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International Fuel Tax Assessment: An Application to Chile 

Ian Parry and Jon Strand 

Abstract 
Most developed and developing country governments levy taxes on gasoline and diesel fuel used 

by motor vehicles. However, outside of the United States and Europe, automobile and heavy truck 
externalities have not been quantified, so policymakers have little guidance on whether prevailing tax 
rates are anywhere close to their corrective levels. This paper develops a general approach for roughly 
gauging the magnitude of motor vehicle externalities, and hence the corrective tax on gasoline and diesel, 
for individual countries, based on pooling local data sources with extrapolations from U.S. data. The 
analysis is illustrated for the case of Chile, though it could be readily applied to other countries with 
appropriate data collection. 
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International Fuel Tax Assessment: An Application to Chile 

Ian Parry and Jon Strand∗ 

1. Introduction 

Motor vehicle fuels have long been one of the most, if not the most, heavily taxed of 
consumer products in many countries. At the same time, motor vehicle use is associated with an 
unusually diverse variety of externalities, including local and global pollution, traffic congestion, 
traffic accidents, and road damage. Growing alarm about global climate change, relentlessly 
increasing urban gridlock, and world oil market volatility have all heightened interest in the 
appropriate level of fuel taxation.  

Over the last two decades, there has been a major effort to measure the external costs of 
motor vehicles in the United States and certain European countries.1 However, there has been 
little attempt to estimate external costs for other (in particular, middle- and low-income) 
countries, so policymakers in many countries may have little guidance on whether their fuels are 
currently over- or under-priced from an externality perspective. Fuel tax assessments for one 
country cannot simply be inferred from optimal tax estimates for, say, the United States, as they 
depend on many local factors (e.g., travel delays, the incidence and composition of highway 
fatalities, local valuations of health and travel time, etc.).  

This paper describes an approach, applied to the case of Chile, for compiling rough 
estimates of automobile and (commercial) truck externalities, based on combining local data 
with extrapolations from U.S. literature. The parameters are easily applied to formulas for 
(second-best) corrective gasoline and diesel fuel taxes. 

Reasonable economists could debate endlessly the exact details of the calculations here, 
not least because required data is sometimes limited, if available at all, and therefore a number of 
the assumptions in the parameter calculations must be based on judgment. Nonetheless, 

                                                 
∗ Ian Parry is at Resources for the Futre and Jon Strand is at the World Bank. The authors are very grateful to the 
Inter-American Development Bank for financial support and to Patricio Barra Aeloiza, Alberto Barreix, Danae 
Chandia, Luis Cifuentes, Michael Keen, David Noe, Luis Rizzi, Enrique Rojas, and Rodrigo Terc for extremely 
helpful suggestions on earlier drafts and to Javier Beverinotti for research assistance. Any views expressed in the 
paper are those of the authors alone. 
1 See for example, De Borger and Proost (2001), Parry et al. (2007), and Quinet (2004). 
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establishing a ballpark estimate of the corrective fuel tax based on plausible first-pass 
assumptions—one that can be refined over time with improved data availability—is in most 
cases far better than having no figure at all. Moreover, through sensitivity analyses we 
demonstrate that for most parameters alternative assumptions have relatively modest (or 
negligible) impacts on corrective taxes.  

Chile is an interesting case study. Its gasoline tax in 2006, about U.S. $1.50/gallon, is 
high relative to rates prevailing in North and South America, but low by western European 
standards, while the lighter taxation of diesel fuel relative to gasoline is especially striking for 
Chile (Figure 1). And a fuel tax assessment for Chile is timely given that (to cushion the impact 
of high oil prices) the statutory gasoline tax was temporarily reduced by more than a third in 
2008, and the effective diesel tax was temporarily reduced to only U.S. $0.10/gallon through 
generous rebate provisions for truck drivers (see Appendix A for more discussion of the fuel tax 
system in Chile).  

In our benchmark case the corrective gasoline tax for Chile is $1.82 per gallon, which is 
substantially larger than comparable calculations for the United States (e.g., Parry and Small 
2005) even though the valuation of travel time and health risk is lower in Chile. Offsetting these 
factors is the much higher accident externality, due to the high incidence of pedestrian fatalities, 
which is a common feature of lower-income countries (Kopits and Cropper 2008). Moreover, the 
large share of the country’s population residing in Santiago implies a larger share of nationwide 
mileage occurs under congested conditions, and a larger share of the population is exposed to 
elevated pollution-heath risks. Higher average fuel economy of the car fleet in Chile (compared 
with the United States) also magnifies congestion and accidents benefits per gallon reduction in 
gasoline.  

As for diesel fuel, our benchmark estimate of the corrective tax is $1.69/gallon. On a per 
vehicle-mile basis, external costs of trucks are much larger than for cars—for example, trucks 
take up more road space and contribute more to congestion and, unlike for cars, they impose 
significant road damage externalities. However, an offsetting factor is that the reduction in truck 
miles associated with a gallon reduction in diesel fuel is much smaller than the reduction in car 
miles associated with a gallon reduction in gasoline. 

The two most important sources of uncertainty in these (probably conservative) 
corrective tax estimates are the valuation of global warming damages and health risks—in either 
case, using high values from the literature adds around $0.60-$1.15 per gallon to corrective fuel 
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taxes. All other assumptions relating to vehicle emission rates, initial fuel economy, behavioral 
responses, marginal travel delays, etc. have far less significance for corrective tax rates. 

Two further caveats to the analysis are that we do not explore the possibility of 
externality mitigation through other instruments (e.g., peak-period congestion pricing), nor 
linkages between fuel taxes and the broader fiscal system. These and other limitations are 
discussed at the end of the paper.  

The rest of the paper is organized as follows. The next section provides a brief conceptual 
framework for corrective fuel taxes. Section 3 discusses the methodology for parameter 
estimation. Section 4 presents the corrective tax results and sensitivity analysis. Section 5 offers 
concluding remarks.  

2. Externality-Correcting Fuel Taxes: Conceptual Issues 

By and large in Chile gasoline is used by passenger vehicles and diesel by commercial 
trucks. Therefore (with one caveat noted below), corrective gasoline taxes will depend on auto 
externalities while diesel taxes will depend on truck externalities. 

Corrective Gasoline Tax 

Parry and Small (2005) derive a formula for the (long run) optimal gasoline tax using a 
static, homogeneous agent model, where the agent represents an aggregation over all households 
in the economy. We discuss, very briefly, an adapted version of their model, the most important 
difference being that we strip out linkages between gasoline taxes and the broader fiscal system 
(we do this because reliable data on labor supply responses needed to assess fiscal linkages is not 
currently available for Chile).  

The model boils down to the following household optimization problem:  
 

(1a) { { }XpvgcGtpGOVIMEGEXvmuMax XGGMG
Xgvm

−−+−++ )()())(),(,,,(
,,

λ  

(1b) gMG = , mvM =   

M denotes vehicle miles traveled by households, equal to the number of autos (v) times miles 
driven per auto (m). G is aggregate gasoline consumption, equal to gasoline combustion per mile 
g, or the inverse of fuel economy, times vehicle miles. EG(.) is externalities that vary in 
proportion to gasoline use, while EM(.) is externalities that vary in proportion to vehicle miles 
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(see below). I is private household income (which is fixed) and GOV is a government transfer, 
which captures the recycling of gasoline tax revenues. )(gc  represents the fixed costs of vehicle 

ownership which are increasing with respect to reductions in g, because more fuel efficient 
vehicles require the incorporation of (costly) fuel-saving technologies. X is an aggregate of all 
other goods in the economy. pG and pX are the producer prices for gasoline and the general good, 
which are given (Chile is a price taker in the world oil market). tG is the excise tax on gasoline.  

Households maximize utility u(.) with respect to v, m, g and X taking externalities as 
given and subject to the budget constraint equating income with spending on fuel consumption, 
vehicles, and other goods (λ is a Lagrange multiplier). 

Fuel-related externalities EG include CO2 emissions, while mileage-related externalities 
EM include accident risk and road congestion. Following U.S. literature, we attribute road 
damage externalities (i.e., the costs of roadway wear and tear) to heavy trucks, rather than cars, 
given that road damage is a sharply increasing function of a vehicle’s axle weight (e.g., Small et 
al., 1989, FHWA 2000, Table 13). Energy security externalities are beyond our scope as they are 
difficult to define, let alone quantify.2  

In the absence of regulation, local tailpipe emissions would be proportional to fuel use. 
However if all new passenger vehicles are subject to the same emissions per mile standards, 
regardless of their fuel economy, and emissions abatement technologies are fully maintained 
over the vehicle lifecycle (to satisfy emissions inspections programs for in-use vehicles), 
emissions become decoupled from fuel economy and vary only with vehicle mileage. The latter 
assumption seems reasonable for the United States with state-of-the-art emissions control 
technologies (Fischer et al. 2007). For Chile, where most imported automobiles are initially 
subject to European (“Euro III”) emissions standards, we assume two-thirds of local emissions 
varies with mileage and one-third with gasoline combustion (the corrective fuel tax estimates 
results are not very sensitive to alternative assumptions).3 

                                                 
2 One possible external cost from dependence on a volatile world oil market is the risk of macroeconomic 
disruptions from oil price shocks that might not (due to market frictions) be fully internalized by the private sector. 
For the United States, Leiby (2007) estimates these external costs are fairly modest, in the order of about 
$0.10/gallon. 
3 Upstream, local emissions leakage during petroleum refining and fuel distribution is an externality that varies with 
fuel use but the damages are small relative to those from tailpipe emissions, (e.g., NRC 2002, pp. 85-86). These 
emissions are excluded from our pollution damage estimates. 
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The corrective gasoline tax in the above model, denoted C
Gt , is given by (see Appendix 

B): 
 
(2a) geet MG

C
G /⋅+= β  

(2b) λ/GEG Eue
G

′−= , λ/MEM Eue
M

′−= ,
G

G

dtdG
dtdMg

/
/

=β
 

eG and eM denote the marginal external costs (or monetized disutility) from gasoline use and 
mileage in $ per gallon and $ per mile, respectively (it is reasonable to assume eG and eM are 
constant over the range of fuel reductions considered below).  

The corrective tax in (2a) consists of the marginal external cost from gasoline 
combustion. It also includes externalities that are proportional to vehicle miles driven, multiplied 
by two factors. One is fuel economy (averaged across the on-road automobile fleet), which 
converts costs from $ per mile into $ per gallon. Fuel economy rises with higher taxes as 
households demand more fuel efficient vehicles over the longer run. The second factor, denoted 
β, is the fraction of the incremental reduction in gasoline use that comes from reduced miles 
driven, as opposed to improved fuel economy. The smaller is this fraction, the smaller the 
reduction in mileage-related externalities per gallon reduction in fuel use, implying a smaller 
contribution of mileage-related externalities to the optimal tax. (In an extreme case, if all of the 
incremental reduction in fuel use comes from improved fuel economy, and none from reduced 
driving, then β = 0 and mileage-related externalities would play no role in the corrective gasoline 
tax).  

We assume the following functional forms: 
 

(3) 
M
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Mη  and gη  denote, respectively, the elasticity of miles driven, and gasoline/mile, with respect to 

gasoline prices and 0 denotes an initial (currently prevailing) value. The overall gasoline demand 
elasticity, denoted Gη , is the sum of these individual elasticities, gMG ηηη +=  (this is easily 

verified through differentiating the expression for gasoline in (1b)). We take all elasticities as 
constant (a common assumption), which in turn implies β is also constant.  
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The welfare gains ( GW ) from raising the gasoline tax from an initial level to its corrective 

level are given by (see Appendix B): 

(4) ∫ −−=
C
G

G

t

t
G

G
G

C
GG dt

dt
dGttW

0

)(  

GW  is the difference between the corrective and prevailing tax rate, integrated over the reduction 

in gasoline demand. 

Corrective Diesel Tax 

Our corrective diesel fuel tax is also derived from a highly simplified model. In 
particular, we ignore the feedback effect of reduced truck driving on encouraging automobile use 
via a reduction in road congestion (Calthrop et al. 2007). However, the resulting increase in 
automobile externalities has a relatively modest impact on the corrective diesel fuel tax, 
especially if gasoline taxes are raised in tandem with diesel taxes (Parry 2008, Table 3).4 

In this model, the household optimization problem is given by: 

(5a) { { }XpTpGOVITEFEXTuMax XTTF
XT

−−++ λ))(),(,,(
,

 

(5b) fTF =  

(5c) TFFT pfkftpp +++= )()(  

T denotes goods whose production and distribution involves a given amount of shipping by 
trucks, where units are normalized so that T is also truck miles. X is a general good whose 
production and consumption involves minimal transportation. EF and ET are externalities that 
vary in proportion to diesel fuel consumption and truck mileage respectively, where fuel 

                                                 
4 We also lump together different types of trucks, rather than considering them separately, even though external 
costs per vehicle mile will differ across truck classes. For example, external costs per mile on a given road class will 
be greater for heavy-duty trucks as opposed to light-duty commercial vehicles (the share of these truck types in truck 
fuel consumption in Chile is currently 65 and 35 percent respectively, according to SII 2008). However, our 
approach is reasonable if the proportionate reduction in mileage in response to higher diesel taxes is approximately 
the same for different truck classes. This seems plausible, given that fuel consumption per mile should be roughly 
proportional to truck weight. 
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consumption is the product of mileage and fuel per mile, f. Households choose T and X taking 
externalities as given, subject to the budget constraint and respective product prices pT and pX. 

In (5c) the unit price of the trucked good consists of fuel costs per mile, where pF is the 
pre-tax price of diesel and tF if the diesel tax. The price also consists of vehicle capital costs 
expressed on a per mile basis, k(f), where k is increasing with respect to reductions in f due to the 
incorporation of fuel-saving technologies. Tp  is non-transportation, unit production costs. Firms 

choose f to trade off fuel costs per mile with capital costs. As a result, an increase in the diesel 
tax will increase fuel economy (reduce f), as well as reduce truck mileage, as the tax is passed 
forward into pT and hence causes households to substitute away from freight-intensive goods 
towards non-freight-intensive goods. 

The corrective diesel fuel tax, denoted C
Ft , is (see Appendix B): 

(6a) feet TF
C
F /⋅+= α  

(6b) λ/FEF Eue
F

′−= , λ/TET Eue
T

′−= , 
F

F

dtdF
dtdTf

/
/

=α  

These expressions are exactly analogous to those in (2a) and (2b) with eF and eT the 
marginal external cost of diesel and truck miles respectively, and α is the fraction of the 
incremental reduction in fuel use that comes from reduced truck mileage, as opposed to better 
fuel economy. Vehicle noise and roadway wear and tear are included in mileage-related 
externalities. For trucks, which are also subject to emissions per mile standards in Chile, we 
again start by assuming that one-third of local emissions are proportional to fuel combustion and 
two-thirds to miles driven. Functional forms for truck mileage and fuel per mile, and welfare 
gains from tax reform, are analogous to the previous expressions.  

3. Parameter Compilation 

This section discusses how parameter values might be obtained for a middle- or lower-
income country where many relevant data may be lacking, and using Chile as our case study. 
This involves pooling local data sources with extrapolations from U.S. evidence and using 
judgment where data is unavailable. A later sensitivity analysis demonstrates that the valuation 
of health risks and global warming are the major sources of uncertainty, while in other cases 
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alternative plausible assumptions (e.g., concerning fuel economy or emission rates) have 
relatively modest implications for corrective fuel taxes. Parameter values are for year 2006 or 
thereabouts and are summarized in Table 1. All parameters are expressed in U.S. currency.5 

Fuel Use, Prices, and Mileage Data 

Data is, for countries we would have in mind for such a study, typically available for fuel 
use in the transportation sector, fuel prices, and fuel taxes but not necessarily for vehicle miles of 
travel or fuel economy. However, if a plausible assumption about fuel economy can be made, 
mileage is easily inferred. We assume that the on-road fuel economy of automobiles in Chile is 
roughly comparable to that in European countries like the United Kingdom a few years ago, 30 
miles per gallon (e.g., Parry and Small 2005).6 For heavy trucks, we assume fuel economy is 8 
miles per gallon, based on U.S. figures for single-unit trucks in Parry (2008), Table 2. For 2007, 
total gasoline and diesel fuel consumption in Chile was 819 and 898 million gallons respectively, 
with Santiago accounting for 46.7 and 39.7 percent of these totals, respectively (SII 2008).  

Initial retail fuel prices for 2006 are taken to be $4.27/gallon for gasoline and 
$3.17/gallon for diesel, and the respective excise taxes are $1.46 and $0.37/gallon (SII 2008).  

External Damages from Local Tailpipe Emissions 

For regions outside of Santiago, there is no local data on local pollution damages from 
automobiles. However, we believe it is reasonable for a first pass to extrapolate local pollution 
damages from the United States, after adjusting for differences in the value of statistical life 
(VSL)—given that damages are heavily dominated by mortality effects—and in vehicle emission 
rates. This procedure is described in Appendix C. The end result is damages of $0.01/mile and 
$0.02/mile, based on two plausible values for the Chilean VSL of $1.12 or $2.15 million, 
extrapolated from U.S. VSL estimates. The lower VSL value, our preferred estimate, is 

                                                 
5 They and can be converted into local currency using a market exchange rate of CLP 550 per U.S. $1. This is the 
average exchange rate that applied during the 2006-2008 period. See www.latin-
focus.com/latinfocus/countries/chile/chlexchg.htm.  
6 Automobile fuel economy in the United States is currently about 22 miles/gallon (BTS 2009), but this reflects a 
large share of light-duty trucks (minivans, sport utility vehicles, pickups) in the fleet which have lower fuel economy 
than cars.  
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consistent with (updated) results from a stated preference study by Cifuentes et al. (2000) that 
uses Chilean data.7 

For Santiago, we might expect much larger damages given its high population density 
and that meteorological and topographical conditions are especially favorable to pollution 
formation. Rizzi (2008a) provides detailed local evidence on pollution-health impacts for 
Santiago. Using that study, we compute damage estimates of $0.04/mile or $0.07/mile, under our 
different VSL assumptions (see Appendix C).8 Weighting damages for Santiago and the rest of 
the country by the respective mileage shares (assumed to be the same as the fuel consumption 
shares) gives a nationwide pollution cost of $0.02/mile or $0.04/mile for Chile. As noted above, 
we apportion two-thirds of this cost to mileage and one-third to fuel use, to obtain the figures in 
Table 1. 

 We assume pollution damage costs for trucks, on a per mile basis, are 3.4 times those for 
cars. This is based on our own calculations for Santiago (see Appendix C) and it is also 
consistent with estimates of relative car/truck damage estimates for the United States in FHWA 
(2000), Table 13.  

 Global Pollution 

Combusting a gallon of gasoline and diesel fuel produces 0.009 and 0.010 tons of CO2 
respectively.9 Worldwide damages from the future global warming potential of these emissions 
(e.g., from agricultural impacts, defense against sea level rise, health effects from the possible 
spread of tropical disease, damage risks from more extreme climate scenarios) remain highly 
contentious. Most studies use market discount rates and estimate damages in the order of $5-
$20/ton of CO2, while studies that use below market rates put damages in the order of $80/ton of 

                                                 
7 Personal communication with Luis Cifuentes, December 2008. 
8 The study year was 2001. However, we adjust the health impact estimates downwards by one-third, based on a 
personal communication with Luis Cifuentes (December, 2008). This reflects more recent U.S. evidence suggesting 
that the relationship between health impacts and pollution concentrations is better represented by a concave (log-
linear) rather than linear function (Pope et al. 2004, 2006). 
9 See http://bioenergy.ornl.gov/papers/misc/energy_conv.html. 
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CO2 (see the review in Tol 2008).10 Even more controversial is the treatment of extreme 
catastrophic risks (for example from an unstable feedback mechanism leading to a runway 
warming effect) which may, or may not, imply damages per ton that are arbitrarily large in 
expectation (Weitzman 2008). However, this consideration does not provide specific guidance 
on an appropriate value for the social cost of CO2. To be conservative, we start with a value of 
$10/ton of CO2, and consider a value eight times as large in sensitivity analysis. 

 Congestion 

Marginal congestion costs depend on the marginal delay (i.e., the increase in delay to 
other road users due to the added congestion caused by one extra vehicle mile) and the value of 
travel time (VOT). 

An approximation for the marginal delay (averaged across a region) can be inferred from 
data on average delay, and an assumption about the functional relation between the two implied 
by speed/traffic flow curves (for some discussion see Lindsay and Verhoef 2000, Small and 
Verhoef 2007, Ch. 3). For Santiago, we obtain an estimate of average delay at peak and off-peak 
periods, by comparing observed travels speeds with speed under free-flow conditions. And we 
obtain marginal delay from average delay using the “Bureau of Public Roads” formula, which is 
widely used in traffic engineering models. As detailed in Appendix C, this procedure yields a 
marginal delay for Santiago of 0.035 hours per auto mile (averaged across time of day). 

As for the rest of Chile, we assume no congestion in rural areas. For other urban centers 
we assume travel speeds are comparable to those outside of the (congested) downtown core in 
Santiago. Reasonable information on these speeds is available from a local transportation model 
for Santiago, and based on this data, marginal delays in other cities are calculated at 32 percent 
of those for Santiago as a whole. Weighting regional marginal delays by respective mileage 
shares yields a nationwide marginal delay of 0.022 hours per mile. (Again, see Appendix C for 
details). 

                                                 
10 The ethical argument for using below market rates (essentially, a zero rate of pure time preference) is that it does 
not discriminate against future generations, just because they are born in the future (Stern 2007). Critics of this 
approach view market discounting as essential for meaningful policy analysis and to avoid perverse implications if 
applied in other policy contexts (Nordhaus 2008, Ch. 9). 
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As for the VOT, we use a preferred value of $2.7 per hour and a value of $1.5 per hour 
for sensitivity analysis. The first figure is obtained by extrapolating evidence on the VOT for the 
United States (and is in line with limited evidence available from Chilean data), while the second 
figure reflects current government practice in Chile (see Appendix C).  

Combining our preferred VOT and marginal delay yields a marginal external congestion 
cost of $0.055 per mile. One further complication is that driving on relatively congested roads 
(which are heavily used by commuters) is typically less sensitive to gasoline prices than driving 
on relatively uncongested roads. Thus, the congestion benefits from a given reduction in 
nationwide mileage are smaller than they would be if driving on congested and uncongested 
roads were equally price sensitive. Based on typical estimates of the relative sensitivity of 
driving under congested and uncongested conditions, Parry and Small (2005) scaled back 
nationwide marginal congestion costs by 30 percent. We follow the same procedure to obtain a 
preferred marginal external congestion cost of $0.04 per mile.  

Finally, based on standard estimates from the literature (e.g., Santos and Fraser 2006, 
Santos 2008) we assume that a vehicle mile by a heavy truck contributes 2.5 times as much to 
congestion as an extra automobile mile. These estimates take into account the extra road space 
used by trucks, their slower driving speeds, and their greater propensity for off-peak travel. 

Accidents 

Local data on traffic injuries is critical for gauging accident externalities, not least 
because the incidence of pedestrian/cyclist injuries—a major determinant of externalities—varies 
dramatically across countries (Kopits and Cropper 2008). As discussed in Appendix C, we start 
with Chilean accident data for various non-fatal injury classifications, for 2006. We make 
assumptions about what portion of personal injury, medical costs and property damages 
associated with these injuries are external (e.g., occupant injury risk in single vehicle collisions is 
assumed internal). The external components are then monetized using a mixture of local 
evidence and U.S. extrapolations, and an assumption that the VSL for an instantaneous fatality 
(in an auto accident) is about a fifth greater than for a fatality occurring with a lag in response to 
pollution exposure. 

The end result is external cost for a car of $0.06 per mile or $0.10 per mile, under 
alternative values for the VSL. Pedestrian/cyclist fatalities alone account for about three-quarters 
of this figure, therefore alternative assumptions about the extent to which medical costs, property 
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damages, and injuries in multi-vehicle collisions are external versus internal have a relatively 
modest impact on the external cost estimate.  

 As for trucks, we follow de Palma et al. (2008), Parry (2008), and FHWA (2000), in 
assuming that external accident costs are 25 percent greater than for cars, implying an externality 
of $0.07 or $0.12 per mile.11 

Road Damage and Noise 

Road damage costs for trucks are estimated at $0.08 per mile and noise costs a much 
smaller $0.01 per mile. Appendix C provides details on these calculations. Road damage is 
inferred from government expenditures on road maintenance, after attributing a portion of these 
costs to other vehicles and other factors, while noise costs are obtained from U.S. estimates (after 
making an adjustment for income and the share of urban versus rural driving). 

Elasticities 

According to reviews by Goodwin et al. (2004) and Glaister and Graham (2002) the long 
run gasoline demand elasticity for countries like the United States is around –0.6, though a 
recent, widely cited, study by Small and Van Dender (2006) suggests a somewhat smaller size 
elasticity of –0.4. About 40 or 50 percent of the elasticity is attributed to reduced mileage, as 
opposed to long run vehicle fuel economy improvements. Given the wider availability of transit 
alternatives, we might expect mileage to be moderately more price-responsive in Chile than the 
United States.12 We choose a value of –0.5 for the gasoline price elasticity, with the assumed 
response split equally between improved fuel economy and reduced driving.  

The limited evidence available on diesel fuel elasticities for heavy trucks for high-income 
countries suggests that they are roughly comparable in magnitude to gasoline demand elasticities 
(e.g., Dahl 1993, pp. 122-123). It seems plausible that the mileage component of the elasticity is 
somewhat larger for diesel than for gasoline, as technological opportunities for improving fuel 

                                                 
11 Due to their much greater weight, we would expect heavy-duty trucks to pose far greater risks than autos to other 
vehicles and their occupants in a collision (for given travel speeds). However, a counteracting factor is that trucks 
are driven by professionals, typically at lower speeds, and more frequently at night, than cars, and therefore crash 
less often.  
12 The only estimate we are aware of that uses local data is Rogat and Sterner (1998), who put the gasoline demand 
elasticity for Chile at –0.43. 
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economy are more limited for trucks than for cars given the high power requirements necessary 
to move freight. We use a diesel fuel price elasticity of −0.5, with 60 percent of the response 
from changes in mileage, and 40 percent from changes in fuel economy.  

4. Corrective Fuel Tax Calculations 

Benchmark Results 

The top half of Table 2 presents the corrective tax calculations under our benchmark 
parameter assumptions (Case 1).  

(i) Gasoline tax. The corrective gasoline tax is $1.82 per gallon, which is 25 percent 
larger than the rate prevailing in 2006. Traffic accidents account for 45 percent of the tax, 
congestion 32 percent, local tailpipe emissions 20 percent, and global warming only 4 percent.  

This corrective tax estimate is higher than comparable estimates for the United States 
(e.g., Parry and Small 2005). At first glance, this seems surprising given the lower valuation of 
health risks and travel time in Chile. However, one offsetting factor is that accident externalities 
are much larger in Chile, due to the much higher incidence of pedestrian/cyclist fatalities. In 
addition, despite the lower VOT in Chile, our nationwide figure for marginal congestion costs is 
comparable to that in U.S. studies, because a larger share of nationwide driving occurs under 
highly congested conditions (in Santiago). Similarly, although the assumed VSL for Chile is 
lower, the (nationwide) pollution-mortality rate is greater, given the large share of the population 
residing in Santiago and therefore exposed to elevated risks. Yet another factor is that the 
assumed miles per gallon is about 30 percent larger in Chile than the United States. This implies 
a greater reduction in mileage per gallon of fuel saved, which in turn magnifies the mileage-
related externality benefits, particularly congestion and accidents (through lowering g in equation 
(2a).  

(ii) Diesel tax. The corrective diesel fuel tax in the benchmark case is $1.69 gallon. This 
is smaller than the corrective gasoline tax, but only moderately so—external cost considerations 
do not warrant the current, and strikingly large, tax preference for diesel over gasoline.  

Local and global pollution contribute essentially the same to the corrective tax for either 
fuel. However, unlike for gasoline, road damage contributes a significant amount ($0.39 per 
gallon) to the diesel tax (the contribution from noise is small). On the other hand, an offsetting 
factor is that trucks travel a shorter distance on a gallon of fuel than cars, which substantially 
reduces the mileage-related externalities per gallon of diesel fuel reduction. This is particularly 
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the case for accidents, which contribute 34 cents to the corrective diesel tax compared with 81 
cents for the corrective gasoline tax. Congestion also contributes less, but only moderately so (49 
cents to the diesel tax and 58 cents to the gasoline tax), given our assumption that a truck mile 
contributes two and a half times the congestion as a car mile. Again, this corrective tax estimate 
is higher than for comparable estimates for the United States (e.g., Parry 2008), for similar 
reasons to those for the gasoline tax. 

(iii) Impacts of tax reform. Also indicated in Table 2 is the impact of tax reform. Raising 
taxes from their 2006 levels to their corrective levels in the benchmark case would reduce (long-
run) gasoline and diesel use by an estimated 4.0 and 15.9 percent respectively (the latter 
reduction is much larger due to the much larger difference between corrective and initial tax 
rates). The fuel economy increase is small for cars (2.1 percent) though a more significant 7.2 
percent for trucks. Under corrective taxes, gasoline tax revenue increases 22 percent above 2006 
levels while diesel tax revenues are more than three times as large. Annual welfare gains from 
raising taxes on gasoline and diesel to their corrective levels are $5.9 million and $64.1 million, 
respectively. 

If initial tax rates were zero (and initial fuel consumption were proportionately larger 
according to equation (4)), fuel reductions from implementing the corrective tax would be in the 
order of 20 percent for either fuel. Estimated welfare gains (from the corrective fuel tax relative 
to no tax) would be substantially larger at $158 million and $165 million, respectively. 

Sensitivity Analysis 

Also shown in Table 2 are corrective taxes under different assumptions about global 
warming damages and the VSL. These are the two largest sources of uncertainty in the corrective 
tax assessment. 

Using a higher value for global warming damages—$80 per ton of CO2 instead of $10 
per ton—increases the corrective gasoline tax and diesel tax by $0.69 and $0.81 per gallon, 
respectively (Case 2). These increases are moderately larger than the increase in CO2 damages 
per gallon of gasoline ($0.62 per gallon) and per gallon of diesel ($0.70 per gallon), as higher 
taxes increase fuel economy, which in turn magnifies the contribution of mile-related 
externalities (again, though lowering g in (2a) and f in (6a)). 

Using the higher VSL for Chile ($2.15 million instead of $1.12 million for pollution, and 
$2.58 million for accident fatalities) increases both local pollution and accident externalities by 
around 70-80 percent (Case 3 in Table 2). As a result, the corrective gasoline and diesel taxes 
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increase to $2.97 per gallon and $2.31 per gallon respectively. The tax increase is substantially 
larger for gasoline ($1.15 per gallon) than for diesel ($0.62), given the greater importance of 
accident externalities in the corrective gasoline tax.  

Table 3 indicates the implications for corrective fuel taxes from changing a variety of 
other assumptions used in the parameter compilation, one at a time. In most cases the 
perturbations have a noticeable, but not dramatic impact on corrective fuel taxes.  

We vary the initial fuel economy between 24 and 36 miles per gallon for cars and 
between 6.4 and 9.6 miles per gallon for trucks. This causes the corrective fuel taxes to vary by 
up to + and – 17 percent as higher (lower) fuel economy magnifies (dampens) the contribution of 
mileage-related externalities. 

Increasing and decreasing local pollution damages by up to 50 percent causes the 
corrective fuel taxes to vary by up to +14 and –12 percent, while increasing and decreasing 
marginal travel delay by up to 50 percent causes corrective taxes to vary by up to +18 and –18 
percent. Using the smaller value for the VOT ($1.50 instead of $2.70 per hour) decreases both 
corrective taxes by about 12 percent. Varying accident externalities by + and –50 percent causes 
the corrective gasoline tax to vary by + and –24 percent and the corrective diesel tax to vary 
between + and –11 percent. Varying road damage + and –50 percent causes the corrective diesel 
tax to vary between + and –12 percent. The results are fairly insensitive to varying own-price 
fuel elasticities, with mileage and fuel economy elasticities changing in the same proportion. 
More significant is, for a given overall fuel price elasticity, the relative price responsiveness of 
mileage and fuel economy (which determines β and α in equation (2) and (6)). As indicated in 
the last row of Table 3, varying the fraction of the gasoline elasticity that is due to reduced 
mileage from 0.35 to 0.65 causes the corrective gasoline tax to vary between + and –29 percent. 
And varying the fraction of the diesel fuel price elasticity due to mileage between 0.45 and 0.75 
causes the corrective diesel tax to vary between +21 and –23 percent. 

5. Conclusion 

This paper presents a methodology for compiling estimates of parameters needed to 
assess corrective motor fuel taxes for a middle-income country. We use Chile as an illustration, 
though we believe the paper provides a useful template for approximately gauging corrective 
fuel taxes in other countries at similar levels of development (at least those with comparable data 
sources). To our knowledge, this is the first comprehensive study of optimal motor fuel taxes for 
a country outside of the OECD.  
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For Chile, the corrective gasoline and diesel taxes are $1.82 and $1.69 per gallon in the 
benchmark case—higher than typical tax rates prevailing in Western Hemisphere countries, but 
lower than typical rates in Western Europe. Despite lower valuations of health risks and travel 
delays, the corrective fuel tax estimates for Chile are larger than comparable estimates for the 
United States, due to a mix of factors, including the higher incidence of pedestrian fatalities in 
Chile as well as the high proportion of its population residing and driving in the metropolitan 
Santiago region, where conditions are conducive to pollution formation and roads are clogged.  

Again, we emphasize that the analysis is only meant to provide a first-pass assessment. 
There is plenty of scope for parameter estimates to improve with better data though, aside from 
the valuation of mortality risk and global warming, we conjecture that, in most cases, 
refinements will be likely to have a non-substantial impact on corrective fuel tax estimates.  

Another caveat is that there are far more efficient instruments than fuel taxes for 
addressing some of the key externalities. For example traffic congestion is better addressed 
through peak-period road pricing (Santos 2004) and accident externalities by altering auto 
insurance so it varies directly in proportion mileage (Bordhoff and Noel 2008).13 However, until 
these externalities are comprehensively internalized through other instruments, in the interim it is 
entirely appropriate to include them in fuel tax assessment.  

Furthermore, our analysis abstracts from linkages between fuel taxes and the broader 
fiscal system, particularly tax distortions in the labor market which depress the level of work 
effort below economically efficient levels. These interactions take two forms (e.g., Goulder 
1995). First is the potential efficiency gain from using fuel tax revenues to reduce distortionary 
taxes, or fund socially productive public projects. Second is an efficiency loss to the extent that 
higher transportation prices cause a (slight) contraction in economic activity and hence labor 
supply. West and Williams (2007) estimate how these adjustments might alter the optimal 
gasoline tax for the United States. In fact, they estimate that on net the optimal (revenue-neutral) 
tax is about 50 percent higher than the corrective tax because gasoline is a relative complement 
to leisure (due to the high portion of passenger trips that are not work related). However, reliable 
evidence on behavioral responses (i.e., labor supply responses to income and fuel taxes) needed 
to make a similar adjustment for Chile is not available at present. 

                                                 
13 Road tolling is beginning to emerge in Chile, for example the major north-south toll route in Santiago (the 
Autopista Central) was opened in 2004. However, such tolls affect a small portion of roads nationwide at present. 
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Finally, the distributional argument against higher fuel taxes in Chile seems open to 
question given that, according to CASEN (2006), in 2006 only 9.4 percent of households in the 
bottom income decile owned a car, compared with 72.7 percent for the top-income decile. Thus, 
Jorratt (2008) estimated that gasoline taxes impose a progressively larger burden-to-income ratio 
across higher income households. However, one exception is that the bottom income decile 
suffers a disproportionately large burden-to-income ratio, perhaps due the preponderance for old, 
fuel-inefficient vehicles among the poor. Nonetheless, a common view among economists is that 
distributional concerns are better addressed through adjustments to the broader tax and benefit 
system (accounting for higher energy prices), rather than holding down fuel taxes. 
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Appendix A. Further Details on the System of Highway Fuel Taxation in Chile 

Gasoline and diesel excise taxes in Chile are related to the so-called UTM (Unidad 
Tributaria Mensual), an official unit of account which is continuously adjusted for general price 
inflation, and which was CLP 36,000, as of September 2008. For gasoline, the tax was 6 
UTM/1000 liters until April 2008, when it was temporarily reduced to 4.5 UTM/1000 liters, and 
further reduced to 3.5 UTM/1000 liters in September 2008. The gasoline tax was in July 2009 
again increased to 4.5 UTM/1000 liters. For diesel the tax is 1.5 UTM/1000 liters. Fuel taxes are 
also subject to value added taxes (VAT), currently 19 percent, applied to the refinery price and 
gross margin. However, VAT does not count towards the optimal fuel tax as it raises the price of 
goods in general rather than just fuels. 

Fuel taxes in Chile are further complicated by a stabilization fund that counteracts 
volatility in refinery prices (due to variable world oil prices) by establishing price ceilings and 
floors 5 percent above and 5 percent below a reference refinery price, equal the average refinery 
price over the previous year. Payments are made out of, or into, the stabilization fund when 
refinery prices hit the ceiling or floor prices. Over the long haul, payments into and out of the 
stabilization fund should roughly balance out. However, in the short term, during periods of 
steadily rising prices, the fund could be depleted. This happened during the price spike of 2008, 
when the Chilean government replenished the fund directly, in an amount of about US$1 
billion.14  

For diesel, the tax structure has been further complicated by tax refunds to trucking 
companies, initially equal to 25 percent of the diesel fuel tax in 2001, and temporarily raised to 
80 percent in July 2008. This rebate is set to expire at the end of 2009..  

 

 

 
  

                                                 
14 Presumably, these funds could be paid back to the government, now the price is at its floor level, requiring 
payments into the fund. 
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Appendix B 

Deriving Equation (2): The corrective gasoline tax. The optimal tax is derived using a 
standard two-step procedure. First, we solve the household optimization problem in (1), where 
externalities, and government variables, are taken as given. This yields the first order conditions: 
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The second step is to totally differentiate the household’s indirect utility function, which 
is simply equivalent to the expression in (1), with respect to the gasoline tax. In this step, 
economy-wide changes in externalities and the government transfer are taken into account. 
Using the first order conditions in (B1) to eliminate terms in Gdtdm / , Gdtdv / , Gdtdg / , and 

GdtdX / , the total differential is given by: 
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The government budget constraint, equating spending with fuel tax revenue, is 
GtGOV G= . Totally differentiating gives: 
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Equating (B2) to zero, to obtain the corrective tax, and substituting (B3), gives: 
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From differentiating the expression for gasoline use in (1b): 
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Thus, the fraction of the reduction in gasoline use that is due to reduced mileage is  
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Substituting (B6) and expressions in (2b) in (B4), gives the corrective tax formula in (2a). 
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Deriving Equation (4): Welfare gains from tax reform. Expression (B2) gives the welfare 
gain from an incremental increase in the gasoline tax. Dividing by λ to express in monetary 
terms, and substituting from (B3) and (2b), gives: 
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Using the definitions of C
Gt  and β in (2) gives 
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Integrating over the tax rise gives the total welfare gain in (4).  

Deriving Equation (6): The corrective diesel tax. 

The household optimization in equation (5) yields the first order conditions: 

(B9) TT pu λ= , XX pu λ=  

And the optimization over fuel intensity by producers (i.e., the minimization of per unit trucking 
costs in (5c), yields: 
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Differentiating the household’s indirect utility function (equivalent to the expression in (5a)), 
accounting for changes in externalities, and using (B9) to eliminate terms in FdtdT / and 

FdtdX /  gives: 
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Differentiating the government budget constraint, FtGOV F= , gives 
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The impact of the fuel tax on the price of the trucked good is, from differentiating (5c) and 
substituting (B10): 
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Substituting (B12), (B13) and (5b) in (B11), and equating to zero, gives the corrective diesel tax 
formula defined in (6a) and (6b).  
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Appendix C. Additional Details on External Cost Assessment 

Pollution 

For regions outside of Santiago: extrapolating from U.S. estimates. There is reasonable 
consensus in the U.S. literature on the overall size of (local) pollution damages from 
automobiles. Summarizing this literature, Small and Verhoef (2007), pp. 104-5, put damages at 
$0.011/mile nationwide for 2005. Mortality effects for sensitive groups (seniors and people with 
pre-existing health conditions) account for about three-quarters of these estimates (other effects 
include morbidity, reduced visibility, ecosystem impacts, building corrosion, etc.).15 Small and 
Verhoef (2007) assume the value of a statistical life (VSL) is $4.15 million, after accounting for 
discounting of the lag between exposure and premature mortality, and the lower VSL for seniors 
(compared with the average age individual). To extrapolate the damage figure to Chile (outside 
of Santiago) we need to consider differences in the VSL and vehicle emission rates. 

To extrapolate VSL estimates to Chile we use the following, commonly used formula 
(e.g., Cifuentes et al. 2005, pp. 40-41):  

(C1) 
VSL

US

Chile
USChile I

IVSLVSL
η

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅=  

where IY denotes real per capita income in county Y and VSLη  is the elasticity of VSL with respect 
to income. From World Bank (2008) USChile II /  is ($13,000/$48,150=) 0.27.16 We consider two 
values that roughly span the range of estimates for VSLη : 0.5 and 1.0.17 We thus obtain VSL 

values for Chile of $1.12 million or $2.15 million.  

 

                                                 
15 Damages are also easily dominated by particulate matter (rather than ozone), some emitted directly, and some 
formed in the atmosphere from nitrogen oxides and hydrocarbons. 
16 This is based on purchasing power parity rather than market exchange rates to account for the greater spending 
power of income in Chile due to lower (non-tradable) goods prices. 
17 Viscusi and Aldy (2003) and Miller (2000) estimate ηVSL at about 0.5 and unity respectively. Alan Krupnick, an 
expert on this issue, also recommended we use the above values (personal communication, November, 2008).    
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 Based on a personal communication with Luis Cifuentes (November, 2008) we assume 
current auto emission rates in Chile are the same as those applying in the United States in 1992, 
or three times current U.S. rates (BTS 2008, Table 4.38).18 

For Santiago. We begin with Rizzi (2008a)’s estimated incidences of mortality and 
morbidity (for year 2001) in Santiago that are attributed to trucks and automobiles, as shown in 
the first two columns of the upper part of Table B1. The data only allows an assessment of short-
term or acute mortality effects. Long-term mortality effects occurring with a lag in the lifecycle, 
following an extensive period of pollution intake, are inferred based on the ratio of long-term to 
short-term mortality from U.S. literature. The figures in Table C1 account for a downward 
adjustment of one-third recommended by Luis Cifuentes (personal communication, December 
2008) to account for more recent evidence on the functional relation between health impacts and 
pollution concentrations (Pope et al. 2004, 2006). 

 In Table C1, we monetize these effects with our two values for the VSL. For acute 
mortality, we assume the VSL is 22 percent larger, to account for the greater number of life years 
lost (Small and Verhoef 2007, pp. 104). Morbidity effects, for example, instances of asthma and 
bronchitis, are valued by the respective unit costs in Rizzi (2008a). Overall pollution damages 
are not very sensitive to alternative assumptions for valuing morbidity.  

Multiplying instances of health impacts by the cost per impact, and aggregating gives 
total annual health costs of $0.49 or $0.84 billion for automobiles and $0.42 billion or $0.72 
billion for trucks. In Table C1 we also include corrosion to buildings and other objects from 
pollution, based on Rizzi (2008a), Table 6.19 These effects amount to 7-14 percent of health 
damages. 

 

                                                 
18 Although vehicles imported into Chile are now subject to approximately equivalent emissions standards as new 
vehicles in the United States, emissions standards were introduced, and ramped up, far later in Chile than the United 
States. Consequently, there is a significantly greater share of older, highly emissions-intensive vehicles, in the 
current automobile fleet in Chile.  
19 The estimates have been increased by 30 percent to reflect the approximate increase in valuation of such damages 
up to 2006. 
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Dividing the total pollution damage figures in Table C1 by distance travelled by 
automobiles and trucks in Santiago gives damages of $0.04 and $0.07 per mile for automobiles 
and $0.15 or $0.25 per mile for trucks. 

Congestion 

Average delay for Santiago. We obtain travel speeds for Santiago from the ESTRAUS 
model.20 Based on our own simulations of this model, the average automobile travel speeds 
under peak, off-peak, and free-flow traffic conditions in the Santiago metropolitan area are 21.2, 
24.5 and 28.5 miles per hour, respectively. Inverting these figures, and comparing actual and 
free-flow travel times, we obtain average delays due to congestion of 0.012 hours per mile and 
0.006 hours per mile, for peak and off-peak travel respectively. From the ESTRAUS model, 50 
percent of auto travel occurs during the peak period and 50 percent at off-peak (including 
weekends), hence delay averaged over time of day is 0.009 hours per mile.  
 

Ratio of marginal to average delay. The most commonly used functional form relating 
travel time per mile (the inverse of speed), denoted T, to traffic volume (vehicles per lane mile 
per hour), denoted V, is: 
 
(C2) }1{ θαVTT f +=  

α and θ are parameters and Tf  is time per mile when traffic is free flowing. A typical value for 
the exponent θ is 2.5−5.0 (Small 1992, pp. 70–71). With α = 0.15 and θ = 4.0, equation (C2) is 
the Bureau of Public Roads formula, which is widely used in traffic engineering models. 
Subtracting Tf from (C2) and dividing by V gives the delay per vehicle mile due to congestion, 

1−θαVTf . And subtracting Tf from (C2), and differentiating, the marginal delay per vehicle mile 

is  1−θαθ VTf . Hence the ratio of the marginal to average delay is θ, or 4 with the Bureau of 

Public Roads formula. Quadrupling average delay gives a marginal delay of 0.035 hours per 
mile. 

 

                                                 
20 This model provides a detailed and carefully calibrated representation of the Santiago road transportation network 
(see de Cea Ch. et al. 2003 for a description of the model). 
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Nationwide delay. Santiago accounts for about half of nationwide car mileage, other 
urban areas a further 40 percent, and rural areas 10 percent (Sii 2008). We assume no congestion 
in rural areas. In other urban areas we assume travel speeds are comparable to those in Santiago, 
outside of the congested downtown core. Based on our simulations of the ESTRAUS model, 
average (and hence marginal) delays in other cities are 32 percent of those for Santiago as a 
whole. Thus, weighting marginal delays in Santiago, other urban areas, and rural areas by their 
respective mileage shares gives a nationwide marginal delay of 0.022 hours per mile. 

Value of travel time. Reviews of empirical literature for the United States and some 
European countries recommend a VOT for peak-period auto travel of about half the market wage 
(e.g., Waters 1996, DOT 1997, Mackie et al. 2003). Based on average urban wage rates in BLS 
(2006), Table 1, this implies a U.S. VOT of $10/hour.  

To extrapolate to Chile, we multiply by the ratio of the Chilean to U.S. income (0.27) 
raised to the power of the VOT/income elasticity. Estimates of this elasticity for high-income 
countries are typically around unity (e.g., Wardman 2001, Mackie et al. 2003), which gives our 
preferred VOT for Chile of $2.7/hour. We also consider a VOT of $1.5/hour, which is consistent 
with current government practice in Chile (e.g., Ministerio de Planificación 2008).21  

Accidents 

According to police-reported data, in 2006 there were 1,652 road deaths in Chile, with 
pedestrians/cyclists and car/truck occupants, accounting for 55 percent and 41 percent of these 
deaths respectively.22 We make the common assumption that all pedestrian/cyclist deaths are 
external. Of the vehicle occupant deaths, we assume, as in the United States, that half of these 
are in single vehicle accidents, and represent internalized risks. To what extent injuries in multi-
vehicle collisions are external is unsettled. All else constant, the presence of an extra vehicle on 
the road raises the likelihood that other vehicles will be involved in a collision, but a given 
collision will be less severe if people drive slower or more carefully in heavier traffic. Following 

                                                 
21 Jara-Díaz et al. (2008) estimate the value of time (in general, rather than specifically for travel) at $2.9/hour using 
Chilean data. According to Luis Rizzi (personal communication, December 2008) some other unpublished estimates 
put the VOT for automobile travel in Chile at over $4.4/hour, which reflects the heavy concentration of car 
ownership and use among high-income groups. To the extent that these larger estimates are plausible, our preferred 
value should be viewed as conservative. 
22 Figures are from www.conaset.cl.  
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Parry (2004) (medium scenario), we assume that half of the remaining deaths in multi-vehicle 
collisions represent an external cost. 

Fatalities are valued using the VSLs for an immediate death, assumed to be 22 percent 
larger than the VSL for a fatality occurring with a lag (see above). This gives a total cost of $1.5 
billion or $2.7 billion.  

There are various other dimensions to accident costs that we include but, at least for 
Chile, these costs are small relative to those from pedestrian/cyclist fatalities (given the large 
share of these fatalities in total fatalities). Therefore, the precise assumptions made below are not 
that important. 

There were 6,515, 4,400 and 36,020 serious, less-serious, and light injuries in police-
reported road accidents in 2006.23 These injuries are not broken out according to 
pedestrian/cyclists and vehicle occupants, though we would expect pedestrians to account for a 
much smaller share of these nonfatal injuries (than their share in fatalities), given that a 
car/pedestrian collision is far more likely to cause a fatality than a car/car collision. We assume 
that 32 percent of non-fatal injuries are external (compared with 65 percent for fatalities).  

We value the personal suffering costs from nonfatal injuries using two sources. First, we 
take the personal cost of suffering from a serious, less-serious, and light injury from the 
corresponding figure for disabling, evident, and possible injuries in Parry (2004), Table 2, scaled 
by the Chile/US VSL in our preferred case (0.27). These costs are $0.023 million, $0.005 million 
and $0.004 million respectively. Adding up, and monetizing, external non-fatal injuries produces 
an additional external cost of $0.10 billion. Second, Rizzi (2008b) values serious, less-serious, 
and light accident injuries at $0.074 million, $0.018 million and $0.004 million respectively. 
These values combine medical costs and personal injury costs, though they are not decomposed 
in the data. Based on Parry (2004), Table 2, we assume that medical costs and personal injury 
costs account for 20 percent and 80 percent respectively of these figures. Adding up, and 
monetizing, external non-fatal injuries with these alternative personal cost assumptions gives an 
additional external cost of $0.18 billion. Splitting the difference between the two estimates gives 
our preferred external cost of $0.14 billion. 

                                                 
23Again, see www.conaset.cl. These figures are conservative as they exclude traffic accidents that are not reported to 
the police. In fact, non-fatal traffic injury data may not be very reliable, even in the United States (e.g., Miller 1997).  
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We assume that 85 percent of medical costs for all non-fatal injuries (including injuries in 
single-vehicle collisions, etc.) are external (they are largely borne by third parties, particularly 
government medical services).24 Again, we obtain the total external cost from valuing 85 percent 
of non-fatal injuries using the medical costs implied by Parry (2004) and by Rizzi (2008b) (in 
each case medical costs per injury are one-quarter of personal injury costs) and split the 
difference. This produces an additional external cost of $0.09 billion. 

Finally, we assume that 50 percent of property damage costs (from all accidents) are 
external, that is, borne by insurance companies, rather than individuals (through deductibles, 
non-insured accidents, elevated premiums following a claim, etc.). Data on traffic accidents 
involving property damage only (and no injuries) is unavailable: based on Parry (2004), Table 2, 
we assume the number of these accidents is the same as those involving light injuries. Property 
damages per accident class are also obtained from Parry (2004), Table 2, scaled by 0.27. Overall, 
we compute external costs from property damage at $0.04 billion. 

Adding up the above components gives a total external cost of $1.74 billion or $2.96 
billion. Dividing by total distance travelled by cars and trucks (from Table 1) gives an average 
external cost (across all vehicles) of $0.056 or $0.095 per mile. The external cost for a car is 
obtained by dividing this figure by the share of cars in total vehicle miles plus the share of trucks 
in total vehicle miles multiplied by 1.25 (which is the assumed ratio of external costs per truck 
mile relative to that for a car mile). Thus, we obtain the external cost for a car of $0.053 or 
$0.090 per mile.25 

 

                                                 
24 Medical costs per fatality are tiny relative to the VSL, and are ignored. 
25 Edlin and Karaca-Mandic (2006) develop an alternative methodology for quantifying accident externalities, based 
on a statistical analysis of how extra driving in the United States raises the risk of property damage costs for other 
drivers and insurance companies. Their estimates of accident externalities are substantially greater than those based 
on U.S. studies that use an approach similar to that above. In this regard, our accident externality assumptions might 
be conservative.  
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Road Damage and Noise 

We measure road damage costs by central and local government spending on road 
maintenance in Chile, which totaled $0.85 billion in 2006.26 We assume that all road 
maintenance expenditures in Santiago (21 percent of the total), and two-thirds in the rest of 
Chile, are due to vehicle driving (and that the remainder is due to weather, erosion, falling rocks 
etc.). After allocating a portion of these costs to buses and cars, we are left with $0.08 per truck 
mile.27  

Vehicle noise costs have been estimated by examining how proximity to traffic affects 
local property values. For heavy trucks FHWA (2000), Table 13, puts the (average) costs for 
urban and rural truck driving at $0.027 and $0.002 per mile, respectively. We multiply by the 
Chile/US real income ratio (0.27) to transfer these values to Chile and weight by the share of 
mileage in urban and rural areas (0.87 and 0.13 respectively) to give a nationwide external cost 
of $0.006/mile). 
  

                                                 
26 These figures were provided by David Noe and Rodrigo Terc from the Chilean Ministry of Finance. Implicitly, 
we assume that spending on road maintenance is optimal. If spending were sub-optimal our calculation would 
understate road damage externalities, and vice versa if spending were excessive. However, there is little basis on 
which to adjust for this. 
27 We assume the damage per truck mile is 1000 times the damage from a car or twice the damage from a bus mile 
(Porter 1999). The damage per truck mile is given by solving for x, where x(sT + sB/2 + sC/1000) = (total damage 
cost)/(total vehicle miles), and sT , sB and sC are the shares of truck, bus and car miles in total vehicle miles (bus 
miles were 3.0 billion in 2006). 
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Figures and Tables 
 

Figure 1. Excise Taxes on Gasoline and Diesel in Selected Countries in Year 2006 

 

Sources: SII (2008), IEA (2008) and other sources compiled by Javier Beverinotti. 
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Data and parameter values Automobiles Trucks

Initial fuel consumption, million gallons 819 898
Initial fuel economy, miles/gallon 30.0 8.0
Vehicle miles, billion 24.6 7.2
Initial retail fuel price, $/gallon 4.27 3.17
Initial fuel tax, $/gallon 1.46 0.37
Fuel tax revenue, $billion 1.19 0.33

Externalities from fuel combustion, $/gallon
local tailpipe emissions (varying with fuel use)

VSL = $1.12 mn 0.103 0.063
VSL = $2.15 mn 0.182 0.110

Carbon 0.070 0.084

Externalities from driving, $/vehicle mile
local tailpipe emissions (varying with mileage)

VSL = $1.1 mn 0.016 0.056
VSL = $2.2 mn 0.029 0.098

congestion
value of time = $2.7/hour 0.038 0.095
value of time = $1.5/hour 0.021 0.053

accidents
VSL = $1.4 mn 0.053 0.066
VSL = $2.6 million 0.097 0.121

noise 0 0.006
road damage 0 0.076

Fuel demand elasticity ‐0.50 ‐0.50
Milage to fuel price elasticity 0.50 0.60
Fuel economy elasticity 0.25 0.20

Sources. See text and Appendix C for documentation.

Table 1. Benchmark Data and Parameter Assumptions
(for year 2006 or thereabouts)
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Gasoline Diesel

Case 1: Benchmark parameters

Corrective fuel tax, $/gal. 1.82 1.69
Contribution of:

local tailpipe emissions 0.35 0.35
carbon  0.07 0.08
congestion 0.58 0.49
accidents 0.81 0.34
noise 0 0.03
road damage 0 0.39

Impact of corrective tax:
Relative to year 2006 tax rate

Percent reduction in fuel use 4.0 15.9
Percent increase in fuel economy 2.1 7.2
Percent increase in tax revenue  17.6 298.4
Welfare gain, $ million 5.9 94.1

Relative to zero tax rate
Percent reduction in fuel use 18.0 20.50
Welfare gain, $ million 157.7 164.8

Case 2: High global warming damages
Corrective fuel tax, $/gal. 2.51 2.50

Case 3: High VSL
Corrective fuel tax, $/gal. 2.97 2.31

Contribution of:
local tailpipe emissions 0.65 0.63
accidents 1.63 0.66

Source See text for corrective tax formulas and paramater assumptions

Table 2. Corrective Tax Computations

Source: See text for corrective tax formulas and parameter assumptions. 
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Gasoline tax, Diesel tax,
$/gallon $/gallon

Benchmark case 1.82 1.69

Initial fuel economy
Increased 20 percent 2.14 1.96
Decreased 20 percent 1.50 1.48

Local pollution damages
Increased 50 percent 2.01 1.93
Decreased 50 percent 1.62 1.49

Travel delay
Increased 50 percent 2.14 1.95
Decreased 50 percent 1.50 1.43

Value of travel time
Decreased from $2.7 to $1.5/hour 1.61 1.48

Accident externalities
Increased 50 percent 2.27 1.87
Decreased 50 percent 1.38 1.51

Road damage
Increased 50 percent 1.82 1.90
Decreased 50 percent 1.82 1.48

Magnitude of fuel price elastcity
Increased 50 percent 1.84 1.75
Decreased 50 percent 1.80 1.63

Fraction of fuel price elasticity due to reduced mileage
Gasoline 0.65, diesel 0.75 2.34 2.04
Gasoline 0.35, diesel 0.45 1.29 1.31

Table 3. Further Sensitivity Analysis of Corrective Taxes
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cost per
Health effect Automobiles Trucks effect

$ thousands

Acute mortality 83 70 1,432 or 2,752
Long‐term mortality 240 200 1,129 or 2,151
Hospital admissions 332 277 1.45
Emergency room admissions 3,377 2,814 0.18
Chronic bronchitis 515 429 52.7
Acute bronchitis 876 730 0.03
Asthma attacks 18,693 15,578 0.03
Work days lost 157,450 131,320 0.03
Restricted activity days and symptom days 538,010 448,230 0.01

Total health cost, $ million 400 351

Materials damage, $million 85 73

Total pollution cost, $million 570 511

Fraction of cost due to mortality 0.79 0.75

Pollution cost, US$/mile 0.04 0.15

Note Mortality effects are monetized using our lower VSL of $1 12 million

Table C1. Pollution Damage Calculations for Santiago

Source. Rizzi (2008a) and personal communication, Luis Cifuentes, December 2008. 

Instances of health effect

Note: Mortality effects are monetized using our lower VSL of $1.12 million. 


