) = q∗ for all m = 1, . . . , N . If P 1 is not compatible with l = 0, then q(l) > q∗ because

either l > 1 and (A.2) holds, or l = 1 and p(l; l) < 1, which implies q(l) = 1. It follows that

q(m) > q(n) > q∗ for all n > m ≥ l. First we show that W (n; 0) −W (m; 0) ≥ 0 implies

W (n; n) − W (m; n) ≥ 0. This is trivially true for any m if n = m. Now, the condition

W (n; 0)−W (m; 0) ≥ 0 is equivalent to:

U(B, g, q(m))− U(B, g, q(n))
U(B, g, q(n))− U(B, b, 0)

≤ n−m

m
. (A.3)

Similarly, the condition W (n; n)−W (m; n) ≥ 0 is equivalent to:

U(G, g, q(m))− U(G, g, q(n))
U(G, g, q(n))− U(G, b, 0)

≤ n−m

m
. (A.4)
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When Assumption 4 holds, [U(G, g, q) − U(G, b, 0)]/[U(B, g, q) − U(B, b, 0)] is decreasing

in q ∈ (q∗, 1). So,

U(G, g, q(m))− U(G, b, 0)
U(B, g, q(m))− U(B, b, 0)

≤ U(G, g, q(n))− U(G, b, 0)
U(B, g, q(n))− U(B, b, 0)

.

This condition implies

U(B, g, q(m))− U(B, g, q(n))
U(B, g, q(n))− U(B, b, 0)

≤ U(G, g, q(m))− U(G, g, q(n))
U(G, g, q(n))− U(G, b, 0)

.

Hence, (A.3) implies (A.4). It follows that if p(m; n) > 0 for some n > m ≥ l, then

W (m; 0) > W (n; 0). By part (ii) of Lemma 1, W (m; k) > W (n; k) for any k ≤ m, which

contradicts (A.1). Q.E.D.

Let P1 denote the collection of all sequences of reporting strategies P 1 = (p1, ..., pN )

that are compatible. The next two lemmas establish that P1 is non-empty, closed and

connected.

Lemma A.3. Let Pn+1 = (pn+1, ..., pN ) be compatible with l. Then, the set of reporting

strategies in state n compatible with l given Pn+1 is non-empty, closed and connected.

Proof. (i) For n > l the claim is trivially true since by Definition A.1 there is a unique

pn compatible with l given Pn+1 and it has p(n; n) = 1.

(ii) For n = l, the definition of compatibility implies that pl is compatible if and only if: (a)

pn(m) = 0 for all m < l; (b) p(l; l) ∈ [0, 1]; (c) for each l < m < N , p(m; l) is equal to the

minimum of 1−∑
k<m p(k; l) and the value such that W (l; l|pl, P

l+1) = W (m; l|pl, P
l+1);

and (d) p(N ; l) = 1−∑
k<N p(k; l). Note that W (l; l|pl, P

l+1) is independent of pl. Further,

for all m > l we have: W (m; l|pl, P
l+1) depends only on p(m; l), is strictly decreasing in

p(m; l), and satisfies W (l; l|pl, P
l+1) < W (m; l|pl, P

l+1) when p(m; l) = 0. Thus, the set

of compatible pl is non-empty and it is closed because each compatible pl is uniquely

determined by the value of p(l; l) and there exists a compatible pl for each value of p(l; l) ∈
[0, 1]. Finally, if pl is compatible and {pi

l}i=1,2,... is a sequence of compatible strategies

with limi→∞ pi(l; l) = p(l; l) then limi→∞ pi(m; l) = p(m; l) for each m = 0, . . . , N , hence

the set of compatible strategies is connected.
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(iii) For n < l, the definition of compatibility implies that there is exactly one pn compatible

with l given Pn+1 if tn+1 = N or W (tn′ ; n
′|Pn+1) < W (tn′ ;n′|Pn+1) for some n < n′.

Otherwise, pn is compatible if and only if: (a) for each m < tn+1, p(m; n) = 0; (b)

p(tn+1;n) is non-negative and not larger that the minimum of 1 and the largest value

such that W (tn′ − 1; n′ | Pn) ≤ W (tn′ ; n
′ | Pn) = W (tn′ ; n′ | Pn) for all n < n′ ≤

l; (c) if p(tn+1; n) > 0 then: (c-i) p(m; n) is the minimum of 1 − ∑
k<m p(k; n) and

the value such that W (tn+1; n | Pn) = W (m; n | Pn) for each tn+1 < m < N ; and

(c-ii) p(N ; m) = 1 − ∑
k<N p(k; n); (d) if p(tn+1; n) = 0 then: (d-i) p(tn+1 + 1; n) is

at least as large as the minimum of 1 and the value such that W (tn+1;n + 1 | Pn) =

W (tn+1 + 1; n + 1 | Pn) and it is at most as large as the minimum of 1 and the value

such that W (tn+1;n | Pn) = W (tn+1 + 1;n | Pn); (d-ii) for each tn+1 + 1 < m < N ,

p(m; n) is the minimum of 1 − ∑
k<m p(m; n) and the value such that W (tn+1 + 1;n |

Pn) = W (m; n | Pn); and (d-iii) p(N ; n) = 1 −∑
k<N p(k;n). By compatibility of Pn+1,

p(tn+1;n) = 0 satisfies (b). Hence the set of all values of p(tn+1; n) that satisfy (b) is

non-empty, closed and connected. Further, for each p(tn+1; n) > 0 that satisfies (b),

p(m; n) is uniquely determined by (c) for each m > tn+1. When p(tn+1;n) = 0 instead,

if tn+1 + 1 = N p(tn+1 + 1; n) is uniquely determined equal to 1 by (d-iii). Otherwise,

note that q(m | Pn) depends only on p(m;n), is strictly decreasing in p(m; n), and satisfies

q(m | Pn) = 1 when pn(m) = 0 for each m > tn+1. Further, by Lemma 1, the value such

that W (tn+1;n + 1 | Pn) = W (tn+1 + 1; n + 1 | Pn) is smaller than the value such that

W (tn+1;n | Pn) = W (tn+1 + 1; n | Pn). It follows that the set of values of p(tn+1 + 1; n)

that satisfy (d-i) is non-empty, closed and connected, and for each such value, p(m;n) is

uniquely determined by (d-ii) and (d-iii) for all m > tn+1 +1. Finally, when p(tn+1 +1; n)

assumes the maximum value that respects condition (d-i), the resulting pn also satisfies

condition (c). This concludes the proof of the claim. Q.E.D.

Lemma A.4. The set P1 is non-empty, closed and connected.

Proof. An immediate implication of Lemma A.3 and the definition of compatibility is

that, for each l, the collection of all P 1 compatible with l is non-empty, closed, connected

and is completely ordered by >LF . We will show that for each 0 < l < N , the smallest
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P 1 compatible with l is also compatible with l− 1. The claim then follows from observing

that the largest P 1 compatible with N − 1 has p(N ; n) = 1 for all n = 1, . . . , N which is

the only sequence of reporting strategies compatible with N .

Let P 1 be a reporting strategy compatible with l, such that p(l; l) = 1 and p(l; l − 1)

is the minimum of 1 and the value such that W (l; l − 1 | P l−1) = W (l − 1; l − 1 | P l−1).

This implies that P l−1 is also compatible with l − 1. The lemma follows by noting that

for all n < l − 1 the definition of pn compatible with l is identical to the definition of pn

compatible with l − 1. Q.E.D.

Next, consider the correspondence φ : P1 → IR defined as

φ(P 1) = {x ∈ IR | x =
∑
m

p(m; 0) for some p0 compatible with P 1}.

For each compatible P 1, the set φ(P 1) is obtained by first finding all vectors p0 compatible

with P 1 and then by summing over all entries for each such vector. By Lemma A.2, for

any equilibrium P = (p0, P
1), we have φ(P 1) 3 1. Further, if φ(P 1) 3 1 for some P 1 ∈ P1,

then there exists a p0 such that P = (p0, P
1) is an equilibrium. The following properties

φ will be used to conclude the proof of the proposition.

Lemma A.5. For all P 1 ∈ P1, the set φ(P 1) is closed and convex, and φ is upper

hemicontinuous.

Proof. First we establish that φ(P 1) is closed and convex. Let P 1 be compatible with

l. We distinguish three cases.

(i) If l = 0, then p(n;n) = 1 for all n = 1, . . . , N and by Definition A.2, p0 is compatible

if and only if p(0; 0) ∈ [0, 1] and p(m; 0) = (1− q∗)πm/(q∗π0) for all m = 1, . . . , N .

(ii) If l = N , then p(N ; n) = 1 for all n = 1, . . . , N and by Definition A.2, p0 is compatible

if and only if p(m; 0) = 0 for all m = 0, . . . , N − 1, and p(N ; 0) is not larger that the

value such that W (N − 1; N − 1 | p0, P
1) = W (N ; N − 1 | p0, P

1). Such value exists

and is unique since W (N ; N − 1 | p0, P
1) is continuous and strictly decreasing in p(0; 0),

W (N ; N − 1 | p0, P
1) > W (N − 1; N − 1 | p0, P

1) in the limit as p(N ; 0) → −∞, and

W (N ; N − 1 | p0, P
1) < W (N − 1; N − 1 | p0, P

1) in the limit as p(N ; 0) → +∞.

46



(iii) If 0 < l < N , an argument analogous to that in part (iii) of the proof of Lemma A.3

can be used to establish that the set of vectors p0 compatible with P 1 is non-empty, closed,

connected and compact. Thus, the function
∑

m p(m; 0) on the set of compatible vectors

p0 has a minimum and maximum and assumes all values in between.

To prove that φ is upper hemicontinuous by contradiction, we assume that there is a

sequence of P 1(i) with limi→∞ P 1(i) = P 1, and a sequence of p0(i) with limi→∞ p0(i) = p0,

such that p0(i) is compatible with P 1(i) for all i but p0 is not compatible with P 1. By

definition of compatibility, there exists n such that W (tn; n | p0, P
1) < W (m; n | p0, P

1)

with tn ∈ Tn. This implies that for i large enough, W (tn; n | p0(i), P 1(i)) < W (m; n |
p0(i), P 1(i)) and tn ∈ Tn(i), a contradiction to compatibility. Q.E.D.

To complete the proof of the proposition, note that the reporting strategy P 1 defined

by p(n; n) = 1 for all n = 1, . . . , N is compatible. By Definition A.2, there is a vector

p0 compatible with P 1 such that p(0; 0) = 1 and p(m; 0) > 0 for all m > 1. Thus,

max φ(P 1) > 1. On the other hand, the reporting strategy P 1 defined by p(N ; n) = 1 for

all n = 1, . . . , N is also compatible. By Definition A.2, any vector p0 with p(m; 0) = 0

for all m < N and p(N ; 0) sufficiently small is compatible with P 1, and therefore φ(P 1)

is unbounded from below. Since φ is upper hemicontinuous, there exists some P 1 such

that φ(P 1) 3 1, establishing the existence of an inflationary equilibrium. To establish

a sufficient condition for an equilibrium to have threshold l > 0, note that the only P 1

compatible with l = 0 has p(n;n) = 1 for all n = 1, . . . , N , and the minimum of φ(P 1) is

achieved by p(0; 0) = 0 and p(m; 0) = (1− q∗)πm/(q∗π0). Thus, if π0 < 1− q∗, there is an

inflationary equilibrium with l > 0.

Proof of Lemma 4

First, we show that if X is exchangeable and MTP2, then, for any i, (Xi, Yi, Zi, Z̃i) is

MTP2. If X is exchangeable and MRR2, then, for any i, (Xi, Yi, N − 1− Zi, N − 1− Z̃i)

is MTP2.

Since X is exchangeable, for any two realizations x and x′ of X such that
∑

i xi =
∑

i x′i, we have f(x) = f(x′). Let fn represent the probability of x such that
∑

i xi = n.
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Assume that f is MTP2. Let h(xi, zi) be the joint probability function of of (Xi, Zi).

For zi ≥ z′i, we have

h(1, zi)h(0, z′i) =
(

N − 1
zi

)(
N − 1

z′i

)
fzi+1fz′

i

≥
(

N − 1
zi

)(
N − 1

z′i

)
fzi

fz′
i
+1 = h(1, z′i)h(0, zi).

Thus, h(xi, zi) is also MTP2.

Now consider the conditional distributions φ(yi | xi) and ψ(z̃i | zi). These are

φ(yi | xi) =





0 if yi < xi,

1 if yi = xi = 1,

β(1− xi, yi − xi, p) otherwise;

ψ(z̃i | zi) =





0 if z̃i < zi,

1 if z̃i = zi = N − 1,

β(N − 1− zi, z̃i − zi, p) otherwise.

It is straightforward to verify that both φ and ψ are MTP2. The joint distribution of

(Xi, Yi, Zi, Z̃i) is simply h(xi, zi)φ(yi | xi)ψ(z̃i | zi). Since each of these component func-

tions is MTP2, the joint distribution is MTP2. When f is MRR2, using a similar reasoning

as above we can establish that the joint distribution of (Xi, Yi, N − 1− Zi, N − 1− Z̃i) is

also MTP2.

By the above result, if f is MTP2, then (Xi, Yi, Zi, Z̃i) is MTP2. Since the marginal

distribution of any subset of a MTP2 vector is itself MTP2 (Karlin and Rinott, 1980,

Proposition 3.1), this means that the joint distribution of (Xi, Yi, Z̃i) is MTP2. Suppose

h∗(z̃i | xi, yi) represents the conditional probability function of Z̃i given Xi and Yi. The

MTP2 property of the joint distribution implies that, for any z̃i ≥ z̃′i, we have h∗(z̃i |
1, 1)h∗(z̃′i | 0, 1) ≥ h∗(z̃i | 0, 1)h∗(z̃′i | 1, 1), and thus the likelihood ratio h∗(· | 1, 1)/h∗(· |
0, 1) is monotone increasing, implying that the distribution {rG(m)} first-order stochastic

dominates {rB(m)}.
When f is MRR2, the joint distribution of (Xi, Yi, N − 1 − Z̃i) is MTP2. This im-

plies that the likelihood ratio h∗(· | 1, 1)/h∗(· | 0, 1) is monotone decreasing. Hence, the

distribution {rB(m)} first-order stochastic dominates {rG(m)}.
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Proof of Lemma 5

Suppose f is MTP2. Let h∗∗(xi | yi, z̃i) represent the conditional probability function of

Xi given Yi and Z̃i. By the same argument as in Lemma 4, the joint distribution of these

three variables is MTP2. Therefore, for m ≥ m′, the conditional distribution satisfies:

h∗∗(1 | 1,m− 1)h∗∗(0 | 1,m′ − 1) ≥ h∗∗(0 | 1,m− 1)h∗∗(1 | 1,m′ − 1).

This condition implies that q(m) = h∗∗(1 | 1,m− 1) ≥ h∗∗(1 | 1,m′ − 1) = q(m′).

When f is MRR2, we have q(m′) ≥ q(m) for m ≥ m′, as

h∗∗(1 | 1,m′ − 1)h∗∗(0 | 1, m− 1) ≥ h∗∗(0 | 1,m′ − 1)h∗∗(1 | 1,m− 1).

Proof of Lemma 6

For each m = 1, . . . , N ,

rB(m) =
N−1∑
n=0

Pr[Z̃i = m− 1 | Xi = 0, Yi = 1, Zi = n] Pr[Zi = n | Xi = 0, Yi = 1]

=
m−1∑
n=0

β(N − n− 1,m− n− 1, p)
πn

1− π

N − n

N

=
m∑

n=0

πnβ(N − n,m− n, p)
m− n

N(1− π)p
.

For each m = 1, . . . , N , define

N (m) =
m∑

n=0

πnβ(N − n,m− n, p)n;

D(m) =
m∑

n=0

πnβ(N − n,m− n, p)m.

Since
∑N

m=1 rB(m) = 1, we have

N∑
m=1

(
D(m)−N (m)

)
= N(1− π)p.
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Note that since rG(m) = N (m)/(πN), from
∑N

m=1 rG(m) = 1 we have

N∑
m=1

N (m) = Nπ,

and hence
N∑

m=1

D(m) = N(π + (1− π)p).

Finally, note that from equation (7) we have q(m) = N (m)/D(m). Since rB(m) = (N (m)−
D(m))/(N(1− π)p), we have

N∑
m=1

rB(m)q(m) =
1

N(1− π)p

N∑
m=1

D(m)q(m)(1− q(m)).

Since q(1− q) is concave in q, Jensen’s inequality implies the above is less than or equal to

∑N
m=1D(m)

N(1− π)p

(∑N
m=1 q(m)D(m)∑N

m=1D(m)

)(
1−

∑N
m=1 q(m)D(m)∑N

m=1D(m)

)
.

The lemma follows immediately.

Lemma A.6 and Proof

Lemma A.6. For any small and positive ε,

lim
N→∞

∑

n∈[N(π−ε),N(π+ε)]

∑

m>N(π+ε)

πN
n pN (m;n) = 0,

where πN
n = (1− α)β(N, n, π).

Proof. The claim is trivially true if α = 1; assume α < 1. Suppose that for some small

ε > 0 there exists a subsequence in N such that

lim
N→∞

∑

n∈[N(π−ε),N(π+ε)]

∑

m>N(π+ε)

πN
n pN (m;n) > 0.

Since
∑

n6∈[N(π−γ),N(π+γ)] π
N
n equals α < 1 in the limit for any γ > 0,

lim
N→∞

∑

n∈[N(π−γ),N(π+γ)]

∑

m>N(π+ε)

πN
n pN (m; n) > 0.
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Define the following collection of messages

MN =
{
m > (π + ε)N | pN (m; n) > 0 for some n ∈ [N(π − γ), N(π + γ)]

}
.

The setMN contains all messages larger that N(π+ε) that are sent with positive probabil-

ity in some state n close to πN . We claim that N 6∈ MN for sufficiently large N ; otherwise,

pN (N ; 0) = 1 by Lemma 3 and we would have a sequence of equilibria with qN (N) ap-

proaching π and qN (n) for n close to Nπ approaching 1, which contradicts condition (12).

Now, since

lim
N→∞

∑

n>N(π+γ)

∑

m∈MN
πN

n pN (m;n) = 0,

we have

lim
N→∞

sup
m∈MN

∑
n<N(π+γ) πN

n pN (m; n)∑
n πN

n pN (m; n)
= 1.

For any m ∈MN , the equilibrium belief q(m)N is given by

∑
n<N(π+γ) πN

n pN (m; n) n
m +

∑
n>N(π+γ) πN

n pN (m; n)min{ n
m , 1}∑

n πN
n pN (m; n)

≤
(π+γ)N

m

∑
n<N(π+γ) πN

n pN (m; n) +
∑

n>N(π+γ) πN
n pN (m;n)∑

n πN
n pN (m;n)

.

Thus,

lim
N→∞

inf
m∈MN

mqN (m) ≤ N(π + γ).

Since qN (n) becomes arbitrarily close to 1 for all n close to Nπ, we have that for γ

sufficiently small and N sufficiently large, there exists m ∈ MN such that by condition

(12) W (n;n) > W (m; n) for all n ∈ [N(π − γ), N(π + γ)], a contradiction.
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