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The Formation of Networks with Local Spillovers and Limited Observability✩

Michael D. Königa

aSIEPR and Department of Economics, Stanford University, 579 Serra Mall, CA 94305-6072, United States.

Abstract

In this paper I analyze the formation of networks in which each agent is assumed to possess some

information of value to the other agents in the network. Agents derive payoff from having access

to the information of others through communication or spillovers through the links between them.

Linking decisions are based on network-dependent marginal payoff and a network independent noise

capturing exogenous idiosyncratic effects. Moreover, agents have a limited observation radius when

deciding to whom to form a link. I find that for small noise the observation radius does not matter

and strongly centralized networks emerge. However, for large noise, a smaller observation radius

generates networks with a larger degree variance. These networks can also be shown to have larger

aggregate payoff. I then estimate the model using a network of coinventors, firm alliances and trade

relationships between countries, and find that the model can closely reproduce the observed patterns.

The estimates show that with increasing levels of aggregation, the observation radius is increasing,

indicating economies of scale in which larger organizations are able to process greater amounts of

information.
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JEL: C63, D83, D85, L22

1. Introduction

Networks are important in explaining a large variety of social and economic phenomena. This insight

has lead to an increasing interest in the study of networks in economics and related sciences accom-

panied by a growing number of publications in the field.1 Networks play a particularly important

role in understanding the process of communication of information and knowledge diffusion among

✩I am grateful to Matt Jackson for his guidance and support. Moreover, I thank Mathias Staudigl for the excellent
research assistance in the early stages of the paper. I would like to thank Yves Zenou, Ben Golub, Tomás R. Barraquer,
and seminar participants at University of Vienna, University of Bielefeld, University of Zurich, ETH Zurich and Stanford
University for their insightful comments. Financial support from Swiss National Science Foundation through research
grant PBEZP1–131169 is gratefully acknowledged. A previous version of this paper was circulated under the title,
“Centrality Based Network Formation of Boundedly Rational Agents with Limited Information”.

Email address: mdkoenig@stanford.edu (Michael D. König)
1This literature has steadily grown in the last decade. The monographs of Jackson (2008), Goyal (2007), and

Vega-Redondo (2007) are excellent surveys contrasting this literature with the economic theory of networks. See also
Newman (2010) for a survey of the literature in physics, and Durrett (2007) for a concise review of the literature on
networks in mathematics.
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diverse actors, ranging from individuals to firms and countries. In this paper I introduce a simplistic

and tractable model to study the emergence of networks of information and knowledge diffusion,

which is able to match and explain the observed empirical patterns at different levels of aggregation.

On an individual level, a large body of literature has emphasized the detrimental effect of social

networks of inventors on the productivity of innovative regions (see e.g. Allen, 1983, Almeida and Kogut,

1999, Marshall, 1919, Singh, 2005). A prominent example is the success story of Silicon Valley,

which has been attributed to its informal networks of friendship and collaboration (Fleming et al.,

2007, Saxenian, 1994). On the organizational level, R&D partnerships between firms have be-

come a widespread phenomenon characterizing technology diffusion and dynamics (Fischer, 2006,

Gulati, 2007, Hagedoorn, 2002, Nooteboom, 2004), especially in industries with rapid technologi-

cal development such as the biotech and computer industries (see Ahuja, 2000, Powell et al., 2005,

Riccaboni and Pammolli, 2002, Roijakkers and Hagedoorn, 2006). In R&D partnerships firms ex-

change information about new products or technologies and diffuse knowledge throughout the econ-

omy. On the aggregate level of countries, the spread and diffusion of technologies is a key factor for ex-

plaining economic growth (Bitzer and Geishecker, 2006, Franco et al., 2011, Grossman and Helpman,

1995). The basic idea is that economic growth in relatively backward economies takes the form of

adoption and imitation of existing technologies (Kuznets, 1969). Imitation and innovation are af-

fected by technology diffusion, trade and interdependencies, and these factors are crucial for the

growth process.2

In this paper I identify a number of common empirical regularities shared by the networks of

inventors, firms and countries, some of which have been documented already in the literature. First,

the distributions of degree (the number of links of a node) in these networks exhibit fat tails, typically

decaying as a power-law.3 Similarly, the average clustering coefficient (Watts and Strogatz, 1998),

i.e., the fraction of connected neighbors of a node, tends to decrease with the degree and also exhibits a

power-law decay.4 Moreover, the distribution of (small) connected components (in which there exists

a path between every pair of nodes) follows a power-law decay. However, the average degree of

the neighbors of a node varies among these networks. While the network of inventors exhibits an

increasing average neighbors’ degree with the degree of a node, this correlation is almost absent in

the network of firms, and it is decreasing in the network of trade relationships between countries

(cf. Serrano and Boguñá, 2003). The first is referred to as “assortativity” while the latter refers

to “dissortativity” (Newman, 2002). In this paper I introduce a simple model that can reproduce

all these empirical distributions and further gives an explanation for the variations observed in the

neighbors connectivity.

2See e.g. Coe and Helpman (1995), Acemoglu (2009) and Aghion and Howitt (2009).
3A power-law degree distribution in patent citation networks has been documented in e.g. Brantle and Fallah (2007),

Valverde et al. (2007), in the network of R&D collaborating firms in Gay and Dousset (2005), Powell et al. (2005) and
the network of trade in Fagiolo et al. (2009), Serrano and Boguñá (2003).

4Goyal et al. (2006) make a similar observation in the network of scientific coauthorships among economists, and
Serrano and Boguñá (2003) in the network of trade.
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I consider a general class of models (payoff functions) in which each agent is assumed to possess

some information of value to the other agents in the network. Agents derive payoff from having

access to the information of others through direct communication or spillovers along the links in the

network. Agents’ incentives to form links can be partitioned into a network dependent part as well

as a network independent exogenous random term, referred to as noise. The network dependent part

of agents’ payoffs derives from having access to the information of others. The noise term captures

exogenous random perturbances, shortcomings in assessing the correct value of information possessed

by other agents and exogenous matching effects.

Agents sequentially enter the network and obtain an opportunity to acquire information from

the incumbent agents. Upon entry, each agent can sample a given number of existing agents in

the network and observes these agents and their neighbors (cf. Friedkin, 1983).5 I call the number

of sampled agents the “observation radius”. He then forms links to the observed agents in the

sample based on the marginal payoff obtained for each link. With this sampling procedure I follow

a common approach in the statistics and sociology literature for how individuals collect information

on an existing population which is difficult to observe called “snowball/star sampling” (Frank, 1977,

Goodman, 1961, Kolaczyk, 2009).6

I analyze the emerging networks for different observation radii and levels of noise. I find that

for small noise the observation radius does not matter and strongly centralized networks emerge.

However, for large noise, a smaller observation radius generates networks with a larger degree vari-

ance. One can show that the aggregate payoff maximizing networks in the class of models considered

here increases with the degree variance.7 Hence, I find that when the exogenous noise is large then

a smaller observation radius leads to networks that have larger aggregate payoff. This provides an

example in the context of a network-based meeting process where “knowing less can be better”.

I then estimate the model using three different empirical networks that can be regarded as a

proxy for the underlying network of information transmission and knowledge diffusion at different

levels of aggregation: a network of coinventors from patents in the drug development sector, firm

alliances in the biotech sector and a network of trade relationships between countries. Notably, I

find that the model can closely match all the observed distributions for the degree, clustering-degree,

nearest neighbor average degree and the component size distribution. Furthermore, estimating the

model’s parameters for these networks shows that with increasing levels of aggregation the obser-

vation radius is increasing. This indicates the presence of economies of scale: larger organizational

units are able to process greater amounts of information, as compared to the limited capacities indi-

5In a similar way Alós-Ferrer and Weidenholzer (2008), Galeotti et al. (2010), Jackson and Rogers (2007), McBride
(2006) assume that agents have only limited information of the network.

6See Von Hippel et al. (1999) for a case study where a firm uses snowball sampling to collect information from
costumers and their contacts.

7Similarly, Westbrock (2010) shows that in the model by Goyal and Moraga-Gonzalez (2001), where firms are
competing on the product market while they can form R&D collaborations to reduce their production costs, welfare
positively correlates with the degree variance.
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viduals typically face for observation, communication and information processing (cf. Radner, 1992,

Radner and Van Zandt, 1992, Wilson, 1975).

The paper in the economics literature most closely related to the one presented here is Jackson and Rogers

(2007).8 The authors introduce a model of a growing network which combines random search proto-

cols for potential linking partners, with local network-based search protocols. By means of theoretical

and empirical analysis, they are able to show that their model is very flexible in fitting real-world

data. Their model and method of analysis shares many features of a vast literature originating

from statistical physics. As common in this literature, their process of network formation is rather

mechanical, and a serious deficiency of this literature is the lack of a sound micro-foundation. One

contribution of this work is that it starts directly from a discrete-choice approach, with an explicit

modeling of the reasons why links are formed. Further, albeit similar, the difference in the link-

ing processes of their model and the present one allows me to measure empirically the information

processing capabilities of agents. Moreover, the results for the degree distribution and efficiency in

Jackson and Rogers (2007) are based on a mean-field approximation while such an approxkimation

is not needed to obtain the corresponding results in the present paper. Further, Jackson and Rogers

(2007) do not derive explicitly all the statistics that I do here (such as the average nearest neigh-

bor connectivity, the clustering degree distribution or the component size distribution), and do not

analyze the impact of different observation radii on these statistics, in particular, the transition

from assortative to dissortative networks. Also, when the marginal payoff of agents is increasing

in the degree, and there is no exogenous noise, then differently to the efficiency results obtained in

Jackson and Rogers (2007), I show that the observation radius has no impact on aggregate payoffs

and efficiency. This indicates that their efficiency analysis is not robust under a degree dependent

payoff function and the presence of noise.

Based on the model by Jackson and Rogers (2007) a number of extensions and applications have

been suggested. Ghiglino (2011) introduces an algorithm similar to Jackson and Rogers (2007) to

study the creation and recombination of ideas from a pool of existing knowledge (more precisely, net-

works of citations between scientific publications). Bramoullé and Rogers (2009) introduce different

types of agents and study the mechanisms underlying homophily, that is, the tendency of similar

types of agents being connected. Moreover, Kovarik and van der Leij (2009) introduce risk aversion

in the decisions of agents to form links locally or globally. They show that risk aversion can lead to

increased clustering in the network. In contrast, in Chaney (2011) a spatial extension is suggested

in which the network is embedded into geographical space and agents who are closer in space are

more likely to form links. Differently to these authors, I introduce a behavioral foundation of why

links are formed in the model by Jackson and Rogers (2007) in the context of knowledge diffusion in

8Besides the economics literature there also exists a large literature in computer science, physics and mathematics,
where similar models are studied. I refer to Krapivsky and Redner (2001), Krapivsky et al. (2000), Oliveira and Spencer
(2005), Vazquez (2003), Kumar et al. (2000), Wang et al. (2009) and Toivonen et al. (2006), to mention only a view.
However, these authors typically do not make explicit behavioral assumptions about why links are formed, do not
analyze welfare implications, and do not estimate their models for empirically observed networks.
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networks. Moreover, none of these works investigates the empirical networks that I do in the present

paper and estimates the model for these data.

The paper is organized as follows. In Section 2 I introduce the general modeling framework.

Section 2.1 defines the payoff agents derive from the network. Next, in Section 2.2 I describe the

evolution of the network. In Section 3 I analyze the networks generated by the model, while Section

4 provides an efficiency analysis and shows how the level of noise and the observation radius affect

aggregate payoffs. Section 6 discusses several extensions of the model. Section 7 contains an empirical

application of the model to different real world networks. Finally, in Section 8 I conclude. All proofs

are relegated to Appendix A.

2. The Model

The network is modeled as a directed graph (unless otherwise stated), which is a pair G ≡ 〈N , E〉,

where N ≡ {1, . . . , n} is a set of nodes (vertices) and E ⊂ N × N is a set of edges (links). The

set of all networks with n nodes is denoted by G(n). Similarly, the set of networks with n nodes

and e edges (or links) is denoted by G(n, e). We identify every graph G with a network, and thus

use these two terms interchangeably. We denote the out-neighborhood of a vertex i as the set of

agents he can directly access, i.e. N+
G (i) ≡ {j ∈ N|ij ∈ E}. The in-neighborhood of i is conversely

the set of agents which can access i directly, i.e. N−
G (i) ≡ {j ∈ N|ji ∈ E}. The in-degree of i is

the cardinality of i’s in-neighborhood set and denoted as d−G(i) ≡ |N−
G (i)|. The out-degree of i is

d+G(i) ≡ |N−
G (i)|. The (total) degree of i is dG(i) ≡ d+G(i) + d−G(i) and the total neighborhood is

NG(i) ≡ N+
G (i) ∪ N−

G (i). The average degree of G is d̄G ≡ 1
n

∑

i∈N dG(i) and the degree variance is

given by σ2
d(G) ≡ 1

n

∑

i∈N (dG(i) − d̄G)
2. Following Bala and Goyal (2000) I define the closure of a

graph G, denoted by Ḡ, by the condition ij ∈ E(Ḡ) ⇔ ij ∈ E(G) ∨ ji ∈ E(G). The number of edges

e(G) in G satisfies e(G) =
∑

i∈N d+G(i) =
∑

i∈N d−G(i) while the number of edges e(Ḡ) in the closure

Ḡ is given by e(Ḡ) = 1
2

∑

i∈N dG(i). We denote by G ⊕ ij the network obtained by adding the link

ij to E . Similarly, G⊖ ij is the network obtained from G by removing the link ij from E .

With these definitions at hand, we are now able to introduce the payoff agents derive from being

connected in a network and their incentives to form links in the following sections.

2.1. Payoffs

For a given network G = 〈N , E〉 ∈ G(n) we assign each each agent i ∈ N a payoff πi(·, δ) : G(n) → R

which depends on the networkG and a parameter δ ≥ 0 which measures the degree of interdependency

between agents’ payoffs in G (we will encounter more specific examples below). We define the link

incentive function fi : G(n)×N → R for an agent i ∈ N as

fi(G, j) ≡ πi(G⊕ ij, δ)− πi(G, δ), (2.1)
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which measures the marginal payoff to the agent i resulting from the potential link ij /∈ E . Here

we focus on link incentive functions (and therefore on classes of games) which satisfy the following

conditions:

Assumption 1. For all i ∈ N the link incentive function fi(G, ·) : N → R has the following

properties:

(LM) Link monotonicity: fi(G, j) ≥ 0 for all j 6= i ∈ N .

(LD) Linear differences: For all ij, ik /∈ E, there exists a constant γ ≥ 0 and a linear increasing

function g : R+ → R+ such that

fi(G, j)− fi(G, k)

δγ
= g (dG(j)− dG(k)) + o(1),

holds in the limit of δ → 0.

Let us briefly discuss the implications of these two conditions in turn. Link monotonicity (LM)

requires that the incentives to link are non-negative. Intuitively it says that no link to be formed

can harm an agent (cf. Dutta et al., 2005). Condition (LD), degree linearity, allows us to order the

linking incentives for the entering agent across all potential linking partners. It says that the agent i

has the highest incentive to direct a link to the agent who has the current highest degree among all

alternative linking partners. Two potential links are judged as being equally attractive for the agent

if the involved agents have the same degree in the current network.

For our efficiency analysis, we further make the following assumption:

Assumption 2. Let Π : G(n)×R+ → R denote aggregate payoff defined by Π(G, δ) =
∑

i∈N πi(G, δ)

and let σ2
d(G) be the degree variance of G ∈ G(n, e). Then we assume that

(DC) Degree concentration: For n ∈ N and 0 ≤ e ≤
(
n
2

)

arg max
G∈G(n,e)

Π(G, δ) = arg max
G∈G(n,e)

σ2
d(G)

holds in the limit of δ → 0.

Assumption (DC) implies that networks with a higher degree inequality, as measured by the

degree variance, generate higher welfare.

In the following I give examples from the literature which satisfy the above assumptions.

2.1.1. Information Diffusion in Networks

Following Fafchamps et al. (2010) I consider agents that exchange information in a network G, where

information that travels longer paths is discounted by a factor δ ∈ [0, 1]. It is assumed that infor-

mation can travel both ways of a link and so I consider the (undirected) paths in the closure Ḡ of
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G. The probability that an agent j transmits information along a given path in Ḡ is independent

of the probability that the same agent j transmits the same information along another path. With

this assumption, the probability that agent i receives the information over distance k when there are

ckij(Ḡ) (undirected) paths of length k connecting i to j becomes

P δ
ij(G) ≡ 1−

∞∏

k=1

(1− δk)c
k
ij(Ḡ).

The payoff πi : G(n) × R+ → R of agent i is defined as πi(G, δ) ≡ V
∑

j∈N P δ
ij(G) − cd+G(i) with

V > 0 and a fixed cost c ∈ [0, V δ) for each link the agent has initiated. When the decay parameter

δ is sufficiently small, we can write (1− δk)c ≈ 1− cδk. With this approximation the payoff of agent

i becomes

πi(G, δ) ≡ V
∑

j∈N

(

1−
∞∏

k=1

(1− δk)c
k
ij(Ḡ)

)

− cd+G(i) = V



δdG(i) + δ2
∑

j∈NG(i)

dG(j)



+O(δ3)− cd+G(i).

It then follows that the link incentive function is given by

fi(G, j) = V δ − c+ V δ2dG(j) +O(δ3).

Link monotonicity (LM) holds if c < V δ and degree monotonicity (LD) holds for g(x) = V x and

γ = 2, since fi(G, j)−fi(G, k) = V δ2(dG(j)−dG(k))+O(δ3). As our measure of welfare we consider

aggregate payoff given by

Π(G, δ) = V δ
∑

i∈N

dG(i) + V δ2
∑

i∈N

∑

j∈NG(i)

dG(j) +O(δ3)− c
∑

i∈N

d+G(i)

= (2V δ − c)e(Ḡ) + V δ2
∑

i∈N

dG(i)
2 +O(δ3)

= (2V δ − c)e(Ḡ) +
4V δ2

n
e(Ḡ)2 + V δ2nσ2

d(G) +O(δ3)

where we have used the fact that
∑

i∈N

∑

j∈NG(i) dG(j) =
∑

i∈N dG(i)
2. The average degree is

d̄ = 1
n

∑n
i=1 dG(i) = 2e(Ḡ)

n . The degree variance is given by σ2
d(G) = 1

n

∑

i∈N (dG(i) − d̄G) =
1
n

∑n
i=1 dG(i)

2 − d̄2 = 1
n

∑n
i=1 dG(i)

2 − 4e(Ḡ)2

n2 . It follows that for small δ, such that terms of the

order O(δ3) become negligible, maximizing aggregate payoff Π(G, δ) (given n and e) becomes equiv-

alent to maximizing the degree variance σ2
d(G), and condition (DC) holds.

2.1.2. Two-Way Flow Communication

The two-way flow model with decay has been introduced by Bala and Goyal (2000). In this model

links are interpreted as lines of communication between two individuals. If i wants to communicate
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with j then i must first pay a fee of c ≥ 0 to open the channel. By creating this link i does not only

get access to j but also to all individuals that are approachable by j via an (undirected) path in the

closure Ḡ. Formally, the payoff function πi : G(n)× R+ → R of agent i ∈ N is given by9

πi(G, δ) ≡ 1 +
∑

i 6=j

δℓ(i,j,Ḡ) − cd+G(i), (2.2)

for some δ ∈ [0, 1], which is interpreted as the degree of friction in communication. The number

ℓ(i, j, Ḡ) is the length of the shortest path connecting agent i with j in the graph Ḡ. If i and j are

not connected we adopt the convention that ℓ(i, j, Ḡ) = ∞. The difference to the payoff function in

Fafchamps et al. (2010) of the previous section and the one in Equation (2.2) is that in the latter

only the shortest paths matter.

In the following we assume that the network Ḡ does not contain any cycles, i.e. it is a tree (or

a forest, if the network is unconnected). Denote by T (N ) the class of (undirected) tree graphs with

vertex set N . Then a tree Ḡ ∈ T (N ) is defined by the conditions (i) that it is connected, and (ii)

|E(Ḡ)| = |N |− 1 for all Ḡ ∈ T (N ). When Ḡ ∈ T (N ), the payoff of an agent i ∈ N can be written as

πi(G, δ) = 1 + δdG(i) + δ2
∑

j∈NG(i)

(dG(j)− 1) +O(δ3)− cd+G(i).

It follows that the linking incentive function of agent i takes the form

fi(G, j) = δ(1− δ)− c+ δ2dG(j) +O(δ3).

The link incentive function satisfies condition (LM) for δ(1−δ) > c and condition (LD) with g(x) = x

and γ = 2, because fi(G, j) − fi(G, k) = δ2(dG(j) − dG(k)) + O(δ3). Aggregate payoff Π(G, δ) =
∑

i∈N πi(G, δ) is then given by

Π(G, δ) = n+ δ(1− δ)
∑

i∈N

dG(i) + δ2
∑

i∈N

∑

j∈NG(i)

dG(j) +O(δ3)− c
∑

i∈N

d+G(i)

= n+ (2δ(1− δ)− c)(n− 1) +
4δ2

n
(n− 1)2 + nδ2σ2

d(G) +O(δ3),

where e(Ḡ) is the number of edges in Ḡ, n = |N |, and we have used the fact that for Ḡ ∈ T (N )

the number of edges is e(Ḡ) = n − 1. It follows that for small δ such that terms of the order

O(δ3) become negligible, maximizing aggregate payoffs becomes equivalent to maximizing the degree

variance . Hence, Condition (DC) holds for aggregate payoff when Ḡ ∈ T [N ].10

9See also Jackson and Wolinsky (1996) for a similar payoff structure.
10We will see in the network growth model introduced in Section 2.2 that Ḡ ∈ T [N ] is always guaranteed to hold if

we allow an entering agent to form only a single link.
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2.1.3. Public Goods Provision

The following network game is presented in Goyal and Joshi (2006) as an extension of Bloch (1997).

An (undirected) link between two agents represents an agreement to share knowledge about the

production of a public good. Each agent can decide how much to invest into the public good. Denote

the level of contribution of agent i ∈ N = {1, . . . , n} as xi ∈ R+. The production technology of every

agent is assumed to be ci(xi, G) = 1
2

(
xi

dG(i)+1

)2
. The payoff function πi : R

n
+ × G(n) → R of agent i

is

πi(x, G) ≡
∑

j∈N

xj −
1

2

(
xi

dG(i) + 1

)2

.

The Nash contribution of agent i is x∗i = (dG(i) + 1)2. This optimal choice of an agent induces

naturally preferences over networks by inserting the value of xi(G) into the payoff function πi. This

gives us

πi(G) ≡ πi(x
∗, G) =

1

2
(dG(i) + 1)2 +

∑

j∈N\{i}

(dG(j) + 1)2.

With this payoff function, the linking incentive function for an agent i is given by

fi(G, j) =
9

2
+ 2dG(j).

This obviously satisfies conditions (LM) and (LD) with g(x) = 2x and γ = 0. Aggregate payoff

Π(G) =
∑

i∈N πi(G) is then given by

Π(G) =
1

2

∑

i∈N

(dG(i) + 1)2 +
∑

i∈N

∑

j∈N\{i}

(dG(j) + 1)2

=
n(2n− 1)

2
+ 2(2n− 1)

(

1 +
δ2

n
e(Ḡ)

)

e(Ḡ) +
n(2n− 1)δ2

2
σ2
d(G).

We see that aggregate payoffs are increasing in the degree variance and condition (DC) holds.

2.1.4. A Linear-Quadratic Complementarity Game

We consider a simplified form of the game introduced by Ballester et al. (2006) where each agent

i ∈ N in the network G selects an effort level xi ≥ 0, x ∈ R
n
+ (e.g. the R&D investment of a firm or

the work hours of an inventor), and receives a payoff πi : R
n
+ ×G(n)×R+ → R of the following form

πi(x, G, δ) ≡ xi −
1

2
x2i + δ

n∑

j=1

aijxixj , (2.3)

where δ ≥ 0 and aij ∈ {0, 1}, i, j ∈ N = {1, . . . , n} are the elements of the symmetric n × n

adjacency matrix A of Ḡ. This payoff function is additively separable in the idiosyncratic effort

component (xi −
1
2x

2
i ) and the peer effect contribution (δ

∑n
j=1 aijxixj). Payoffs display strategic

9



complementarities in effort levels, i.e., ∂2πi(x,G,δ)
∂xi∂xj

= δaij ≥ 0. Ballester et al. (2006) have shown that

if δ < 1/λPF(G) then the unique interior Nash equilibrium solution of the simultaneous n–player move

game with payoffs given by Equation (2.3) and strategy space Rn
+ is given by the Bonacich centrality

x∗i = bi(G, δ) for all i ∈ N (Bonacich, 1987).11 Moreover, the payoff of agent i in equilibrium is given

by

πi(G, δ) ≡ πi(x
∗, G, δ) =

1

2
(x∗i )

2 =
1

2
b2i (G, δ). (2.4)

In the case of small complementarity effects, corresponding to small values of δ, the Bonacich

centrality of an agent i can be written as

bi(G, δ) = 1 + δdG(i) + δ2
∑

j∈NG(i)

dG(j) +O(δ3).

Note that equilibrium payoff can be written as

πi(G, δ) =
1

2
+ δdG(i) +

δ2

2
dG(i)

2 + δ2
∑

j∈NG(i)

dG(j) +O(δ3),

and the link incentive function is then given by

fi(G, j) =
δ(2 + δ)

2
+

δ2

2
dG(i)(dG(i) + 1) + δ2dG(j) +O(δ3).

If we neglect terms of the order O(δ3) then the linking incentive function also satisfies condition

(LM). Further, fi(G, j) − fi(G, k) = δ2(dG(j) − dG(k)) + O(δ3) so that condition (LD) holds with

g(x) = x and γ = 2. Aggregate payoff Π(G, δ) =
∑

i∈N πi(G, δ) can be written as

Π(G, δ) =
n

2
+ δ

n∑

i=1

dG(i) +
δ2

2

n∑

i=1

dG(i)
2 + δ2

n∑

i=1

∑

j∈NG(i)

dG(j) +O(δ3)

=
n

2
+ 2δ

(

1 +
3δ

n
e(Ḡ)

)

e(Ḡ) +
3nδ2

2
σ2
d(G) +O(δ3).

Aggregate payoff is increasing in the degree variance, and hence, condition (DC) holds.

11Let λPF(G) be the largest real (Perron-Frobenius) eigenvalue of the adjacency matrix A of the undirected network
Ḡ. If I denotes the n× n identity matrix and u ≡ (1, . . . , 1)⊤ the n-dimensional vector of ones then we can define the
Bonacich centrality as follows: If and only if δ < 1/λPF(G) then the matrix B(G, δ) ≡ (I− δA)−1 =

∑

∞

k=0 δ
k
A

k exists,
is non-negative (see e.g. Debreu and Herstein, 1953), and the vector of Bonacich centralities is defined as b(G, δ) ≡
B(G, δ) · u. We can write the vector of Bonacich centralities as b(G, δ) =

∑

∞

k=0 δ
k
A

k · u = (I − δA)−1 · u. For the
components bi(G, δ), i = 1, . . . , n, we get bi(G, δ) =

∑

∞

k=0 δ
k(Ak · u)i =

∑

∞

k=0 δ
k
∑n

j=1

(

A
k
)

ij
, where

(

A
k
)

ij
is the

ij-th entry of A
k. Because

∑n

j=1

(

A
k
)

ij
is the number of all (undirected) walks of length k in Ḡ starting from i,

bi(G, δ) is the number of all walks in Ḡ starting from i, where the walks of length k are weighted by their geometrically
decaying factor δk.
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2.2. The Network Formation Process

In this section I introduce the formation of the network. We consider a discrete time, non-stationary

Markov chain (Gt = 〈Nt, Et〉)t∈{1,2,...,T} for some T ∈ N ∪ {∞}, defining a nested sequence of graphs

G1 ⊂ G2 ⊂ . . . GT ∈ G(T ) in which each network Gt is obtained from the predecessor Gt−1 by the

addition of an agent and a specified number m ≥ 1 of links emanating from that agent. Each network

Gt is a random variable adapted to the filtration Ft = σ({Gs : 1 ≤ s ≤ t}). The probability measure

P(·|Ft−1) : Ft → [0, 1] is denoted as Pt. Expected values with respect to Pt are similarly denoted by

Et[·|Ft−1]. Agents are labeled by their date of birth, so that t is the label of the agent entering the

network at time t of the process.

We will need to agree on a given initial condition so that the network formation dynamics is

well-defined. I choose as the initial network the graph G1 ≡ Km+1, i.e. the complete graph on m+1

agents in which all agents are bilaterally connected by m directed links (cf. Jackson and Rogers,

2007).

Process time t ∈ [T ] ≡ {1, 2, . . . , T} divides the population of agents into a countable set in

N of active and passive agents. These two sets are denoted, respectively, by At and Pt. Passive

agents have already entered the network and do not make any decisions if subsequent stages of the

network formation process. At any date t the agent with label t, and only this agent, becomes

active and considers forming a set of links. Once his decision has been made he joins the pool of

passive agents. The initial composition of the population in active and passive agents is given by

Pm+1 = {1, 2, . . . ,m + 1}, and Am+1 = [T ] \ Pm+1. Each graph Gt has exactly |Nt| = t (passive)

vertices and |Et| = e(Gt) = mt edges. It is formed from Gt−1 be adding one agent with the label

t > m + 1 and m edges from t to some passive agents i ∈ Pt−1. Hence, every passive agent has

constant out-degree equal to m, and thus we identify the in-degree simply by the degree of a passive

agent via the identity dGt(i) = d−Gt
(i) +m for all agents i ∈ Pt.

Before creating links, an entering agent t must make an observation of the prevailing network

Gt−1 and identify a set of agents to whom he can form links. We call this set the (observed) sample

St ⊆ Pt−1. The sample St is obtained by selecting ns ≥ 1 passive agents in Pt−1 uniformly at random

(without replacement) and forming the union of these agents and their out-neighbors. We call ns

the observation radius. Note that an agent j ∈ Pt−1 can enter the sample St either by being directly

observed by the entrant t or by being observed indirectly as the neighbor of a directly observed agent

i ∈ Pt−1. This network sampling procedure is also known as unlabeled star sampling (Frank, 1977,

Kolaczyk, 2009). An illustration is shown in Figure 1.12

If the observed sample St constitutes only a small fraction of the passive agents Pt−1 in the network

Gt−1, we speak of link formation with local information. Local information is also a key ingredient

12Further note that we assume that link formation follows a sampling procedure without replacement. Would we
allow for sampling with replacement, multiple links could be created to the same agent.
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to the model of Jackson and Rogers (2007),13 and has been documented in various empirical studies

(see e.g. Friedkin, 1983).

Given the observed sample St, the entrant t must make a decision to whom he wants to create

a link in St. We assume that this decision is made in a myopic way.14 We assume that an entrant

t chooses to link to the an incumbent agent j ∈ St that maximizes the value of his link incentive

function plus a random element (cf. Snijders, 2001, Snijders et al., 2010)

ft(Gt−1, j) + εij . (2.5)

The term εij is an exogenous random variable, indicating the part of the agent’s preference that is not

represented by the systematic component fi(G, j). This includes, for example, exogenous matching

effects between characteristics of agents i and j that do not depend on the network structure G.

We assume that the random variables εij are independent and identically distributed for all i, j.

When these exogenous matching effects are weak and δ → 0, Equation (2.5) and Assumption (LD)

introduce a preferential attachment mechanism to agents with a larger number of connections. In

this case, agents who have a larger number of social ties are viewed as better sources for knowledge

spillovers than agents with only a few neighbors.

More formally, we can give the following definition of the network formation process:

Definition 1. For a fixed T ∈ N ∪ {∞} we define a network formation process (Gt)t∈[T ], [T ] ≡

{1, 2, . . . , T}, as follows. Given the initial graph G1 = . . . = Gm+1 = Km+1, for all t > m + 1 the

graph Gt is obtained from Gt−1 by applying the following steps:

Growth: Given P1 and A1, for all t ≥ 2 the agent sets in period t are given by Pt = Pt−1 ∪{t} and

At = At−1 \ {t}, respectively.

Network sampling: Agent t observes a sample St ⊆ Pt−1. The sample St is constructed by selecting

ns ≥ 1 agents i ∈ Pt−1 uniformly at random without replacement and adding i as well as the

out-neighbors N+
Gt−1

(i) of i to St.

Link creation: Given the sample St, agent t creates m ≥ 1 links to agents in St without replacement.

For each link, agent t chooses the j ∈ St that maximizes ft(Gt−1, j) + εtj.

Let Rt ⊆ St, |Rt| = m, be the set of agents that receive a link from the entrant at time t. The

network at time t is then given by Gt = 〈Pt−1 ∪ {t}, Et−1 ∪ {tj : j ∈ Rt}〉. We define the attachment

13See also McBride (2006) and Galeotti et al. (2010) for further examples.
14With this we mean that an agent t only considers the network Gt−1 as source of information for his decision. He

does not estimate the possible impact his linking decision at time t (which is an irreversible act) has on the future
evolution of his personal utility level. For an alternative approach see e.g. Dutta et al. (2005).
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St = {i, j, k}

t

i k

lj

St = {i, j, k, l}

t

i k

lj

Figure 1: (Left panel) In the first draw, the entering agent t observes agent i and its out-neighbors j, k. The observed
sample is St = {i, j, k}. (Right panel) In the second draw, agent t observes also agent j and the out-neighborhood
{k, l} of j. The observed sample is then St = {i, j, k, l}.

kernel as the probability that an agent j ∈ Pt−1 receives a link from the entrant

Kβ
t (j|Gt−1) ≡ Et[1Rt(j)|Gt−1] =

∑

St⊆Pt−1

∑

Rt⊆St

1Rt(j)Pt(St,Rt|Gt−1)

=
∑

St⊆Pt−1

∑

Rt⊆St

1Rt(j)Pt(Rt|St, Gt−1)

︸ ︷︷ ︸

≡Kβ
t (j|St,Gt−1)

Pt(St|Gt−1),

where Kβ
t (j|St, Gt−1) is the probability, conditional on the sample St and the prevailing network

Gt−1, that an agent j receives a link after the m draws (without replacement) by the entrant. Since

the entrant forms links to the agents that maximize his link incentive function plus a random element,

we need to consider the cases where agent j has the highest value among all agents in the sample,

or the second highest, and so on. The corresponding probability can be written as follows15

Kβ
t (j|St, Gt−1) =

m∑

l=1

∑

i1,i2,...,il−1

l−1∏

r=1

Pt

(

ft(Gt−1, ir) + εt,ir = max
k∈St\{i1,...,ir}

ft(Gt−1, k) + εt,k

)

× Pt

(

ft(Gt−1, j) + εt,j = max
k∈St\{i1,...,il−1}

ft(Gt−1, k) + εt,k

)

1St(j), (2.6)

with indices i1 ∈ St\{j}, i2 ∈ St\{j, i1}, i3 ∈ St\{j, i1, i2}, . . ., il−1 ∈ St\{j, i1, i2, . . . , il−2} and

15We assume that the entrant does not update the link incentive functions while forming links but evaluates it only
once after he has observed the sample. The first sum in Equation (2.6) considers the case that agent j receives a link
in the l-th round while the second sum takes into account all possible sequences of agents i1, i2, . . . , il−1 that receive a
link in the l − 1 previous rounds.
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1 ≤ l ≤ m. In the following I assume that the exogenous random terms εtj are identically and

independently type I extreme value distributed (or Gumbel distributed) with parameter η.16 This

assumption is commonly made in random utility models in econometrics (see e.g. McFadden, 1981).

Under this distributional assumption, the probability that an entering agent t chooses the passive

agent j ∈ St for creating the link tj (in the first of the m draws of link creation) follows a multinomial

logit distribution given by (cf. Anderson et al., 1992)

Pt

(

ft(Gt−1, j) + εtj = max
k∈St

ft(Gt−1, k) + εtk

)

=
eηft(Gt−1,j)

∑

k∈St
eηft(Gt−1,k)

=
1

∑

k∈St
e−η(ft(Gt−1,j)−ft(Gt−1,k))

=
1

∑

k∈St
e−ηδb(dGt−1

(j)−dGt−1
(k))+o(δb)

≈
eβdGt−1

(j)

∑

k∈St
eβdGt−1

(k)
, (2.7)

where we have applied condition (LD) for the link incentive function ft(Gt−1, ·), dropped terms of

the order o(δb) and denoted by β ≡ ηδb. Knowledge of the selection probability in Equation (2.7)

will allow us to analyze the network formation process introduced in Definition 1. As I will show in

the following sections, this process gives rise to different network topologies, depending on the extent

of the noise εtj , as measured by the scaling parameter β and the observation radius which depends

on ns. Small values of ns (local information) refer to a local network formation process in which

entering agents have only limited observability of the prevailing network, while large values of ns

(global information) constitute a network growth process in which entrants have full information of

the network. Moreover, as β becomes large, the level of noise vanishes, and entrants choose to form

links to the agents in the sample St that maximize their link incentive function. Conversely, when

β tends to zero, then the noise term dominates and agents form links to the ones observed in St at

random. These different parameter regions are indicated in Figure 2. In the following sections I give

a more detailed account of the emerging networks depending on the level of noise scaled by β and

the observation radius ns.

3. Analysis of the Network Formation Process

In this section I present a characterization of the different network architectures which may arise, in

dependence of the noise in the attachment kernels and the observation radius. Section 3.1 analyzes

the probability with which a class of strongly centralized networks emerges and shows that these

16The cumulative distribution function is given by P(ε ≤ c) = exp(− exp(−ηc − γ)), where γ ≈ 0.577 is Euler’s

constant. Mean and variance are given by E[ε] = 0 and Var(ε) = π2

6η2 .
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Prop. 3 ns

Corr. 1

Prop. 2

β

Prop. 1 (i)

Prop. 1 (ii)

large noise
local information

small noise
local information

small noise
global information

large noise
global information

Figure 2: Illustration of the different parameter regions identified by the scaling parameter β and the observation radius
ns. The figure also indicates the parameter regions to which the results discussed in Section 3 refer. Proposition 1 (i)
deals with the case of β = ∞ and arbitrary values of ns, while (ii) considers the case of β = 0. Both, Proposition 2
and Corollary 1 assume large values of ns (such that St = Pt−1). While the first considers small but positive values of
β, the latter assumes that β = 0. Proposition 3 deals with the case of β = 0 and small values of ns.

networks are the unique outcome almost surely if the noise vanishes (β → ∞), irrespective of the

observation radius ns. To gain further insight into the network topologies created by the model

in the opposite case of large noise (β → 0), Section 3.2 studies the degree distributions arising for

both small and large observation radii. I show that networks tend to differ significantly for different

observation radii when the exogenous noise term is large. Due to Assumption (DC) the degree of

centralization has important efficiency implications and we will study these in Section 4.

3.1. The Emergence of Quasi-Stars

Our first result, which is central for the understanding of the network formation process when the

exogenous noise is small, is that it can produce a strongly centralized network topology, which we

term a quasi-star. A quasi-star Sm
n , n ≥ m + 1, with node set [n] ≡ {1, . . . , n} is a directed graph

in which all nodes in the set [m + 1] in Sm
n are bilaterally connected, while the nodes in the set

[n−1]\[m+1] all maintain an outgoing link to the agents in the set [m]. Consequently, we have that

Km+1 ⊆ Sm
n .17 An illustration of various quasi-stars can be seen in Figure 3. With this definition

we are able to state the following proposition.

Proposition 1. Let (Gβ
t )t∈[T ] be a sequence of networks generated with observation radius n

(1)
s , and

(Hβ
t )t∈[T ] be a sequence of networks generated with observation radius n

(2)
s such that n

(1)
s > n

(2)
s . Let

17The complement S̄m
n of a quasi-star Sm

n , is the graph obtained from the complete graph Kd with d nodes and a
subset of n− d disconnected nodes, by adding n− d links connecting one node in Kd to each of the n− d disconnected
nodes. This graph falls into the class of interlinked stars introduced by Goyal and Joshi (2006) and the nested split

graphs analyzed in König et al. (2008), König et al. (2009).
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Figure 3: Illustration of the quasi-stars S1
7 , S

2
7 and S3

7 . Filled circles indicate the nodes with the highest degree.

Σm
T ⊂ G(T ) be the isomorphism class of quasi-stars of order T > m+ 1. Then,

(i) in the limit of vanishing noise, we have that limβ→∞ P(Hβ
T ∈ Σm

T ) = P(Gβ
T ∈ Σm

T ) = 1;

(ii) in the limit of strong noise, we have that limβ→0 P(H
β
T ∈ Σm

T ) > P(Gβ
T ∈ Σm

T ) > 0.

Proposition 1 shows that in the limit of vanishing noise (β → ∞), the networks generated by our

stochastic process are quasi-stars, irrespective of the observation radius ns. However, as the level of

noise becomes large (β → 0), the probability of obtaining a quasi-star is higher, the smaller is ns.

In the presence of noise, the set of networks generated by our model is much richer than the class

of quasi-stars. In order to analyze these networks, we study in Section 3.2 the degree distribution in

the case of large noise and in Section 5 we analyze higher order correlations.

3.2. Large Noise Limit and the Distributions of Degree

In this section we analyze the asymptotic degree distribution for large times t, when the level of

noise is large (for small values of β). For this purpose, let us introduce some notation. For all t ≥ 1

we denote by Nt(k) ≡
∑t

i=0 1k(d
−
Gt
(i)) the number of nodes in the graph Gt with in-degree k. The

relative frequency of nodes with in-degree k is accordingly defined as Pt(k) ≡
1
tNt(k) for all t ≥ 1.

The sequence {Pt(k)}k∈Z+ is called the (empirical) in-degree distribution. Throughout the section I

assume that there are no hubs in the network, that is, I assume that d−Gt
(i) = op(t) for all i ∈ Pt.

We first analyze the case of the observation radius ns being large enough, such that St = Pt−1.
18

When St = Pt−1 we have that Kβ
t (j|St, Gt−1) = Kβ

t (j|Gt−1) for all j ∈ Pt−1. The entrant t forms

links by sampling m agents without replacement from Pt−1. Note that the probability that an agent

18Observe that the probability that an agent i ∈ Pt−1 does not enter the sample St is given by

Pt(i /∈ St|Gt−1) =

(

1−
1 + d−Gt−1

(i)

t− 1

)(

1−
1 + d−Gt−1

(i)

t− 2

)

. . .

(

1−
1 + d−Gt−1

(i)

t− 1− (ns − 1)

)

=

(

1−
1 + d−Gt−1

(i)

t

)ns

+ o

(

1

t

)

.

Applying Bonferroni’s inequality and neglecting terms of the order o
(

1
t

)

, we then find that the probability that at least
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j with in-degree d−Gt−1
(j) receives a link in the (k + 1)-st draw, given that the agents l1, . . . , lk have

received a link in the previous k draws, 1 ≤ k ≤ m, is19

e
βd−

Gt−1
(j)

∑

i∈Pt−1\{l1,...,lk}
e
βd−

Gt−1
(i)

≈
1 + βd−Gt−1

(j)
∑

i∈Pt−1\{l1,...,lk}
(1 + βd−Gt−1

(i))
=

1 + βd−Gt−1
(j)

(1 + βm)t

(

1 +Op

(
1

t

))

,

where we have used the approximation eβx ≈ 1 + βx, and assumed that d−Gt−1
(i) = op(t) for all

i ∈ Pt−1. Moreover, we have used the fact that at every step t every passive agent has out-degree

equal to m. Since the average out-degree must be equal to the average in-degree, we see that also

the average in-degree must be m, and so
∑

i∈Pt−1
(1 + βdGt−1(i)) = (1 + βm)t. It then follows that

the probability that an agent j ∈ Pt−1 receives a link by the entrant t is given by

Kβ
t (j|Gt−1) ≈ 1−

(

1−
1 + βdGt−1(j)

(1 + βm)t

)m

+ o

(
1

t

)

= 1−

(

1−m
1 + βdGt−1(j)

(1 + βm)t

)

+ o

(
1

t

)

=
m

1 + βm

1 + βdGt−1(j)

t
+ o

(
1

t

)

. (3.1)

Having derived the attachment kernel, we are now able to obtain the asymptotic degree distribution

in the following proposition. The proof of the proposition can be found in Appendix A.2.

Proposition 2. Fix ǫ > 0 small and let β ∈ (0, ǫ), m ≥ 1. Assume that dGt−1(j) = op(t) for

all j ∈ Pt−1. Consider the sequence of in-degree distributions {Pt}t∈N generated by an indefinite

iteration of the network formation process (Gβ
t )t∈N assuming that St = Pt−1 for every t > m + 1.

Then, Pt(k) → P β(k), almost surely, where

P β(k) =
1 + βm

1 +m(1 + β)

Γ
(

1
β + k

)

Γ
(

2 + 1+βm
βm

)

Γ
(

1
β

)

Γ
(

2 + 1+m
1+βm + k

) , (3.2)

for all k ≥ 0.

The expression for the degree distribution can be simplified when we focus on large degrees. Using

one of the agents in the set Pt−1 is not observed by the entrant is bounded by

Pt(
⋃

i∈Pt−1

{i /∈ St}|Gt−1) ≤
t−1
∑

i=1

Pt(i /∈ St|Gt−1) ≈
t−2
∑

k=0

(

1−
1 + k

t

)ns

Pt(k) ≈
t−2
∑

k=0

(

1− ns
1 + k

t

)

Pt(k) = 1− ns
1 +m

t
,

where I have assumed that k = op(t), and used the fact that the average in-degree
∑t−2

k=0 kPt(k) equals the out-degree
m. Hence, if we require the probability of an agent not being sampled to be lower than ǫ > 0, then we must have that
ns > t 1−ǫ

1+m
.

19This probability is the same whether we use the in-degree d−Gt−1
(j) or the total degree dGt−1

(j), since they are

related as dGt−1
(j) = d+Gt−1

(j) + d−Gt−1
(j) = m+ d−Gt−1

(j).
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Stirling’s formula, we get (for large k) the approximation (see Appendix A.2 for the details)

P β(k) = (1 + βk)
−
(

2+ 1
mβ

)(

1 +O

(
1

k

))

. (3.3)

Thus, Proposition 2 shows that in the limit of large noise and a large observation radius we obtain

networks with a degree distribution that decays as a power law with exponent 2+ 1
mβ for large degrees.

Note, however, that this does not hold for small degrees. The degree distribution of Equation (3.2)

and a typical distribution obtained from a numerical simulation of the network formation process

are shown in Figure 5. The smaller is the number of links m created by an entrant, and the stronger

the exogenous noise (the smaller β) the higher is the decay in the power-law tail of the distribution,

making high degree agents less likely and reducing inequality. In the extreme case that we assume

“strong noise”, corresponding to the situation with β = 0, we obtain a process of uniform attachment

(cf. Bollobás et al., 2001).

Corollary 1. In the network formation process (Gβ
t )t∈N assuming that St = Pt−1 for every t > m+1

and β = 0 the agents perform a uniform attachment process whose degree distribution is given by

P 0(k) =
1

m+ 1

(
m

m+ 1

)k

, (3.4)

a geometric distribution with parameter m
m+1 for all k ≥ 0..

When St does not encompass all agents in Pt−1, then our analysis becomes more complicated.

We therefore restrict our discussion to the case of “strong noise” when β = 0. In this case we have

that the attachment kernel from Equation (2.7) (which gives the probability that j receives a link

from the entering agent given that j is in the sample St) is

K0
t (j|St, Gt−1) =

m

|St|
1St(j).

The sample size is bounded by |St| ≤ ns(m + 1). If no agent enters the sample more than once,

then equality holds. The sample St is constructed by selecting ns nodes from Pt−1 without replace-

ment, and forming the union of these nodes and their out-neighbors. Assuming that ns = o(t) and

dGt−1(j) = op(t), the probability that a node is entering St more than once is of the order o(t) and

thus
1

|St|
=

1

ns(m+ 1)
+ op

(
1

t

)

. (3.5)

The unconditional probability that an agent j ∈ Pt−1 receives a link by the entrant t is then given

by

K0
t (j|Gt−1) =

1

ns(m+ 1)
P(j ∈ St|Gt−1) + o

(
1

t

)

.
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If the degree of node j is small compared to the network size t, i.e. dGt−1(j) = op(t), and the

observation radius is small such that ns = o(t), then

P(j ∈ St|Gt−1) = ns
1 + dGt−1(j)

t
+ o

(
1

t

)

,

and we obtain

K0
t (j|Gt−1) =

ns

ns(m+ 1)

1 + dGt−1(j)

t
+ o

(
1

t

)

=
1

1 +m

1 + dGt−1(j)

t
+ o

(
1

t

)

. (3.6)

We then can state the following result for the asymptotic degree distribution when the observation

radius is small. The proof can be found in Appendix A.2.

Proposition 3. Consider the sequence of degree distributions {Pt}t∈N generated by an indefinite

iteration of the network formation process (Gβ
t )t∈N with a small observation radius ns = o(t). Assume

that β = 0 and dGt−1(j) = op(t) for all j ∈ Pt−1. Then, we have that Pt(k) → P (k), almost surely,

where

P (k) =
(1 +m)Γ

(
3 + 1

m

)
Γ(k + 1)

(1 + 2m)Γ
(
3 + 1

m + k
) , (3.7)

for all k ≥ 0.

For large values of k we can write Equation (3.7) as

P (k) = k−(2+
1
m)
(

1 +O

(
1

k

))

, (3.8)

which is a power-law with exponent 2 + 1
m . A comparison with numerical simulations can be found

in Figure 5. Compared to the power-law behavior in Equation (3.3) obtained for a large observation

radius, we find that the degree distribution in the case of a small observation radius has fatter

tails, making high degree agents more likely, and indicating a more hierarchical organization of the

network.

Observe that the degree distribution in Equation (3.7) does not depend on the number ns of

samples taken by the entering node. The reason is that two effects on the probability to receive a

link of an incumbent cancel each other: On one hand, a larger value of ns makes it more likely that

an agent enters the sample St, and hence increases the probability that he receives a link. On the

other hand, a higher value of ns also increases the sample size |St| and thus decreases the probability

that he is selected by the entrant to receive a link.

The results obtained in this section show that when agents have global information, the presence

of strong noise (β → 0) induces networks with a smaller degree variance (following from the geometric

distribution of Corollary 1) than when agents have only local information to form links (as implied

by the power-law distribution of Proposition 3). However, as we have seen in part (i) of Proposition

1, in the absence of noise (as β → ∞), the amount of information available to the agents when
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forming links does not matter, and the emerging network will be a quasi-star with a high degree

variance. These results are indicated in Figure 2. Hence, whether or not a limited observation radius

impacts inequality in outcome networks depends crucially on the level of exogenous noise in agents’s

payoffs. The degree variance is also closely related to aggregate payoff and efficiency, and this will

be discussed in more detail in the next section.

4. Efficiency

Since we have computed the degree distribution in Section 3 for different values of the observation

radius ns, by virtue of Assumption (DC) we can readily state the following efficiency result.

Proposition 4. Consider the sequence of networks (Gβ
t )t∈[T ] generated with an observation radius

n
(1)
s large such that St = Pt−1 for all t ≥ m + 2, and (Hβ

t )t∈[T ] with a small observation radius

n
(2)
s = o(t) and assume that dHt(i) = op(t) for all i ∈ Pt as t becomes large. Let Π(Gβ

T , δ) and

Π(Hβ
T , δ) be the aggregate payoff under Gβ

T , respectively Hβ
T , after T iterations. Then, almost surely,

(i) for β → ∞ we have Π(Hβ
T , δ) = Π(Gβ

T , δ) = Π(Σm
T , δ), where Σm

T ⊂ G(T ) is the isomorphism

class of quasi-stars of order T ;

(ii) in the limit of large T , we have for β → 0 that Π(Hβ
T , δ) > Π(Gβ

T , δ).

A comparison of the degree variance σ2
d for different observation radii ns (local vs. global)

obtained by means of numerical simulations for T = 104 agents with different values of β can be seen

in Figure 4. The figure shows that aggregate payoff is higher for Gβ
T (global information) if β is high

enough, however, the opposite holds for small values of β, where aggregate payoff is higher for Hβ
T

(local information).

Proposition 4 and Figure 4 show a major difference between the model considered here and the one

by Jackson and Rogers (2007). In Jackson and Rogers (2007) a higher ratio of (local) neighborhood

based linking to (global) random based linking is always increasing average payoff as long as payoff

is a convex function of degree.20 However, here we find that this does not hold in general when

exogenous effects are taken into account, where this relationship might be reversed. Also, when

the marginal payoff of agents is increasing in the degree (and there is no exogenous noise), then

differently to the welfare results obtained in Jackson and Rogers (2007), whether links are formed

locally or globally has no impact on average payoffs and efficiency. Thus, the introduction of noise

into decisionmaking in a network based meeting process matters for efficiency results.

20See Corollary 1 and Footnote 51 in Jackson and Rogers (2007).
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Figure 4: Degree variance σ2
d for local (ns = 1) and global (ns = t) search strategies for different values of β with

m = 1, T = 104 nodes (averaged over 10 simulation runs). The degree variance of the star K1,T−1 is given by
σ2
d(K1,T−1) = (T − 1)(T − 2)2/T 2.

5. Large Noise Limit and Higher Order Statistics

In the following sections I analyze correlations between an agent and his neighbors. Such correla-

tions are not only interesting as they help us to understand the behavior of our model for different

parameter values but also to compare it with correlations observed in real world networks.21

In Section 5.1 we first investigate the average in-degree of the in- and out-neighbors of a node with

in-degree k, denoted by the average nearest in-neighbor connectivity k−nn(k) and the average nearest

out-neighbor connectivity k+nn(k) (Pastor-Satorras et al., 2001). Next, in Section 5.2 we analyze the

fraction of connected neighbors of a node with degree k (in the closure of the network), referred to

the clustering coefficient C(k) (Watts and Strogatz, 1998).

Note that, in order to derive the functional forms of these statistics, I consider a continuous

representation of our discrete dynamical system, the so called continuum approximation, in which

both time t and degree k are treated as continuous variables in R+.
22 Using the continuum approxi-

mation, we can then apply the rate equation approach outlined in Barrat and Pastor-Satorras (2005)

to compute higher order correlations in the network.

5.1. Average Nearest Neighbor Connectivity

In this section we analyze two vertex degree correlations, i.e. correlations between the degree of an

agent and his neighbors’ degrees. Let P (k′|k′ → k) denote the probability that a node of in-degree k

21See Section 7 for an empirical application of the model to a network of inventors, a network of firm alliances and
the network of trade relationships between countries.

22This is an approximation which has shown to be accurate in various growing network models as T → ∞
(Dorogovtsev and Mendes, 2003, pp. 117). See Appendix A.4 for more discussion.
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has an in-neighbor with in-degree k′. The average in-degree of in-neighbors of nodes with in-degree

k can then be written as k−nn(k) =
∫∞
0 k′P (k′|k′ → k)dk′ (Pastor-Satorras et al., 2001).23 In the case

that k−nn(k) is an increasing function of k we speak of assortative mixing, while for k−nn(k) decreasing

with k we have dissortative mixing (Newman, 2002). Similarly, the average nearest out-neighbor

connectivity k+nn(k) can be defined. We now derive these quantities for different observation radii.

In the case of global information (when the observation radius ns is large) and small β (large

noise) we obtain the following proposition:24

Proposition 5. Consider the network formation process (Gβ
t )t∈R+ with St = Pt−1. Then under the

continuum approximation in the limit β → 0 the average nearest in-neighbor in-degree of an agent

with in-degree k is given by

k−
nn
(k) =

1

β2k
(1 + (1 + βk)(ln(1 + βk)− 1)) , (5.1)

and the average nearest neighbor out-degree is given by

k+
nn
(k) =

1

β2m

((

βm(1 + p(β − 1)) +
a

s
s2aζ(s, 2a)

)( t

s+ 1

)a

−mβ

)

, (5.2)

where a = βm
1+βm , s = t(1 + βk)−

1
a as t → ∞.

From Proposition 5 we find that for large k, the average nearest in-neighbor connectivity grows

logarithmically with k and is independent of t, while the average nearest out-neighbor connectivity

becomes independent of k and grows with the network sizes as t
βm

1+βm . Figure 5 provides a comparison

of numerical simulations with the theoretical predictions of Proposition 5.

Similarly, we can compute the nearest neighbor connectivities under local information (when the

observation radius ns is small) assuming strong noise (β = 0).

Proposition 6. Consider the network formation process (Gβ
t )t∈R+ with ns small. If β = 0 then under

the continuum approximation the average nearest in-neighbor in-degree of an agent with in-degree k

is given by

k−
nn
(k) =

1

k
(1 + (k + 1) ln(k + 1)− 1) , (5.3)

and the nearest out-neighbor degree is given by

k+
nn
(k) =






Γ(2 +m)2

Γ
(

1 +m+ m
m+1

)2 +
1

m+ 1
ζ

(
2m

m+ 1
, 2 +m

)




 t

m−1
m+1 (1 + k)

1
m , (5.4)

23In the case of for uncorrelated networks we have that P (k′|k′ → k) = k′P (k′), where P (k) is the probability to find a
node with in-degree k in the network G. Consequently, we get for uncorrelated networks that k−

nn(k) =
∫

∞

0
k′P (k′|k′ →

k)dk′ = E[k2]
E[k]

, where E[k] =
∫

∞

0
kP (k)dk = k̄ is the average in-degree in G (see Boguñá and Pastor-Satorras, 2003).

24The Hurwitz zeta function is defined by ζ(s, a) ≡
∑

∞

n=0
1

(a+n)s
.
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as t → ∞.

For large k we find that k−nn(k) grows logarithmically with k, is independent of the network size

t, and k+nn(k) grows as O
(

t
m−1
m+1 · k

1
m

)

. In Figure 5 a comparison of numerical simulations with the

theoretical predictions of Proposition 6 is shown.

In both cases, local as well as global information (corresponding to Propositions 5 and 6, respec-

tively), we find that networks are characterized by positive degree correlations, or assortative mixing.

We find, however, that even though the average nearest out-neighbor degree k+nn(k) as well as the

average nearest in-neighbor degree k−nn(k) are increasing functions of the degree k, the total nearest

neighbor connectivity knn(k) (the sum of in- and out-neighbors’ degrees divided by the total degree)

is decreasing with degree (as e.g. in the network of international trade; see Section 7).25

As I will illustrate in the next section, the similarities between local and global observability do

not carry over to the case of three vertex correlations, where networks generated under local and

global information produce starkly different results.

5.2. Clustering Degree Correlations

In this section I study three vertex degree correlations in the undirected network obtained from

the closure Ḡβ
t of the directed network (Gβ

t )t∈R+ . The clustering coefficient C(k) is defined as the

probability that a vertex of degree k in Ḡβ
t is connected to vertices with degrees k′ and k′′, and that

these vertices are themselves connected, averaged over all k′ and k′′ (Watts and Strogatz, 1998).26

Note that in the case of m = 1 all networks will be trees, Ḡβ
t ∈ T ([t]), which are characterized by a

vanishing clustering coefficient. Hence, we will consider only the case of m > 1 in this section.

Similarly to the case of two vertex degree correlations in the previous section, we can derive

the clustering coefficient using a rate equation approach (Barrat and Pastor-Satorras, 2005). With

global information (St = Pt−1) and small β (strong noise) we can state the following proposition.

Proposition 7. Consider the network formation process (Gβ
t )t∈R+ with St = Pt−1 and m > 1. Then

under the continuum approximation in the limit β → 0 the clustering coefficient of an agent with

25An increasing total nearest neighbor connectivity can be obtained in two possible extensions of the model, consid-
ering undirected links (see Section 6.1), or heterogeneous linking opportunities (see Section 6.2).

26Following Boguñá and Pastor-Satorras (2003), let P (k′, k′′|k′ ∼ k, k′′ ∼ k) denote the joint probability that a
vertex of degree k has neighbors of degrees k′ and k′′. Further, let P (k′ ∼ k′′|k′ ∼ k, k′′ ∼ k) denote the probability
that vertices with degrees k′ and k′′ are connected, given that they are neighbors of a vertex with degree k. Then we
can write for the clustering coefficient as C(k) =

∫

∞

0

∫

∞

0
P (k′, k′′|k′ ∼ k, k′′ ∼ k)P (k′ ∼ k′′|k′ ∼ k, k′′ ∼ k)dk′′dk′. The

average clustering coefficient is defined as C =
∫

∞

0
C(k)P (k)dk. If degree correlations vanish, then we can obtain a

simple expression for the clustering coefficient. Let P (k′|k ∼ k′) be the conditional probability that a vertex of degree k
has a neighbor of degree k′. For an uncorrelated network G ∈ G(n) it follows that P (k′, k′′|k′ ∼ k, k′′ ∼ k) = P (k′|k ∼

k′)P (k′′|k ∼ k′′) and P (k′ ∼ k′′|k′ ∼ k, k′′ ∼ k) = (k′
−1)(k′′

−1)
E[k]n

, so that C(k) = (E[k2]−E[k])2

E[k]3n
, which is independent of k.
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degree k is given by

C(k) =
2

(k + pm)(k + pm− 1)

a(m− 1)

mpβ3b2s

(

sb2
mpβ3

a(m− 1)
Ms +

(

(1 + βk)b − 1
)

×

(

b

(
s

s+ 1

)a
(
β2m+ as2a−1ζ(s, 2a)

)
− 1

)

+ b(1 + βk)b ln (1 + βk)

)

, (5.5)

where a = βm
1+βm , b = 2− 1

a , the initial condition is

Ms+1 =
m(m− 1)s2a−2

(1 + βm)2





m∑

i=1

1

ia

m∑

j=i+1

1

ja
+

2m

1 + βm

s∑

i=m+1

1

i2a

s−1∑

j=i

1

j





and s = t(1 + βk)−
1
a as t → ∞.

The clustering coefficient in Equation (5.5) for m = 4 and β = 0.1 can be seen in Figure 5. For

large k (and small s, respectively) the first term in the initial condition Ms+1 dominates, and the

asymptotic behavior of the clustering coefficient is given by

C(k) = O

(

t
− 2

1+mβ · k
2
(

1
mβ

−1
))

. (5.6)

This expression grows with k as a power-law with exponent 2
(

1
mβ − 1

)

.27 Moreover, we find that

the clustering coefficient is decreasing with the network size as t
− 2

1+mβ . Hence, for large networks

with a high clustering coefficient (such as the network of coinventors; see Section 7), the assumption

of global information seems to be at odds with the empirical observation.

When agents have only local information and β = 0 (strong noise) we obtain clustering degree

correlations as given in the next proposition.

Proposition 8. Consider the network formation process (Gβ
t )t∈R+ with ns = o(t) small assume that

m > 1. Let a = m
m+1 and b = a(m−1)

ns(m+1)−1 with a > b > 0. If β = 0 then under the continuum

approximation the clustering coefficient C(k) of an agent with degree k is bounded by C(k) ≤ C(k) ≤

C(k), where

C(k) =
2bk + 2(a(m− 1)− bm)

(

(1 + k)
b
a − 1

)

(a− b)(k +m)(k +m− 1)
, (5.7)

and

C(k) =
2a(m− 1) + 2b(k +m) + (a (m(m+ 1)− 2)− bm(1 +m)) (1 + k)

b
a

(a− b)(k +m)(k +m− 1)
, (5.8)

27We need only consider values of k such that C(k) does not exceed its upper bound given by one.
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Figure 5: (Top row) Comparison of simulation results with the theoretical predictions for T = 105, St = Pt−1 and
m = 4 with β = 0.1 under the linear approximation to the attachment kernel. (Bottom row) Comparison of simulation
results for T = 105 and ns = m = 4 (β = 0) with the theoretical predictions. Comparing the results of global and local
information, we find that they differ mainly in the clustering degree distribution. First, smaller values of ns generate
higher values of clustering. Second, for large values of ns the distribution is monotonic increasing, while for low values
of ns it is monotonic decreasing.

with the property that C(k) = O
(
1
k

)
.

The bounds for the clustering coefficient in Equations (5.7) and (5.8) for m = ns = 4 can be seen

in Figure 5. The figure confirms the asymptotic decay of the clustering coefficient as a power-law with

exponent minus one. Note that, in contrast to the results obtained in Proposition 7, the clustering

coefficient in Proposition 8 does not vanish as the network becomes large. Moreover, the clustering

coefficient shows a power-law decay which is a typical feature of all the empirical networks we consider

(see Section 7), indicating that a limited observation radius is an ubiquitous characteristic of real

world networks in the present context.

6. Robustness Analysis and Extensions

In this section I briefly discuss two possible extensions of the model analyzed in the previous sections.

6.1. Undirected Links

An extension to the network formation process we have introduced in Definition 1 is to allow entering

agents to observe not only the out-neighbors of incumbent agents (the ones to which these agents

have formed links) but also their in-neighbors (the ones from which they have received links). The

resulting network can then be viewed as an undirected graph. One can show that the distributions

of the network statistics we have considered follow a similar behavior as in the case of directed

links. The degree distribution exhibits a power law decay k−α with exponent α = 3 + 1
mβ for a
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large observation radius and α = 3 + 1
m for a small observation radius. Note, however, that by

introducing undirected links, the rigorous approach to derive the degree distributions for a small

observation radius in Section 3.2 is not viable any more, because one cannot compute the sample

size |St|. Instead, one has to resort to an approximation as |St| ≈ ns(d̄ + 1). The results obtained

using this approximation are given in Appendix C.

6.2. Heterogeneous Linking Opportunities

We can introduce heterogeneity in the linking opportunities of entering agents by assuming that a

fixed fraction 1− p, with p ∈ (0, 1), of the population of agents does not form any links, and remains

passive throughout the evolution of the network. Moreover, one can also allow for a varying number

of links to be created by each entrant following a certain distribution function with given meanm ≥ 1.

This extension is studied in the accompanying Appendix D. We find degree distributions that follow

a power law decay k−α with exponent α = 2+ 1
βmp for a large observation radius and α = 1+ 1+m

pm for

a small observation radius. The main difference with respect to the basic model in Definition 1 is that

this extension gives rise to a nontrivial component structure of the network, where the component size

distribution exhibits a power-law decay. In the special case of β = 0 and ns = m = 1 one can show

that the distribution P (s) of components of size s is identical for both large and small observation

radii and decays as a power law with exponent 1 + 1
p . Moreover, we find an assortative trend for

the nearest neighbor connectivity (in the closure of the graph) when the observation radius ns and

p are small enough in the large noise limit (β → 0). Note, however, that differently to Proposition

1, a value of p < 1 can lead to the emergence of multiple quasi-stars in the limit of vanishing noise

(β → ∞) when the observation radius is small, and an analytic characterization as in Proposition 1

becomes harder to obtain.

7. Empirical Implications

I consider three different real world networks in which knowledge diffusion and spillovers are an

important source of knowledge generation and dissemination.

First, I analyze USPTO patent data in the year 2009 (see Lai et al., 2009, for a more detailed

description of the data). For practical reasons I consider only patents in the drugs and medical sector

with patent classification numbers 424 and 514 (see also the classification in Hall et al. (2001)). I

focus on the drugs development sector, due to the high collaboration intensity in this sector, as well

as for practical reasons, since for the size of the subsample corresponding to this sector our estimation

process is feasible, while larger sample sizes would make the estimation of the model computationally

difficult.28 The network of coinventors is constructed by creating a link between any pair of inventors

28The statistics computed for this subsample of the original data set are similar as in the full sample, or other
subsamples for different sectors.
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that has appeared together on a patent. The resulting network is undirected. I use this network as

a proxy for the social network of inventors, in which local knowledge spillovers take place.29 This

gives us a network with 27492 nodes, an average degree of d̄ = 3.51, a degree variance of σ2
d = 30.03

(with a coefficient of variation of cv ≡ σd/d̄ = 0.94). The distribution of degree is highly skewed,

following a power law for large degrees (see Figure 6). The network is highly clustered with an

average clustering coefficient of C = 0.64 and a negative clustering-degree correlation (Figure 6).

Moreover, the network is assortative, with an assortativity coefficient of κ = 0.28 (Newman, 2002).30

The nearest neighbor average degree is monotonically increasing with degree (Figure 6). The largest

component consists of 12060 nodes (which is 44% of all nodes).

Second, I consider a sample of a firm alliance network with alliances initiated before the year

2009. The data stems from the Thomson SDC alliance data base (cf. Gay and Dousset, 2005,

Rosenkopf and Schilling, 2007, Schilling, 2009). I focus on the biotech sector (according to the

Thomson SDC classification scheme), which is a sector with a high R&D collaboration intensity

(Powell et al., 2005). The data base provides only information about the identity of the alliance

partners (and not who initiated it) and so this network is undirected. The network of alliances is

viewed as a proxy for the network of knowledge exchange and diffusion between firms. I obtain a

network with 7374 nodes, an average degree of d̄ = 1.79 and a degree variance of σ2
d = 8.33 (the

coefficient of variation is cv = 1.62). The degree distribution follows a power-law (see Figure 6).

Clustering is almost absent in the network of firms (C = 0.0044) and it is weakly assortative with

κ = 0.018. The largest component consists of 3379 nodes (which is 46% of all nodes), which is similar

to the network of coinventors.

Third, I consider the network of trade relationships between countries in the year 2000 (see

Gleditsch, 2002, for a more detailed description of the data). Trade relationships in this data

set are viewed as indicators of knowledge flows between countries (cf. Bitzer and Geishecker, 2006,

Coe and Helpman, 1995). The trade network is defined as the network of import-export relationships

between countries in a given year in millions of current-year U.S. dollars. I construct an undirected

network in which a link is present between two countries if either one has exported to the other coun-

try. The trade network contains 196 nodes, has an average degree of d̄ = 42.22, a degree variance of

σ2
d = 1524.16 and a coefficient of variation of cv = 0.92. The network of trade is highly clustered with

C = 0.73. The clustering degree correlation is negative (see Figure 6). Moreover, differently to the

inventor and alliance network, it is dissortative, with a coefficient of κ = −0.40, and a monotonically

29As noted by Fafchamps et al. (2006), in the context of scientific coauthorship networks, the (unobserved) social
network of personal acquaintances has more links than the coinventor network. However, the acquaintance network
includes the coinventor network because it can reasonably be assumed that individuals who have appeared on a patent
together know each other, and it can be used as a proxy for the network of acquaintances.

30The assortativity coefficient κ ∈ [−1, 1] is essentially the Pearson correlation coefficient of degree between nodes
that are connected. Positive values of κ indicate that nodes with similar degrees tend to be connected (and knn(k)
is an increasing function of the degree k) while negative values indicate that nodes with different degrees tend to be
connected (and knn(k) is a decreasing function of the degree k). See Newman (2002) and Pastor-Satorras et al. (2001)
for further details.
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Table 1: Descriptive statistics of the network of inventors and the network of firms before the year 2009, as well as the
trade network in the year 2000.a Estimation of the model parameters Θ = (m,β, ns, p) for the network of inventors and the
network of firms in the biotech sector. We have considered two model specifications: the case of entering agents observing
only the out-neighbors of selected incumbents (Model A), as in Definition 1, and the case of entrants observing both, the
out- and in-neighbors of the selected incumbents (Model B), as discussed in Section 6.1.

Inventor Network Firm Network Trade Network
Model A Model B Model A Model B Model A Model B

T 27495 7374 196
ns 1.00 (0.00) 1.00 (0.01) 32.63 (0.40) 32.08 (1.30) 48.46 (0.44) 51.79 (0.65)
p 0.60 (0.00) 0.58 (0.00) 0.69 (0.05) 0.82 (0.02) 0.34 (0.01) 0.58 (0.02)
m 8.44 (0.07) 4.45 (0.03) 3.80 (0.54) 1.04 (0.04) 130.73 (2.67) 41.98 (2.12)
β 0.75 (0.09) 1.46 (0.23) 0.01 (0.00) 0.01 (0.00) 0.57 (0.09) 1.69 (0.27)

n 10000 10000 10000 10000 10000 10000

a Standard errors, reported in parenthesis, are calculated from batch means of length 10 (Chib, 2001).

decreasing average nearest neighbor degree (Figure 6). The network consists of a giant component

with 181 nodes, encompassing 92% of all nodes in the network.

In order to estimate the parameters of the model I follow the Likelihood-Free Markov Chain Monte

Carlo (LF-MCMC) algorithm suggested by Marjoram et al. (2003). The details of this algorithm are

outlined in Appendix B.31 I analyze both the basic model with directed links introduced in Definition

1 and the extension with undirected links, which has been discussed in Section 6.1. Moreover, I allow

for heterogeneous linking probabilities, including the basic model when these probabilities are set to

one, as discussed in Section 6.2 (for both models, directed and undirected links). The initial condition

(starting from a complete graph), which does not significantly impact the statistics in large networks,

can affect the results in small networks such as the trade network. Hence, for the network of trade

relationships between countries, I start from an empty network.32

The estimated parameter values are shown in Table 1. Moreover, Figure 6 shows various distri-

butions for the inventor network, the firm alliance network and the network of trade relationships

between countries, comparing fitted theoretical predictions of the model with empirical observations.

The comparison of observed and the simulated distributions shown in Figure 6 indicate that the

model can well reproduce the observed empirical networks.33 The fit is in general better if entering

agents are allowed to observe both, the out- and in-neighbors of the incumbents (see Section 6.1)

and we allow for heterogeneity in the number of links being created (see Section 6.2).

Comparing the estimated observation radius ns for the inventor network to the one for the firm

31See Sisson and Fan (2011) for an introduction to LF-MCMC, Robert and Casella (2004) for a general discussion of
MCMC approaches, and Chib (2001) and Chernozhukov and Hong (2003) for applications of MCMC in econometrics.

32This restriction, however, is not crucial since its main effect is a slight reduction in the clustering coefficient for
higher degree nodes.

33Estimating the model on an empirical network of coauthorships between physicists (Newman, 2001) shows a
similarly good fit of the model as for the network of coinventors.
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Figure 6: Empirical degree distribution P (d) (first column), clustering-degree correlation C(d) (second column), average
nearest neighbor connectivity knn(d) (third column) and component size distribution P (s) (fourth column) constructed
from (first row) USPTO patents on drugs (patent classes 424 and 514), (second row) firm R&D alliances in the
biotechnology sector and (third row) the world trade network in the year 2000 (data points indicated by 2). The
insets show the results obtained from the network formation process with directed links (△), corresponding to Model
A in Table 1, while the larger figure shows the distributions obtained from the model with undirected links (◦),
corresponding to Model B in Table 1.

network in Table 1, we find that the number of observed agents by an entrant is much larger for

firms than it is for inventors.34 Hence, firms tend to use a significantly larger information set for

their linking decisions than individual inventors. A similar observation can be made for the network

of trade relationships between countries. This can be interpreted as an indicator for the presence of

economies of scale in the information processing capabilities of larger organizations (such as firms

compared to individual inventors). Moreover, the transition from assortative to dissortative networks

for the network of coinventors, the network of firms and the trade network (see the change of knn(k)

from an increasing to a decreasing function of k in Figure 6, third column) can be explained from an

increasing observation radius ns in the formation of these networks.

34Computing the Z-statistic for the differences in the sample means shows that the they are highly significantly
different.
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8. Conclusion

The current paper analyzes the growth of networks where agents’ payoffs depend on communication

or spillovers of valuable information form others through the links between them. An agent’s linking

incentives can be decomposed into a network dependent part and an independent exogenous random

term, referred to as noise. The network formation process sequentially adds agents to the network.

Upon entry, each agent can sample a given number ns (the observation radius) of existing agents in

the network and observes these agents and their neighbors. The set of observed agents constitute

the sample St. The entrant then forms links to the agents in St based on his linking incentives.

I analyze the emerging networks for different observation radii ns and levels of noise. I find that

for small noise the observation radius does not matter and strongly centralized networks emerge.

However, for large noise, a smaller observation radius generates networks with a larger degree variance

and a higher aggregate payoff. I then estimated the model using three different empirical networks:

the network of coinventors, firm alliances and trade relationships between countries. I find that the

model can reproduce the observed patterns for all these networks. The estimation shows that with

increasing levels of aggregation (from individuals to firms or countries), the observation radius ns is

increasing. This indicates the presence of economies of scale in which larger organizations are able

to collect and process greater amounts of information.

The paper could be extended along several directions. First, I have assumed that the network

is formed by incoming agents only, while neglecting the possibility of incumbent agents to form

links. It would be interesting to extend the model by allowing both, entering and incumbent agents

to form links in a similar way (such as in Cooper and Frieze, 2003). Second, an extension of the

analysis presented here could investigate further network measures and analyze additional network

data sets beyond the ones studied in this paper (such as the coauthor network analyzed in Goyal et al.

(2006)). This could help to shed light on the generality of the patterns I have identified. Finally,

the payoff functions considered in Section 2.1 typically assume that spillover effects (as measured by

the parameter δ) are weak. An extension of the current paper could investigate the effect of stronger

spillover effects on the emerging network structures and their impact on efficiency.
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Appendix

A. Proofs

In this appendix I give the proofs of the propositions, corollaries and lemmas stated in the paper.

A.1. Quasi-Stars

Proof of Proposition 1. We first give a proof for part (i) of the proposition. For each agent
j ∈ St let the best response of the entrant t be the set-valued map Bt : Nt → Nt given by

Bt(St) ≡ argmaxk∈St
ft(Gt−1, k) = argmaxk∈St

dGt−1(k).

Then, in the limit β → ∞, we obtain from Equation (2.7) that

lim
β→∞

Pt

(

ft(Gt−1, j) + εtj = max
k∈St

ft(Gt−1, k) + εtk

)

=
1

|Bt(St)|
1Bt(St)(j),

Hence, the entrant makes a uniform draw without replacement from the best response set Bt when
deciding with whom to form a link with probability one, and the probability that an agent j receives
a link by the entrant is given by

lim
β→∞

Kβ
t (j|Gt−1,St) =

(

1−

(

1−
1

|Bt(St)|

)(

1−
1

|Bt(St)| − 1

)

. . .

(

1−
1

|Bt(St)| −m+ 1

))

1Bt(St)(j)

=

(

1−
|Bt(St)| −m

|Bt(St)|

)

1Bt(St)(j) =
m

|Bt(St)|
1Bt(St)(j).

We now give a proof by induction for (Gt)
T
t=m+2 and an arbitrary value of ns ≥ 1. The induction

basis adds one agent at time t = m+ 2 to the complete graph Km+1. By drawing a random sample
St after selecting ns agents from Km+1 uniformly at random, the entrant observes all agents in the
set [m + 1] ≡ {1, 2, . . . ,m + 1}. All of them have the same degree. Therefore, the entrant forms
links to m of the agents in [m + 1] uniformly at random, and we obtain a quasi-star Sm

m+2 with
probability one. W.l.o.g. we can label the nodes that receive these links from 1 to m. Similarly, at
time t = m + 3, by sampling ns agents in Sm

m+2, the entrant always observes the set of agents [m].
These agents have maximal degree in the prevailing network and hence obtain all the m links. It
follows that we obtain the quasi-star Sm

m+3 with probability one.
In the following we consider the induction step. The induction hypothesis is that the network

Gt−1 is a quasi-star, with the highest degree agents in the set [m]. After sampling ns nodes uniformly
at random, it must hold that [m] ⊆ St with probability one. The reason is the following: Either
one of the agents in [m] is observed directly. Since each of them has an outgoing link to all other
agents in [m], they all enter the sample St. Otherwise, if one of the agents not in [m] is observed
directly, we know from the definition of the quasi-star that such an agent has outgoing links to all
the agents in [m], and therefore, they all enter the sample St. The agents in [m] are the ones with
the highest degree in Gt−1 and so they receive all the m links. It follows that the network Gt must
be a quasi-star. Hence, for all ns ≥ 1 and T > m + 1, we must have that in the limit of β → ∞,
Gβ

T ∈ Σm+1
T , almost surely.

Next, we consider part (ii) of the proposition. In the limit of strong shocks, as β → 0, we obtain
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Figure 7: (Left panel) Illustration of the selection of agents in a quasi-star by the entrant t. The filled circles indicate
the nodes present in the initial complete graph Km+1. (Right panel) X0 denotes the number of agents drawn from the
set [m+ 1] and X1 the number of agents drawn from the remaining agents in the set [t− 1]\[m+ 1]. The table shows
the possible values for |St|, X0 and X1.

from Equation (2.7) that

lim
β→0

Pt

(

ft(Gt−1, j) + εtj = max
k∈St

ft(Gt−1, k) + εtk

)

=
1

|St|
.

It follows that the entrant selects m agents uniformly without replacement from the sample St with
probability one as β → 0. The probability that an agent j receives a link by the entrant is then given
by

lim
β→0

Kβ
t (j|Gt−1,St) =

m

|St|
1St(j).

Let us consider the sequence (Gt)
T
t=m+2 with ns ≥ 1 and assume that Gt−1 ∈ Σm

t−1. We are interested
in the probability Pt(Gt ∈ Σm

t |Gt−1 ∈ Σm
t−1). We have that Gt ∈ Σm

t if only the m agents in the set
[m] receive a link by the entrant at time t. Given the sample St, the probability of this to happen is

m

|St|

(
m− 1

|St| − 1

)

. . .

(
1

|St| −m+ 1

)

=
m!|(St| −m)!

|St|!
=

(
|St|

m

)−1

. (A.1)

Consequently, we then can write

Pt(Gt ∈ Σm
t |Gt−1 ∈ Σm

t−1) =
∑

St∈Pt−1

(
|St|

m

)−1

Pt(St|Gt−1 ∈ Σm
t−1). (A.2)

Due to the properties of the quasi-star Gt−1 ∈ Σm
t−1, the sample can only be of size |St| = m+1,m+

2, . . . ,m + 1 + ns. The sample St has size m + 1 if all the ns draws are from the m + 1 nodes in
the set [m + 1] that are in the initial complete graph Km+1. It is of size m + 2 if ns − 1 draws are
from the set [m+ 1], and one agent is drawn from the remaining agents. And so on. An illustration
can be seen in Figure 7. Let X0 denote the number of agents drawn from the set [m+ 1] and X1 be
the number of agents drawn from the remaining agents in the set [t− 1]\[m+ 1]. Then X0 follows a
hypergeometric distribution, and the sample size distribution is given by

Pt(|St| = m+ 1 + k|·) = Pt(X0 = ns − k,X1 = k|·) =

(
m+1
ns−k

)(
t−m−2

k

)

(
t−1
ns

) .
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The expected sample size is

Et[|St||·] =
ns∑

k=0

(m+ 1 + k)Pt(|St| = m+ 1 + k|·) = (m+ 1 + k)

(
m+1
ns−k

)(
t−m−2

k

)

(
t−1
ns

)

= ns +m+ 1−
ns(m+ 1)

t− 1
.

We thus find that the expected sample size is decreasing with ns. Moreover, we have that the sample
size distribution for ns+1 first-order stochastically dominates the distribution for ns. Let 0 ≤ l ≤ ns,
then first-order stochastic dominance is implied by

l∑

k=0

(
m+1
ns−k

)(
t−m−2

k

)

(
t−1
ns

) ≥
l∑

k=0

(
m+1

ns+1−k

)(
t−m−2

k

)

(
t−1
ns+1

) ,

which is equivalent to

0 ≤
l∑

k=0

(
t− 2−m

k

)((m+1
ns−k

)

(
t−1
ns

) −

(
m+1

ns+1−k

)

(
t−1
ns+1

)

)

=
(l + 1)(ns − l −m− 2)

t(ns − l)−m(ns + 1)− 2(ns + 1)

(
t−m−2
l+1

)

(
t−1
ns

)(
t−1
ns+1

)

((
t− 1

ns

)(
m+ 1

ns − l

)

−

(
t− 1

ns + 1

)(
m+ 1

ns − l − 1

))

=
(l + 1)(ns − l −m− 2)

t(ns − l)−m(ns + 1)− 2(ns + 1)

(
t−m− 2

l + 1

)(

1 +
t− ns − 1

ns + 1

ns − l

ns − l −m− 2

) (m+1
ns−l

)

(
t−1
ns+1

)

=
l + 1

ns + 1

(
t−m−2
l+1

)(
m+1
ns−l

)

(
t−1
ns+1

)

The last expression is non-negative for all admissible parameter values. If one distribution is first-
order stochastically dominated by another, then the expected value of any decreasing function of a
random variable governed by the first distribution is higher than the expectation under the latter
(e.g. Mas-Colell et al., 1995). Since Equation (A.1) is a decreasing function of the sample size |St|,
we can apply stochastic dominance and it follows that Equation (A.2) is decreasing with ns. The
network Gt≤m+1 is the complete graph Km+1 and therefore a quasi star. The probability of observing
a quasi-star in period T is given by P(GT ∈ Σm

T ) =
∏T

t=m+2 Pt(Gt ∈ Σm
t |Gt−1 ∈ Σm

t−1). As we have
shown above, the probability Pt(Gt ∈ Σm

t |Gt−1 ∈ Σm
t−1) is decreasing in ns for any t ≥ m+ 2. Thus,

if β → 0, it follows that for a sequence (Gβ
t )

T
t=m+2 of networks generated under n

(1)
s , and a sequence

(Hβ
t )

T
t=m+2 of networks generated under n

(2)
s with n

(1)
s > n

(2)
s , we must have that limβ→0 P(G

β
T ∈

Σm
T ) < limβ→0 P(H

β
T ∈ Σm

T ).

A.2. The Degree Distributions

Let us review some notation we have introduced in the main part of the paper. For all t ≥ 1 we
denote by Nt(k) ≡

∑t
i=0 1k(dGt(i)) the number of nodes in the graph Gt with in-degree k. The

relative frequency of nodes with in-degree k is accordingly defined as P β
t (k) ≡

1
tNt(k) for all t ≥ 1.

The sequence {P β
t (k)}k∈N is the (empirical) degree distribution.
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We will now derive a recursive system which can be used to describe the time evolution of
the expected degree distribution. Let Nt ≡ {Nt(k)}k≥0. Denoting by k = d−Gt−1

(j) we write the

attachment kernel as Kβ
t (j|Gt−1) =

a(k)
tζ(β,m) + o

(
1
t

)
. The expected number of nodes with in-degree k

at time t can increase by the creation of a link to a node with in-degree k− 1, or it decreases by the
creation of a link to a node with in-degree k. It then follows that

E[Nt+1(k)|Nt] = Nt(k)

(

1−
a(k)

tζ(β,m)

)

+Nt(k − 1)
a(k − 1)

tζ(β,m)
+ δ0,k + o

(
1

t

)

. (A.3)

Taking expectations on both sides of Equation (A.3), dividing by t + 1, and denoting by P β
t (k) =

E[Nt(k)], gives us

P β
t+1(k) =

t

t+ 1

[

P β
t (k)

(

1−
a(k)

tζ(β,m)

)

+ P β
t (k − 1)

a(k − 1)

tζ(β,m)
+

1

t
δ0,k

]

+ o

(
1

t

)

.

Some algebraic manipulations allow us to write this as

P β
t+1(k)− P β

t (k) = bt(k)
[

ct(k)− P β
t (k)

]

+ o

(
1

t

)

, (A.4)

where

bt(k) ≡
ζ(β,m) + a(k)

ζ(β,m)

1

t+ 1
, ct(k) ≡ P β

t (k − 1)
a(k − 1)

ζ(β,m) + a(k)
+

ζ(β,m)

ζ(β,m) + a(k)
δ0,k.

The following lemma gives us a simple way to determine the asymptotic solution (i.e. as t → ∞) of
the recursion in Equation (A.4).

Lemma A.1. Let (xn), (yn), (ηn), (rn) denote real sequences such that

xn+1 − xn = ηn(yn − xn) + rn

and (i) limn→∞ yn = x, (ii) ηn > 0,
∑∞

n=1 ηn = ∞ and there exists a N0 such that for all n ≥ N0

ηn < 1, and (iii) rn = o(ηn). Then limn→∞ xn = x.

Proof of Lemma A.1. See Jordan (2006), p. 229.

For our purposes the lemma can be applied by identifying xt = P β
t (k), ηt = bt(k) and yt = ct(k). We

have that bt(k) > 0 and
∑

t≥0 bt(k) = ∞ since ζ(β,m) < ∞. Under this condition it is evident that
ct(k) has a well-defined limit, which is determined in a recursive way. We give a proof by induction.
The induction basis follows from the case of k = 0 where

c(0) ≡ lim
t→∞

ct(0) =
ζ(β,m)

ζ(β,m) + a(0)
.

To proceed with the induction proof. Suppose we have already determined the lower tail of the
distribution c(0) = P β(0), . . . , c(k − 1) = P β(k − 1), k > 0. Then we see that

c(k) ≡ lim
t→∞

ct(k) = P β(k − 1)
a(k − 1)

ζ(β,m) + a(k)
,
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and iterating this equation with respect to k, gives us

c(k) = P β(0)
k∏

j=1

a(j − 1)

ζ(β,m) + a(j)
,

Hence, we get for the explicit expression for the asymptotic degree distribution

P β(k) =
ζ(β,m)

ζ(β,m) + a(0)

k∏

j=1

a(j − 1)

ζ(β,m) + a(j)
. (A.5)

This general scheme can be used to determine the degree distribution for the different parameters
we consider, as we show now in the following.

Proof of Proposition 2. For β → 0 the attachment kernel of Equation (3.1) is given byKβ
t (j|Gt−1) =

a(k)
tζ(β,m) +o

(
1
t

)
, where k = dGt−1(j), a(k) = 1+βk and ζ(β,m) = 1+βm

m . We then can apply Equation

(A.5), noting that the product on the right-hand side admits a closed-form representation in terms
of Gamma functions as

P β(k) =
1 + βm

1 +m(1 + β)

Γ
(

1
β + k

)

Γ
(

2 + 1+βm
βm

)

Γ
(

1
β

)

Γ
(

2 + 1+m
1+βm + k

) . (A.6)

By Stirling’s formula we can approximate the Gamma function for large k as35

Γ(k)

Γ(k + c)
= k−c

(

1 +O

(
1

k

))

. (A.7)

For the tails of the degree distribution in Equation (A.6) this implies that P β(k) ∼ (1+βk)
−(2+ 1

βm
) (
1 +O

(
1
k

))

for large k.

The case of β = 0 can be treated analogously.

Proof of Corollary 1. The degree distribution in Equation (3.4) follows from the attachment

kernel K0
t (j|Gt−1) = a(k)

tζ(β,m) + o
(
1
t

)
= m

t + o
(
1
t

)
and inserting a(k) = 1 and ζ(β,m) = 1

m into

Equation (A.5).

35By Stirling’s formula we can approximate the Gamma function for large k as

Γ(k) =

√

2π

k

(

k

e

)k (

1 +O

(

1

k

))

.

Hence,

Γ(k)

Γ(k + a)
=

(

1 +O

(

1

k

))

√

(1 + a/k)(1 + a/k)−k

(

k

k + a

)k (
k + a

e

)−a

.

Since
√

(1 + a/k) → 1 for k → ∞ this term is asymptotically negligible. Additionally (1 + a/k)−k → e−a for k → ∞,
and (k + a)−a ∼ k−a for k → ∞. Hence, the leading order approximation of the ratio of Gamma functions is given by

Γ(k)

Γ(k + a)
= k−a

(

1 +O

(

1

k

))

.

38



Similarly, we can derive the asymptotic degree distribution in Proposition 3 for β = 0 when the
observation radius ns is small enough. The proof is given in the following.

Proof of Proposition 3. With the attachment kernel from Equation (3.6) given byK0
t (j|Gt−1) =

a(k)
tζ(β,m) + o

(
1
t

)
= m

m+1
1+k
t + o

(
1
t

)
, where k = dGt−1(j), a(k) = 1 + k and ζ(β,m) = m+1

m , we can

apply Equation (A.5) to obtain

P (k) =
(1 +m)Γ

(
3 + 1

m

)
Γ(k + 1)

(1 + 2m)Γ
(
3 + 1

m + k
) , k ≥ 0.

Using Equation (A.7) we get P (k) ∼ k−(2+
1
m) for large k.

Finally, we can give an upper bound on the deviations for finite t and show that the empirical
degree distribution is a consistent estimator of the expected degree distribution in the limit of large
t.

Proposition 9. Let the empirical in-degree distribution be given by {Pt(k)}k∈N. Then for any ǫ > 0
we have that

Pt(|Pt(k)− Et[Pt(k)]| ≥ ǫ) ≤ 2 exp

(

−
ǫ2t

8(m+ 1)2

)

, (A.8)

and Pt(k) converges in probability to Et[Pt(k)] for large t.

Proof of Proposition 9. Let the number of vertices with in-degree k in network Gt = 〈Nt, Et〉 be
denoted by Nt(k) =

∑

i∈Nt
1d−

Gt−1
(i)(k) = |Nt|Pt(k). Consider the filtration Fn = σ(G1, G2, . . . , Gn),

1 ≤ n ≤ t, which is the smallest σ-algebra generated by G1, G2, . . . , Gn, with the property that
Fn ⊆ Fn+1, and let F∞ be the σ-algebra generated by the infinite union of the Fn’s. For n =
1, . . . , s, we denote the conditional expectation of the number of vertices with in-degree k at time
s, conditional on the filtration Fn, by Zn = Et[Nt(k)|Fn]. First, from the fact that Nt(k) ≤ t, it
follows that Et[|Zn|] = Et[Zn] = Et[Nt(k)] ≤ t < ∞. Secondly, since Fn ⊆ Fn+1, we have that for all
n ≤ t− 1, Et[Zn+1|Fn] = Et[Et[Nt(k)|Fn+1]|Fn] = Et[Nt(k)|Fn] = Zn. We thus find that (Zn)

t
n=1 is

a martingale with respect to (Fn)
t
n=1.

Moreover, note that Z1 = Et[Nt(k)|F1] = Et[Nt(k)|G1], since F1 contains no more information
than the initial network G1. Zt is given by Zt = Et[Nt(k)|Ft] = Nt(k). Therefore, we have that
Zt − Z1 = Nt(k) − Et[Nt(k)|G1]. Next, we show that |Zn − Zn−1| ≤ 2(m + 1). To see this note
that Zn = Et[Nt(k)|Fn] =

∑

i∈Nt
Pt(dGt−1(i) = k|Fn) and similarly Zn−1 = Et[Nt(k)|Fn−1] =

∑

i∈Ns
Pt(dGt−1(i) = k|Fn−1), so that we can write

Zn − Zn−1 =
∑

i∈Nt

[
Pt(dGt−1(i) = k|Fn)− Pt(dGt−1(i) = k|Fn−1)

]
. (A.9)

In Fn−1 we know where the edges up to time n−1 have been attached to. In Fn we know in addition
where the edges in the n-th step are attached to. These edges affect the total degree of m+1 vertices,
namely the ones receiving a link and the one initiating the links.

For the conditional expectation given Fn, we need to take the expectation over all possible ways
of attaching the remaining edges in the periods n+ 1, . . . , s. Only the distribution of the degrees of
the vertices that have obtained or initiated an edge in the period n are affected by the knowledge
of Fn, compared to the knowledge of Fn−1. Neither the probability of the other vertices to receive
a link nor the probability to initiate a link is affected by the creation of the edges in the n-th step.
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Thus, also the law of their total degree is unaffected. There are at most m+ 1 vertices that receive
or initiate a link in period n. Therefore, Equation (A.9) shows that the distribution of at most
2(m + 1) vertices in Gt is different by conditioning on Fn compared to conditioning on Fn−1. This
implies that |Zn − Zn−1| ≤ 2(m + 1). We then can apply the Azuma-Hoeffding inequality (see e.g.
Grimmett and Stirzaker, 2001) to obtain for any η > 0

Pt(|Nt(k)− Et[Nt(k)|G1]| ≥ η) ≤ 2 exp

(

−
η2

8(m+ 1)2t

)

,

and by choosing η = ǫt Equation (A.8) follows.

With Proposition 9 we are now able to show almost sure convergence of the empirical degree distri-
bution to its expected value.

Proposition 10. For a fixed k ≥ 0, Pt(k)
a.s.
−−→ Et [Pt(k)], as t → ∞.

Proof of Proposition 10. The proof follows from the Borel-Cantelli lemma (see e.g. Grimmett and Stirzaker
2001) and Proposition 9 by observing that for any ǫ > 0

∞∑

t=1

Pt(|Pt(k)− Et[Pt(k)]| ≥ ǫ) ≤ 2
∞∑

t=1

e
− ǫ2t

8(m+1)2 =
1

e
ǫ2

8(m+1)2 − 1

< +∞.

A.3. Efficiency

Proof of Proposition 4. Part (i) of the proposition is a direct consequence of part (ii) of Propo-
sition 1.

Part (ii) of the proposition follows from the fact that networks generated under (Ht)
T
t=m+2 have

a finite degree variance while the degree variance of networks generated under (Gt)
T
t=m+2 diverge

with T , since the first has a geometric degree distribution while the latter has a power-law degree
distribution in the large T limit. More precisely, the degree variance under HT is given by

σ2
d = lim

T→∞

T∑

k=0

1

1 +m

(
m

m+ 1

)k

(k −m)2 = m(m+ 1) < +∞,

while the variance under GT is

σ2
d = lim

T→∞

T∑

k=0

(m+ 1)Γ
(
3 + 1

m

)
Γ(k + 1)

(1 + 2m)Γ
(
3 + 1

m + k
) (k −m)2 = lim

T→∞
O(T 1− 1

m ) = +∞,

if m > 1, while for m = 1 we get

σ2
d = lim

T→∞

(

4HT+1 −
4(1 + T )(5 + 3T )

6 + 5T + T 2

)

= +∞,

where HT is the Harmonic number, diverging as lnT for large T .
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A.4. Higher Order Statistics

The results of this section are derived using a continuum approximation in which both time and
degree are treated as continuous variables in R+ (see Dorogovtsev and Mendes, 2003, pp. 117). In
this continuum approach, the probability that a vertex s has in-degree d−Gt

(s) = k at time t is given

by δ(k − k̄(s, t)), where k̄(s, t) = Et[d
−
Gt
(s)] denotes the expected degree of vertex s at time t. The

degree distribution can then be obtained from

Pt(k) =
1

t

∫ t

0
δ(k − k̄(s, t))ds = −

1

t

(
∂k̄(s, t)

∂s

)−1
∣
∣
∣
∣
∣
s=s(k,t)

. (A.10)

In order to compare this approximation with our previous analysis, we will derive the degree distri-
butions in the case of a large and small observation radius. To ease the notation we will denote by
ks(t) the in-degree d−Gt

(s) of a vertex s at time t for the remainder of this section, and we will focus
only on the in-degree ks(t), since it uniquely determines the total degree dGt(s) = ks(t) + m, and
vice versa.

We first consider the expected change in the in-degree ks(t) of a vertex s receiving a link from
an entrant t when St = Pt−1 (large observation radius). In the continuum approximation, the
corresponding expectation in the time interval [t, t + ∆t) is given by Et[ks(t + ∆t) − ks(t)|Gt] ≈

m
1+βm

1+βks(t)
t ∆t for large t, where Equation (3.1) describes a transition rate, and ∆t = O (1/T ). The

evolution of the in-degree of vertex s at time t is governed by the following differential equation

dks(t)

dt
= lim

∆t↓0

Et[ks(t+∆t)− ks(t)|Gt]

∆t
=

m

1 + βm

1 + βks(t)

t
,

with the initial condition ks(s) = 0 for all s ≥ 0. The solution is given by

ks(t) =
1

β

((
t

s

) mβ
1+mβ

− 1

)

, (A.11)

From Equation (A.10) we then get

P β(k) =
1 + βm

m
(1 + βk)

−(2+ 1
βm

)
, (A.12)

with
∫∞
0 P β(k)dk = 1. This is asymptotically equivalent to the degree distribution we have obtained

in Equation (3.2).
Similarly, in the case of ns small enough (small observation radius), we have from Equation (3.6)

that Et[ks(t + ∆t) − ks(t)|Gt] ≈
m

1+m
1+ks(t)

t ∆t for large t. The time evolution of the in-degree of a
vertex s can then be written as

dks(t)

dt
=

m

m+ 1

ks(t) + 1

t
,

with the initial condition ks(s) = 0 for all s ≥ 0. The solution is given by

ks(t) =

(
t

s

) m
m+1

− 1, (A.13)
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From Equation (A.10) we then get

P (k) =
m+ 1

m
(1 + k)−(2+

1
m), (A.14)

with the property that
∫∞
0 P (k)dk = 1. Comparing this distribution with the one in Equation (3.7)

shows that they are both asymptotically equivalent. Since the continuum approximation delivers
only meaningful results in the large t limit, we will consider only the leading order terms in O(1t ) in
our derivations in the following sections.

A.4.1. Average Nearest Neighbor Degree Distribution

Proof of Proposition 5. Let R−
s (t) denote the sum of in-degrees of the in-neighbors of a vertex

s at time t, that is R−
s (t) =

∑

j∈N−

Gt
(s) kj(t). In the continuum approximation, with the attachment

kernel from Equation (3.1), we have up to leading orders in O
(
1
t

)
that

dR−
s (t)

dt
=

∑

j∈N−

Gt
(s)

m
1 + βkj(t)

(1 + βm)t
=

a

t
R−

s (t) +
a

βt
kj(t) =

a

t
R−

s (t) +
a

β2t

((
t

s

)a

− 1

)

,

where we have denoted by a = mβ
1+mβ . Wit the initial condition R−

s (s) = 0 we obtain

R−
s (t) =

1

β2

(

1 +

(

a ln

(
t

s

)

− 1

)(
t

s

)a)

, (A.15)

and the average nearest neighbor in-degree is given by k−nn(ks) =
R−

s (t)
ks

. From Equation (A.11) we

know that t
s = (1 + βks)

1
a , and we obtain

k−nn(k) =
1

β2k
(1 + (ln(1 + βk)− 1) (1 + βk)) .

Next, we turn to the analysis of the average nearest out-neighbor in-degree. Let us denote by R+
s (t)

the sum of the in-degrees of the out-neighbors of vertex s at time t, that is R+
s (t) =

∑

j∈N+
Gt

(s) kj(t).

Up to leading orders in O
(
1
t

)
we can write

dR+
s (t)

dt
=

∑

j∈N+
Gt

(s)

a

t

(
1

β
+ kj(t)

)

=
a

t

(
m

β
+R+

s (t)

)

.

The solution is given by

R+
s (t) = −

m

β
+ Cst

a, (A.16)

where the constant Cs is determined by the initial conditions. They are given by

R+
s+1 =

s∑

j=1

a

s

(
1

β
+ kj(s)

)

(kj(s) + 1) =
a

β2

(
β(1 +m(β − 1))− 1 + s2a−1ζ(s, 2a)

)
,
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where ζ(s, 2a) ≡
∑∞

j=0
1

(2a+j)s is the Hurwitz zeta function. Together with the solution Equation

(A.16) we then get

R+
s (t) =

1

β2

((

βm(1 + p(β − 1)) +
a

s
s2aH(s, 2a)

)( t

s+ 1

)a

−mβ

)

. (A.17)

The average nearest out-neighbor in-degree is then given by k+nn(k) =
R+

s

m .

Proof of Proposition 6. Let R−
s (t) denote the sum of in-degrees of the in-neighbors of a vertex

s at time t, that is R−
s (t) =

∑

j∈N−

Gt
(s) kj(t). In the continuum approximation, with the attachment

kernel from Equation (3.6), we have up to leading orders in O
(
1
t

)
that36

dR−
s (t)

dt
=

a

t

∑

j∈N−

Gt
(s)

(1 + kj(t)) =
a

t
ks(t) +

a

t
R−

s (t),

where we have denoted by a = m
1+m . In the continuum approximation we have that ks(t) =

(
t
s

)a
− 1

(see Equation (A.13)), so that we can write

dR−
s (t)

dt
=

a

t

((
t

s

)a

− 1 +
a

t
R−

s (t)

)

.

The solution is given by

R−
s (t) = Cst

a + 1 + a

(
t

s

)a

ln t,

where the constant Cs is determined by the initial conditions, given by R−
s (s) = 0. With this initial

conditions we get

R−
s (t) = 1−

(
t

s

)a

+ a

(
t

s

)a

ln

(
t

s

)

.

Further, using the fact that s(k, t) = t

(k+1)
1
a
we obtain

R−
s (t) = 1 + (k + 1) (ln(k + 1)− 1) .

It follows that

k−nn =
R−

s

k
=

1

k
(1 + (k + 1) (ln(k + 1)− 1)) .

Next, we turn to the average nearest out-neighbor in-degree. Let us denote by R+
s (t) the sum of

the in-degrees of the out-neighbors of vertex s at time t, that is R+
s (t) =

∑

j∈N+
Gt

(s) kj(t). In order

to compute the expected increase in the sum of the degrees of the out-neighbors of s we need to
consider two different cases. First, s is observed directly and enters the sample St together with all
the out-neighbors. The expected number of links created among the out-neighbors of s in this way

36We ignore cases in which two or more neighbors of s are found as the neighbors of directly observed vertices (other
than s), which happens with probability O

(

1
t2

)

.
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is given by

ns

t

m∑

k=1

k

(
m
k

)(|St|−m
m−k

)

(|St|
m

) =
m2

(m+ 1)t
,

where we have used the fact that |St| = ns(m+1) up to leading orders in O
(
1
t

)
. Second, we need to

consider the cases where the out-neighbors of s are found either directly or indirectly through other
vertices than s. The probability of this is given by m

(m+1)tkj(t) for each j in N+
Gt
(s) (discounting the

link from s) Taking these cases together and denoting by a = m
m+1 , we can write

dR+
s (t)

dt
=

ma

t
+

∑

j∈N+
Gt

(s)

a

t
kj(t) =

ma

t
+

a

t
R+

s (t),

with the solution
R+

s (t) = −m+ Cst
a.

Cs is determined by the initial condition R+
s (s), which is given by

R+
s (s) =

a

s

s∑

j=1

(1 + kj(s))
2 = as2a−1H(s, 2a),

where H(s, 2a) ≡
∑s

j=1 j
−2a is the generalized Harmonic number. Inserting the initial condition

delivers

R+
s (t) = m

((
t

s

)a

− 1

)

+ aH(s, 2a)sa−1ta.

Further, using s(k, t) = t

(k+1)
1
a
from Equation (A.13) gives

R+
s (k) =






mΓ(2 +m)2

Γ
(

1 +m+ m
m+1

)2 +
m

m+ 1
ζ

(
2m

m+ 1
, 2 +m

)




 t

m−1
m+1 (1 + k)

1
m .

With k+nn(k) =
R+

s (k)
m we then get Equation (5.4).

A.4.2. Clustering Degree Distribution

We denote by Ms(t) the number of links between neighbors of vertex s at time t in the closure Ḡt.
The clustering coefficient of vertex s can then be written as

Cs(t) =
2Ms(t)

(ks(t) +m)(ks(t) +m− 1)

In the following we derive the clustering coefficient for different observation radii. In the case of a
large observation radius we can give the following proof.

Proof of Proposition 7. Ms(t) can increase at time t only through the addition of an edge to
s and one of its neighbors. There are two possible cases to consider: (i) vertex s and one of its
out-neighbors u ∈ N+

Gt
(s) receive a link, or (ii) s and one of its in-neighbors u ∈ N−

Gt
(s) receive a

link. This is illustrated in Figure 8. The probability associated with case (i) up to leading orders in
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t

s

u ∈ N+
Gt
(s)

t

s

u ∈ N−
Gt
(s)

Figure 8: (Left panel) Vertex s and one of its out-neighbors u ∈ N+
Gt

(s) receive a link bei the entrant t. (Right panel)

Vertex s and one of its in-neighbors u ∈ N−

Gt
(s) receive a link.

O
(
1
t

)
is given by

m(1 + βks(t))

(1 + βm)t

∑

j∈N+
Gt

(s)

(m− 1)(1 + βkj(t))

(1 + βm)t
=

m(m− 1)(1 + βks(t))

(1 + βm)2t2
(
m+ βR+

s (t)
)
.

Similarly, the probability associated with case (ii) up to leading orders in O
(
1
t

)
is given by

m(1 + βks(t))

(1 + βm)t

∑

j∈N−

Gt
(s)

(m− 1)(1 + βkj(t))

(1 + βm)t
=

m(m− 1)(1 + βks(t))

(1 + βm)2t2
(
ks(t) + βR−

s (t)
)
.

With R−
s and R+

s given by Equations (5.1) and (5.2), respectively, we obtain

dMs(t)

dt
=

m(m− 1)(1 + βks(t))

(1 + βm)t2
(m+ ks(t) + β(R+

s +R−
s ))

=
a2

t2
m− 1

mβ3

(

(
β2m+ as2a−1H(s, 2a)

)
(
t

s

)a( t

s+ 1

)a

+

(
t

s

)2a

a ln

(
t

s

)a
)

. (A.18)

The initial condition Ms is determined by all connected pairs of vertices i, j which both obtain a link
from the entering vertex s at time s. Taking into account that all vertices with i ≤ m are connected
while the vertices i, j introduced later in the network are connected only if either i has formed a
link to j or j to i (depending on who has entered the network first, and noting that all vertices with
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t

s

u ∈ N+
Gt
(s)

t

u

s

∈ N−
Gt
(s)

N+
Gt
(u) ∋

t

v

us ∈ N+
Gt
(s),N+

Gt
(v)N+

Gt
(v) ∋

Figure 9: (Left panel) Vertex s and one of its out-neighbors u ∈ N+
Gt

(s) receive a link. (Middle) Vertex s and one of

its in-neighbors u ∈ N−

Gt
(s) receive a link. (Right panel) The entrant t observes a vertex v and forms a link to both

vertices s and u which are both out-neighbors of v.

indices 1 ≤ i ≤ m are initially connected), we can write the initial condition as follows37

Ms+1 =
m(m− 1)

2

s∑

j 6=i

1 + βki(s)

(1 + βm)s

1 + βkj(s)

(1 + βm)s
(Θ(m+ 1− i)Θ(m+ 1− j)

+Θ(i− j)Θ(j −m)m
1 + βkj(i)

(1 + βm)(i− 1)
+ Θ(j − i)Θ(i−m)m

1 + βki(j)

(1 + βm)(j − 1)

)

=
m(m− 1)s2a−2

(1 + βm)2





m∑

i=1

1

ia

m∑

j=i+1

1

ja
+

2m

1 + βm

s∑

i=m+1

1

i2a

∑

j=i+1

1

j − 1



 , (A.19)

where we have denoted by a = βm
1+βm . Combining the initial condition in Equation (A.19) with

Equation (A.18) yields Equation (5.5).

Next, we turn to the derivation of the clustering coefficient when the observation radius is small.

Proof of Proposition 8. For the increase of Ms(t) at time t we have to consider the following
cases: (i) vertex s and one of its out-neighbors u ∈ N+

Gt
(s) receive a link, or (ii) s and one of its

in-neighbors ∈ N−
Gt
(s) receive a link, and (iii) the entrant observes a vertex v and forms a link to

both vertices s and u which are both out-neighbors of v. This is illustrated in Figure 9. In case
(i) we consider that vertex s is observed directly. The probability of this to happen is given by ns

t .
Assuming that s has been observed directly, s and all the out-neighbors N+

Gt
(s) of s are in the sample

St. We can then partition the sample St in three subsets: {s}, N+
Gt
(s) and St\(N

+
Gt
(s) ∪ {s}), with

corresponding cardinalities |{s}| = 1 , |N+
Gt
(s)| = m and |St\(N

+
Gt
(s) ∪ {s})| = ns(m+ 1)− (m+ 1).

We need to take into account all cases where vertex s and at least one of the out-neighbors of s
receive a link. The expected number of triangles formed in this way can then be computed with a
trivariate hypergeometric distribution as follows

ns

t

m−1∑

k=1

k

(
1
1

)(
m
k

)(|St|−(m+1)
m−(k+1)

)

(|St|
m

) =
ns

t

m−1∑

k=1

k

(
m
k

)((ns−1)(m+1)
m−(k+1)

)

(
ns(m+1)

m

) =
m2(m− 1)

(m+ 1)(ns(m+ 1)− 1)t
.

37The Heaviside step function is defined as Θ(x) = 1 if x > 0 and Θ(x) = 0 if x ≤ 0.
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In case (ii) we consider that one of the in-neighbors u ∈ N−
Gt
(s) of s is observed directly by the

entrant, which happens with probability ns

t , and both u and s receive a link. The latter event follows
a bivariate hypergeometric distribution where two nodes are drawn from the set {s, u} and m − 2
are drawn from the remaining nodes in the set St\{s, u} with a total of m draws. Summing over all
ks(t) in-neighbors of s, delivers the total probability measure associated with case (ii) as given by

ks(t)
ns

t

(
2
2

)(|St|−2
m−2

)

(|St|
m

) =
ks(t)

t

m(m− 1)

(m+ 1)(ns(m+ 1)− 1)
.

Next, in (iii) we need to consider all cases where a node v is observed directly by the entrant and
the two out-neighbors s and u, which have a link between them, both receive a link. Similar to case
(ii) we can then partition the set St in the subset {s, u} and the set of remaining nodes St\{s, u}.
The probability of both s and u receiving a link by the entrant follows a bivariate hypergeometric
distribution as

(
2
2

)(|St|−2
m−2

)
/
(|St|
m

)
. The probability that node v is observed directly is ns

t . The number
of such triangles including node s is given by Ms(t) (in both Gt and its closure Ḡt). The expected
number of triangles being formed in this way is then given as follows

Ms(t)
ns

t

(
2
2

)(|St|−2
m−2

)

(|St|
m

) =
Ms(t)

t

m(m− 1)

(m+ 1)(ns(m+ 1)− 1)
.

Taking together the cases (i)-(iii), we can write in the continuum approximation for the dynamics of
Ms(t)

dMs(t)

dt
=

a(m− 1)

t(ns(m+ 1)− 1)
(a(m+ 1) + ks(t) +Ms(t))

=
a(m− 1)

t(ns(m+ 1)− 1)

(

a(m+ 1)− 1 +

(
t

s

)a

+Ms(t)

)

,

where we have denoted by a = m
m+1 and used the fact that ks(t) =

(
t
s

)a
− 1 in the continuum

approximation in Equation (A.13). Further denoting by b = a(m−1)
ns(m+1)−1 we can write this as

dMs(t)

dt
=

b

t

(

m− 1 +

(
t

s

)a

+Ms(t)

)

. (A.20)

The general solution of Equation (A.20) is given by

Ms(t) =
1

a− b

(

(b− a)(m− 1) + b

(
t

s

)a

+ (a(m− 1)− bm+ (a− b)Ms(s))

(
t

s

)b
)

. (A.21)

From Equation (A.21) we can obtain an upper and a lower bound for the number of triangles involving
node s, i.e. M s(t) ≤ Ms(t) ≤ M s(t), by noting that 0 ≤ Ms(s) ≤

(
m
2

)
. For the lower bound we set

Ms(s) = 0 and obtain

M s(t) =
a(m− 1)

((
t
s

)b
− 1
)

+ b
(

m− 1 +
(
t
s

)a
−m

(
t
s

)b
)

a− b
.
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Similarly, for the upper bound we set Ms(s) =
(
m
2

)
. Then we get

M s(t) =
2a(1−m) + (a (m(m+ 1)− 2)− bm(m+ 1))

(
t
s

)b
+ 2b

(
m− 1 +

(
t
s

)a)

2(a− b)
.

From Equation (A.13) we know that s = t(1+k)−
1
a . Inserting this intoM s(t) andM s(t) and using the

fact that C(k) = 2Mk

(k+m)(k+m−1) allows us to bound the clustering coefficient as C(k) ≤ C(k) ≤ C(k),
where

C(k) =
2bk + 2(a(m− 1)− bm)

(

(1 + k)
b
a − 1

)

(a− b)(k +m)(k +m− 1)
,

and

C(k) =
2a(m− 1) + 2b(k +m) + (a (m(m+ 1)− 2)− bm(1 +m)) (1 + k)

b
a

(a− b)(k +m)(k +m− 1)
.

For large k, these bounds decay as O
(
1
k

)
. Further, their difference is given by

C(k)− C(k) =
2b(1 + k)m− (1 + k)

b
am(b(m+ 1)− a(m− 1))

(a− b)(k +m− 1)(k +m)
,

with the property that limk→∞C(k)− C(k) = 0, showing that also C(k) = O
(
1
k

)
.

B. The LF-MCMC Algorithm

The purpose of the likelihood-free Markov chain Monte Carlo (LF-MCMC) algorithm is to estimate
the parameter vector Θ ≡ (β, p, ns,m)1×L, L = 4, of the model on the basis of the summary
statistics S ≡ (S1, . . . ,SK)T×K , K = 4, where S1 ≡ (P (k))T−1

k=0 , S2 ≡ (C(k))T−1
k=0 , S3 ≡ (knn(k))

T−1
k=0

and S4 ≡ (P (s))Ts=1. The algorithm generates a Markov chain which is a sequence of parameters
(Θs)

n
s=1 with a stationary distribution that approximates the distribution of each parameter value

θ ∈ Θ conditional on the observed statistic So.

Definition 2. Consider the statistics S and denote by So the observed statistics. Further, let
∆(So

i ,Si) be a measure of distance between the i-th realized statistic Si of the network formation
process (Gt)

T
t=1 with parameter vector Θ and the i-th observed statistic So

i for i = 1, . . . ,K. Then
we consider the Markov chain (Θs)

n
s=1 induced by the following algorithm:

(i) Given Θ, propose Θ′ according to the proposal density qs(Θ → Θ′).

(ii) Generate a network GT (Θ
′) according to Θ′ and calculate the summary statistics S′.

(iii) Calculate

h(Θ,Θ′) = min

(

1,
qs(Θ

′ → Θ)

qs(Θ → Θ′)

K∏

i=1

1{∆(S′
i,S

o
i )<ǫi,s}

)

, (B.1)

where ǫi,s ≥ 0 is a monotonic decreasing sequence of threshold values, ǫi,s ↓ ǫmin
i , and ∆ :

R
T
+ × R

T
+ → R+ is a distance metric in R

T
+.
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(iv) Accept Θ′ with probability h(Θ,Θ′), otherwise stay at Θ and go to (i).

Marjoram et al. (2003) have shown that the distribution generated by the above algorithm con-
verges to the true conditional distribution of the parameter vector Θ, given the observations τ o and
the threshold values. Their result is stated more formally in the following proposition.

Proposition 11. The stationary distribution f : RK → [0, 1]K of the Markov chain (Θs)
n
s=1 is given

by

f

(

Θ

∣
∣
∣
∣
∣

K∏

i=1

1{∆(Si,So
i )<ǫmin

i }

)

.

Proof of Proposition 11. Let us denote the transition probability of the Markov chain (Θs)
n
s=1

from state Θ to state Θ′ by ps(Θ → Θ′). Assume w.l.o.g. that for Θ 6= Θ′ and 1 ≤ s ≤ n it holds
that

qs(Θ
′ → Θ)

qs(Θ → Θ′)
≤ 1. (B.2)

Consider the distribution of the parameter vector Θ, conditional on the event {∆(So,S) ≤ ǫ} ≡
∏K

i=1 1{∆(Si,So
i )<ǫmin

i }, that is

f(Θ|∆(So,S) ≤ ǫ) =
P(∆(So,S) ≤ ǫ|Θ)

P(∆(So,S) ≤ ǫ)
.

We have that

f(Θ|∆(So,S) ≤ ǫ)ps(Θ → Θ′) =
P(∆(So,S) ≤ ǫ|Θ)

P(∆(So,S) ≤ ǫ)
P(∆(So,S′) ≤ ǫ|Θ′)qs(Θ → Θ′)

qs(Θ
′ → Θ)

qs(Θ → Θ′)

=
P(∆(So,S′) ≤ ǫ|Θ′)

P(∆(So,S) ≤ ǫ)
P(∆(So,S) ≤ ǫ|Θ)qs(Θ

′ → Θ)

= f(Θ′|∆(So,S′) ≤ ǫ)qs(Θ
′ → Θ)P(∆(So,S) ≤ ǫ|Θ)h(Θ′,Θ)

= f(Θ′|∆(So,S′) ≤ ǫ)ps(Θ
′ → Θ),

where we have used the fact that h(Θ′,Θ) = 1 if the inequality in (B.2) is satisfied. It follows that
f(Θ|∆(So,S) ≤ ǫ) satisfies a detailed balance condition and therefore is the stationary distribution
of the Markov chain.

The algorithm of Definition 2 is implemented as follows. First we need to choose the initial parameter
values.38 The network size T is already given by the data. I set β = 0 for all empirical networks as a
starting value. In this case, the empirical average degree is used as a restriction for the parameters
p and m through d̄ = mp when the network is directed (while d̄ = 2mp when it is undirected). I
compute the power-law exponent α of the tail of the empirical degree distribution for the network of
coinventors (cf. Clauset et al., 2009). For the directed model with heterogeneous linking opportunities
and β = 0 one can show that the distribution decays as k−α with α = 1 + 1+m

mp for large degrees k

38Alternatively, we could choose a uniform prior distribution similar to e.g. Ratmann et al. (2009). However, this
would greatly amplify the number of iterations needed to reach the stationary distribution (which is independent of
the initial conditions). For computational reasons I thus specify the initial parameters explicitly.
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in the case of β = 0. Hence, I can compute p and m from these two conditions. For the network of
coinventors I observe an empirical average degree of d̄ = 4.79 and α = 3.00, so that I obtain m = 8
and p = 0.56. In a similar way, I observe for the alliance network a power-law decay with parameter
α = 2.59 and an average degree of d̄ = 1.79. From these values I can compute m = 2 and p = 0.89.
Using the exponent of the power-law tail of the degree distribution together with the average degree
for the trade network yields conditions on p and m which cannot be satisfied for the model with
ns = 1. Moreover, the monotonic decaying behavior of the empirical average nearest neighbor degree
points at higher values of ns than one. I thus set the starting value of ns for the trade network to 50.
I use the same initial values for both, the directed and the undirected network formation algorithms.

The proposal distribution qs(Θ → Θ′) is a truncated normal distributionΘ′ ∼ N (Θ,Σs)1[Θmin,Θmax](Θ)

for each parameter θ ∈ Θ with a diagonal variance-covariance matrixΣs = diag{σ2
1,s, . . . , σ

2
L,s}. More

precisely, for each continuous parameter θi ∈ R+ (i.e. p, β) I choose a proposal distribution given by

qs(θi → θ′i) =
φ(θ′|θ, σ2

i,s)

Φ(θmax
i |θi, σ2

i,s)− Φ(θmin
i |θi, σ2

i,n)
1[θmin

i ,θmax
i ](θ

′
i),

where φ(θ|µ, σ2) and Φ(θ|µ, σ2) are the pdf and cdf, respectively, of a normally distributed random
variable with mean µ and variance σ2. For the discrete parameters θi ∈ Z+ (i.e. ns, while m is set
through the condition d̄ = mp when the network is directed while d̄ = 2pm when it is undirected), I
choose a proposal distribution given by

qs(θi → θ′i) =
Φ(θ′i + 1|θ, σ2

i,s)− Φ(θ′i|θ, σ
2
i,s)

Φ(θmax
i |θi, σ2

i,s)− Φ(θmin
i |θi, σ2

i,s)
1[θmin

i ,θmax
i ](θ

′
i).

During the “burn-in” phase (Chib, 2001), I consider a monotonic decreasing sequence of thresholds
given by ǫi,s ≥ ǫi,s+1 ≥ . . . ≥ ǫmin

i with ǫi,s+1 = max
{
(1− γ)ǫi,s, ǫ

min
i

}
and γ = 0.05. Simi-

larly, I assume a decreasing sequence of variances σ2
i,s ≥ σ2

i,s+1 ≥ . . . ≥ (σmin
i )2 with σ2

i,s+1 =

max
{

(1− γ)σ2
i,s, (σ

min
i )2

}

for the proposal distribution qs(θi → θ′i). As a measure of distance

I choose the Euclidean distance ∆(Si,S
o
i ) =

√
∑T

j=1

(

Si,j − So
i,j

)2
. The parameter ranges are

ns ∈ {1, . . . , 100}, p ∈ [0, 1] and β ∈ [0, 50]. The parameters ǫmin
i are choose sufficiently small

after long experimentation with different starting values and burn-in periods.
The estimation results can be seen in Table 2. The table shows the average over the simulated

parameter values, the standard error over these values, the corrected standard error computed over
batches of length 10 (Chib, 2001), the integrated autocorrelation time ιθ (Sokal, 1996) and pn(θ) is
Geweke’s spectral density diagnostic indicating the convergence of the chain (Brooks and Roberts,
1998, Geweke, 1992).
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Table 2: Estimation of the model parameters θ ∈ Θ = (m,β, ns, p) for the network of inventors, the network of
firms and the trade network. We have considered two model specifications: the case of entering agents observing
only the out-neighbors of selected incumbents (Model A), as in Definition 1, and the case of entrants observing
both, the out- and in-neighbors of the selected incumbents (Model B), as discussed in Section 6.1.a The table shows
simulated averages of the parameters and their standard deviations,b after the chain has converged.c

Model A Model B

µθ σ̄θ σθ ιθ pn(θ) µθ σ̄θ σθ ιθ pn(θ)

Inv. Netw.
T = 27495
ns 1 0 0 0 1 1.00 0.10 0.01 29.65 0.89
p 0.60 0.05 0.00 33.66 0.99 0.58 0.08 0.00 8.06 0.95
m 8.44 0.76 0.068 30.52 0.98 4.45 0.67 0.034 6.87 0.92
β 0.75 0.52 0.09 199.59 0.45 1.46 1.28 0.23 137.33 0.56
Firm Netw.
T = 7374
ns 32.63 1.94 0.40 649.15 0.99 32.08 5.84 1.30 647.16 0.98
p 0.69 0.27 0.05 407.08 0.42 0.82 0.11 0.02 113.94 0.71
m 3.80 3.09 0.54 190.96 0.68 1.04 0.20 0.04 171.44 0.58
β 0.01 0.00 0.00 87.04 0.46 0.01 0.01 0.00 66.65 0.80
Trade Netw.
T = 196
ns 48.46 2.21 0.44 323.43 0.95 51.79 3.39 0.65 874.22 0.95
p 0.34 0.08 0.01 132.11 0.77 0.58 0.19 0.02 212.69 0.92
m 130.73 25.56 2.67 124.94 0.80 41.98 18.07 2.12 232.91 0.92
β 0.57 0.47 0.09 471.46 0.79 1.69 1.25 0.27 927.42 0.92

a The number of iterations of the MC for each model and each data set considered is n = 10000.
ιθ is the integrated autocorrelation time, which should be much smaller than the number n
of iterations (Sokal, 1996).

b σ̄θ is the simulation standard deviation of the respective parameter, while σθ is the standard
deviation calculated from batch means (of length 10) (Chib, 2001).

c pn(θ) is the p-value of Geweke’s spectral density diagnostic (converging in distribution to
a standard normal random variable as n → ∞) indicating the convergence of the chain
(Brooks and Roberts, 1998, Geweke, 1992).
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C. Undirected Links

In the following network formation process we allow entering agents to observe not only the out-
neighbors of incumbent agents but also their in-neighbors. The resulting network can then be viewed
as an undirected graph. The precise definition of the network growth process is given below:

Definition 3. For a fixed T ∈ N ∪ {∞} we define a network formation process (Gt)t∈[T ] as follows.
Given the initial graph G1 = . . . = Gm+1 = Km+1, for all t > m + 1 the graph Gt is obtained from
Gt−1 by applying the following steps:

Growth: Given P1 and A1, for all t ≥ 2 the agent sets in period t are given by Pt = Pt−1 ∪{t} and
At = At−1 \ {t}, respectively.

Network sampling: Agent t observes a sample St ⊆ Pt−1. The sample St is constructed by selecting
without replacement ns ≥ 1 agents i ∈ Pt−1 uniformly at random and adding i as well as the
neighbors NGt−1(i) of i to St.

Link creation: Given the sample St, agent t creates m ≥ 1 links to agents in St without replacement.
For each link, agent t chooses the j ∈ St that maximizes ft(Gt−1, j) + εtj.

C.1. Large Observation Radius

We first consider the case of St = Pt−1. Let kj(t) denote the degree of agent j at time t. Considering
only the leading terms in O

(
1
t

)
we can write the probability that an agent j ∈ Pt−1 to receive a link

by the entrant t as follows

Kβ
t (j|Gt−1) ≈

m

1 + 2βm

1 + βdGt−1(j)

t
. (C.1)

Using the recursive Equation (A.3) with the attachment kernel in Equation (C.1) yields the following
proposition.

Proposition 12. Consider the sequence of degree distributions {Pt}t∈N generated by an indefinite

iteration of the network formation process (Gβ
t )t∈N introduced in Definition 3 with ns large enough

such that St = Pt−1 for every t > m + 1. Then, for all k ≥ 0 we have in the limit β → 0 that
Pt(k) → P β(k), where

P β(k) =
(1 + 2mβ)Γ

(

k + 1
β

)

Γ
(

3 + 1
β + 1

mβ

)

(1 +m+ 2mβ)Γ
(

1
β

)

Γ
(

k + 3 + 1
β + 1

mβ

) . (C.2)

Proof of Proposition 12. Equation (C.2) follows directly from the recursion in Equation (A.3)
and the attachment kernel in Equation (C.1).

From Equation (C.2) we find that the large k behavior of the degree distribution follows a power-law

as P β(k) ∼ k
−
(

3+ 1
mβ

)

. In the continuum approximation we can write for the dynamics of ks(t) using
Equation (C.1) as

dks(t)

dt
=

m

1 + 2βm

1 + βkj(t)

t
,
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with the initial condition ks(s) = m. The solution is given by

ks(t) =
1

β

(

(1 + βm)

(
t

s

) βm
1+2βm

− 1

)

, (C.3)

and we obtain for the degree distribution in the continuum approximation

P β(k) =
1 + 2βm

m
(1 + βm)

2+ 1
βm (1 + βk)

−
(

3+ 1
mβ

)

, (C.4)

with
∫∞
0 P β(k)dk = 1. This yields the same asymptotic behavior of the degree distribution as in

Equation (C.2).
Next, we turn to the average nearest neighbor connectivity.

Proposition 13. Consider the network formation process (Gβ
t )t∈R+ of Definition 3 with St = Pt−1

for all t > m + 1 in the continuum approximation and assume that Equation (C.3) holds. Then in
the limit β → 0 the nearest-neighbor degree distribution is given by

knn(k) =
1

β2k

(

1 +
1 + βk

1 + βm

(

β2Rs(s)− 1 + (1 + βm)2 ln

(
1 + βk

1 + βm

)))

, (C.5)

where a = m
1+2βm , the initial condition

Rs+1(s+ 1) =
a(1− β)(1− 2mβ)

β
+

a(1 + βm)2

β
s2βa−1

s∑

j=1

1

j2βa
,

and s = t
(
1+βm
1+βk

)2+ 1
mβ

.

Asymptotically, only the last term in Equation (C.5) is relevant and we obtain

knn(k) ∼
1 + βm

β
ln

(
1 + βk

1 + βm

)

, (C.6)

as k → ∞.

Proof of Proposition 13. Denote by Rs(t) =
∑

j∈NGt
(s) kj(t) the sum of the degrees of the

neighbors of vertex s at time t. We can write

dRs(t)

dt
=

m2

1 + 2βm

1 + βks(t)

t
+

∑

j∈NGt
(s)

m

1 + 2βm

1 + βkj(t)

t

=
a

t
(m+ (1 + βm)ks(t) + βRs(t)) =

a

βt

(

(1 + βm)2
(
t

s

)βa

+ β2Rs(t)

)

,

where we have denoted by a = m
1+2βm and using the fact that1 + βks(t) = (1 + βm)

(
t
s

)βa
from

Equation (C.3) under the continuum approximation. The initial condition is given by

Rs(s) =

s∑

j=1

a

s
(1 + βkj(s))(1 + kj(s)) =

a(1− β)(1− 2mβ)

β
+

a

s

s∑

j=1

(1 + βkj(s))
2.
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Using the fact that

1 + βkj(s) = (1 + βm)

(
s

j

)βa

, (C.7)

we obtain

Rs(s) =
a(1− β)(1− 2mβ)

β
+

a(1 + βm)2

β
s2βa−1H(s, 2βa).

We then get

Rs(t) =
1

β2

(

1 +

(

aβ(1 + βm)2
(
1

s
H(s, 2aβ) + (1 +mβ) ln

(
t

s

))

− 1 + β2b

)(
t

s

)aβ
)

. (C.8)

Using once again Equation (C.7) and inserting into knn = Rs

k delivers Equation (C.5).

Moreover, we can compute the clustering degree distribution as provided in the next proposition.

Proposition 14. Consider the network formation process (Gβ
t )t∈R+ of Definition 3 with St = Pt−1

for all t > m + 1 in the continuum approximation and assume that Equation (C.3) holds. Then in
the limit β → 0 the clustering degree distribution is given by

C(k) =
2

k(k − 1)

(

Ms +
b

s(1− 2aβ)

(

d+ aβs2aβ−1

(

1−

(
t

s

)2aβ−1
)

H2βa
s

−

(
t

s

)2aβ−1
(

d+ ln

(
t

s

)aβ
)))

, (C.9)

where s = t
(
1+mβ
1+kβ

)2+ 1
mβ

, a = a
1+2βm , b = m(m−1)(1+βm)2

β(1+2βm) , c = βm+aβ(1−β)(1−2mβ)
(1+βm)2

, d = c+aβ(1−2c)
1−2aβ ,

the Harmonic number is defined as Ha
s ≡

∑s
j=1 j

−a and the initial condition is given by

Ms+1(s+ 1) =
m(m− 1)s2a−2

(1 + 2βm)2





m∑

i=1

1

ia

m∑

j=i+1

1

ja
+

2m

1 + 2βm

s∑

i=m+1

1

i2a

s−1∑

j=i

1

j



 .

The large k behavior of the clustering coefficient is dominated by the second term in Equation
(C.9), yielding

C(k) ∼
2bd

k(k − 1)s(1− 2aβ)
=

1

t

2bd

(1− 2aβ)(1 +mβ)
2+ 1

mβ

(1 + βk)
2+ 1

mβ

k(k − 1)
= O

(
1

t
k

1
mβ

)

, k → ∞.

(C.10)

Proof of Proposition 14. Let Ms(t) denote the number of triangles containing s at time t. We
have that

dMs(t)

dt
=

m

1 + 2βm

1 + βks(t)

t

∑

j∈NGt
(s)

m− 1

1 + 2βm

1 + βkj(t)

t
=

m(m− 1)(1 + βks(t))

(1 + 2βm)2t2
(ks(t) + βRs(t)).
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With Rs(t) from Equation (C.8) and Equation (C.7) we obtain

dMs(t)

dt
=

b

t2

(
t

s

)2βa
(

c+ ln

(
t

s

)βa

+ aβ(s)2βa−1H2βa
s

)

,

where a = a
1+2βm , b = m(m−1)(1+βm)2

β(1+2βm) , c = βm+aβ(1−β)(1−2mβ)
(1+βm)2

and the Harmonic number is defined

as Ha
s ≡

∑s
j=1 j

−a. The solution is given by

Ms(t) = Ms(s) +
b

s(1− 2aβ)

(

d+ aβs2aβ−1

(

1−

(
t

s

)2aβ−1
)

H2βa
s −

(
t

s

)2aβ−1
(

d+ ln

(
t

s

)aβ
))

,

where d = c+aβ(1−2c)
1−2aβ . Similar to the derivation of Equation (A.19), the initial condition is given by

Ms+1(s+ 1) =
m(m− 1)s2a−2

(1 + 2βm)2





m∑

i=1

1

ia

m∑

j=i+1

1

ja
+

2m

1 + 2βm

s∑

i=m+1

1

i2a

s∑

j=i+1

1

j − 1



 .

Using Equation (C.7) we then arrive at the expression in Equation (C.9).

C.2. Small Observation Radius

Next, we consider the case of a small observation radius ns. The probability that agent j receives a
link from the entrant at time t, conditional on the sample St (and the current network Gt−1) when
β = 0 is given by

Kβ
t (j|St, Gt−1) =

m

|St|
1St(j).

In the following, we assume that St ≈ ns(d̄ + 1), where the average degree is given by d̄ = 2m, so
that St ≈ ns(2m+ 1). Note that this assumption is much stronger than the approximation we have
made in Equation (3.5). The probability that an agent j receives a link from t is then given by

Kβ
t (j|Gt−1) =

m

|St|

ns(1 + dGt−1(j))

t
+O

(
1

t2

)

≈
m

ns(2m+ 1)

ns(1 + dGt−1(j))

t
+O

(
1

t2

)

≈
m

2m+ 1

1 + dGt−1(j))

t
. (C.11)

An analysis following the recursive Equation (A.3) with the attachment kernel in Equation (C.11)
yields the following proposition.

Proposition 15. Consider the sequence of degree distributions {Pt}t∈N generated by an indefinite

iteration of the network formation process (Gβ
t )t∈N of Definition 3 with β = 0. If ns > 1 or m > 1,

further assume that Equation (C.11) holds. Then, for all, k ≥ 0 we have Pt(k) → P (k), where

P (k) =
(1 + 2m)Γ

(
3 + 1

m

)

mΓ
(
3 + k + 1

m

) . (C.12)

Proof of Proposition 15. Equation (C.12) follows directly from the recursion in Equation (A.3)
and Equation (C.11).
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From Equation (C.12) we find that the degree distribution follows a power-law as P (k) ∼ k−(3+
1
m)

for large k. For the dynamics of ks(t) in the continuum approximation we get with Equation (C.11)
the following differential equation

dks(t)

dt
=

m

2m+ 1

ks(t) + 1

t

with the solution

ks(t) = (m+ 1)

(
t

s

) m
2m+1

− 1 (C.13)

The degree distribution in the continuum approximation is then given by39

P (k) =
2m+ 1

m
(m+ 1)2+

1
m (1 + k)−(3+

1
m), (C.14)

satisfying the normalization condition
∫∞
0 P (k)dk = 1.

Next we consider the average nearest neighbor degree.

Proposition 16. Consider the network formation process (Gβ
t )t∈R+ of Definition 3 in the continuum

approximation with ns small enough and assume that Equation (C.13) holds. If β = 0 then the
nearest-neighbor degree distribution is given by

knn(k) =
1

k

((
t

s+ 1

)a
(
a(m+ 1)2s2a−1H2a

s − 1
)
+ (m+ 1)

(
t

s

)a

ln

(
t

s+ 1

)a)

, (C.15)

where a = m
2m+1 , s = t

(
k+1
m+1

)− 1
a
and the Harmonic number is defined as H2a

s ≡
∑s

j=1
1
j2a

.

Proof of Proposition 16. Let Rs(t) =
∑

j∈NGt
(s) kj(t) be the sum of the degrees of the neighbors

of vertex s at time t. Denoting by a = m
1+2m , we have up to leading orders in O

(
1
t

)
that40

dRs(t)

dt
=

ns

t

∑

j∈NGt
(s)

m

|St|
kj(t) +

ns

t

m∑

j=1

j

(
ks(t)
j

)(|St|−ks(t)
m−j

)

(|St|
m

)

=
a

t
(ks(t) +Rs(t)) =

a

t

(

(m+ 1)

(
t

s

)a

− 1 +Rs(t)

)

,

where we have assumed that |St| ≈ ns(2m+ 1) and used the relation s = t
(

k+1
m+1

)− 1
a
. The solution

is given by

Rs(t) = 1 +

(
t

s

)a(

Rs(s)− 1 + (m+ 1) ln

(
t

s

)a)

,

39Note that the approximation for the degree distribution in Equation (C.14) has also been obtained in Wang et al.
(2009).

40We ignore cases in which two or more neighbors of s are found as the neighbors of directly observed vertices (other
than s), which happens with probability O

(

1
t2

)

.
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and the initial condition is given by

Rs+1(s+ 1) =
a

s

s∑

j=1

(1 + kj(s))
2 = a(m+ 1)2s2a−1H(s, 2a).

Using this equation to solve for Cs delivers Equation (C.15).

Finally, we can compute the clustering coefficient as given in the following proposition.

Proposition 17. Consider the network formation process (Gβ
t )t∈R+ of Definition 3 in the continuum

approximation with ns small enough and assume that Equation (C.13) holds. Let a = m
2m+1 and

b = 2a(m−1)
ns(2m+1)−1 with a > b > 0. If β = 0 then the average clustering coefficient of an agent with

degree k is bounded by C(k) ≤ C(k) ≤ C(k), where

C(k) =
2

(a− b)k(k − 1)

(

a− (a+mb)

(
1 + k

1 +m

) b
a

+ bk

)

, (C.16)

and

C(k) =
2

(a− b)k(k − 1)

(

a+

((
m

2

)

(a− b)− (a+mb)

)(
1 + k

1 +m

) b
a

+ bk

)

, (C.17)

and the property that C(k) = O
(
1
k

)
.

Proof of Proposition 17. We need to consider the cases we have encountered already in the
proof of Proposition 8 for a vertex s to form an additional triangle by an entrant t (see Figure 9).
The expected number of triangles associated with case (i) is given by

ns

t

m−1∑

j=1

j

(
ks(t)
j

)(|St|−ks(t)−1
m−(j+1)

)

(|St|
m

) =
ns

t

m(m− 1)ks(t)

(1 + 2m)ns(ns(1 + 2m)− 1)
,

where we have assumed that |St| = ns(2m+ 1). Similarly, for case (ii) we get

ks(t)
ns

t

(|St|−2
m−2

)

(|St|
m

) =
ks(t)ns

t

m(m− 1)

|St|(|St| − 1)
=

ks(t)

t

m(m− 1)

(2m+ 1)(ns(2m+ 1)− 1)
,

and for case (iii) we obtain

2Ms(t)
ns

t

(|St|−2
m−2

)

(|St|
m

) =
2Ms(t)ns

t

m(m− 1)

|St|(|St| − 1)
=

2Ms(t)

t

m(m− 1)

(2m+ 1)(ns(2m+ 1)− 1)
,

Denoting by a = m
2m+1 and b = 2a(m−1)

ns(2m+1)−1 we can add cases (i), (ii) and (iii) to get

dMs(t)

dt
=

2a(m− 1)

t(ns(2m+ 1)− 1)
(ks(t) +Ms(t)) =

b

t

((

(m+ 1)

(
t

s

)a

− 1 +Ms(t)

))

.
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Figure 10: (Top row) Comparison of simulation results with the theoretical predictions for T = 105, St = Pt−1 and
m = 4 with β = 0.1 under the linear approximation to the attachment kernel. (Bottom row) Comparison of simulation
results for T = 105 and ns = m = 4 (β = 0) with the theoretical predictions. Comparing the results of global and local
information, we find that they differ mainly in the clustering degree distribution.

Using as a lower bound for the initial condition Ms(s) ≥ 0 and an upper bound Ms(s) ≤
(
m
2

)
as well

as s =
(

1+k
1+m

)−1/a
t, we obtain the corresponding bounds for the clustering coefficient in Equations

(C.16) and (C.17). Both bounds decay as 2b
a−b

1
k for large k and their difference vanishes for large k,

implying that also C(k) = O
(
1
k

)
.
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D. Heterogeneous Linking Opportunities

In this section we assume that not all agents become active during the network formation process.
More precisely, we assume that only a fraction p ∈ (0, 1) of the population of agents forms links,
while the remaining agents stay passive throughout the whole evolution of the network. We assume
that initially, agents in [T ] = {1, 2 . . . , T} are randomly assigned to sets P1 with probability 1 − p
and to A1 with probability p, such that |A1| = ⌊pT ⌋ and |P1| = ⌈(1 − p)T ⌉. The agents in [m] are
all connected to each other and form a complete graph Km. At time t ≤ m+ 1 these agents are all
in the set Pt. The network evolution process is then defined as follows.

Definition 4. For a fixed T ∈ N ∪ {∞} we define a network formation process (Gt)t∈[T ] as follows.
Given the initial graph G1 = . . . = Gm+1 = Km+1, for all t ∈ [T ]\{1, . . . ,m + 1} the graph Gt is
obtained from Gt−1 by applying the following steps:

Growth: Given P1 and A1, for all t > m, if agent t ∈ At−1 then the agent sets in period t are given
by Pt = Pt−1∪{t} and At = At−1 \{t}, respectively. Otherwise, set Pt = Pt−1 and At = At−1.

Network sampling: If t ∈ At−1 then t observes a sample St ⊆ Pt−1. The sample St is constructed
by selecting ns ≥ 1 agents i ∈ Pt−1 uniformly at random without replacement and adding i as
well as the out-neighbors N+

Gt−1
(i) of i to St.

Link creation: If t ∈ At−1, given the sample St, agent t creates Xm ≥ 1, E(Xm) = m links to
agents in St without replacement. For each link, agent t chooses the j ∈ St that maximizes
ft(Gt−1, j) + εtj.

The number of linksXm to be created by an entrant is a discrete random variable with expectation
E(Xm) = m. The results and approximations we obtain in this section do not depend on the specific
distribution we choose for Xm. We illustrate this by comparing our theoretical approximations
with simulations for a uniform distribution Xm ∼ U{1, . . . , 2m − 1} and a Poisson distribution
Xm ∼ Pois(m).

D.1. Large Observation Radius

We first consider the case of a large observation radius such that St = Pt−1 for all t > m+1. Similar
to our discussion in Section 3.2, the probability that an agent j ∈ Pt−1 with degree dGt−1(j) receives
a link by the entrant at time t up to leading orders in O

(
1
t

)
is given by

Kβ
t (j|Gt−1) ≈

pm

1 + βpm

1 + βdGt−1(j)

t
. (D.1)

Following the recursive Equation (A.3) with the attachment kernel in Equation (D.1) yields the
following proposition.

Proposition 18. Consider the sequence of degree distributions {Pt}t∈N generated by an indefinite

iteration of the network formation process (Gβ
t )t∈N introduced in Definition 4 with ns large enough

such that St = Pt−1 for every t > m + 1. Then, for all k ≥ m we have in the limit β → 0 that
P β
t (k) → P β(k) almost surely, where

P β(k) =
1 + βmp

1 +mp(1 + β)

Γ
(

1
β + k

)

Γ
(

2 + 1+mp
βmp

)

Γ
(

1
β

)

Γ
(

2 + 1+mp
βmp + k

) . (D.2)
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Proof of Proposition 18. Equation (D.2) follows directly from the recursion in Equation (A.3)
and the attachment kernel in Equation (D.1).

From the attachment kernel in Equation (D.1) we can write for the dynamics of the in-degree ks(t)
of vertex s at time t in the continuum approximation

dks(t)

dt
=

pm

1 + βpm

1 + βkj(t)

t
,

with the initial condition ks(s) = 0. The solution is given by

ks(t) =
1

β

((
t

s

) βpm
1+βpm

− 1

)

, (D.3)

and we obtain for the degree distribution in the continuum approximation

P β(k) =
1 + βmp

mp
(1 + βk)

−
(

2+ 1
βmp

)

, (D.4)

with
∫∞
0 P β(k)dk = 1. For p = 1 we recover the distribution in Equation (A.12). The degree

distribution from Equations (D.2) and (D.4) can be seen in Figure 11.
Next we consider the average nearest neighbor degrees. We can state the following proposition.

Proposition 19. Consider the network formation process (Gβ
t )t∈R+ of Definition 4 with St = Pt−1

for all t > m + 1 in the continuum approximation and assume that Equation (D.3) holds. Then in
the limit β → 0 the nearest-neighbor degree distribution is given by

k−
nn
(k) =

1

β2k
(1 + (1 + βk)(ln(1 + βk)− 1)) , (D.5)

and the average nearest neighbor out-degree is given by

k+
nn
(k) =

1

β2m

((

βm(1 + p(β − 1)) +
a

s
s2aζ(s, 2a)

)( t

s+ 1

)a

−mβ

)

, (D.6)

where a = βmp
1+βmp , s = t(1 + βk)−

1
a .

Observe that Equation (D.5) is independent of p and identical to Equation (5.1) from Proposition
5. From Proposition 19 we find that for large k,f the average nearest in-neighbor connectivity grows
logarithmically with k while the average nearest out-neighbor connectivity becomes independent of

k and grows with the network sizes as t
βmp

1+βmp .

Proof of Proposition 19. Let R−
s (t) =

∑

j∈N−

Gt
(s) kj(t). Up to leading orders in O

(
1
t

)
we then

have that

dR−
s (t)

dt
=

∑

j∈N−

Gt
(s)

pm

1 + βpm

1 + βkj(t)

t
=

a

t

(
1

β
kj(t) +R−

s (t)

)

,
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where we have denoted by a = βmp
1+βmp . The initial condition is given by R−

s = 0. The solution is

R−
s (t) =

1

β2

(

1 +

(
t

s

)a(

a ln

(
t

s

)

− 1

))

.

Using the fact that t
s = (1 + βk)

1
a from Equation (D.3), we obtain

R−
s (t) =

1

β2
(1 + (1 + βk)(−1 + ln(1 + βk))) .

With knn(k) =
R−

s

k , the expression in Equation (D.5) follows.
Next we turn to the average nearest out-neighbor degree. Consider a vertex s which has received

a linking opportunity upon entry. Let R+
s (t) =

∑

j∈N+
Gt

(s) kj(t). Then up to leading orders in O
(
1
t

)

we obtain

dR+
s (t)

dt
=

∑

j∈N+
Gt

(s)

a

t

(
1

β
+ kj(t)

)

=
a

t

(
m

β
+R+

s (t)

)

,

where a = βpm
1+βpm . The solution is given by

R+
s (t) = −

m

β
+ taCs.

The constant Cs is determined by the initial condition

R+
s+1 =

s∑

j=1

a

s

(
1

β
+ kj(t)

)

(kj(t) + 1) =
a

β2

(
β − 1 +mpβ(β − 1) + s2a−1H(s, 2a)

)
.

We then obtain

R+
s (t) =

1

β2

((

βm(1 + p(β − 1)) +
a

s
s2aH(s, 2a)

)( t

s+ 1

)a

−mβ

)

,

with s = t(1 + βk)−
1
a from Equation (D.3) and k+nn = R+

s (k)
m .

Moreover, we can derive the clustering degree distribution.

Proposition 20. Consider the network formation process (Gβ
t )t∈R+ of Definition 4 with St = Pt−1

for all t > m + 1 in the continuum approximation and assume that Equation (D.3) holds. Then in
the limit β → 0 the clustering degree distribution is given by

C(k) =
2

(k + pm)(k + pm− 1)

a(m− 1)

mpβ3b2s

(

sb2
mpβ3

a(m− 1)
Ms +

(

(1 + βk)b − 1
)

×

(

b

(
s

s+ 1

)a
(
c+ as2a−1ζ(s, 2a)

)
− 1

)

+ b(1 + βk)b ln (1 + βk)

)

, (D.7)
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where a = βmp
1+βmp , b = 2− 1

a , c = βm(1 + p(β − 1)), the initial condition is given by

Ms+1 =
mp(m− 1)s2a−2

(1 + βpm)2





m∑

i=1

1

ia

m∑

j=i+1

1

ja
+

2mp

1 + βpm

s∑

i=m+1

1

i2a

s−1∑

j=i

1

j



 ,

and s = t(1 + βk)−
1
a .

For large k (and small s, respectively) the first term in the initial condition Ms dominates, and
the behavior of the clustering coefficient is given by

C(k) ∼
2t−2(1−a)(1 + kβ)2(

1
a
−1)

(k + pm)(k + pm− 1)

mp(m− 1)

(1 + βpm)2

m∑

i=1

i−a
m∑

j=i+1

j−a. (D.8)

We see that this expression grows with k as a power-law with exponent 2
(
1
a − 2

)
= −2 + 2

mpβ .
41

Moreover, we find that the clustering coefficient is decreasing with the network size as t−2(1−a) =

t
− 2

1+mpβ .

Proof of Proposition 20. We need to consider the same cases as in the proof of Proposition 7.
The probability associated with case (i) in Figure 8 is given by

pm(1 + βks(t))

(1 + βpm)t

∑

j∈N+
Gt

(s)

(m− 1)(1 + βkj(t))

(1 + βpm)t
=

pm(m− 1)(1 + βks(t))

(1 + βpm)2t2
(m+ βR+

s ).

Similarly, for the probability of case (ii) in Figure 8 we obtain

pm(1 + βks(t))

(1 + βmp)t

∑

j∈N−

Gt
(s)

(m− 1)(1 + βkj(t))

(1 + βpm)t
=

pm(m− 1)(1 + βks(t))

(1 + βpm)2t2
(ks(t) + βR−

s )

With R+
s and R−

s given by Equations (D.5) and (D.5), respectively, we obtain

dMs(t)

dt
=

pm(m− 1)(1 + βks(t))

(1 + βpm)t2
(m+ ks(t) + β(R+

s +R−
s ))

=
a2

t2
m− 1

pmβ3

(

(
c+ as2a−1H(s, 2a)

)
(
t

s

)a( t

s+ 1

)a

+

(
t

s

)2a

a ln

(
t

s

)a
)

,

41We need only consider values of k such that C(k) does not exceed its upper bound given by one.
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Figure 11: Comparison of simulation results with theoretical prediction of the link formation process in Definition 4
under global information with p = 0.5, m = 4, β = 0.1 and T = 105. We show simulations for a uniform distribution
Xm ∼ U{1, 2m− 1} and a Poisson distribution Xm ∼ Pois(m) with expectation E(Xm) = m.

where we have denoted by c = βm(1 + p(β − 1)). The initial condition is given by

Ms+1 = p
m(m− 1)

2

s∑

j 6=i

1 + βki(s)

(1 + βpm)s

1 + βkj(s)

(1 + βpm)s
(Θ(m+ 1− i)Θ(m+ 1− j)

+Θ(i− j)Θ(j −m)pm
1 + βkj(i)

(1 + βpm)(i− 1)
+ Θ(j − i)Θ(i−m)pm

1 + βki(j)

(1 + βpm)(j − 1)

)

=
mp(m− 1)s2a−2

(1 + βpm)2





m∑

i=1

1

ia

m∑

j=i+1

1

ja
+

2mp

1 + βpm

s∑

i=m+1

1

i2a

∑

j=i+1

1

j − 1



 , (D.9)

where we have denoted by a = βpm
1+βpm . The initial condition Ms+1 together with Equation (D.9)

deliver

C(k) =
2

(k + pm)(k + pm− 1)

a(m− 1)

mpβ3b2s

(

sb2
mpβ3

a(m− 1)
Ms +

(

(1 + βk)b − 1
)

×

(

b

(
s

s+ 1

)a
(
c+ as2a−1H(s, 2a)

)
− 1

)

+ b(1 + βk)b ln (1 + βk)

)

.

Together with the initial condition, this is the expression in Proposition 20.

Next, we turn to the analysis of the connectivity of the networks generated by our model. We
consider only the simple case where m = 1 and the limit of strong noise with β → 0, where the
network formation process follows a uniformly grown random graph.

Proposition 21. Let Ns(t) denote the number of components of size s at time t. Consider the

network formation process (Gβ
t )t∈N of Definition 4 with St = Pt−1 for all t > m + 1. Assume that

m = 1 and β = 0. If p < 1, then there exists no giant component and the asymptotic (finite)

component size distribution P (s) = limt→∞
Ns(t)

t is given by

P (s) =
(1− p)Γ

(
1
p

)

Γ (s)

p2Γ
(

1 + 1
p + s

) . (D.10)

When p = 1 then there exists a giant component encompassing all nodes.

Proof of Proposition 21. Let Ns(t) denote the number of components of size s at time t. For
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m = 1, the entrant t forms only a single link and we need only consider the case of the component
with size s− 1 to receive a link in the contribution to the growth of Ns(t). It then follows that

Et [N1(t+ 1)|Gt] =N1(t) + (1− p)− p
N1(t)

t
,

Et [Ns(t+ 1)|Gt] =Ns(t) + p
(s− 1)Ns−1(t)

t
− p

sNs(t)

t
, s ≥ 2.

Denote by ns(t) =
Et[Ns(t)]

t . Taking expectations in the above equations delivers

n1(t+ 1)(t+ 1) =n1(t)t+ (1− p)− pn1(t),

ns(t+ 1)(t+ 1) =ns(t)t+ p(s− 1)ns−1(t)− psns(t), s ≥ 2.

For the stationary distribution P (s) = limt→∞ ns(t) we then get

P (1) =
1− p

1 + p
,

P (s) =
p(s− 1)

1 + ps
P (s− 1), s ≥ 2.

From this recursive equation we obtain

P (s) = P (1)ps−1
s∏

k=2

k − 1

1 + pk
=

(1− p)Γ
(
1
p

)

Γ (s)

p2Γ
(

1 + 1
p + s

) ,

which is Equation (D.10).
We next consider the generating function of the component size distribution g(x) =

∑∞
s=1 sP (s)xs.

Observe that g(1) =
∑∞

s=1 sP (s) the fraction of nodes in finite components. In the absence of a giant
component (that grows with t), we must have that g(1) = 1. Inserting Equation (D.10) into g(x)
we find that g(1) = 1 as long as p < 1. Hence, the critical probability for the emergence of a giant
component is p = 1.

From Equation (D.10) we find that the component size decays as a power law with exponent 1 + 1
p ,

i.e.

P (s) =
1− p

p2
Γ

(
1

p

)

s
−
(

1+ 1
p

)(

1 +O

(
1

s

))

.

We finally note that when β → 0, the probability that a component H ∈ Gt−1 of size s receives a
link at time t, and thus grows by one, is given by

p
∑

i∈H

1 + βki(t)

(1 + βp)t
=

p

(1 + βp)t

∑

i∈H

(s+ βki(t)) ≈
sp

t
,

where we have used the approximation
∑

i∈H ki(t) ≈ sp. This is the same probability for the growth
of a component of size s as in the case of β = 0 and hence we obtain the same component size
distribution as in Equation (D.10).
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Figure 12: Comparison of simulation results with theoretical predictions for the component size distribution P (s) of
the link formation process in Definition 4 under global information with p = 0.5, m = 1, β = 0 and T = 105 (left
panel); with p = 0.5, ns = 1, m = 4, β = 0 and T = 105 (right panel).

D.2. Small Observation Radius

Next, we consider the case of a small observation radius corresponding to small values of ns. Similar
to our discussion in Section 3.2, the probability that an agent j ∈ Pt−1 with degree dGt−1(j) receives
a link by the entrant at time t up to leading orders in O

(
1
t

)
is given by

Kβ
t (j|Gt−1) ≈

pm

1 +m

dGt−1(j) + 1

t
. (D.11)

Using the recursive solution of Equation (A.3) we can state the following proposition.

Proposition 22. Consider the sequence of degree distributions {Pt}t∈N generated by an indefinite

iteration of the network formation process (Gβ
t )t∈N of Definition 4 with β = 0. Further assume that

Equation (D.11) holds. Then, for all, k ≥ 0 we have Pt(k) → P (k), where

P (k) =
(1 +m)k!Γ

(

2 + m+1
mp

)

(1 +m(1 + p))Γ
(

2 + m+1
mp + k

) . (D.12)

Proof of Proposition 22. Equation (D.12) follows directly from the recursion in Equation (A.3)
and Equation (D.11).

With Equation (D.11) it follows for the dynamics of ks(t) in the continuum approximation

dks(t)

dt
=

pm

m+ 1

ks(t) + 1

t
,

with the solution

ks(t) =

(
t

s

) pm
1+m

− 1. (D.13)

The degree distribution in the continuum approximation is then given by

P (k) =
1 +m

pm
(1 + k)

−
(

1+ 1+m
pm

)

, (D.14)
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with
∫∞
0 P (k)dk = 1. For large k, Equations (D.12) and (D.14) are equivalent. Moreover, for p = 1

we recover the distribution in Equation (A.14). Next we turn to the analysis of the average nearest
neighbor degree.

Proposition 23. Consider the network formation process (Gβ
t )t∈R+ of Definition 4 in the continuum

approximation with ns small enough and assume that Equation (D.13) holds. If β = 0 then the
average nearest in-neighbor degree distribution is given by

k−
nn
(k) =

1

k
(1 + (k + 1)(ln(k + 1)− 1)) (D.15)

and the average nearest out-neighbor degree distribution is given by

k+
nn
(k) =

mp+ 1

m+ 1
k +

p

m+ 1
t2a−1(k + 1)−

2a−1
a ζ(t(k + 1)−

1
a , 2a) (D.16)

where a = mp
1+m .

Proof of Proposition 23. In order to derive Equation (D.15), let us denote by R−
s (t) the sum of

the in-neighbors’ degrees of a vertex s at time t. We then have that

dR−
s (t)

dt
=

∑

j∈N−

Gt
(s)

a

t
(1 + kj(t)) =

a

t

((s

t

)a
− 1 +R−

s (t)
)

,

where we have denoted by a = mp
1+m . The initial condition is R−

s (s) = 0. The solution is given by

R−
s (t) = 1 + (k + 1)(ln(k + 1)− 1),

where we have used the fact that s = t(k + 1)−
1
a from Equation (D.13). Noting that k−nn(k) =

R−
s

k
we readily obtain Equation (D.15).

Next, we consider the out-neighbors of s. Assume that vertex s has out-degree m and denote by
R+

s the sum of the in-degrees of the out-neighbors of s at time t. We then can write

dR+
s (t)

dt
=

∑

j∈N+
Gt

(s)

a

t
kj(t) + p

ns

t

m∑

k=1

k

(
m
k

)(ns(m+1)
m−k

)

(
ns(m+1)

m

) =
a

t

(

R+
s (t) +

m(mp+ 1)

m+ 1

)

,

The solutions is given by R+
s (t) = −m(1+mp)

1+m + Cst
a and the initial condition is

R+
s (s) =

s∑

j=1

a

s
(1 + kj(s))

2 = as2a−1H(s, 2a),

so that we get

R+
s (t) =

m(mp+ 1)

m+ 1

((
t

s

)a

− 1

)

+ as2a−1H(s, 2a).

Inserting s = t(k+1)−
1
a from Equation (D.13) and using the fact that knn(k) =

R+
s

m delivers Equation
(D.16) .

In a similar fashion as in Proposition 8 we can also compute the clustering degree distribution.
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Proposition 24. Consider the network formation process (Gβ
t )t∈R+ of Definition 4 in the continuum

approximation with ns small enough and assume that Equation (D.13) holds. If β = 0 then the
average clustering coefficient of an agent with degree k is given by Proposition 8 setting a = mp

m+1 .

Proof of Proposition 24. We need to consider the same cases as in the proof of Proposition 8.
We take |St| = ns(m+1) ignoring terms of the order O

(
1
t2

)
. For the probability of case (i) we obtain

p
ns

t

m−1∑

k=1

k

(
m
k

)(((ns−1)(m+1))
m−(k+1)

)

(
ns(m+1)

m

) = p
m2(m− 1)

(m+ 1)(ns(m+ 1)− 1)t
.

For case (ii) we get

pks(t)
ns

t

(
ns(m+1)−2

m−2

)

(
ns(m+1)

m

) = p
ks(t)

t

m(m− 1)

ns(m+ 1)(ns(m+ 1)− 1)
.

and similarly, for case (iii) we get

pMs(t)
ns

t

(
ns(m+1)−2

m−2

)

(
ns(m+1)

m

) = p
Ms(t)

t

m(m− 1)

(m+ 1)(ns(m+ 1)− 1)
.

The dynamics of Ms(t) is then given by

dMs(t)

dt
=

a(m− 1)

t(ns(m+ 1)− 1)
(m+ ks(t) +Ms(t))

=
b

t
(m+ ks(t) +Ms(t)) =

b

t
(m+

(
t

s

)a

− 1 +Ms(t)),

with a = mp
m+1 . This differential equation is identical to (A.20) and hence we obtain the same result

as in Proposition 8.

In the following we study the connectivity of the emerging networks in the network formation
process introduced in Definition 4. We restrict our analysis to the case of ns = 1. Observe that the
probability that a component of size s grows by one unit due to the attachment of an entrant t is
equivalent to the event that t observes one of the nodes in the component when constructing the
sample St. The probability of this event is ps

t . Hence, we obtain the same component size distribution
as in Proposition 21. We then can state the following proposition.

Proposition 25. Let Ns(t) denote the expected number of components of size s at time t. Consider

the network formation process (Gβ
t )t∈N of Definition 4 with ns = 1. Then the asymptotic component

size distribution P (s) = limt→∞
Ns(t)

t is given by

P (s) =
(1− p)Γ

(
1
p

)

Γ (s)

p2Γ
(

1 + 1
p + s

) . (D.17)

Proof of Proposition 25. The proof follows the one of Proposition 21.
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Figure 13: Comparison of simulation results with theoretical predictions of the link formation process in Definition 4
with p = 0.5, ns = 1, m = 4, β = 0 and T = 105 (top row) and T = 2× 105 (bottom row). We show simulations for a
uniform distribution Xm ∼ U{1, 2m− 1} and a Poisson distribution Xm ∼ Pois(m) both with expectation E(xm) = m.
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