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Abstract

The increasing market share of light trucks in the U.S. in recent years has been

characterized as an “arms race” where individual purchase of light trucks for better

self-protection in collisions nevertheless leads to worse traffic safety for the society.

This paper investigates the interrelation between traffic safety and vehicle choice by

quantifying the effects of the arms race on vehicle demand, producer performance,

and traffic safety. The empirical analysis shows that the accident externality of a

light truck amounts to $2,444 in 2006 dollars during vehicle lifetime. Counterfactual

simulations suggest that about 12% of new light trucks sold in 2006 and 204 traffic

fatalities could be attributed to the arms race.

Key Words: Accident Externality, Automobile Demand, Random Coefficient Demand Model

∗This paper is based on Chapter 1 of my 2007 Dissertation at Duke University. I am grateful to Chris
Timmins, Han Hong, Arie Beresteanu, Paul Ellickson, two anonymous referees, and participants at Duke’s
Applied Microeconometrics lunch group for their helpful comments. Thanks also go to Susan Liss and
Nanda Srinivasan at the Federal Highway Administration, Art Spinella and Stephanie Yanez at CNW Mar-
keting Research for their expertise. Financial support from MIRC at Duke is gratefully acknowledged. All
remaining errors are my own. Correspondence: Resources for the Future, 1616 P Street NW, Washington,
DC 20036. Email: li@rff.org; telephone: 1-202-328-5190; fax: 1-202-328-5137.



1 Introduction

Americans have been running an “arms race” on the road by buying larger and larger vehicles

such as sport utility vehicles (SUVs) and pickup trucks (White (2004)). The market share of

new light trucks including SUVs, pickup trucks, and passenger vans grew from 17 to about

50 percent from 1981 to 2006 with that of SUVs increasing from 1.3 to almost 30 percent.1

The “arms race” provides an analogy for the proposition that although individuals may

choose to purchase light trucks in part as a precautionary measure for self-protection in

collisions, traffic safety for the society as a whole could become worse as more and more

light trucks are on the road.

Several studies have documented that in multiple-vehicle collisions, light trucks provide

superior protection to their occupants while posing greater dangers to the occupants of

passenger cars (e.g., Gayer (2004), White (2004), and Anderson (2008)). This result is

largely due to the design mismatch between light trucks and passenger cars. Light trucks,

particularly SUVs and pickups, are generally taller and have higher front-ends. When they

collide with cars, they hit passenger compartments rather than the steel frames beneath and

cause greater injury to the heads and upper bodies of the occupants of the cars. Moreover,

many light trucks have stiffer and heavier body structures, which cause the opposing cars

to absorb more of the crash energy and inflict disproportionally more damage to cars in

collisions. The design mismatch and subsequent crash incompatibility problem can lead to

an arms race in vehicle demand where the individual incentive to secure better self-protection

by driving light trucks results in a worsening of overall traffic safety.

The first objective of this paper is to investigate the interrelation between traffic safety

and vehicle choice, focusing on the impact of the traffic safety effects of light trucks on vehicle

demand. Although the safety effects of light trucks have been examined in several recent

studies, their impact on vehicle demand has never been established in empirical studies.

Therefore, the arms race on American roads has so far remained a conjecture. In this study,

I investigate this missing link by estimating a structural demand model where vehicle safety

1After two decades of constant growth, the market share of light trucks started to stabilize from 2002
with slight decreases during 2005-2008 from the 2004 peak level largely due to high gasoline prices.
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effects are explicitly incorporated. The demand analysis coupled with a stylized supply

model allows me to further examine the effect of the arms race on the profitability of auto

makers and the industry. The second objective of this paper is to quantify the accident

externality of light trucks (in monetary terms) and to examine the impact of the arms race

on overall traffic safety. Current tort liability rules, insurance policies, and traffic rules

fail to internalize higher accident externality posed by light trucks.2 Therefore, economic

theory suggests that there may be too many light trucks compared to the socially optimal

level from the standpoint of traffic safety. The empirical analysis in this paper provides

an estimate for the accident externality of light trucks and thereby offers a basis for policy

intervention such as a corrective tax on light trucks.

The empirical strategy includes two steps. The first step examines safety effects of

passenger cars and light trucks in both single-vehicle and multiple-vehicle crashes using a

rich data set of traffic accidents. Through tobit regressions controlling for driving conditions

and driver demographics, I confirm that in multiple-vehicle crashes, light trucks offer better

protection for their own occupants than passenger cars while posing greater risks to the

colliding vehicles. However, occupants in light trucks are less safe in single-vehicle crashes.

Taking into account crash severity as well as crash frequencies, I find that light trucks are on

average safer for their occupants than passenger cars and that the safety advantage of light

trucks increases as more of them are in service. Nevertheless, overall traffic safety would

deteriorate as more people drive light trucks.

In the second step, I estimate a structural model of vehicle demand in the spirit of

Berry, Levinsohn, and Pakes (1995) (henceforth BLP) and Petrin (2002) in order to investi-

gate whether traffic safety concerns manifest themselves in consumer choices. The demand

model is estimated based on new vehicle sales data in 20 MSAs augmented with the 2001

National Household Travel Survey (2001 NHTS). The household level data provide corre-

2For example, liability for damage in automobile accident is generally based only on the negligence rule,
implying that drivers are not liable for the damage if the care level is above the negligence standard which
is irrespective of vehicle type. Moreover, many U.S. states use no-fault system rather than the negligence
rule and therefore do not penalize drivers of light trucks for causing larger damage. So in reality, insurance
companies, following very different pricing practices for light trucks, may not charge higher premium for
light trucks even for the same driver. See White (2004) for a detailed discussion.
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lations between household demographics and vehicle choices and can significantly improve

the estimation of heterogenous preference parameters in the model. In contrast to previous

studies on vehicle demand, I observe the sales of the same model in 20 markets, which

allows me to use product fixed effects to deal with price endogeneity due to unobserved

product attributes. Therefore, my estimation method does not rely on the maintained exo-

geneity assumption of observed product attributes to unobserved product attributes in the

literature.

The demand estimation shows that consumers are willing to pay a premium for the

safety advantage of light trucks over passenger cars. The implied premium for the reduced

fatality risk provides a natural way to estimate the value of a statistical life (VSL). The

revealed preference from the demand analysis implies the VSL to be $10.14 million in 2006

dollars. Based on the estimates of vehicle safety effects and VSL, the accident externality

posed by a light truck during vehicle lifetime is estimated at $2,444. Following this estimate,

I conduct counterfactual analysis where the accident externality from light trucks are fully

corrected for by a per-unit tax on light trucks (i.e., a special excise tax). The simulation

results suggest that the arms race explained on average 13.87% of the market share of light

trucks from 1999 to 2006. The increasing market share of light trucks due to the arms race

resulted in worse traffic safety for the society. The simulation shows that should the accident

externality be corrected for by the tax, the traffic fatalities would have been reduced by 204

in 2006. Moreover, the arms race benefited the auto industry as a whole, particularly the

Big Three. This finding is consistent with the Big Three’s continued lobbying efforts to

prevent more government regulations on light trucks.

There exist several other policy suggestions that offer the potential of curbing the arms

race in addition to a special excise tax on light trucks. The first suggestion calls for govern-

ment regulations on the design of light trucks to alleviate the crash incompatibility problem

(Bradsher (2002) and the Insurance Institute for Higher Safety (IIHS) Status Report, Feb.

14, 1998). One proposed regulation is to require light trucks to comply with a federally

mandated bumper height zone as passenger cars do. Latin and Kasolas (2002) declare

that SUVs are probably the most dangerous products (other than tobacco and alcohol) in
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widespread use in the U.S. and argue for stricter liability on SUV producers through the tort

system. Edlin (2003) proposes a per-mile premium approach where insurance companies

quote risk-classified per-mile rates and therefore owners of light trucks will be charged more

for liability insurance than passenger cars for the same distance traveled. Some policies

used in Europe include higher registration fees and freeway tolls based on vehicle size and

high gasoline taxes.

The contribution of this paper is two fold. There is an ongoing debate within the

academia as well as regulatory agencies (e.g., the National Highway Traffic Safety Admin-

istration) regarding the overall traffic safety effect of light trucks. The traditional view is

that a heavier vehicle fleet is safer (Crandall and Graham (1989)), which implies that a

vehicle fleet with more light trucks would be safer. However, several recent studies (White

(2004), Gayer (2004), Anderson (2008)) show that light trucks have a negative effect on the

overall traffic safety. This finding underlies that although vehicle weight is an important

factor influencing crash outcomes, vehicle stiffness and geometric design can be equally if

not more important. This paper adds to these recent evidence based on a different empirical

framework. More importantly, this paper contributes to the literature by examining the link

between traffic safety and vehicle choice. Together with the results on the safety effects of

passenger cars and light trucks, the demand estimation provides the first evidence of the

arms race in vehicle demand. Moreover, this paper is the first in quantifying the effects of

the arms race on vehicle demand, industry performance, and traffic safety as well.

The remainder of this paper is organized as follows. Section 2 discusses data. Section 3

pays a close look at the safety effects of passenger cars and light trucks. Section 4 presents

the demand model and the estimation results. Section 5 is the post-estimation analysis

including counterfactual simulations. Section 6 concludes.

2 Data

Several data sets are employed to study vehicle safety and its effect on vehicle demand.

The safety effects of vehicles are examined based on a large sample of police reported traffic
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accidents from 1998 to 2006. This data set is from the General Estimate System (GES)

database maintained by the National Highway Traffic Safety Administration (NHTSA).

Data are sampled from accident reports in about 400 police agencies across the United

States. They provide detailed information regarding the accident, vehicles, and persons

involved in each accident. In the empirical estimation, I examine safety effects of different

type of vehicles to their own occupants and to the occupants in colliding vehicles while

controlling for a rich set of traffic conditions and driver demographics. To be able to tie these

results to vehicle demand which utilizes sales data in recent years, I focus on single-vehicle

and two-vehicle accidents involving passenger cars and/or light trucks with model year after

1997. There are 76,586 passenger cars involved in two-vehicle collisions, 418 of them with

occupants sustaining fatalities and 6,037 of them with occupants suffering incapacitating

injuries. 59,733 light trucks are involved in two-vehicle collisions, 171 of them with occupants

sustaining fatalities and 3,268 of them with occupants suffering incapacitating injuries.

There are in total 48,813 single-vehicle accidents, with 27,911 involving cars and 20,902

involving light trucks. For those passenger cars, 616 accidents prove to be fatal and 4,118

accidents result in incapacitating injuries for their occupants. For those light trucks, 561

accidents prove to be fatal and 3,248 accidents result in incapacitating injuries.

The effect of traffic safety on vehicle demand is investigated based on vehicle sales data

in 20 selected MSAs. These MSAs are chosen from different regions and exhibit large vari-

ations in MSA size, household demographics, and geographic features. In terms of average

household demographics and vehicle fleet characteristics, they are well representative of the

national data.3 Table 1 lists these 20 MSAs with several MSA level variables in 2000. The

largest MSA in the data in terms of the number of households is San Francisco, CA and

the smallest is Lancaster, PA. The average median household income was highest in San

Francisco and lowest in Syracuse, NY in 2000. Atlanta, GA saw the lowest gasoline price

while San Francisco the highest based on the data collected by the American Chamber of

3Vehicle sales data are from a proprietary database maintained by R. L. Polk & Co. The expensive
nature of the data set limits the number of MSAs I can select. The correlation coefficient between model
sales in the 20 MSAs and the national total is 0.941. More details on the representativeness of these MSAs
are given in Li, Timmins, and von Haefen (2009).
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Commerce Researchers Association (ACCRA). Based on total fatal crashes in each MSA

from the Fatality Analysis Reporting System (FARS) database by the NHTSA as well as

vehicle stock data provided by R. L. Polk & Co., I calculate the fatality crash rate per 1,000

vehicles. As shown in the table, Las Vegas and Phoenix have the highest fatal crash rate

while San Francisco and Cleveland have the lowest among these 20 MSAs. The last column

shows the share of light trucks among all light vehicles (i.e., passenger cars and light trucks)

on the road.

Table 1: MSA Characteristics in 2000

MSA Total Median Gasoline Fatal Crash Per Share of
Households House Income Price 1,000 Vehicles Light Trucks

Albany, NY 350,284 44,761 1.68 0.085 0.293
Atlanta, GA 1,504,871 50,237 1.33 0.159 0.369
Cleveland, OH 1,166,799 40,426 1.56 0.073 0.298
Denver, CO 825,291 50,997 1.59 0.120 0.407
Des Moines, IA 184,730 44,088 1.52 0.111 0.346
Hartford,CT 457,407 50,481 1.66 0.098 0.291
Houston, TX 1,462,665 42,372 1.50 0.145 0.408
Lancaster, PA 172,560 43,425 1.58 0.116 0.342
Las Vegas, NV-AZ 512,253 42,822 1.80 0.177 0.382
Madison, WI 173,484 46,774 1.60 0.124 0.348
Miami, FL 1,466,305 37,500 1.52 0.080 0.273
Milwaukee, WI 587,657 45,602 1.60 0.080 0.299
Nashville, TN 479,569 42,271 1.49 0.230 0.368
Phoenix, AZ 1,071,522 42,760 1.58 0.164 0.406
St. Louis, MO-IL 1,012,419 42,775 1.42 0.128 0.335
San Antonio,TX 572,856 38,172 1.48 0.147 0.413
San Diego, CA 994,677 47,236 1.77 0.077 0.372
San Francisco, CA 2,557,158 62,746 1.93 0.060 0.339
Seattle, WA 963,552 52,575 1.68 0.095 0.367
Syracuse, NY 282,601 39,869 1.68 0.102 0.327

Three data sets are used to study vehicle demand: (1) new vehicle attribute data from

1999 to 2006, (2) vehicle sales data at the model level, and (3) the 2001 National Household

Travel Survey (2001 NHTS). The first data set shows the choices that consumers face while

the second data set tells what choices consumers make at the aggregate level. The third

data set provides links between household demographics and vehicle choices. New vehicle

attribute data are collected for 1608 models of light vehicles marketed in the U.S. from 1999
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to 2006 from annual issues of Automotive News Market Data Book.4 Table 2 reports sum-

mary statistics of several important vehicle attributes. Price is the manufacturer suggested

retail prices (MSRP).5 Size measures the “footprint” of a vehicle. Miles per gallon (MPG) is

the weighted harmonic mean of city MPG and highway MPG based on the formula provided

by EPA to measure the fuel economy of the vehicle: MPG = 1
0.55/city MPG+0.45/highway MPG

.

These models are further classified into four vehicle types: cars, vans (minivans and full-size

vans), SUVs, and pickup trucks, the last three of which are collectively called light trucks.

Table 2: New Vehicle Attributes

Mean Median Std. Dev. Min Max
Price (in 1,000 $) 30.1 26.4 14.2 10.3 98.9
Size(in 1,000 inch2) 13.5 13.4 1.6 8.3 18.9
Horsepower 195 190 59 55 405
MPG 22.4 22.0 5.2 13.2 64.7

Table 3: Summary Statistics from the 2001 NHTS

All Households who purchase
New Car Van SUV Pickup

Household size 2.55 2.88 2.67 3.81 3.02 2.84
House tenure (1 if rented) 0.364 0.211 0.266 0.090 0.147 0.163
Children dummy 0.336 0.402 0.328 0.696 0.499 0.352
Time to work (minutes) 17.90 20.92 20.49 19.75 19.73 24.00

Income (’000) Vehicle Purchase probability
< 15 0.0020
[15, 25) 0.0440
[25, 50) 0.1125
[50, 75) 0.1728
[75, 100) 0.1972
≥ 100 0.2574
All households 0.1304

The second data set, new vehicle sales, provides total number of vehicles sold for each

of the models in the first data set in each MSA. In total, we have 32,160 observations of

4These are virtually all the model sold in the market. Exotic models with tiny market shares such as
Farrari are excluded.

5Although vehicle transaction prices are more desirable in the demand analysis, they are not easy to
obtain. MSRPs have been used in several previous vehicle demand studies (e.g., Feenstra and Levinsohn
(1995); BLP; Petrin (2002)).
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vehicle sales. The third data set, the 2001 NHTS, provides detailed household level data on

vehicle stocks, travel behavior, and household demographics at the time of survey during

2001 and 2002. Among total 69,817 surveyed households, 45,984 are from Metropolitan

Statistical Areas. Column 2 in Table 3 shows the means of several demographics for these

households. Columns 3 to 7 present the conditional means of household demographics for

different groups based on household vehicle choice. As household incomes are categorized

and top-coded at $100,000, I provide the probability of new vehicle purchase for six income

groups. These summary statistics provide additional moment conditions in my estimation

where they will be matched by their empirical counterparts.

3 Vehicle Safety

In this section, I investigate the safety effects of passenger cars and light trucks, both

internally (i.e., on the occupants in the vehicle) and externally (i.e, on the occupants in the

colliding vehicles). The purpose of this section is two fold. First, it shows that the two types

of vehicles offer different safety properties, which then gives rise to the possibility of the

arms race in the demand for automobiles. Second, some of the results are used to construct

the measure of vehicle safety that is the key variable of interest in the vehicle demand

model to be estimated. In this section, I first examine the crash outcomes for passenger

cars and light trucks in both single-vehicle and multiple-vehicle crashes. To derive the

overall/unconditional safety of the two types of vehicles, I then look at the issue of crash

frequencies.

3.1 Crash Outcomes

I examine the factors that determine outcomes in vehicle crashes, with a particular interest

in the effect of vehicle type. The police-reported accident data in the GES database define

crash severity for each occupant in a vehicle into several mutually exclusive categories

including fatal, incapacitating injuries, non-incapacitating injuries, possible injuries, and

others. To ease exposition and to avoid high multicollinearity in the demand analysis in the

next section, I derive a single comparable measure across different crash outcomes based on
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the concept of an equivalent fatality. An equivalent fatality corresponds to 1 fatality or a

certain number of incapacitating injuries (or other injuries). This concept has been used by

regulatory agencies such as National Highway Traffic Safety Administration (NHTSA) in

cost-benefit analysis. Based on the comprehensive cost estimates of traffic accidents by the

National Safety Council (NSC), I convert 20 incapacitating injuries into 1 fatality (baseline

definition).6 To check the sensitivity of the results to different conversion scale, I also

conduct analysis for two alternative conversions (10 and 30) from incapacitating injuries to

fatalities. In this paper, the crash severity for a vehicle in a crash is defined as the rate of

equivalent fatality per occupant. This measure ranges from 0 (no fatality and incapacitating

injury in the vehicle) to 1 (all the occupants are killed).

To examine both internal and external safety effects of a vehicle, I estimate a tobit model

with two-sided censoring for three types of accidents: two-vehicle accidents involving at least

a passenger car, two-vehicle accidents involving at least a light truck, and single-vehicle

accidents. In the case of two-vehicle accidents involving a passenger car, the dependent

variable is the crash outcome for the passenger car (i.e., the first vehicle). If the accident

involves two cars, one of the two is randomly selected as the first vehicle. The dependent

variable is similarly defined for two-vehicle accidents involving a light truck. For single-

vehicle accidents, the dependent variable is the crash outcome for the vehicle involved. All

the vehicles in the dependent variable are models after 1997 in order to be consistent with

the demand analysis in the next section. Regressions on all vehicles are also performed and

the results are presented in Table 6. Three tobit models are estimated and weights are used

to produce nationally representative results.7

6The NSC estimates that the average comprehensive cost per death is about 20 times of that per
incapacitating injury in motor-vehicle crashes. Comprehensive costs include economic costs such as wage
and productivity losses, medical expenses, administrative expenses, motor vehicle damage, and employers
uninsured costs, as well as valuation for reduced quality of life through empirical willingness-to-pay studies.
I focus on fatal and incapacitating injuries and ignore non-serious injuries in measuring vehicle safety. Given
that crash outcomes are defined by the individual police officer at the scene, non-serious outcomes can be
subject to inconsistency to a larger extent than serious outcomes.

7White (2004) and Anderson (2008) perform separate logit regressions for fatal crashes and for crashes
that result in fatalities or serious injuries for each type of accidents. I define a single measure of crash
outcome in order to facilitate the demand estimation in the following section. Moreover, I focus on crash
outcomes for vehicles produced in recent years to be consistent with the demand estimation. Several
robustness checks are performed and results are reported below.
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Table 4: Regression Results of Tobit Models

v1=passenger car v1=light truck Single vehicle
Para Std Err Para Std Err Para Std Err
(1) (2) (3) (4) (5) (6)

v2 = light truck 0.031 0.006 0.028 0.006
Single= light truck 0.060 0.008
Small city -0.064 0.008 -0.056 0.009 -0.098 0.012
Medium city -0.067 0.009 -0.073 0.011 -0.119 0.015
Large city -0.081 0.007 -0.067 0.008 -0.101 0.010
Seat belt -0.012 0.007 -0.031 0.008 -0.126 0.011
Rain -0.016 0.008 -0.007 0.010 0.007 0.011
Snow -0.049 0.021 -0.048 0.024 -0.234 0.023
Dark 0.019 0.006 0.028 0.007 -0.046 0.008
Weekday -0.014 0.006 -0.013 0.007 -0.020 0.008
Interstate highway -0.048 0.010 -0.002 0.010 0.079 0.012
Divided highway 0.057 0.006 0.036 0.006 0.098 0.011
Alcohol (v1) 0.062 0.014 0.068 0.017 0.183 0.012
Drugs (v1) 0.027 0.010 -0.006 0.010 0.057 0.012
Age <21 (v1) 0.017 0.011 -0.005 0.014 0.075 0.015
Age > 60 (v1) 0.052 0.008 0.063 0.011 0.076 0.016
Male driver (v1) -0.037 0.006 -0.033 0.006 -0.027 0.009
Young male (v1) -0.040 0.015 -0.009 0.019 -0.037 0.019
Occupants (v1) 0.037 0.004 0.023 0.003 0.052 0.004
Speeding (v1) 0.260 0.026 0.206 0.042 0.307 0.018
Alcohol (v2) 0.074 0.013 0.091 0.014
Drugs (v2) -0.025 0.009 0.010 0.009
Age < 21 (v2) -0.004 0.010 0.008 0.011
Age > 60 (v2) 0.032 0.008 0.029 0.009
Male driver (v2) 0.018 0.006 0.004 0.006
Young male (v2) 0.012 0.013 0.004 0.014
Speeding (v2) 0.187 0.031 0.093 0.026
Occupants (v2) 0.007 0.003 0.010 0.004
Intercept -0.706 0.033 -0.601 0.042 -0.780 0.029
σ 0.304 0.014 0.260 0.018 0.452 0.015
Observation 76,586 59,733 48,813

Similar explanatory variables are used in White (2004). Year dummies (8) are included
in all regressions. The omitted category for vehicle type is passenger car. The base
group for city size is rural area. Alcohol is 1 if the driver is found under the influence of
alcohol. Young male is 1 if the driver is male and younger than 21. Speeding is 1 if the
travel speed is 10 miles per hour above than the speed limit. Occupants is the number
of occupants in the vehicle.

The parameter estimates for the three tobit models are presented in table 4 for the

baseline definition of an equivalent fatality. v1 and v2 represent the first and second vehicles

in a two-vehicle collision, respectively. The first 2 columns report the results for two-vehicle

accidents where the first vehicle is a passenger car. Columns 3 and 4 present the results
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for two-vehicle accidents where the first vehicle is a light truck. The last two columns are

for single-vehicle crashes. The parameter estimates generally have the expected signs. The

positive coefficient estimates on v2 being a light truck in the first two regressions suggest

that compared to passenger cars, light trucks pose greater danger to occupants in the first

vehicle no matter what the type of the first vehicle is. In single-vehicle crashes, the positive

coefficient for the vehicle being a light truck tells that occupants in light trucks sustain

more server outcome. Among other variables, the results show that accidents are more

dangerous in rural areas. Seat belt usage reduces crash severity while alcohol involvement

and speeding result in the opposite. Moreover, alcohol involvement and speeding by the

driver in the second vehicle also expose the occupants in the first vehicle to greater risks in

two-vehicle accidents.

Table 5: Equivalent Fatalities Per Occupant in 1,000 Crashes

Two-Vehicle Crash Single-Vehicle Crash
First Vehicle Second Vehicle

Car Light Truck
Car Dcc=1.622 Dct=2.130 Dc=7.364

(0.077) (0.101) (0.285)
Light Truck Dtc=0.902 Dtt=1.216 Dt=9.589

(0.072) (0.099) (0.422)
Difference Dcc-Dtc=0.720 Dct-Dtt=0.915 Dc-Dt=-2.225

(0.104) (0.136) (0.374)

Based on the regression results, I now evaluate the relative safety of two types of vehicles

in accidents as well as the effect of vehicle type on crash outcomes in two-vehicle crashes.

To do so, I calculate the predicted equivalent fatality rate per occupant for each observation

of all two-vehicle crashes based on tobit regression results. Similarly, I obtain the predicted

equivalent fatality rate per occupant for all single-vehicle crashes. The sample means of

these fatality rates are reported in Table 5 with bootstrap standard errors presented in

parenthesis. Dct is the total number of equivalent fatalities (per occupant) in a passenger

car in 1,000 crashes involving a passenger car and a light truck. Comparing number across

rows, occupants in light trucks face smaller risks than those in passenger cars no matter

what the colliding vehicle is in two-vehicle crashes. However, the comparison across columns
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in two-vehicle crashes suggests that the better protection provided by light trucks to their

own occupants comes at the cost of the colliding vehicles. In single-vehicle accidents, the

evidence shows that light trucks are less safe for their occupants than passenger cars. This

is likely due to the fact that light trucks, particularly SUVs and pickups, have higher center

of gravity and therefore have a larger tendency to rollover in accidents.

Table 6: Robustness Check for Crash Severity

Severity Tobit Tobit Tobit Tobit Tobit Tobit Tobit Multinomial logit
Fatal Injury

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Dcc 1.622 2.079 1.486 2.067 2.617 1.888 0.487 0.303 11.633
Dtc 0.902 1.205 0.807 1.315 1.678 1.273 0.284 0.121 7.712
Dct 2.130 2.723 1.963 2.877 3.625 2.61 0.975 0.632 13.292
Dtt 1.216 1.621 1.090 2.000 2.54 2.005 0.460 0.192 9.693
Dc 7.364 8.423 7.021 9.104 10.435 8.468 3.592 1.806 22.968
Dt 9.589 10.900 9.094 11.156 12.775 10.332 5.333 2.763 29.414
Dcc-Dtc 0.720 0.874 0.679 0.752 0.939 0.615 0.203 0.182 3.921
Dct-Dtt 0.914 1.101 0.873 0.877 1.085 0.605 0.515 0.440 3.599
Dc-Dt -2.225 -2.478 -2.073 -2.052 -2.34 -1.864 -1.741 -0.957 -6.446

Seven robustness checks are performed based on alternative definitions of the dependent

variable or different assumptions on the distribution of the error term. All robustness checks

point to qualitatively the same findings. The first column of Table 6 repeats the results

presented in Table 5 for the baseline definition of an equivalent fatality. The results in

the second and third columns are based on the assumption that 10 and 30 incapacitating

injuries are equivalent to 1 fatality, respectively. The results in the first three columns are

all based on tobit regressions that focus on crash outcomes for vehicles after model year

1997. To check whether the findings apply to vehicles produced earlier, I estimate tobit

models where the dependent variable is the crash severity for models of all vintages for

three different conversions from incapacitating injuries to fatalities. Columns 4 to 6 present

the predicted rate of equivalent fatalities per occupant based on vehicles of all vintages for

the three cases. The comparison between columns 1 and 4 suggests that vehicles produced

after model year 1997 are safer than older vehicles in collisions. The sixth robustness check

(column 7) focuses on most serious outcomes: fatal crashes. I estimate a tobit model with

the dependent variable being the fatality rate per occupant (treating all non-fatal outcomes
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the same)for each of the three types of accidents as shown in Table 4. Based on the

estimation results, column 7 reports the predicted fatality rate per occupant in a vehicle.

In the last robustness check, I define the crash outcome for a vehicle to be three categories:

fatal, incapacitating injury, and others. I then estimate a multinomial logit model for each of

three types of accidents. Columns 8 and 9 present the predicted probability of the occupants

in a vehicle suffering fatalities or incapacitating injuries. A benefit of the tobit model is

that it allows straightforward calculation of the number of equivalent fatalities averted by

driving a light truck, which can then be measured against consumers’ willingness-to-pay to

be estimated from the demand model.

3.2 Crash Frequencies

The preceding section analyzes vehicle safety in an accident. The empirical evidence shows

that in a two-vehicle accident, light trucks protect their occupants better at the cost of

occupants in colliding vehicles. Nevertheless, light trucks are less safe to their occupants in

a single-vehicle crash. To obtain the overall safety of a vehicle, I now examine the issue of

crash frequencies.

Table 7: Crash Frequencies by Accident and Vehicle Type

Multiple-vehicle Crashes Single-vehicle Crashes
Year Passenger car Light truck Passenger car Light truck
1998 0.0506 0.0409 0.0087 0.0077
1999 0.0464 0.0422 0.0082 0.0081
2000 0.0454 0.0420 0.0085 0.0085
2001 0.0437 0.0410 0.0084 0.0087
2002 0.0423 0.0408 0.0084 0.0080
2003 0.0413 0.0394 0.0082 0.0083
2004 0.0391 0.0383 0.0077 0.0079
2005 0.0376 0.0362 0.0075 0.0075
2006 0.0358 0.0351 0.0071 0.0072
Average 0.0432 0.0399 0.0082 0.0081

Table 7 presents the probability of being involved in the two types of accidents separately

for passenger cars and light trucks from 1998 to 2006. They are calculated based on national

vehicle stock data and the total number of vehicles involved in the two types of crashes
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from annual issues of Highway Statistics by the NHTSA. Crash frequencies decrease over

the period for both type of vehicles, reflecting improved vehicle design as well as improved

traffic regulations. The numbers for multiple-vehicle crashes suggest that passenger cars

are slightly more likely to be involved in multiple-vehicle crashes than light trucks, with the

difference becoming smaller over time. Similar pattern also exhibits among single-vehicle

crashes.

To the extent that drivers of these two type of passengers may have systematic difference

in their risk type or risk preference, these numbers may mask possible selection problems.

On one hand, risky drivers may be more likely to choose light trucks for the purpose of

self protection. This adverse selection problem would cause the overestimation of the crash

frequencies of light trucks. On the other hand, drivers who are more risk averse may be

more likely to choose light trucks. If these drivers are also less risky drivers, there arises a

problem analogous to the advantageous selection in the insurance literature. This selection

problem could result in the underestimation of the crash frequencies of light trucks.8

In addition to these selection problems, there may exist a moral hazard problem in that

drivers in light trucks may have tendency to engage in riskier behavior.9 This would result

in the overestimation of the crash frequency of light trucks. Quantifying the net effect

of these problems, although interesting, necessitates rich data on drivers’ risk level/safety

performance as well as detailed demographic variables (see e.g., Chiappori and Salani (2000)

for a study on testing the presence of asymmetric information in the automobile insurance

market). Due to the lack of adequate data sets to address this issue, I assume that the

two types of vehicles have the same probability of being involved in vehicle accidents.This

amounts to assuming that the crash frequencies of light trucks are slightly underestimated

by the numbers in Table 7. Although light trucks are in general taller and larger than

passenger cars, it is reasonable to argue that drivers can quickly learn how to handle these

8The advantageous selection can be due to other factors such as income or age. For example, since light
trucks are more expensive than passenger cars on average, the users of light truck have higher income than
those of passenger cars. If drivers with high income are less risky, the crash frequencies of light trucks would
be underestimated without controlling for drivers’ income.

9This is in the spirit of the Peltzman effect which is the hypothesized tendency of people to react to a
safety regulation by increasing other risky behavior. For example, seat belt law may induce people to drive
less safely.
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vehicles differently, e.g., making slower turns when driving an SUV than driving a car.

The data in Table 7 also show that a vehicle is about 5 times as likely to be involved

in multiple-vehicle crashes as in single-vehicle crashes. Although the GES data used in the

previous section to analyze crashes outcomes do not contain all accidents and hence prevent

a direct inference of crash frequencies, the comparison of crash frequencies across the two

types of accident can be carried out because the sample is based on the same underlying

vehicle population. The result suggests that a vehicle is 5.53 times as likely to be involved

in multiple-vehicle accidents as in single-vehicle accidents.10 This is consistent with the

national level data. Interestingly, the GES data show that the ratio varies across areas with

different population size (which may reflect the level of road congestion). The ratio is 7.1l

in areas with a population large than 100,000 and is only 3.36 in rural areas.

3.3 Vehicle and Traffic Safety

With crash frequencies examined, I now compare internal vehicle safety between passenger

cars and light trucks. The internal safety of a vehicle can be measured by the annual

rate of equivalent fatalities per occupant. To derive this measure, I utilize the following

relationship:

EFj ≡ (DjcSc + DjtSt)P
MV
j + DjP

SV
j , j = {c, t}, (1)

where EFj is the internal safety of vehicle type j. j can be a passenger car denoted by c,

or a light truck denoted by t. Djk is the probability of an occupant in a vehicle of type

j suffering an equivalent fatality when colliding with a vehicle of type k. These measures

of crash severity are estimated based on tobit regressions and presented in Table 5. PMV
j

is the probability of being involved in a multiple-vehicle crash for the vehicle type j.11 Sj,

the probability of colliding with a type j vehicle in a two-vehicle accident, is measured by

10Under-reporting of less serious accidents is likely to more frequent for single-vehicle crashes. This may
partly explain the empirical finding in Table 5 that single-vehicle crashes are more deadly than multiple-
vehicle crashes. However, this under-reporting problem is unlikely to bias the overall/unconditional safety
measure, which is a function of both the crash outcome and the crash frequency.

11Since Dtk is the measure of crash severity for two-vehicle crashes, PMV
j should be considered as the

equivalence of the probability of two-vehicle crashes for any multiple-vehicle crash involving at least two
vehicles (e.g., three-vehicle crashes are converted to two-vehicle crashes according to some implicit metric).
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the share of type j vehicles among all the vehicles on the road. P SV
j is the probability of a

single-vehicle crash for the vehicle type j.

To compare the overall internal vehicle safety, assuming that St = 0.35, PMV = 0.04,

and P SV = 0.008, the annual rate of equivalent fatality per occupant in passenger cars,

EFc, is estimated at 0.1309 per 1,000 vehicles while that in light trucks, EFt is estimated

at 0.1172. The difference in vehicle safety, EFc − EFt, is 0.0137 per 1,000 vehicles with a

standard error of 0.0042. This suggests that light trucks are overall safer to their occupants

than passenger cars. The number implies that replacing 10 million passenger cars with light

trucks will result in 192 more equivalent fatalities among the occupants in these passenger

cars assuming 1.4 occupants per vehicle.12

According to Equation (1), the difference in vehicle safety is:

EFc − EFt ≡
[
(Dcc −Dtc)Sc + (Dct −Dtt)St

]
PMV + (Dc −Dt)P

SV

=
[
(Dcc −Dtc) + [(Dct −Dtt)− (Dcc −Dtc)]St

]
PMV + (Dc −Dt)P

SV .(2)

Dcc − Dtc defines the safety advantage of a light truck over a passenger car in collisions

with other passenger cars. It is easy to see as long as the safety advantage depends on

the type of the colliding vehicle, that is, Dct − Dtt 6= Dcc − Dtc, the difference in vehicle

internal safety will be affected by the fleet composition, St. Based on the estimation results

of tobit models in the previous section, (Dct −Dtt) − (Dcc −Dtc) = 0.915 − 0.720 = 0.195

with a bootstrap standard error of 0.099. The result implies that the safety advantage of

a light truck becomes even stronger as more of them are in use. To understand the effect

of vehicle composition on the relative safety of two types of vehicles, I increase the share

of light trucks from 35 to 45 percent in the previous numerical example. The difference in

equivalent fatalities among 10 million vehicles rises from 192 to 203. Moreover, the safety

advantage of light trucks also increases with the probability of multiple-vehicle crashes and

decreases with the probability of single-vehicle crashes.

12The GES data shows that the average number of occupants in a vehicle is about 1.4. While the data
show that the average number of occupant is 1.44 in a light truck versus 1.37 in a passenger car, I assume
they are the same to easy exposition. The share of light trucks in the U.S. has reached 40% in recent years.
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With the internal safety of the two types of vehicles examined, it is interesting to further

look at the relationship between the overall traffic safety and the fleet composition. The

total number of equivalent fatalities in a year among all users of light vehicles (including

both passenger cars and light trucks) is defined by the following equation:

TEF ≡ OCC (EFc Sc + EFt St)

= OCC
{

PMV
[
Dcc + (Dct + Dtc − 2Dcc)St

−
[
(Dct −Dtt)− (Dcc −Dtc)

]
S2

t

]
+ P SV

[
Dc + (Dt −Dc)St

]}
,

where OCC is the total number of occupants/users of light vehicles. The second equality

follows directly from Equation (1). The relationship between total equivalent fatalities,

TEF , and the fleet composition, St, hinges on the magnitude of the D’s.

Figure 1: Traffic Safety and Fleet Composition

Figure 1 shows the relationship between overall traffic safety and the fleet composition

for all three different definitions of an equivalent fatality. The total equivalent fatalities are

calculated based on the estimated D’s from the tobit models for vehicles of all vintages (as

presented in columns 4 to 6 of Table 6) and the assumptions that PMV = 0.04, P SV =
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0.008, and total number of occupants OCC = 322 millions (230 million light vehicles in use

multiplied by the average number of occupants of 1.4 per vehicle.) The figure shows a mono-

tonically increasing relationship between the fleet share of light trucks and total equivalent

fatalities for all three definitions. Under the baseline definition of 20 incapacitating injuries

being equivalent to 1 fatality, a vehicle fleet composed of only passenger cars is the safest,

resulting in 50,075 equivalent fatalities. However, a vehicle fleet with only light trucks would

cause 4,423 more equivalent fatalities. Together with the result that light trucks are safety

to their own occupants, the figure makes clear that the traffic safety consequence of the con-

jectured arms race among drivers is analogous to the welfare consequence of the Prisoner’s

Dilemma game: although the overall traffic safety would be at its best when people drive

only passenger cars, the incentive to obtain better self-protection by driving light trucks

would result in worse overall traffic safety.

4 Vehicle Demand

The previous section establishes that light trucks are on average safer to their own occupants

than passenger cars. Since safety is often cited as one of the top concerns in vehicle purchase

decisions, this finding can have important implication on vehicle demand.13 My goal in this

section is to examine whether the finding about vehicle safety manifest themselves in vehicle

demand and the extent to which the safety concern explains the increasing popularity of

light trucks in recent years.

To that end, I estimate a flexible model of vehicle demand in the spirit of BLP and Petrin

(2002), taking advantage of new vehicle sales data at the model level in 20 MSAs from 1999

to 2006. I augment the sales data with the household survey data from the 2001 NHTS

to improve the estimation of consumer heterogeneity. In order to carry out counterfactual

analysis, I also set up a simple supply side model where profit maximizing auto makers

compete in prices. The first order conditions of the profit maximization problem give rise

to new equilibrium prices and sales under a counterfactual scenario. I now discuss the

13A consumer survey by the J. D. Power and Associates (J.D. Power and Associates Report Oct. 20,
2000) shows that keeping the family safe is a top priority among consumers, especially among SUV drivers.
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empirical model, the estimation strategy, and the estimation results in turn.

4.1 Empirical Model

The demand side starts from a random coefficient utility model. A household makes a

choice among all new models and an outside alternative to maximize household utility in

each year. Let i denote a household and j denote a vehicle model. A household chooses one

model from a total of J models of new vehicles or an outside alternative in a given year. To

save notation, I suppress both the market and year indices, bearing in mind the choice set

vary across years. The utility of household i from model j is defined as

uij = v(pj, Xj, ξj, yi, Zi) + λiEFj + εij, (3)

where pj the price of model j, Xj a vector of observed model attributes, ξj the unobserved

model attribute, yi the income of household i, and Zi a vector of household demographics.

To save notation, I allow Zi to include MSA level variables such as MSA dummies. EFj

is the internal safety of vehicle j measured in equivalent fatalities per occupant in a year.

The variable is constructed following Equation (1) with details provided in the appendix.

As shown in the previous section, the safety measure varies across the two types of vehicles

and differs across MSAs even for the same type of vehicle due to the variations in crashes

frequencies as well as the fleet composition. λi, the key parameter of interest, captures

consumers’ willingness-to-pay for vehicle safety. εij is the random taste shock that has type

one extreme value distribution. The first part of the utility function is specified as:

vij = αilog(yi − pj) +
K∑

k=1

xjkβ̃ik + ξj, (4)

where αilog(yi − pj) is the utility from the composite good, i.e., all the other goods and

services other than the purchased vehicle.14 I allow α to vary according to the income group

of the household. xjk is the kth model attribute for model j. β̃ik is the random taste param-

14This functional form is used in Berry, Levinsohn, and Pakes (1995) and is derived from a Cobb-Douglas
utility function in expenditures on other goods and services and characteristics of the vehicle purchased.
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eter of household i over model attribute k, which is a function of household demographics

including those observed by econometrician (zir) and those that are unobserved (vik).

β̃ik = β̄k +
R∑

r=1

zirβkr + νikβ
u
k .

The outside alternative (j = 0) captures the decision of not purchasing any new vehicle in

the current year. The outside alternative is a combination of the choices other than buying

a new vehicle. The presence of the outside alternative allows the aggregate demand for new

vehicles to be downward sloping. The utility of the outside alternative is specified as

vi0 = αilog(yi) + Ziβ0 + λiEF0 + νi0β
u
0 + εi0, (5)

where EF0 the safety measure for the outside alternative and will be normalized to be

zero in the empirical estimation. The normalization will change the vehicle safety EFj in

Equation (3) into relative measures. νi0, the unobserved household demographics, captures

different valuations of the outside alternative by different households due to the variations

in vehicle holdings and transportation choices.

Define θ as the vector of all preference parameters including the preference parameter

on vehicle safety, λ. With the above utility specification, the probability that the household

i chooses choice j ∈ {0, 1, 2, ..., J} is

Prij = Pri(j|p, X, ξ, yi, Zi, θ) =

∫
exp[vij + λiEFj]∑J

h=0 exp[vih + λiEFh]
dF (νi), (6)

where p is the vector of prices of all products. νi is a vector of unobserved demographics

for household i. The market demand for choice j for a price vector p is the following.

qj = q(j|p, X, ξ, θ) =
∑

i

Prij. (7)

Following the literature (Bresnahan (1987), Goldberg (1995), and BLP), the supply side

assumes that a multiproduct firm f chooses prices to maximize its total profit in the current
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period. The total profit for firm f is

πf =
∑
j∈F

[
(pj −mcj)qj(p, θ)

]
, (8)

where F is the set of products produced by firm f . mcj is the constant marginal cost for

product j. qj is the aggregate demand for product j. The equilibrium price vector derived

from the first-order conditions is defined as

p = mc + ∆−1q(p, θ), (9)

where the element of ∆ is

∆jr =

 −∂qr

∂pj
if product j and r produced by same firm

0 otherwise.
(10)

Equation (9) underlies the pricing rule in a multiproduct oligopoly: equilibrium prices

are equal to marginal costs plus markups, ∆−1q(p, θ). The implied marginal costs can be

computed following mc = p−∆−1q, where p and q are the observed prices and sales. In a

counterfactual analysis, the fixed point of Equation (9) can be used to compute new price

equilibrium corresponding to a change in the demand equation q(p, θ).

4.2 Estimation

The above random coefficient demand model is estimated via simulated Generalized Meth-

ods of Moments (GMM) with a nested contraction mapping algorithm developed by BLP. A

key identification problem arises from the correlation between vehicle prices and unobserved

model attributes, which are represented by a latent variable ξj. Since better product at-

tributes often command a higher price, failure to take into account the unobserved product

attribute often leads to omitted variable bias in the estimate of price coefficient, suggesting

that consumers are less price sensitive than they really are. A common, although strong,

identification assumption is that the unobserved product attribute is uncorrelated with ob-

served product attributes. Similar to Nevo (2001), I avoid invoking this assumption by
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exploiting the fact that we observe sales for each product (i.e., a model in a given year) in

20 MSAs and using product dummies to absorb unobserved product attributes.

To illustrate our estimation strategy, I bring the market index m into the utility function.

With year index t still suppressed, the utility function can be written as

umij = δmj + µmij + εmij, (11)

where δmj, the mean utility of model j in market m, is the same for all the households in

market m. The mean utility from the outside alternative is normalized to zero. µmij is

the household specific utility. Following notations in equations (4) and (5), the household

specific utility is

µmij = αilog(yi − pj) +
∑
kr

xmjkz
h
irβ

o
kr +

∑
k

xmjkνikβ
u
k . (12)

All the unobserved household demographics, νik and νi, are drawn from the standard normal

distribution. The mean utility is specified as follows

δmj = δj + Xmjγ + λEFmj + εmj, (13)

where δj is a model dummy, absorbing the utility that is constant for all households

across the markets (including the utility derived from unobserved product attributes ξj).

Xmj is a vector of model attributes that vary across MSAs. The vector includes, among

other things, dollars per 100 miles (DPM), which captures the fuel cost of the vehicle.

EFmj = {EFmc, EFmt} is the safety measure of vehicle j in market m. εmj, the error term,

may capture that local unobservables that affect consumers preference for vehicle model j.

Additional challenges arise in estimating λ due to the possible endogeneity of EFmj. As

shown by equation (1), this variable is affected by both the fleet composition and crash

frequencies and these factors may be correlated with εmj. For example, unobserved MSA

characters may cause consumers in the same area to prefer light trucks and hence induce a

high proportion of light trucks in the vehicle fleet as well.
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In order to control for the effect of local unobservables on vehicle preference, I include

MSA dummies interacting with vehicle type dummies. That is, I allow consumer preferences

for a certain vehicle type to be different across MSAs. Because EFmj are derived based on

lagged fleet composition and crash frequencies as shown in the appendix, the potential

correlation between EFmj and time-varying components of the error term εmj is unlikely to

be significant (after time-constant components being controlled for by dummy variables). It

is worth noting that since model dummies in the mean utility function absorb MSA-constant

yearly variations, the identification of λ mostly relies on cross-sectional variations in the fleet

composition and particularly crash frequencies. As shown in equation (2), given two MSAs

with the same share of light trucks but with different multiple-vehicle crash frequencies,

the safety advantage of a light truck will be larger in the MSA with a higher probability of

multiple-vehicle crashes. Therefore consumers in this MSA may have stronger incentives to

buy light trucks than consumers in the other MSA.

The estimation involves an iteration procedure with two steps in each iteration. Denote

θ1 as the vector of all the parameters in the mean utility function defined by equation

(13) and θ2 as the vector of all the parameters in the household specific utility defined by

Equation (12). The first step uses a contraction mapping technique to recover the mean

utility δmj for each product in each market as a nonlinear function of θ2 by matching the

predicted market shares of each model (as a function of θ2 and δmj) to the observed market

shares. The second step estimates the mean utility equation in (13) and then formulates

an GMM objective function with two sets of moment conditions. The first set of moment

conditions is from the exogeneity assumption in the mean utility equation that emj is mean

independent of Xmj. I also include additional exclusion restrictions by interacting MSA-

level demographics (average household size and the percentage of renters among househlds)

with vehicle type dummies. The underlying assumption is that conditional on individual

demographics being incorporated in the demand model through the household specific utility

shown in Equation (12), their MSA-level average should not affect consumers’ decisions. The

second set of moment conditions includes micro-moments which match the model predictions

to the observed conditional means from the 2001 NHTS as shown in Table 3. The procedure
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involves iteratively updating θ2, δmj, and then θ1 to minimize the GMM objective function.15

With the demand side estimated, I can recover the marginal cost for each model based on

firms’ first order condition for profit maximization in Equation (9). The first order condition

can then be used to simulate new equilibrium prices in counterfactual scenarios.

4.3 Estimation Results

I estimate the random coefficient model for the three definitions of an equivalent fatality.

Model 1 is for the baseline definition where 20 incapacitating injuries is equivalent to 1

fatality. Models 2 and 3 use conversion factors of 10 and 30. The parameter estimates

for the three estimations are presented in Tables 8 and 9. Table 8 reports the parameter

estimates in the mean utility function defined by Equation (13). The last 2 columns report

estimation results of a multinomial logit model for the purpose of comparison (with the

conversion factor being 20). As shown by Berry (1994), the multinomial logit model can be

transformed into a linear model and estimated using OLS. The dependent variable in the

transformed model is log(smj)-log(sm0) where smj and sm0 are the market share of product

j and the outside choice in market m, respectively. To allow consumer preference on vehicle

prices to be affected by income, the multinomial logit model includes log(pj)/log(ym) as an

explanatory variable where ym is the average household income in market m.

In all four regressions, we control for MSA-level unobserved preference/valuation for

certain vehicle type (e.g., due to unobserved MSA-level characteristics such as travel and

weather conditions) using MSA dummies interacting with vehicle type dummies. As dis-

cussed in the previous section, we use product fixed effects to control for unobserved product

attributes such as product quality that could be correlated with vehicle price. The key vari-

able of interest in these models is the safety advantage of light trucks over passenger cars

measured by (EFt - EFc)* LTK dummy. EFj is the number of equivalent fatalities sustained

by 10,000 occupants in vehicles with type j. As shown in Table 13 in the appendix, the

15Household demographics are drawn from 2000 Census and are adjusted in different years based on
Census data as well as American Community Survey 2000-2006. The unobserved household attributes are
standard normal draws from Halton sequences. Due to computational intensity, I limit the number of
random draws to 250 in each MSA. The convergence criterion for the simulated GMM is 10e-8 while that
for the contraction mapping is set up to 10e-14.
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Table 8: Parameters in Mean Utility Function

Random Coefficient Model Logit Model
Model 1 Model 2 Model 3 Model 4

Variables Para S.E. Para S.E. Para S.E. Para S.E.
log(pj)/log(ym) -7.622 0.499
(EFt - EFc) * LTK dummy -2.983 1.524 -2.372 1.239 -3.202 1.606 -1.758 0.616
Gas price 8.877 0.321 8.875 0.321 8.881 0.321 0.966 0.169
Dollars per 100 miles (DPM) -1.917 0.062 -1.917 0.062 -1.917 0.062 -0.173 0.033
PMV -10.114 0.914 -10.085 0.911 -10.136 0.912 -0.971 0.376
PMV * St 0.179 0.015 0.179 0.015 0.179 0.015 0.004 0.007
PSV 39.460 5.061 39.142 5.023 39.579 5.053 1.822 2.491

All regressions include five sets of dummy variables: MSA dummies (19), MSA dummies * Van dummy
(19), MSA dummies * SUV dummy (19), MSA dummies * Pickup dummy (19), and product dummies
(1608). The first four sets of dummy variables control for observed preferences for certain vehicle type
at the MSA level while product dummies control for unobserved product characteristics (that are the
same across the MSAs).

annual equivalent fatalities per million occupants in light trucks is on average about 25 less

than that in passenger cars in the 20 MSAs. LTK dummy is a dummy variable equal to

1 for a light truck and 0 for passenger cars. The parameter on the interaction term cap-

tures consumers’ willingness-to-pay for equivalent fatalities avoided by driving a light truck

instead of a passenger car. The negative and significant coefficient shows that consumers

obtain more utility from light trucks due to their better internal protection. The economic

significance of the coefficient will be examined in the next section.

The parameters on gasoline price and dollars per 100 miles (DPM) captures consumer

preference for the fuel cost of driving. The partial effect of the mean utility defined by

Equation (13) with respect to gasoline price is given by: ∂δmj/∂Gasprice = 8.87 − 1.917 ∗

100/MPG. This suggests that with an increase in the gasoline price, the mean utility for

vehicles with MPG larger than 21.61 increases while that for less fuel-efficiency vehicles de-

creases. Moreover, the smaller the vehicle MPG is, the larger the decrease in the mean utility

will be.16 Base on parameter estimates, I estimate the elasticity of the average MPG of new

vehicles to the gasoline price at 0.118 for 1999-2006 and 0.207 for 2006. These estimates

are similar to some recent estimates that are based on different empirical methodologies.

1621.61 is about the 45 percentile of the MPG distribution for vehicle models in the data. Note that
although 21.61 is the cutoff point for the effect of gasoline price on the mean utility, it may not directly
apply to the effect on vehicle sales as shown in Equation (6).

25



Small and Van Dender (2007) obtain an estimate of 0.21 for 1997-2001 using U.S. state level

time-series data on vehicle fuel efficiency and gasoline prices. Using a similar data set as

the one in this paper but a different empirical method, Li, Timmins, and von Haefen (2009)

estimate the MPG elasticity to the gasoline price to be 0.148 from 1999-2005 and 0.204

in 2005. The last 3 variables in the table are solely for the purpose of normalization (the

utility from the outside good being 0). It is straightforward to show that these variables

specify the relative safety advantage of a passenger car over an outside good. Although

the coefficient estimates on the first variable is different across the three random coefficient

models, other parameters are almost identical.

Table 9: Parameters in Household Specific Utility Function

Model 1 Model 2 Model 3
Variables Para S.E. Para S.E. Para S.E.
Heterogeneous Coefficients
Log(yi - pj) if yi<75,000 20.049 0.270 20.046 0.270 20.042 0.254
Log(yi - pj) if yi≤75,000 17.636 0.387 17.633 0.387 17.637 0.377
Household size * Car dummy 0.777 0.052 0.777 0.052 0.774 0.052
Household size * Van dummy 1.228 0.061 1.227 0.061 1.230 0.060
Household size * SUV dummy 0.897 0.052 0.897 0.052 0.896 0.051
Household size * Pickup dummy 0.732 0.054 0.732 0.054 0.733 0.053
House tenure * Car dummy -2.793 0.064 -2.793 0.064 -2.791 0.062
House tenure * Van dummy -3.228 0.108 -3.228 0.108 -3.227 0.106
House tenure * SUV dummy -3.495 0.130 -3.495 0.131 -3.494 0.128
House tenure * Pickup dummy -4.643 0.105 -4.643 0.105 -4.643 0.104
Children dummy * Vehicle size 1.764 0.071 1.764 0.071 1.763 0.069
Travel Time * Vehicle size -0.048 0.001 -0.048 0.001 -0.048 0.001
Random Coefficients
Vehicle Size 7.293 0.086 7.292 0.086 7.296 0.079
Dollars per 100 miles (DPM) 0.175 0.015 0.175 0.015 0.175 0.015
Car dummy 2.430 0.166 2.430 0.166 2.431 0.164
Van dummy 1.398 0.837 1.398 0.837 1.397 0.813
SUV dummy 2.106 0.513 2.107 0.514 2.107 0.502
Pickup dummy 2.310 0.497 2.310 0.497 2.312 0.489

Table 9 presents the estimates of the parameters in the household specific utility defined

by Equation (12). These parameters capture consumer heterogeneity due to observed and

unobserved household demographics. As discussed above, the three models use different

definitions of equivalent fatality. Nevertheless, the coefficient estimates are very close across

the models. The first two coefficients capture consumer heterogeneity for other goods and
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services after spending pj on a new vehicle. The coefficient for low income groups being larger

implies households with low income are more price sensitive. The next four parameters are

for the interaction terms between household size and vehicle type dummies. The positive

coefficients on these interaction terms suggest that large households are more likely to buy

new vehicles (versus choosing the outside good). Moreover, large households have stronger

preference for vans than for other vehicles. I also interact house tenure (1 if the house is

rented) with vehicle type dummies. The negative coefficients suggest that a household in a

rented house are less likely to buy a new vehicle, especially a new pickup truck. Table 9 also

reports the estimates of 6 random coefficients, which measure the dispersion of heterogeneous

consumer preference. These coefficients are the standard deviations of consumer preferences

for the corresponding product attributes. For example, based on results from Tables 8 and 9

for model 1, consumer preference for dollars per 100 miles has a standard normal distribution

with a mean of -1.917 and a standard deviation of 0.175.

The heterogenous coefficient and more importantly random coefficients break the in-

dependence of irrelevant alternatives (IIA) property of a logit model. Under the random

coefficient models, the introduction of a new vehicle model into the choice set will draw dis-

proportionately more consumers to the new model from similar products than from others.

To illustrate the importance of modeling consumer heterogeneity, we present a sample of

own- and cross-price elasticities in Table 10 for 11 products in 2006. One obvious pattern in

the table is that cross-price elasticities are larger among similar products, suggesting that

substitutions occur more often across similar products than dissimilar ones when prices

change. The cross-price elasticities for Ford Escort suggest that when its prices increase,

consumers are most likely to switch to Toyota Camry than any of the 10 other models pre-

sented in the table. However, the multinomial logit model would predict substitutions that

are proportional to vehicles shares regardless the level of similarities across vehicle models.17

17For example, since Ford F-150 has the largest market share among all models in the data, the multino-
mial logit model would predict that a change in the price of Ford Escort (or any other model) would result
in more consumers to switch to Ford F-150 than to other models.
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The second pattern from the table is that the demand for cheaper products tends to be

more price sensitive. Among the 11 vehicle models, the cheapest Ford Escort has the largest

own-price elasticity (in absolute value) while the most expensive Cadillac Escalade has the

smallest price elasticity. The sales-weighted average price elasticity among all 1,608 products

is -6.69. Based on recovered marginal costs, I calculate price-cost margins,
pj−mcj

pj
. The last

column of Table 10 reports the margins for the 11 models. Products with more elastic

demand tend to have lower price-cost margins than products with less elastic demand. The

price-cost margins for 2006 Ford Escort and Cadillac Escalade are 12.70 percent and 25.33

percent, respectively. The sales-weighted average price-cost margin among all products in

18.13 percent. This estimate is close to Petrin (2002)’s estimate of 16.7 percent which

is based on vehicles sold from 1981 to 1993. The average benchmark margin in BLP is

estimated at 23.9 percent for cars sold between 1971 and 1990 while Goldberg (1995) recovers

a much larger estimate of 38 percent for cars from 1983 to 1987.

5 Post-estimation Analysis

The preceding demand estimation confirms the presence of the arms race on American

roads by showing that consumers have a higher willingness-to-pay for light trucks due to

their better internal safety. The purpose of this section is to further examine the eco-

nomic significance of the willingness-to-pay and to investigate different policy alternatives

on consumer demand, industry performance, as well as traffic safety. To facilitate the anal-

ysis, I start the section with estimating the value of a statistical life based on consumers’

willingness-to-pay for avoided equivalent fatalities.

5.1 Value of A Statistical Life

The value of a statistical life (VSL) is measured based on economic agents’ willingness-to-pay

(WTP) for a marginal change in mortality risk: VSL = WTP
Reduced Mortality Risk

. It is often used

to evaluate life-saving benefits of government regulations and programs. There have been

numerous estimates of the VSL based on consumer decisions in the labor market or housing

and product markets. The dominant framework in these studies is the hedonic models
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where wage (or price) differentials are explained by the difference in the risk level involved

in different occupations (or products). Viscusi and Aldy (2003) provides a comprehensive

survey on these studies and find a large variation in the estimates, with the range being

$0.5-20.8 million in 2000 dollars and the median being about $7 million. Blomquist (2004)

surveys several recent studies that are based on averting behavior in consumption and

provides a range of $1.7-7.2 million and claims that the best estimate of the VSL based on

these studies is $4 million in 2000 dollars. A significant challenge in the hedonic framework

is to control for the unobserved choice attributes that are correlated with risk differentials

as well as unobserved characteristics of the decision makers. Both type of unobservables can

lead to biased estimates of the VSL. For example, a recent study by DeLeire and Timmins

(2007) shows that occupational sorting based on unobserved worker characteristics can lead

to large downward bias in the wage-hedonic framework. After correcting for the sorting,

they recover VSL estimates at around 12 millions in 2005 dollars, much larger than those

based on the traditional wage-hedonic model.

The existence of various methods to reduce fatality risk in automobile driving has been

exploited by researchers to estimate the VSL. Atkinson and Halvorsen (1990) employ the

hedonic framework to estimate the premium for a safer vehicle and find an estimate of 5.3

million in 2000 dollars. In a similar study, Dreyfus and Viscusi (1995) provide an estimate

of $3.8-5.4 million. Based on the time cost and disutility of safety device usage, Blomquist,

Miller, and Levy (1996) obtain an estimate of $2.8-4.6 million. Ashenfelter and Greenstone

(2004) estimate the VSL based on the tradeoff between increased fatality risk and time

savings associated with increasing the speed limit on rural interstate roads. They provide

an upper bound of the VSL estimate of $1.7 million.

The structural demand model in Section 4 provides a straightforward framework to

estimate the VSL based on consumers’ revealed preference. The demand model controls

for unobserved product attributes that may be correlated with both prices and vehicle

safety. Moreover, the model allows for unobserved household characteristics that introduce

heterogeneity in the WTP for the reduced risk even conditional on observed household

demographics. The demand estimation shows that consumers are willing to pay a premium
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for the the reduced fatality risk in the light trucks. The annual reduction of the fatality risk

per occupant, different across MSAs and years, is given by EFc − EFt. The willingness-

to-pay can be estimated based on the compensated variation: the amount of money a a

household needed to be compensated with in exchange for the reduced fatality risk in light

trucks. The VSL for a given household is then defined by: WTP
10*1.4*(EFc - EFt)

, assuming a 10

year discounted lifespan for a vehicle and 1.4 occupants per vehicle.18 Assuming that 20

incapacitating injuries are equivalent to 1 fatality, the average VSL is 10.14 million in 2006

dollars with the interquantile range to be 3.75 and 13.16 million dollars with high income

households having higher VSL. The average VSL is estimated to be 8.09 and 10.91 million

dollars in 2006 dollars assuming that 10 and 30 incapacitating injuries are equivalent to

1 fatality, respectively. In comparison, the VSL based on the parameter estimates for the

multinomial logit model shown in the last two columns of Table 8 is only 2.2 million dollars.

5.2 Corrective Tax on Light Trucks

A significant change in the U.S. auto industry in the past two decades is the strong growth

in the light truck segment. Traditionally, the Big Three have been the major producers

of light trucks. However, Japanese firms have increased their offering of light trucks in

recent years and raised their U.S. market share in this segment from less than 10 percent

in early 1990’s to more than 30 percent in 2006. Our previous analysis suggests that the

arms race could have been a significant factor behind the trend of increasing share of light

trucks among vehicle fleet. The goal of this section is to quantify the effects of the arms

race on consumer demand, industry performance, and overall traffic safety. To do so, I first

calculate the monetary cost of the accident externality of light trucks based on vehicle safety

effects in Section 3 as well as VSL estimates in the previous section.

As shown in Table 5, a light truck increases the equivalent fatality rate per occupant in a

colliding car from 1.622 to 2.130 in 1,000 two-vehicle crashes while increasing the equivalent

fatality rate per occupant in a colliding light truck from 0.902 to 1.216. The greater risk

posed by light trucks (compared to those by cars) to others is considered as the accident

18The average lifespan of a vehicle is 13 years in the United States. This transforms into a 10 year
discounted lifespan with a discount rate of 0.955.
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externality. Table 7 shows that the probability of a multiple-vehicle crash is close to 0.04

per year in recent years. To calculate the accident externality from a light truck, I further

assume that the probability of a light truck colliding with a car is 0.6 and the probability

of colliding with another light truck is 0.4 based on the U.S. fleet composition in recent

years and that the average number of occupants per vehicle is 1.4 following the discussed

in Footnote 3.3. The accident externality in equivalent fatalities imposed by a light truck

during a 10 year discounted vehicle lifetime is equal to
[
(2.130 − 1.622) ∗ 0.6 + (1.216 −

0.902) ∗ 0.4
]
∗ 0.04 ∗ 1.4 ∗ 10/1000 = 0.00024102.19 Taking the VSL being 10.14 million in

2006 dollars, the accident externality of a light truck during its lifetime is valued at $2,444.

The above calculation is based on the baseline definition of an equivalent fatality whereby

20 incapacitating injuries are converted to 1 fatality. Columns 2 and 3 in Table 6 presents

vehicle safety effects when 10 and 30 incapacitating injuries are converted to 1 fatality,

respectively. Based on these estimates of safety effects and corresponding VSL estimates of

8.09 and 10.91 million dollars, similar analysis shows that the accident externality imposed

by a light truck over vehicle lifetime amounts to $1,950 and $2,630 for the two alternative

definitions of an equivalent fatality.

I now examine how a corrective tax levied on light trucks affects both the demand and

supply sides. The corrective tax is a per-unit tax (e.g., a special excise tax) and the amount

is equal to the monetary cost of accident externality estimated above. Following Equation

9, I obtain new new equilibrium prices and sales under the tax. Table 11 reports changes in

price and sales for passenger cars and light trucks under three tax levels corresponding to

each of the three definitions of an equivalent fatality. Panel 1 of the table shows the effects

in 1999 while panel 2 presents the effects in 2006, with the effects being similar across years.

There are several interesting findings. First, although the unit-tax is imposed only on

lights trucks, the price of passenger cars increases. Under a $2,444 tax per light truck,

the sales-weighted average price of cars in 1999 increases by $278 in 2006 dollars. The

increase in the price of cars is due to the fact that cars and light trucks are substitutes.

19The magnitude of accident externality decreases with the share of light trucks on the road and ranges
from 0.000176 to 0.000284 depending on the probability of a light truck colliding with a car in a two-vehicle
accident.
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The greater the substitution between the two types of vehicles, the larger the effect on car

prices would be under a tax on light trucks. Second, with a $2,444 per-unit tax on light

trucks, the average price of light trucks faced by consumers increases by $1,870 in 1999.

This suggests that consumers bear over 75 percent of the tax burden on light trucks. The

tax incidence is determined by the imperfect competition nature of the supply side as well

as price elasticities of demand for light trucks (as a whole): the large (smaller) producers’

market power (consumer price sensitivity) is, the larger the tax burden consumers will bear.

Third, the sales of cars increase while those of light trucks decrease as a result of the tax.

For example, a $2,444 per-unit tax on light trucks increases car sales by 0.79 million and

reduces light trucks sales by about 1.20 million in 1999. The difference of 0.41 million

reflects the increase in the choice of the outside good: some consumers choose not to buy

new vehicles as new vehicles become more expensive. It is worthwhile to point out that the

multinomial logit model as reported in the last 2 columns of Table 8 would lead to very

different results. Since the IIA property of the multinomial logit model implies that the

substitution among products will be based only on the share of the products rather than

similarity of the product, the multinomial logit model would predict smaller increases in the

price of light trucks and larger increases in the price of cars.

Table 11: Effect of Corrective Tax on Price and Sales in 1999 and 2006

Price Change Sales Change
Cars Light Trucks Cars Light Trucks

in $ in % in $ in % in mil. in % in mil. in %
Panel 1: Year 1999
Tax = 2,444 278 0.90 1,870 6.47 0.79 9.27 -1.20 -14.54
Tax = 1,950 228 0.74 1,494 5.16 0.63 7.49 -0.97 -11.81
Tax = 2,630 299 0.97 2,016 6.97 0.84 9.92 -1.28 -15.54
Panel 2: Year 2006
Tax = 2,444 283 0.96 1,907 6.04 0.69 8.77 1.02 12.31
Tax = 1,950 217 0.74 1,521 4.81 0.56 7.07 -0.82 -9.97
Tax = 2,630 304 1.03 2,056 6.51 0.74 9.40 -1.09 -13.17

Table 12 presents the impacts of the corrective tax on the variable profit of seven major

automakers and the industry as a whole in 1999 and 2006. The numbers shows that a

$2,444 per-unit tax on light trucks would reduce the industry profit by $3.61 billion and
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$3.79 billion in 1999 and 2006, respectively. These losses amount to 4-5 percent of the total

variable profit of the industry. However, this aggregate effect masks important heterogeneity

that arises from the differences in firms’ product mix both across firms and over time . The

negative effect of the corrective tax on firm profit would mostly be felt by the Big Three

while Volkswagen would see a positive effect on its profit because it introduced its first light

truck (an SUV) only in 2003 into the U.S. market. Although the tax would increase the

profit of Honda in 1999, it will reduce its profit in 2006, reflecting the fact that Honda has

been introducing more light trucks in recent years.

Table 12: Effect of Corrective Tax on Firm Profits in 1999 and 2006

Tax = $2,444 Tax = $1,950 Tax = $2,630
in bil. $ in % in bil. $ in % in bil. $ in %

Panel 1: Year 1999
Industry -3.61 -4.47 -3.08 -3.82 -3.78 -4.68
GM -0.97 -3.89 -0.84 -3.34 -1.02 -4.07
Ford -1.64 -8.47 -1.37 -7.07 -1.73 -8.96
Chrysler -1.59 -12.68 -1.31 -10.46 -1.69 -13.48
Toyota -0.07 -1.14 -0.07 -1.15 -0.07 -1.10
Honda 0.25 6.49 0.20 5.09 0.27 7.02
Nissan -0.03 -1.19 -0.03 -1.31 -0.03 -1.11
Volkswagen 0.21 12.61 0.17 10.03 0.23 13.59
Panel 2: Year 2006
Industry -3.79 -5.02 -3.19 -4.23 -3.99 -5.29
GM -1.45 -7.65 -1.20 -6.33 -1.54 -8.12
Ford -1.09 -8.38 -0.90 -6.94 -1.15 -8.90
Chrysler -1.03 -12.42 -0.85 -10.29 -1.09 -13.17
Toyota -0.34 -3.00 -0.29 -2.58 -0.35 -3.14
Honda -0.18 -2.81 -0.15 -2.48 -0.18 -2.91
Nissan -0.13 -2.97 -0.12 -2.54 -0.14 -3.11
Volkswagen 0.17 10.79 0.14 8.56 0.19 11.63

I now turn to the effect of the corrective tax on overall traffic safety. As shown in Section

3, light trucks protect their occupants better at the greater expense of the occupants in

other vehicles. The total number of equivalent fatalities in the U.S. is estimated at 51,474

in 2006.20 The simulation shows that a $2,444 per-unit tax on light trucks reduces the sales

of light trucks by 13.87 percent on average from 1999 to 2006. Assuming that the corrective

20This is based on the predicted rates of equivalent fatalities per occupant shown in column 2 of Table 6.
These rates take into account vehicles of all vintages and thus reflect closely the traffic safety of the vehicle
fleet in 2006.
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tax would have resulted in the reduction of 13.87 percent (12.91 millions) of all light trucks

in service, the number of equivalent fatalities would have been 204 less in 2006. Under a

$1,950 or $2,630 per-unit tax, the reduction in equivalent fatalities would be 166 and 217,

respectively.

6 Conclusion

The strong growth of the light truck segment is one of the most significant changes in the

U.S. auto industry during the last two decades. Light trucks have been shown to protect

their occupants better while posing greater risks to other vehicles, largely due to their higher

front-ends, stiffer rail frames, and heavier body mass compared to passenger cars. In view

of the increasing market share of light trucks, particularly SUVs, in recent years, many have

suggested that U.S. drivers have engaged in an “arms race” by buying larger and heavier

light trucks.

This paper takes a two-pronged approach to investigate the interrelationship between

traffic safety and vehicle choice. Utilizing rich traffic accident data, I confirm that light

trucks offer better overall protection to their occupants than passenger cars and that the

better protection provided by the light trucks comes at the greater expense of others. These

findings allude to the possibility of the arms race in vehicle demand in that demand for light

trucks for the purpose of self-protection nevertheless leads to worse overall traffic safety.

To empirically examine the effect of traffic safety on vehicle demand, I estimate a random

coefficient discrete choice model based on vehicle sales data in 20 MSAs from 1999 to 2006.

The estimation results show that consumers are indeed willing to pay a premium for the

safety advantage of light trucks. The implied willingness-to-pay for the reduced fatality

risk provides an estimate of the value of a statistical life at $10.14 million in 2006 dollars.

Together with the results on vehicle safety effects, the VSL estimate suggests that the

accident externality posed by a light truck amounts to $2,444 during vehicle lifetime. I

then conduct counterfactual analysis where a per-unit tax is levied on light trucks in order

to correct for their accident externality. This analysis shows that a $2,444 tax per light
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truck would have reduced the sales of new light trucks by 12.31 percent in 2006 while

increasing the sales of new cars by 8.77 percent. This finding suggests that the arms race has

been an important force behind the growth of the light truck segment. The counterfactual

analysis further shows the arms race has significant and heterogenous impacts on the profit

of automakers with the Big Three receiving the largest benefit. The simulation results also

show that the corrective tax of $2,444 would have resulted in a reduction of 204 equivalent

fatalities in 2006.

Largely due to the lobbying efforts by the Big Three, light trucks, originally intended

for business usage, have been subject to less stringent regulations in vehicle fuel economy,

emissions, and body design as well. However, the majority of light trucks now serve as

passenger vehicles just like passenger cars. This paper shows that the interaction between

vehicle choice and traffic safety gives rise to an inefficient vehicle fleet composition. The

significant accident cost from the arms race calls for more attention from regulatory agencies

on the crash incompatibility problem due to the design of the light trucks. Many industry

experts believe that light trucks, particularly SUVs, could be redesigned to be safer to others

without sacrificing utility. The introduction of crossover utility vehicles that are based on

passenger car platforms may represent a promising alternative solution to the problem.
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Appendix: Measure of Internal Vehicle Safety

This section describes the construction of the variable that captures the internal vehicle

safety for a passenger car or a light truck in the 20 MSAs under study from 1999 to 2006.

The internal vehicle safety is measured by the annual probability of an equivalent fatality

per occupant in a certain type of vehicles. The baseline definition of an equivalent fatality

used in this study corresponds to 1 fatality or 20 incapacitating injuries. If data on all

traffic accidents at an MSA were available, the internal vehicle safety of a vehicle type for

this MSA can be computed directly based on the outcomes of all the accidents. However,

the most comprehensive traffic accident data, the General Estimate System (GES), only

draw samples from police reports in 60 geographic sites.

I construct this variable based on two existing data sets on traffic accidents. The prob-

ability of an equivalent fatality per occupant in a type j vehicle in market m, EFmj, can be

defined by the following equation (suppressing the time index):

EFmj ≡ (DjcSmc + DjtSmt)P
MV
mj + DjP

SV
mj , j = {c, t}.

As discussed in Section 3.2, Djk is the equivalent fatality rate per occupant in a vehicle

of type j when colliding with a vehicle of type k. PMV and P SV are the probabilities of

multiple-vehicle and single-vehicle crashes, respectively. Bearing in mind that PMV should

be considered as the two-vehicle crash equivalence of all multiple-vehicle crashes given that

D’s measure the severity of two-vehicle crashes. EFmj varies between the two types of

vehicles: passenger cars and light trucks. The above equation also shows that it can differ

across markets due to variations in crash frequencies as well in the fleet composition. D’s

can be estimated based on the regression results of tobit models in Section 3.1 using the

GES data. Crash frequencies at the MSA level are the remaining missing pieces.

To obtain crash frequencies, I take advantage of the Fatality Reporting Analysis System

(FARS), also maintained by the NHTSA. The FARS data set contains detailed information

on all fatal crashes in the country. For each year, I obtain the total number of fatalities

involved in both types of crashes separately for each of the 20 MSAs. Assuming that the

crash frequency of multiple-vehicle accidents is the same across vehicle types, the total

number of fatalities involved in multiple-vehicle crashes in a year should equal to:

TFm ≡ PMV
m

[
CARm OCCc (FccSmc + FctSmt) + LTKm OCCt (FtcSmc + FttSmt)

]
.
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CARm and LTKm are the number of passenger cars and light trucks in the vehicle fleet of

market m in the given year. They are available from the vehicle stock data set. OCCj is the

average number of occupants in type j vehicle and is estimated from the FARS data. F ’s

are the average fatality rate per occupant in different types of accidents. They are estimated

based on tobit regression, similarly to D’s in Section 3.1. A key difference between them

is that F ’s are based on tobit models where the dependent variable is the fatality rate

per occupant (all the non-fatal outcomes are treated the same) for vehicles of all vintage

models. PMV
m can then be derived based on the above equation. The frequency of single-

vehicle accidents, P SV
m can be obtained similarly. It is worth noting that the crash frequency

could theoretically be calculated for each of two type of vehicles separately since the data set

contains vehicle type information. However, small MSAs often do not observe large enough

number of fatal crashes to allow a robust measure of crash frequencies separately for each

type. For large MSAs, I indeed find that crash frequencies are almost the same across the

two types with those for light trucks being marginally smaller. This is consistent with the

evidence from the national level data presented in Table 7.

Table 13: Crash Frequencies and Vehicle Safety at the 20 MSAs

Mean S.D. Min Max
PMV 0.0526 0.0219 0.0212 0.1015
PSV 0.0074 0.0026 0.0040 0.0183
EFt - EFc -0.0253 0.0133 -0.0613 -0.0077

Table 13 presents summary statistics for frequencies of both types of crashes per 1,000

vehicles as well as for the safety advantage of light trucks measured by the reduced equiv-

alent fatality rate per 1,000 occupants. The average frequency of single-vehicle crashes in

the 20 MSAs (weighted by the number of households) is close to the national average pre-

sented in Table 7 while that of multiple-vehicle crashes is slightly larger than the national

average. This is consistent with the finding from the GES data that the ratio of multiple-

vehicle crashes to single-vehicle crashes is higher in populated areas, implying a bigger safety

advantage for light trucks in these areas. Among the 20 MSAs, Phoenix has the highest fre-

quency of multiple-vehicle crashes while San Francisco has the lowest. Similarly, the safety

advantage of light trucks, EFt-EFc, is biggest in San Francisco while smallest in Phoenix.
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