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Abstract

We introduce a kernel-based estimator of the density function and regression
function for data that have been grouped into family totals. We allow for a
common intra-family component but require that observations from different
families be in dependent. We establish consistency and asymptotic normality
for our procedures. As usual, the rates of convergence can be very slow
depending on the behaviour of the characteristic function at infinity. We
investigate the practical performance of our method in a simple Monte Carlo

experiment.
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1 INTRODUCTION

Grouped or aggregated data occur in many contexts in economics. Data aggregated by family, by
region, and by other levels are often all that is available to the empirical researcher. If the object
of interest is the underlying individual relationship, then grouping can imply some consequences for
estimation and inference, depending on the model. Inference based on linear models is relatively
unaffected by grouping, since the grouping we consider is a linear operation. The slope parameters
of the aggregated model are the same as in the disaggregated model, and the usual least squares
estimators are consistent. The worst thing that can happen is some heteroskedasticity when the
groups are not of equal number, in which case one must correct the standard errors and/or improve
efficiency by weighting. However, nonlinear models and in particular nonparametric models, suffer
considerable problems in the presence of grouping, since the grouped data regression function can
have almost any relationship with the ungrouped regression function. Standard estimation procedures
are no longer consistent and require considerable modification.

We propose methods for estimating a nonparametric regression function and nonparametric den-
sity function based on aggregated data. We allow for a within ‘family’ component but assume that
the data are independent across families. Our estimators are based on the deconvolution methods
of Fan (1991), Fan (1992), Fan, and Masry (1992), Fan and Truong (1993). See also Horowitz and
Markatou (1996) and Horowitz (1998) for an application of these ideas. We establish consistency and
asymptotic normality of our methods. The rate of convergence depends on the details of the decay
rate of the characteristic function of the data, and can be very slow indeed. In section 2 we describe
the model and our estimator. In section 3 we give the asymptotic properties of our estimators in
the two leading cases concerning the behaviour of the characteristic function. In section 4 we briefly
discuss some practical issues, while in section 5 we give the results of some simulations. The appendix
contains our proofs.

We use = to denote convergence in distribution, and — to denote convergence in probability.
Let ||A|| = tr(ATA)Y2 for any matrix A.

2 MODEL SPECIFICATION AND ESTIMATION
We suppose that there is some latent data {(Y;;, X;,) :4=1,... ,n; j =1,...,r;} that satisfies
Yi, = Yoi; + ;5 Xiy = Xoi; + &4 (1)

where both (Yy;;, Xoi;) and (n;,¢;) are i.i.d. and (n;,¢;) are independent of (Y, Xog,), and r; is a
positive integer perhaps random but independent of all other random variables. However, we only

observe the grouped or aggregated data



T

j=

j=1

This kind of observation rule arises quite often in household surveys where much information is ob-
tained only at the household level; see Chesher (1997) for a recent example. Note that the error
component representation (1) allows (Y;;, X;;) to be dependent across 4; with i fixed, e.g., consump-
tion levels within family may be mutually dependent due to common family specific characteristics,
though (Y, X;) (e.g., aggregated consumption levels for different families) are assumed to be inde-
pendent across i. Note also that this sort of grouping is different from that considered in Amemiya
(1985, p.275) where there are a small number of ‘families’ of large size; we have a large number of
families of small size. In many datasets, the ‘family size’ r; is not the same across units. Nevertheless,
the number of different family sizes is small relative to the total number of units.

We shall suppose that r; € {ry,...,rg, some finite integer R} and that the number of families of
each size r;, denoted n;, satisfies n; — 0o. We concentrate on the central case where the sample sizes
are of the same order of magnitude. With these assumptions we are able to stratify the data according
to common family size and effectively suppose that family size is constant for some purposes.

Perhaps the main questionable assumption we have made is that the aggregation is not system-
atically related to the data distribution itself. To allow for such possibilities requires a model of the
relationship between say household size and the covariates, which is beyond the scope of this paper.

Below, for notational simplicity, we sometimes denote (Y}J.,Xij, YOij,Xgij,Vi, X, 7ri,m;) as
(Y, X, Yy, Xo,Y, X,7,n). We shall stratify according to family size, and do our calculations on the
homogenous units to obtain consistent estimates. We wish to estimate quantities such as the marginal

density fx(-) and joint density fy x(-) of the individual data (Y, X'), the regression function

EY|X =z) =m(x), (3)

or various functionals from the conditional distribution of Y given X using the available sample
{(Yi,X;) : i = 1,...,n} and without imposing functional form restrictions on fy x(-). If m(z) =
o + Bz, then E(Y|X = x) = ra + (B, i.e., the grouped data regression function is essentially the
same as the ungrouped regression. In general, this correspondence is not present and we must use
more sophisticated techniques to extract the ungrouped distribution from the grouped data.

Note that

= )= gX—(x) whnere
gx(x) = / yfvx(y, z)dy. (5)

Let ¢x,(t) = Elexp(itXo)], ¢x(t) = Elexp(itX)], ¢x(t) = Elexp(itX)], and ¢.(t) = Elexp(ite)]
denote the characteristic functions. Expressions (1) and (2) imply that
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Ox(t) = ¢x,(t)e.(t) (6)
ox(t) = [ox,(1)] ¢(r) (7)

by the convolution theorem. Similarly, letting ¢y, x,(s,t) = Elexp(i(sYy + tXo))], ¢y x(s,t) =
Elexp(i(sY +tX))], ¢yx(s,t) = Elexp(i(sY +tX))], and ¢, .(s,t) = Elexp(i(sn + te))], we have

¢Y,X(Sv t) = ¢Y0,X0 (Sv t)¢n,s<sv t) (8)
W,Y(Sa t) = [ng,X(Sv t)} ' gbn,z-: (’I“S, Tt)' (9)
If we knew ¢, (t) and ¢, _(s,t), then we would obtain the useful relations:
_ o]
¢X (t) - _¢5 (’I“t):| ¢5 (t)
[ eex®) 1
by x(s,t) = m] bye(8,1),

which determine ¢ (f) and ¢y x(s,t). The trick is really how to eliminate the nuisance functions
¢.(t) and ¢, (s,t). We show how to do this in the next subsection by using two different family

size data sets. Suppose for now that we have estimators 55(15) and an’s(s,t). We can estimate the

characteristic functions of the grouped data by the empirical characteristic functions

ox(t) =~ explitX)) (10)
orx(sit) = =~ e(i(sY; +1X,) (1)
and hence
- ECIRE
x(t) = |= . 12
Px(t) _ ¢€(ﬁ>] 9.(t) (12)
o 1/r
- Py x(t) ~
v x (8, = |="— melS:t). 13
Py x(s,1) _¢n75(rs,rt)] Ppels,t) (13)

We then apply deconvolution to these to obtain the density estimators

Felo) = 5= [ ospl-ite)on(ih)ax () (1)
Fuxtnr) = o [ [ exnlcitoy + te)duloh )bt isat, (1)




where ¢ (+) and ¢ (-, -) are the Fourier transforms of the kernels K (-) and K (-, -) respectively and h is
a bandwidth sequence tending to zero with sample size n. Finally, we estimate m(z) = E(Y|X = x)
by

m(x) = QX(QZ) where 16
( ) fx(@’ ( )
ix(@) =[xl o)y (17)

In practice, the numbers (14)-(17) can be complex, so we shall take the real part only [the imaginary
parts are typically small].

REMARKS. 1. For each different family size r we have estimates of the desired quantities. One can
then aggregate the estimates to improve efficiency, for example by minimum distance. Let m,.(z) be

the estimate of m(x) based on families of size r, where r takes R different values. Then let m(z) be the

value of § that minimizes the quadratic form (m — 04)TV (i — 0i), where i = (M, (), . .., My (x))T
and ¢ = (1,...,1)T, while V is some positive definite weighting matrix. The explicit representation
of m(x) is

m(x) = (TVi) i Vin.
By choosing V' to be the inverse of the asymptotic variance of the unrestricted estimator the resulting
estimator has minimal variance within this class of estimators. However, the effect on bias is uncertain
and this estimator may even do worse according to mean squared error for some data distributions.

2. In some datasets, some of the variables are observed ungrouped. The ungrouped regression
model is Y;, = m(X;,) + u;; for error term w;; that satisfies E(u;;|X;;) = 0. Suppose that X,

J

j=1,...,r are observed, but only the grouped Y; data are observed. Then we have
Y, = Zm(Xij> + a, (18)
j=1

where u; = » 7 u;,. If also E(u;;|X;,) = 0 for [ # j, then this is a standard additive nonparametric
regression model with the additional constraint that the function m is the same across j. One could
estimate the regression function by backfitting or marginal integration as described in Linton and
Nielsen (1995) and Mammen, Linton, and Nielsen (1999) or by series estimation (see Andrews and
Whang (1990)), which importantly involves no Fourier inversion. It can be expected that the rate
of convergence of these estimators would be the same as that of one-dimensional nonparametric
regression, which would be faster than we are able to obtain in our setting. Even when r varies
substantially with ¢, one can still do better than the Fourier inversion method by using the recently
developed methods of Linton, Mammen, Nielsen and Tanggaard (1998) for estimating yield curves.

When Y, , j =1,...,r are observed, but only the grouped X, data are observed, it does not seem

possible to obtain a method that bypasses the Fourier inversion, and we seem stuck with the slow
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rate of convergence in this case too. This is likely to be the case also where some of the covariates

are grouped and some are not.

2.1 Estimation of ¢. and ¢, .

We give two alternative methods for estimating the error characteristic functions. The first method is
suggested by work of Horowitz and Markatou (1996) and does not require functional form restrictions.
The second method is based on a semiparametric restriction on the distribution of X, namely that
the distribution of the errors e, 7 is parametric. For simplicity we just describe the methods for the
problem of estimating ¢,, but similar comments apply to the estimation of ¢, ..
Suppose that there are at least two distinct family sizes, call them r; and 7. Then, we have
(Fxn (D™ [go(rit)] /™

P(t;rl,m) = [cbyrz(t)]l/” - [%(7“215)]1/”2’

)

where ¢, (t) denotes the characteristic function of X from families of size r1, and likewise ¢, (t).
The left hand side can be consistently estimated at rate root-n, at least for some range of ¢, by the
empirical version of P, which we call P,,. Now suppose that ¢ is symmetrically distributed about

zero, in which case ¢, is real-valued. Then we can write
1 1
In Pn(t, T1, 7’2) >~ r—mg(rlt) — r—li5<7’2t) + Un(t, T1, 7’2),
1 2

where

P (t;r1,7m2) — P(t;71,72)
P(t;r1,72) ’

while k.(t) = In ¢_(t) is the cumulant generating function of €. Now let

U (t;71,72) =

JIn
0.(1) = exp(Re(1)), Re(t) =Y _a;t/,
j=2
where J,, is some truncation sequence, and the ‘parameters’ a;, 7 = 1,...,J,, minimize the least
squares criterion function
> {In Poltere,ra) = > a(ri ™t =i HH),
=1 j=2

where t;, ¢ = 1,..., L,, are a grid of points. We have imposed the restriction that x.(0) = .(0) = 0,
the second of which follows from the symmetry assumption. The above procedure is similar to one
proposed in Horowitz and Markatou (1996, pp 162-163), and can be expected to be consistent at
the usual rate of convergence of nonparametric smoothing methods [which is faster than the rate
of convergence of our deconvolution estimators|, provided J, goes to infinity at a certain rate. The

restriction to symmetric errors can also perhaps be relaxed as in Horowitz and Markatou (1996).
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Instead suppose that the characteristic function of € is known except for finite dimensional vector
0o, i.e., ¢.(-) = ¢.(-,00),where the function ¢_(-,6) is smooth. In this case, one can compute 8 to

minimize the criterion function

Ly

> Py (t) — 7 (4, )],

=1
where 7 (tg, 0) = ke(r1t;0)/r — %/ﬁz_:(T’gt; 0)/ry. See Beran and Millar (1994) and Knight and Satchell
(1997) for discussion of similar methods. Under some regularity conditions, we can expect 6 to be
root-n consistent and asymptotically normal.
In the sequel we shall assume a uniform rate of convergence of our estimators of ¢, (t) and ¢, _(s, 1),
which can be expected to pertain under some regularity conditions as already discussed.
AsSUMPTION E1. There exists an estimator ¢_(t) such that for j = 0,1,2,3 we have
oI oI

—=0.(t) — 5. 0)] = Opln )

sup
teR

for some o with 0 < o < 1.
AssSuMPTION E2. There exists an estimator ggn,a(s, t) such that for j + k£ =0,1,2,3 we have

aj—i—k N aj+k: o/
Oskti ¢n,5<37t) - wqbn,s(&t)‘ = Op(n )

sup
(s,t)ER2

for some o with 0 < o < 1.

3 ASYMPTOTIC PROPERTIES

In this section, we analyze the asymptotic properties of the nonparametric density estimator (14) of
fx(z) and regression estimator (16) of m(z). The properties depend crucially on the smoothness of
the densities fx(x) and fy x(y,«). The smoothness of a density is related to the tail behaviour of
the characteristic function. That is, the faster the decay of the characteristic function, the smoother
its corresponding density. Below, we consider two types of characteristic functions: characteristic
functions with algebraic decay and characteristic functions with exponential decay. In the literature,
the former type is often referred to the case of ordinary smooth distributions and includes gamma
and Laplace distributions, while the latter type is referred to that of super smooth distributions
and includes normal and Cauchy distributions and their mixtures among others. Our theoretical
development is similar to that in Fan and Masry (1992). The main technical difficulty we have is the

nonlinear way in which ¢+/(t), for example, enters into (14).

3.1 Case I : Characteristic Functions with Algebraic Decay
3.1.1 Density Estimation

ASSUMPTION A:



(i) ox, (7 — A1, ¢ (0)t% — A, |¢ly, ()P = O(1) and |¢L(¢)t%*| = O(1) as t — oo for
some constants A; # 0, As #0, §; > 1 and §, > 1 with (r — 1)3, > 1/2.

(ii) ¢x,(t) # 0 and ¢_(t) # 0 for all ¢ € R.

(i) ¢x(+) is a symmetric function with & + 2 bounded integrable derivatives, ¢, (0) = 1 and
b (t) =1+ O(|t|*) as t — 0 for some k > 0.

(V) [° [pr @) [t VP dt < oo, [% |¢h ()] [H" VP dt < 0o and [ ¢ (8 |27 dt < oc.

(v) fx(-) is k-times continuously differentiable with bounded derivatives.

REMARK. Assumptions A(iii) implies that the kernel function

Ku) = — / " expl(—itu)oy (1)t (19)

27 J_o

is a real-valued function integrating to unity and k** order, i.c.,

/ W K(u)du =0for j=1,... k—1, / |ukK ‘du<oo.

—00

Define
o2 (z) = _1h_27"_1)’61_1af(x), where (20)
oy fx(@)r?@ 212018,
oi(z) = W 3 [P ()] I2] dt. (21)
Let -
:/ K(u)fx(x — hu)du (22)

be the convolution of K and fx. The asymptotic normality of the density estimator is established in

the following theorem.

Theorem 1 Under Assumptions A and E1, (a) if nh™x{Zrbi/e; 2B241)/a; Cr6i+26,+1)} o0 and
pl=ep2r=D8-1 0, then
fx(z) — fx(2)
On1 ()

and (b) if moreover nh?T—VAIT2RFL () then

Fx(z) — fx(@)

On1 ()

= N(0,1),

= N(0,1).



REMARK. The term f%(z) can be expanded in a Taylor series expansion to give f%(x) =
fx(z) + O(h*). The mean squared error of fy(z) is thus O(h%*) + O(n~ h=20—DA1-1): when h
Y/ Q=18 42641) thig §g O (= 2/ C0r-1B1+2k+1))

Let

l'—y]‘

an:—Gn< h )forjzl,...,n, (23)

where

G,lz) = — exp(—itx )
= mr o0 P )[%(t/h)](“”/r (. (rt/ )"

Since we can show that o2, (x) = n~'var(Z,1)+o(1), we can estimate the asymptotic variance o2, (z)

L Oxot/n) o)

consistently [in a relative sense| by

o) = 5 S~ Tl (25)
where
Zj = %@n <x _h7j>, (26)
Zn = %:1 Z,;, and (27)
Go(z) = % " exp(—ite)— %@%“{ h) et (28)
- oxit/m)| T [Burt/m)]

Consistency of 52, (x) is established in the following lemma:

Lemma 2 Under the assumptions of Theorem 1(a), if nhlGr=28148242l/a _, o6 then

A

~—

nl(m
()

Theorem 1 and Lemma 2 now combine to give:

Q

2.

Q

Corollary 3 Under the assumptions of Theorem 1(b) , if nhl(r=281+8242/ _, o6 then

fx(@) = fx(@)

8n1 (.’13)

= N(0,1).




3.1.2 Regression Estimation

For simplicity of presentation, we take the kernel function K (u,v) to be the product kernel K (u)K (v),
which implies

Orc(s,t) = dre(8)dxc (). (29)

(In treating the case of characteristic functions with exponential decay, however, we find the expres-
sion of the general kernel K (u,v) is more convenient to deal with.)

Let fx(-) and fyx(y, ) be the marginal and joint densities of X and (Y, X) respectively and let

|(s,1)|| = v/s% + t2. Define also L
vy(z) =F <Y X = :L‘) . (30)

ASSUMPTION B:

(D) byox0(5: D) 1(5, )" — Buy (5,0 [(,0)[1” — By [Py x, (5,8) /05| | (s, 1) = O(1)
and |9¢, . (s,t)/0s’| 1(s,8)]|”2™" = O(1) for j = 1,2 and 3 as ||(s, )| — oo for some constants
By #£0, By #0, py > 1 and py, > 1 with (r — 1)p, > 3/2.

(il) ¢y, x,(5,t) # 0 and ¢, (s,t) # 0 for all (s,t) € R

(i) ¢x(-) is a symmetric function with & + 2 bounded integrable derivatives, ¢, (0) = 1 and
b (t) =1+ O(|t|*) as t — 0 for some k > 0.

(iv) [° [ g (t)/0t] [t|*VP1H02 gt < oo for j =0,1,2 and 3.
(v) vx(+) is continuous at .

(vi) gx(-) is integrable and gx(-) and fx(-) are both k-times differentiable with bounded continuous
k™ derivatives.

(vii) EYP < oo and En® < oco.

Define )

Pole) = A (31)
where

2(py—1) 2
2(z) = <( ”;< / [/ / / exp(—i(sy + t2))bxc(5)bxc(t) (5, )|~V dsdedy]|  da.
(32)

bet Ri(1) — Rinle)

Ro() = , (33)

fAX(iE)



where

Ry () = m*(z) —m(z) (34)
Ros(z) = fx(z) = fx(@)m(z), (35)
m*(z) = /_ 9x(x — hu) fx(z — hu) K (u)du, (36)

and f%(x) is as defined in (22).

The asymptotic normality of the regression estimator is established in the following theorem.
Theorem 4 Under Assumptions E1,E2, A(i)-(ii) and B with p, > 3y, (a) if nhm@{2rer/a (2p2+3)/a, 2ro1+205+3}F _,
0o and n*~ 23 0, then

m(z) — m(z) — Bn(z)

— N(0,1),
p— (0,1)
and (b) if moreover nh?r—VPF2k+L (0 then
M) =m@) .y 1),

Ona(T)
REMARK. The convergence rate is similar to that in the density estimation case.

For j =1,...,n, let

. ]_ 0 y — ?j xr — 7]‘
Z"J - h2 - yGn < h 9 h ) dy
1 r—X T — Yj
= YhK ( . )+Kn2( . >, (37)
where
/ Goly,2)dy (38)
Koo(z) = / YGa(y, 7)dy and (39)

> . D (5,00, .(2, 1)
Gnly,z) = ——— exp(—1i(s T /r 17qud. 4
) = g | o

Since 2,(z) = n~tvar(Z,1) + o(1), we can estimate o2,(x) consistently by

Gl —HQZ{M 7.} . (41)

where
= . 1 RPN Yy — 7]' r — Yj .
Znj = e /_oo yG, < PR ) dy with (42)
. 1 e | Ok (5,1)8,: (3, 1)
Gn(y,z) = (ZW)QT/ / exp(—i(sy + tx))— K (r—1)/2’ Ah h 1/Tdsdt. (43)
oo /oo Grx@ b [ D]

10



Lemma 5 Under the assumptions of Theorem 4(a), if nhlGr=2ptetdl/e _ o0 then

Combining Theorem 4 and Lemma 5, we have:

Corollary 6 Under the assumptions of Theorem 4(b), if nhlGr=2piteatdl/e o6 then

m(x) —m(z)
52 () = N(0,1).
3.2 Case II : Characteristic Functions with Exponential Decay

We next consider the case in which the tail of the characteristic function decays exponentially fast.

3.2.1 Density Estimation
AssumpTIiON C:
(i) Aolt* exp (a0 [t”) < |6, (8)] < Bo |1 exp (—ao[t]) and Ay |1 exp (~as [1I°) < I6.(1)] <

B |t|”31 exp (—a1 |t|ﬂ) as |t| — oo for some positive constants ag, ai, 3, Ao, Bo, Aj,and By and

constants 3, and [;.
(ii) ¢x,(t) #0 and ¢.(t) # 0 for all ¢ € R.
(iii) ¢ (t) has a finite support (—d, d).
(iv) There exist positive constants §, By, and [ such that |¢(t)] < Ba(d —t)! for t € (d — 6, d).
(v) ¢x(t) > Bs(d—t)! for t € (d — 8,d), where Bs is a positive constant.
(vi) Either I(t) = o(R(t)) or R(t) = o(I(t)) as t — oo, where R(t) and I(t) are real and imaginary

parts of ¢y, (t)}r_l ¢.(rt)/¢.(t) respectively.

REMARK. Assumption C(i) assumes that the density functions of X, and ¢ are super smooth. It
implies that the density functions are bounded and have bounded derivatives of all orders. Assump-
tion C(iv) describes the behaviour of ¢, (t) in the neighborhood of ¢ = d. Assumptions C(v) and
(vi) are used to develop lower bounds. Assumption C(vi) says that, at the tail, the characteristic

function [py (£)]"" ¢.(rt)/d.(t) is either purely real or purely imaginary.

Define
olg(x) = n”tvar(Zn), (44)

.

where Z,,; is as defined in (23).
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Theorem 7 Suppose Assumptions E1 and C hold and [aor — ayr?] v+a > 1/2. Ifh = d (yIn n)fl/ﬂ for

some 0 < v < min{5>-, ;;—Ofﬁ}, then

Fx(@) = fx(x)

O'ng(.'lﬁ)

= N(0,1).

REMARKS. 1. As in the case of ordinary smooth distributions, the term f%(z) can be expanded
in a Taylor series expansion to give fx(z) = fx(z) + O(h¥). Using the result of Lemma 15 (a), the
mean squared error of fy(z) is thus

O(h™) + O (n AP0 (1n(1/R)) " exp 2 {ao(r — 1) + ar(r = D)} (d/R)°] ).

When h =d (yIn n)_l/ A , the rate of convergence is very sensitive to the value of +; when ~ is large,
the bias is a negligible term compared to its variance and, when + is sufficiently small, the variance
will be a small order term in comparison to the bias. As in Fan(1991), we expect that the optimal
rate of convergence in our case is also O((Inn)~¢) for some ¢ > 0 which is very slow for moderate
sample sizes.

2. Contrary to Theorem 1 (b), the asymptotic bias in Theorem 7 does not vanishes even if A is
sufficiently small as long as v < 1/(2agr). The latter condition is needed to make the remainder term
of the Taylor expansion asymptotically negligible, see equation (128) in the proof of Theorem 7 in
Appendix. For the desired result (f%(z) — fx(z)) /ons(z) 2 0, however, we need v > 1/(2a0(r —1)).

As an estimator of 025(x), we consider

n

Bule) =5 > { 2 -7} (45)

Jj=1

where le and En are as defined in (26) and (27) respectively. Consistency of 5-4(z) is established

in the following lemma:

Lemma 8 Under Assumptions FE1 and C, if h = d(y lnn)_l/ﬂ for some 0 < v
<2 2a0(r — 1) +ar{(2r — )rPt — 14 7“’1}}71, then

3%3(515) LA

O'n3(ZL‘>

Theorem 7 and Lemma 8 now combine to give:

Corollary 9 Under Assumptions E1 and C, if h = d(yIn n)_l/’B for some 0 <
< 2 [2a0(r — 1) + a1 {(2r — 1)rP~t — 1+ r~1}] ! then

fx(@) = fx(@)

8n3 (.’13)

— N(0,1).
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3.2.2 Regression Estimation

AssuMPTION D:

@) Doll(s, )P exp (<bo [(s.)]°) < |dyxo(s.0)] < Boll(s, )1 exp (=bo [[(5,1)]”) and
Dy [|(s, )" exp (=ba [| (5, )[17) < |y c(s,0)] < Enll(s,0)[1” exp (=by [[(s,8)]]") as || (s, 8)]| — o0
for some positive constants by, b1, p, Dy, D1, Ey and E; and constants p, and p;.

(il) ¢y, x,(5,t) # 0 and ¢, (s,t) # 0 for all (s,t) € R
(iii) ¢y (s,t) has a finite support {(s,¢) € R2 : ||(s, )| < d}.

(iv) There exist positive constants ¢, Dy, and m such that ‘51((3, t)‘ < Do(d—||(s,t)]])™ for ||(s,t)|| €
(d—6,d).

(v) 5K(s,t) > Ds(d —||(s,t)]|)™ for ||(s,t)|| € (d — 6,d), where Dj is a positive constant.
(vi) 5K(s,t) is symmetric in (s, ), i.e., 5K(s,t) = 5K(—s,t) = 5]((3, —t) = 5K(—s, —t).

(vii) Either I*(s,t) = o(R*(s,t)) or R*(s,t) = o(I*(s,t)) as ||(s,t)|| — oo, where R*(s,t) and I*(s,t)
are real and imaginary parts of [QﬁYO, X, (55 t)r_l Gy e(rs,rt) /¢, (s,t) respectively.

(viii) The support of Y (i.e., Y ) is bounded.

REMARK. The boundedness of the support of Y can be restrictive in some cases. This assumption,

however, simplifies the proof of Theorem 10 below, see proof of Lemma 16 (c¢) in Appendix.

Let
Zoy = % yG (y —h7]7 x _h7J> ay
_ Y]%Knl (m _hyj) + Ko (x _hyj> , (46)
where
Kpi(z) = yGn(y,w)dy, (47)
Kno(z) = /y YGnly, )dy (48)

o2,(z) = n"tvar(Z,), (49)

13



where Z,,; is as defined in (46).
Let

a* = ag(r—1)+ay(r® — 1) and
b* = bo(’l“— 1) +bl(’l°p— 1)

Theorem 10 Suppose Assumptions E1, E2, C and D hold and p > (3, b* > a*, [byr? — bor]y <
a—1/2, (a*—b*+a1)y < a/2, (a*—b*+aer)y < 1/2, (a*=b*+a;rP—aer)y < a—1/2, (a*—b*—aer)y <

(a —1)/2, for some ﬁ << 2b10T. If h = d(ylogn) ", then

m(x) —m(z) — Rn()

Ona()

= N(0,1).

The asymptotic variance 02,(x) can be consistently estimated by

where

with Gy (-, -) as defined in (43).

Lemma 11 Under Assumptions E1, E2 and D, if h = d(vlogn)fl/” for some 0 < ~
<& [2bg(r—1) + by {2r —1)rr ! =14 r 7 then

824(37) p
‘7%4(37)

Combining Theorem 10 and Lemma 11, we have:

Corollary 12 Under the conditions of Theorem 10 and Lemma 11 ,

m(z) — m(z) —

8n4(a:)

Bn(®) . No,1).

4 BANDWIDTH SELECTION

We have developed the theory necessary to conduct inference on the functions fx and m in both
ordinary smooth and super smooth cases. For practical application it is important to have some
method for choosing the bandwidth parameter h, since this quantity determines the finite sample

properties of our estimators. One method is based on estimating the integrated mean squared error;

14



this requires consistent estimation of the derivatives of fx and m, unless some parametric specification
is adopted like in Silverman (1986). The alternative method of cross-validation, based on minimizing
the sum of squared residuals from the leave-one-out version of m, is very time consuming here. If one
could find the equivalent penalty function to apply to the sum of squared residuals from the original
m, then this method might be feasible [see Hérdle (1991) for an exposition of the penalty function
method in standard nonparametric regression|. However, since our estimators are all nonlinear this
situation is not covered by existing theory to our knowledge. In our simulations we have reported
results for a range of bandwidth values; this is a popular approach in applied work. Nevertheless,
the development of automatic bandwidth selection methods remains an important and interesting

line of research to be pursued in the future.

5 MONTE CARLO

5.1 Design

We suppose that X;, = Xo;; + &;, where Xy;; and ¢; are mutually independent with densities px,(-)
and p.(-) respectively. Let Yy;, = u(Xo;;) and Yy, = Yg;; + 1;. Then, for example

fx = / Pe(@ — 2)px (2)d2

m(x) = B(Y,|X, =) = B(u(Xo,)|X,, = o)

= B, e =)= LR

We use Normal, Uniform, and double exponential distributions for p. and for px,, which combined
with specifications for g [we choose linear and quadratic functions, that is, pu(z) = ¢; + ¢z and
pw(z) = ¢1 + cox + c3x? for some parameter values ¢;] gives the functions f and m, which are our
focus. The calculations to obtain f, m are quite complicated to do by hand but have been obtained
using the computer program maple.

In the normal case, Xo;;, Yo;, are generated from N (0, 1) and &;,n; are generated from NV (0,0.1).
In the double exponential case, we generate Xo;;, Yo;, with variance 0.5 and ¢;, 7, with variance 0.05.
In the linear case we use ¢; = 0, ¢, = 1, while in the nonlinear case we use the same cq, co, and take
c3 = —0.1. We have considered r = 2, 3.

We use the Product Kernel K (u,v) = K (u) K (v), which implies that by (5,1) = o (s) pg (t) .
We use two different kernels: (i) Four fold uniform kernel (used in Horowitz); and (ii) Normal kernel.

For bandwidth we have taken

1
h=cp*xsxn 12

=

and h = ¢y *sx (logn)~
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in the case of ordinary smooth and super smooth densities, respectively, where sx is the sample
standard deviation of the variable X, and c¢j, is a constant. We examine the performance of our
method for a range of values for c¢,.

We tried three different sample sizes n = 100, 250,500 with 100 replications, and 30 evaluation
points in the interval (—3,3). We present truncated integrated mean squared error (IMSE) for the
tables and the truncated ratio of IMSE [which is calculated by normalizing the mean squared error

by the square of the target function].

5.2 Results

Density estimation works very well for any kind of distribution (even in the Gamma, Chi-square,
exponential, uniform). Linear function estimation and nonlinear function estimation also work rea-

sonably well provided the bandwidth is well-chosen.

6 CONCLUSIONS AND EXTENSIONS

We have shown how to estimate the density and regression functions of individuals from aggregated
data. Extensions to multiple covariates and to estimation of derivatives are straightforward. As
Horowitz and Markatou (1996) point out, these methods are best applied to very large datasets.
However, our simulation experiments show reasonable behaviour for sample sizes of 500 provided the
bandwidth is chosen appropriately.
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Below, we let C; for some integer j > 1 denote a generic constant. (It is not meant to be equal in
any two places it appears.) To simplify notation, welet [ and [[[ denote [*°_ [ and [T [% [*
respectively, and we drop the subscripts on ¢ and @, so that we write (t) for ¢.(f). The proof of
the main results in the text uses the following lemma that slightly extends Lemma 1 of Fan (1991)

to the case where v(-) is any integrable function:

Lemma 13 Suppose that Q,(-) : R — R is a sequence of functions satisfying
@Qn(u) = Q(u) and sup |Qn(u)| < Q" (u),

where Q*(u) satisfies
/ Q" (u)du < 0o and lim |u@*(u)| = 0.

U— 00

Suppose v(-) : R — R is an integrable function continuous at x. Then for any sequence h, — 0, we

nlggohin . Qn (xh_nu) v(u)du = v(z) /OO Q(u)du

ProoOF OF LEMMA 13. Let 6 > 0 be a constant. We have

L[ 52) e o

have

< [ hte—w - vl (1) du bl [ a0 - el
< I‘B&}ﬁv(a: —u) —v(x |/ Q" (u)du + 5‘u|s>1;1/)hn [u@* (u |/ u)| du (51)
+o(z)] . Q" ()| du + [v(x)] ‘/_oo [Qn(u) — Q(u)] dy‘-

By dominated convergence theorem and the assumptions, the last 3 terms in (51) tend to zero as

n — oo. Then, let 6 — 0 to have the desired result. [ |

ProoF or THEOREM 1. By a two-term Taylor expansion, we have

Fil) — fx() = 5= [ exp(-ita)on () [B)ox(th) — o(0)]di

2m
R dhB) [ Ol exl)
o p(—it )[(pXO ®)]" 1{@(%) w(rt)}dt

1—7’ (1 — w) exp(—itx) P (th)P(t) {af@) _ 9=(0) }zdwdt
/ / P [g?aw(t

o 21 p(rt) ()

Aln + A2n + A3n> say, (52)
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where

O =200 TN B0 o)

Consider Aj,. By rearranging terms, we have

A = 5= [ expl-ite)o, (0(0) x(eh) — 1)t

o _¢y_<t>+w{$y<t> _@(t)}.

+i / " exp(—it) b, () (th) [B(t) — () di
= Al + A7

in>

The convolution theorem implies

/ K(u)fx(x — hu)du — fx(x)
= fx(@) = fx(z).
Therefore, for part (a) of Theorem 1, it suffices to establish the following results:

ok

1n ﬁ) 07
on1(x)
A
22— N(0,1)
O'nl(.'lﬁ)
and A
3n LO
on1(x)
The result (55) holds straightforwardly since we have
1
AT < — dt - o(t) — p(t
A5 < o [ 1ok(olde s B() — (o)
= Op( _a/zh 1)

using Assumptions E1 and A(iv) and hence A% /o, (z) = O, (n1=/2p0r—181=05) = 5 (1).
Next, we verify (56). We first note that
~ 1
su t) — ox(t ‘ = O0p(—=
sup |Gre(t) — dxc(t)]| = Oyl =)

by Chebyshev’s inequality. We have

[ . P (th)pt) [+
Agy = — exp(—itx — ox(t) — ox(t) ¢ dt
T R O PaTS) g 1710~ 50}
1 * . P (th) ~ ”
— exp(—itz rt) — (1)} Ox(t) — ox(t) ¢ dt
g |, (i) o B (3(01) o0 {0 — o)}
> | qbK(th)%X( Helt) -
— exp(—itx rt) — o(rt)} dt
o [ e >[¢X0(m bl — ()

. * *x Hokok
- A2n + A2n A2n )
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We first show that AjF and A5 are asymptotically negligible in the sense that both A%* /o, (z) and
A5* Jon1(x) are 0,(1). Note that

n

. 1
A2n = gZ(Zn] - EZ”j)a

i=1
where Z,,; is as defined in (23). By Assumption A(i), there exists a large (but fixed) constant M > 0
such that for |t| > M,
A A
ox, (07| > KL () > 121
Therefore,

/°° 6 (1)) i
oo |y (t/0)] Lo (rt /1)

Mh 00 (r=1)B81+82
0 |ox,(t/W)|" lp(rt/h)] mn AT Ag | B
r+1,.0, o]
< oup—— o) T e N [ A
miny < [dx, (8)] " ming<par o (t)] A Az o
— O(h_(r_l)ﬂ1_/32>‘ (60)
This result implies
L[ |9k (2)] ~ ~
gl < o | | dt - sup () — (1) - sup |3 (t) — bt
Al = amm L amm e LR ext) —oxld
= Op(nfl/Qn*a/Qh*(Tfl)m*ﬂz*l) (61)

using Assumptions E1 and (58). Therefore, A% /0,1 (7) = O,(n~%/2h=P271/2) = o,(1). Similarly, we
have

. [ (t)] |o(t/R)] .
A < Ch= dt - ) — ot
| < / (D) Stgﬂlglw() ©(t)]

= Oy(n 7, (62)

where the first inequality holds with probability tending to one using (58) and Assumption El
and the equality holds by Assumptions E1 and A(iv). Therefore, we also have A}*/o,1(x) =
0,(n1=®/2p(r=1)81=05) = ¢ (1). To establish the asymptotic normality (56), it now suffices to verify
the following Lyapunov’s condition: i.e., for some ¢ > 0,

E|Zy — EZy "

nd/2 [var(Zp, )| /2

— 0as n — oo. (63)

Let
U, () = Pk (t)p(t/h) (64)

(6, (t/R)]" " (rt/h)
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By Fubini’s theorem and the convolution theorem, we have

- / / exp <—zt<x - ))\Ifn(t)fy(u)dtdu
= /Oo exp< zth> UZ exp (t%) fy(u)du] U, (t)dt

= 5 e (it oxOoxnd

2rr

= %/oo K(u)fx(z — hu)du — %fx(iﬁ)a (65)

where the last convergence holds by Lemma 13. By Assumption A1(i), we have

7P
At
Furthermore, by Assumption A(i), there exists a large (but fixed) constant M > 0 such that for
|t| > M, we have

A=Ay, (1) — P ()t 1P (66)

A A
o 00 > B o] > Eeb o) <214,
Therefore,

R =DBg, (1)) (67)

Br—1)8; PR .
: P — 1(|t] < hM) + ——— [ox ()] [t|"7 1(Jt] > hM).
min <y |¢x0 (t)‘ minp<yar [o(2)] | Ay

For any ¢ > 0 and for all h < /M, we have

)(T 1)8; 2T+1 Ba

(r-1)8,
(|t <) + AT [ox ()] 1]

= A(t). (68)

(r=1)B4
@] < (o

Since A(t) is integrable by Assumption A(iv), we have

1 oo

pr=1)61 Gn(z) = 5

exp(—itz) RV, (t)dt

—00

By—1 oo
. ;AH / exp(—itz) by (£)ET~ VP dt (69)
TATT ) o

by (66) and dominated convergence theorem(68). Integrability of A(t) also implies that

|R=D81G (2)] < L/ A(t)dt = Cy < 0. (70)

2rr
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By integration by parts,

: [~ , 0
(iz)Gp(z) = G- /_oo exp(—itz) (a\lfn(t)> dt. (71)
Using arguments similar to those in (67) - (68) and Assumptions A(i) and A(iv), we have
[2Gu(z)| < OV, (72)
(70) and (72) combine to give
VA G ()] < 1f3|x|, (73)
Now, we have
U T A r—u
EZy = 1 N G | —— fx< )du
Frla) [T
= h2(r)—(1),@1+1/ o AT /Ooexp(—ztm)gbK(t)t( DBiat| dy(1+ o(1))
L & < € 1,
= R ); 20D / [Sre () [#77 77 db(1 + o(1))
R0 (2) (1 + o1)), (74)

where the second equality holds by (69), (73) and Lemma 13 and the third equality holds by Parseval’s
identity.
Similarly, by (73) and Lemma 13, we have

E |Zn1 |2+§ _ O(h7(2+6)[(7"71)ﬂ1+1}+1)' (75)

Therefore, by (65), (74) and (75), the Lyapunov condition holds using the fact that nh — oc.
Next, we verify (57). We have

S - [ (- 2l @)

G108

uniformly in w € (0,1) using Assumption E1 and (58) since n®h*%1 — oo. Therefore, (57) holds

+ 0y(1)

because we then have

As| < T /°° [0k (th)] [B(2)]

272 ‘,\w ‘21/1“

¢ (t)

2

ox(t) _ox(t)|

p(rt)  o(rt)
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2

” )th-suﬂg‘@y(t)—fby(t)
pl(rt te
‘2

P12 |ok(th)] ()]
/Oo ‘aw('wrl/r

po1 g o] B [ox) _ :
+ / ‘ dt - sup [ip(t) — p(t)]

~w —1/r .
o ) (@) o))t
S O( flh (2r—1)8,—B5— 1) (76)

uniformly in w € (0, 1). Now the proof of part (a) is complete since As, /o1 (z) = O(n~/2h~"A1=F2705) =

op(1).
Finally, part (b) follows by dominated convergence theorem using the continuity and boundedness
of the k" derivative of fx(-) (see Assumption A(v)). |

ProorF or LEMMA 2. It suffices to establish

1<~ /5 »
~ > (Zij - Zij) = 0; (77)
j=1
RN »
" Z (an - an) = 0; (78)
Zfu;z =1 (79)
—ZZM EZy 0. (80)
7j=1
First, consider (78). We have
RPN ~
- ; (an - an> < 1Sglgllg)n Znj — Znj
L o(t/h) p(t/h)
< dt
2 /—oo [@y(t/h)]( I e et/ (/]
L[~ Ia(t/h)l ~
< G dt - t) — ot
L[~ Iw(t/h)l .
Ca—- dt - t) — op(t
K /oo T ek P
< Op(n PR CrDB=Bly 4 O (nm?hP2) B 0, (81)

where the third inequality follows from an one-term Taylor expansion and the last inequality holds
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using arguments analogous to (76). (77) can be similarly verified:

1 .
- (2-22)

Jj=1

< Op(n—1/2h—(3r—2)61—ﬁ2—2) + Op(n—a/2h—(r—1)51—ﬂz—l) 2. (82)

Next, (79) holds by the weak law of large numbers since

1
E221E [Z21(|Z|* > enEZE)]
E|Z, 2(149) O h—2(1+§)[(r—1),3 +1]4+1
o ( e TTTa )
(en)f [BZ2,)"™ ~ (en)p [h20-D8163(2) (1 + o(1))]
— O((nh)™*) =0
for each € > 0 and § > 0 using the fact that nh — oco. Finally, (80) holds because
1
—var(Zy) = O(n th=2r—bAi=1) ¢ (84)
n
using Chebyshev’s inequality. Now the proof of Lemma 2 is complete. [ |

PrOOF OF THEOREM 4. By a two-term Taylor expansion and rearranging terms, we have

9x(z) — gx(z)
y exp(—i(sy + tx))dy x (s, 1) [gﬁK(sh, th) — 1] dsdtdy

Yy exp(—i(sy + tm))¢Y0,X0 (57 t)gﬁK(Shv th) [@(‘97 t) - (10(37 t)] detdy

Orc(sh, th)(s, ) {&ms,w ¢y x(s,1)
]

1) 3 - — dsdtdy

)
1—7“ //// (1 — w)y exp(—i [(sy+tm))~K(sh,th )@(s,t){wy(s,t)_w,y(s,t)}zdwdsdtdy

yexp(—i(sy + tz))

3 (S,t):|21/r o(rs,rt)  p(rs,rt)
= Bln + B;n + B2n + B3TL7 say, (85)
where ~
~aw _ dyx(s,t) dyx(s,t)  oyx(st)
¢ (st) = o(rs,rt) W < B(rs,rt)  @(rs,rt) > ' (86)
By a straightforward argument, we have
B = [[[ylfracty— bz = ho) =~ frs(.0) K () K (v)dudedy
= [ ol )t = ) — (o) ()] K () (87)
= R:le
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where R}, is as defined in (34).

Below we establish the following results :
Vnh2r-Da+1pr 2, (), (88)
Vnh2r—Dp+i B,

o2()

= N(0,1), (89)

and

Vnh2r-Da+1By 2,0, (90)

Then, part (a) of Theorem 4 follows by noting

m(x) —m(z) — Bn(r)

= '@ {5 - 9@) - [Fx(@) = fx(@)] m(@) - Ry~ Rial}

= '@ {3 - 9@) - Bl = [ Fx(@) — fi@)] m(@) |

= Fx' (@) {[Bf, + Ban + Bsn] — [Azn + A m(2)}

= (f<'(@) +0,(1)) {[B;, + Bon + By + Op(n~ /2R~ 0A2) 1 (91)

and hence
Va2 D (i) — m(x) - Ro(x)) = Vak2e Dn £ () By, + 0y(1), (92)

where Ay, and As, are as defined in (52) and the last equality in (91) follows by the proof of Theorem
1.
First, we verify (88). We first write

By, = (er)Z /oo yVo(z,y)dy, (93)
where
U, (z,y) — /_ h /_ " expl(—i(sy + t2)) Ho (5, 1)On (5, £)dsdlt, (94)
H,(s,t) = ¢Y0,X0(3:t)¢K(3h>¢K(th) and (95)
Qn(s,t) = ©(s,t) —(s,t). (96)
By integration by parts, we have
(i) Un(z,y) — /_ h /_ " expl(—i(sy + t2) {% [Hn(s,t)Qn(s,t)]} dsdt (97)

) = [ [ eotitsy ) { i 0@ o a9
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By assumption E2, we have

sup
(s,t)€R?

9 outs, t>\ 0,(n"*"). (99)

Qn s,t) ‘ //‘
(s,t)ER2

h? UZ | (t)] dt} ; Op(n™?) + |K?E Y| {/m | (1)] dt}2

et il { [ iolae}] o)

= O,(n"**n72) (100)

(‘?SJ

Therefore, we have

yW(z,y)| < / / (Ho(s,1)| dsdt - sup

)| dsdt - sup |Qu(s, )]

(s,t)ER2

IN

Similarly, we can also show that
|y3\11n(a:,y)‘ < Op(n~*2h7%). (101)

Now (100) and (101) imply

1 > /2 —
Bl < G [ Il )l dy < Oyfor 7%, (102)

e}

Thus, since Vnh2r—Det1Bs = O, (n1=/2pr=Dmn=3/2) = o (1), the desired result (88) follows.
We next verify (89). Rewrite

By = ///yexp i(sy + tz)) [ O (sh th) ( t) {%7y(8,t) - ¢?7y(8,t)} dsdtdy

broxo(5:8)] o(rs, 1)

! ¢K(Sh th) o(rs,rt) — p(rs,r
“ongey ettt st =t

x Oy x(s.t) — by x(s,t) } dsdtdy
1

Ox(shy thoypx(s, 0p(s,t) o0
///yexp i(sy + tx)) O] — S {@(rs,rt) — @(rs,rt)} dsdtdy

= BSn BSZ B, say.
Observe that

(t)()

[gbyxost] (prsrt

X {EZ (exp(i(sY; + tX;)) — Eexp(i(sY; + tX; )))} dsdtdy

B;, =

n

yexp(—i(sy + tz))

= =Y (Znj — EZy), (103)
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where Z,; is as defined in (37). Using arguments similar to (102), we have
BE| = O,(n~Y2n-o/2p~(r=Dei-r-2)
B = 0,(n~*2h72),
so that Vnh2—Dri+1(Bs* + B3*) = 0,(1) . Therefore, to establish (89), it suffices to verify
Vnh2r=De+1 B

oa(x)

— N(0,1). (104)

For (104), we verify the Lyapunov condition (63). We have

e = L[ o[k [ owtcstr- v -sto-

P (sh th) ( t)
[¢Yo X0< )} p(rs,rt)

= rl/_ y [/ frx(y — hu,x — hv)lﬂ(/'(u,v)dudv} dy

fyvy(y*, a:*)dsdtdy*dm*] dy

= r! / K(u)gx(z — hu) fx(x — hu)du — r~'m(x), (105)
where the last convergence holds by Lemma 13. We also have

- = \ 72
= 1 xr—X xr—X
2 _ 1 1 1
EZ: = E{Ylth( . >+Kn2( . >}

= h! /00 (K1 (1)) vg(z — hu) fx(z — hu)du

—00

+h /00 (Ko (w)]? fx(z — hu)du
+2 /00 K1 (u) Ko (u)ms(z — hu) fx(z — hu)du
= Cy, + Oy, + Csy,, say. (106)

Below we show that C,, is the dominating term. Using the arguments similar to those to establish
(70) and (72), we have

|h("’1)plijn(y,a:)‘ < (j and (107)
WPy G (y,2)| < Dy (108)

for some constant C; (j =0,1,2,3) and D; (I =0,2). Note that, similarly to (69), we have

p2—1
RONG, (y,2) — — exp i(sy + t)) e (8)oxe (1) | (s, )] dsat
(2m)* BI~
= G*(y, ). (109)
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Therefore, (107) (with j = 0 and 2) together with (109) implies

BV () — / Gy o (110)

by dominated convergence theorem. Note also that (107) ( with j = 0) together with (108) (with
[ =0 and 2) implies

C
(r=Ur [ < 111
Therefore,
00 oo 2
= ux@fxo) [ | [T e do-ow (112
by Lemma 13. Similarly, we have
pAr—Detlc, h/ h(?" DIZY ¢ Kpo(u )} fx(z — hu)du
oo _ ,
= h| fx(z yG*(y,m)dy} dx + 0(1))
= o(1). (113)

By Cauchy-Schwarz inequality, (112) and (113) imply h2—Y~1+1C;y is also o(1). Therefore, this
establishes that Cy,, in (106) is the dominating term. Since £Z,; = O(1), we now have

hQ(T*I)PlJFIVaT(ZnI) = hz(r*l)pﬁlE(ZrZLl) +o(1)
N (114)
We also have
E|Zn|**" = O(h= G- Dpitalen), "

Therefore, the Lyapunov condition holds since nh — oo as is required.

Next, we verify (90). It can be verified using an arguments similar to that of (88) after we rewrite

1—r (1 — w)yexp(—i(sy + tz)) g (sh, th) (s, 1) [ dyx(s,t)  dpx(s.t) 2
//// — [¢ is,t)r Lr {@(rs,rt) a go(rs,rt)} dwdsdtdy

(217;27;2 /_00/0 (1 —w)y¥,(w,z,y)dwdy, (116)
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where

U, (w,z,y) = /_00 /_00 exp(—i(sy + tz))Hy(w, s,t)Qn(s, t)dsdt, (117)
H,(w,s,t) = Orc(sh, th) (s, ) and (118)

o]

o = \ T -] a

Some tedious calculation yields
|y\Ifn(w, Z, y)| < Op(n71h7(27'*1)ﬂ1*9272)

and
‘yg\yn (w,z,y) | < Op(n~th=Cr=Dei=r=2)

uniformly in w € (0, 1). Therefore, we have
00 1
nhGr=Dotet2 | By | < C4nh(2”)p1+p2+2/ / y¥n(w, z,y)| dy = Op(1).
—o0 JO

Thus, since nh?"P172,23 — oo, the desired result (90) follows.
Finally, part (b) of Theorem 4 follows by dominated convergence theorem using the continuity
and boundedness of the k" derivative of fx(-) and gx(-). [

PrROOF OF LEMMA 5. Similar to the proof of lemma 2. |

The proof of Theorem 7 uses the following lemmas. (The proof of Lemma 14 and 15 is similar to
(but simpler than) that of Lemma 16 and 17 given below, and hence is omitted.)

Lemma 14 Under Assumptions C(i)-(iv), (a) we have as h — 0

1)+(r—1 : d\”
ilelgwn(iﬂ)! =0 (hﬂ(l+ JHr=1)o <ln %) exp [{ao(r —D+a (-1} (g) ])

and (b) if moreover Assumptions C(v) and (vi) hold, then we have

B
|Gn(2)] > BsH (x)PHHDH=D% exp [{ao(r —1)+a(r’ - 1)} <%) ]

for some Bs uniformly in x on a bounded interval, where

]ﬂ@:{|mwmm if 1(t) = o(R(t))

Isin(dz)|, if R(t) = o(I(t)).
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Lemma 15 Under Assumption C, we have for large n (a)
1 2l d B
var(Z,1) < BghPUHD+r=1—1] (ln %> exp [2{ao(r — 1) +a:(r’ — 1)} <E)
and (b)

d B
var(Z) 2 By 000 exp [2 {ao(r = 1) + ar(r” — 1)} (z) ] .

PROOF OF THEOREM 7. Consider the Taylor expansion (52). To prove Theorem 7, it suffices to
verify the conditions (55), (56) and (57) with o, (z) replaced by o,3(z).
We first verify (55). Using arguments similar to the proof of Lemma 14, we can show

o) l B
/ |5 (2)] ¢X0( )‘dt O (hﬂ““)—ﬁo—l (m%) exp [—ao (%) D (120)
Therefore, we have
1 1
< — o | lex@lox, (5] sup o) - pt0)

AT,
1\ AN
_ 0, [ nie-ermpriire (1‘1%) exp | = {aor + ay(r” ~ 1)} (z)

On3(T)
= 0, <n1/2n_°‘/2nf{aor+al(Tﬁfl)b) LN 0, (121)

where the last equality holds since h = d (yInn) /7.

Next, we consider (56). By Lemma 14, we have

<\ (24
1 - X
B2 < ko ()
1
< o lCaa) (122)
1 (2+6)1 d B
= O RPHDHr=1B-1](2+6) (111 E) exp [{ao(r — 1) + a1 (r’ — 1)} (2+6) (E) :

Note that EZ,; is O(1) by (65). Thus the Lyapunov condition holds because

2+6)1
E\|Zm = EZu[*"* _ , (In 1))
né/2 [var(Z)) 7 T 2 pé/2pi+é/2

(123)

by (122) and Lemma 14(b) and the right hand side of (123) tends to zero with h = d(yInn)~*/% and
6 > 0. This establishes
A5,

O'ng(.'lﬁ)

— N(0,1). (124)
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On the other hand, by arguments similar to the proof of 14, we have

A -(14a)/2 ) VAR d\’
- 32&) —— G -0, (hﬂ(l+1)+(r 1)Bo+B1-1 <1n %> exp [{ag(r —1+ alrﬁ} (E)
o 1\’ d\"’
= 0, (n 12pfi=1/2 <ln E) exp [al <E> ])
= 0, (nawfa/2) 20 (125)
and
A;** nfoz/Z 1 l d B
_“2n | . BUAD)=Bo (1 = _ B_1 Z
5 O, (h (n h) exp { ag + aq(r )} .
1/

l
n 2n—a/2h—,80—(r—1),3+1/2 <ln%) exp

g 3(
d\"
= Op( —aoT <E> ])
Op (nl/Qn’a/Qn’aom) 0. (126)
Now (56) follows from (124), (125) and (126).
Finally, we verify (57). Consider the expression (76). We have

Al < [T OO st x|
3w e

2

o 1o 1) x|
+C2/ w21 )
= [5°w| T gl

< 0, <n1hﬁ(l+1)+ﬂo(2r1)1

dt - sup [p(t) — o(t)]
ort)[? 1R

o1 (2]
Yoo fcaemee -y (@) o

In p {a027’—1+a1

+Op <nahﬂ(l+1)+ﬂ1ﬂol <ln

Therefore, this implies

==

==

A3n _ Op(naor'y—l/2> + Op(n[alrﬁfaor]'yfaJrl/Z) ﬂ) 0. (128)
0'”3<£17)
Now the proof of Theorem 7 is complete. |

ProOOF OF LEMMA 8. The proof of lemma 8 is similar to that of lemma 5 except that we now

§ 2(1+6)1
B 7l zoCmﬂ )ﬁo (129)

(en)? [EZTQLI]HzS néh1+o

have for each 6 > 0
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where the equality follows from lemmas 14 and 15 and the convergence to zero holds by using the
fact that h = d(yInn)~'/? for some v > 0. |

The proof of Theorem 10 uses the following lemmas.

Lemma 16 Under Assumptions D(i)-(iv), (a) we have as h — 0

m p
U/(%Axﬁﬁdy‘:()(hmm*”+“_”m’<hyl) exp{ﬁ‘(g> });
Y h h
_ (m+1)+(r—1) 1 " * d g .
yGp(z,y)dyl = O | h* PolIn—) exp [b" | — ;
Y h h

and (c) if moreover Assumptions D(v) and (vi) hold, then we have

sup
zeR

(b)

sup
z€eR

p
/Gn(lf,y>dy‘ > D5H(l~)h/)(m+l)+(r—1)p0 exp |:b* (%) :|
Yy

for some Ds uniformly in x on a bounded interval, where

Hm»:{\bawﬂw+wmm,zﬂﬂawzmﬁwam
| [ysin(d(z +y))dy|, if R*(s,t) = o(I*(s,t)).

Lemma 17 Under Assumption D, we have for large n (a)

1 2m d p
xmmms%WW”””W”@%)ewF”G>}
and (b)
d

p
var(Zn1) > D7h2[ﬂ(m+1)+(1‘71)p0}71 exp [Qb* <ﬁ) }

for some positive constants Dg and D~.

PrOOF OF LEMMA 16. We prove Lemma 16 by adapting the proof of Lemma 3.1 of Fan and
Masry (1992). Let
1

T = Ah"In 7 (130)

where A is a positive constant. Let
S(a,b) = {(s,t) € R?:a < ||(s,0) < b}

denote an index set for some a > 0 and b > 0.
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We first establish part (a). We have

/yGn(a:,y)dy < @) // / ¢YO o %( %))} (§ %()%S %)dsdtdy

e UL L) e

h
1

(27?)2 r

First, consider [;. Let M be a large constant. We have

U ) )

(I +1I2). (131)

< Cl . - . r—1
mlnS(O,M) ‘¢Y0,X0(Su t)| mlnS(O,rM) |90<S7t)|
s t *PO(Tfl) s t 4
+C // <—, —) exp {b* <—, —> } dsdt
* JJswma—r |\B" R B h
< Cghtotr=Y) / / (s, 8)]| "D exp [°h 7 || (s, 1)||*] dsdt
S(Mh,d—)

d\’ T\P
— po(r—1) |l = — —
@] <h exp {b (h) (1 d) })
* —1 d P
e O <hp0(7"1)+b pAdP exp |:b>k <E> :|> 7 (132)

where the first inequality holds by Assumption D(i), the second inequality holds by Assumption D(ii)
and the second equality follows because the integrand in the right hand side of the second inequality
is an increasing function of ||(s,t)|| and is bounded by its value at the point d — 7, and the last

equality follows by a Taylor expansion of (1 — 7/d)” around 1. Next, we consider I,. We have

s t s t\]”
I, < C’// d—|(s,t mH(—,—)‘ exp [b* <—,—)
<o ff e (37 o
m po(r—1) p—2 NIERAY
< Cor™hfe |(s,0)]|” “exp |0 ||| = — dsdt
S(d—r,d) h'h

(r—1)4p(m+1) 1" * d\”
= O | W ’ lnﬁ exp |b 5 ) (133)

where the first inequality holds by Assumptions D(i) and (iv) and the second inequality holds because
(d—||(s,))™ < 7™ and ||(s, 8)]| " D72 < ¢4 for (s,t) € S(d— 7, d). By choosing a large value
of the constant A, the upper bound of I dominates ;. Thus part (a) of Lemma 16 is established.

—po(r—1)

} dsdt

The proof of part (b) is similar.
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We next establish part (c). We first write

| Gutoasiy
- T {/ R | L i rt>d$‘“} N

p
L <L =0 (hpo“—l”b*ﬂd‘” exp {b* (%) D . (135)

By symmetry of ¢ (s, t) (Assumption D(vi)), we have

w = i LAULL ) atso [cosw% T

By (132), we have

Y0,Xo % % R
x (st s ty[?
+sin(sy + tz) ! Eh;h)2(|:‘p1})“h)L " 2] dsdt}dy (136)
9vo.x0 (5 %) w5 %)

Without loss of generality, we consider only the case I* (%, %) =o0 (|R* ( , ) D . In this case, we have
(

~ R*(s L s 1y|?
Jy = {// Bic(5,t) cos(sy + tx) Sh;h)2(|fg)h,h)ls _ 2dsdt}dy(1—|—o(1))

S(d=rd) | Yo Xo (ﬁ E)| |(P(77 )

= {( // ) (bK s,t) cos(sy + tx)
S(d 7,d—hP) S(d—he,d)

s t t
X (hth)QL 1;” i ; ]dsdt} dy
|¢Y07X0 (% E)| | T_}fa %)|
= Ji+J5. (137)

Note that R* (s/h,t/h) cannot change its sign for ||(s,t)|| € S(d — 7,d). (Otherwise, R* (s/h,t/h)
would have a root, say (s*/h,t*/h), which implies that [QSYO,XO(S*,t*ﬂT_l o(rs*, rt*)/p(s*, t*) =
R* (s*/h,t*/h) +i I* (s*/h,t*/h) = 0 and contradicts with Assumption D(ii).) Also, by Assumption
D(v), ¢x(s,t) > 0 for ||(s,t)|| € (d — 6,d). Note also that cos(sy + tz) cannot change its sign on
S(d—T,d), because cos(sy+tx) = cos(d(y +x))(1+o(1)) uniformly in y and = on S(d —7,d). These
imply that J§ and J} have the same signs, say positive. Therefore, |J| > |J5|. By Assumptions D(i)

and (v), we have
[ ostaty-+ e oy [ - W){(d—||<s,t>||>mH<§,%)\

(a1}

—po(r—1)

|| > C

X exp [b*
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> O

e (55) (55
o /G Cl

polr—D)+(m+1)p (Y W\’
s cos(d(y + x))dy| h exp |b 5 1- - | (138)

where the second inequality follows from the fact that the function f(z) = 2700~V exp (b*h°2") is

> Oy

increasing in z when z € (d — h*,d). Using the fact that (1 — 2)? > 1 — pz/2 for small z, we have

Jy > Cy

P
/cos(d(y - m))dy‘ - pPor=DHm DR oy [b* <%) } : (139)
Yy

This together with (134) and (135) gives the desired lower bound in part (c) by choosing a large
value of A\ so that J; dominates .J;. [ |

PrOOF OF LEMMA 17. Consider (106). Part (a) holds because we have, by Lemma 16 (a),

var(Zp1) < Cih~ Sup|Kn1 |/ vx(z) fx(x

z€R
2p(m+1)+(r—1)pg—1] 1 (4N
= O(h** Po~ lnﬁ exp |2b 7 ). (140)
Part (b) follows using arguments similar to those in the proof of Lemma 16 (c). |

PrOOF OF THEOREM 10. To prove Theorem 10, it suffices to verify the following conditions:

BZn
= N(0,1); 141
s = NO.1) (141)
B*
n_ P, (142)
Ona()
B
P, (143)
Ona()
A
P, (144)
Ona()
An v g (145)
Ona()
By Lemma 16, for n sufﬁciently large, we have
E |Zn1|2+6 < Cits SUP ’Knl( )’Hé (146)

h2+5
1 (2+6)m d\"
= O(plPmHIHr=Dpo=1](2+8) (m E) exp [b*(Q +6) (E) } ).
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Since EZ,; is O(1) by (105), the Lyapunov condition holds because

m(2+6)
E|Zn = EZu”" _ , (n})
n6/2 [Var<Zn1)]1+5/2 — 2 n5/2h1+5/2

— 0. (147)

Therefore, (141) is established.
Now, (142)-(145) hold since some calculation yields

1\" d\’
= 41&) < 0, <nl/2n_a/2h_rp0_3/2 (ln E) exp {— {bor + b1 (r” — 1)} <E) })
- 0, (n1/2n704/2n*{bo'r+b1(r1’71)}7) 20, (148)
Bs, < O, | nV/2pre=3/2 lnl meXp bor d ’
O-n4<m) o P h h
p
+0, (nl/Zahpl("z)pOW2 < —) exp { (byr? — bor) <—) ])
_ Op(nbor’y—l/2) + 10 ( (birP—bor)y+1/2— a O (149)
Similarly,
A n * * * * *
S = 00T Ol ) o0 Ly (150)
and
A3n (a*—b*+aor)y—1/2 (a*fb*+a1rﬁfa0r)'y+1/27a p 151
o[ = Ot )+ Oyl ) 20, (151)
Now the proof of Theorem 10 is complete. |
PrOOF OF LEMMA 11. Similar to the proof of lemma 8. |
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Tables and Graphs

Tables show the average mean squared error, ratio of average mean squared error, bias, variance

of density estimates and function estimates in normal and double exponential cases. Graphs show

ten simulated estimates of density estimates and function estimates.

I. Normal (Super Smooth Class)

~

1-1. Truncated Integrated Mean Squared Error of f(z)

Bandwidth(cp,)
030 031 032 033 034 03 036 037 038 039 040
n =100 [ 0.0026 0.0027 0.0027 0.0029 0.0028 0.0028 0.0028 0.0030 0.0034 0.0034 0.0034
n = 250 [ 0.0019 0.0021 0.0020 0.0021 0.0022 0.0023 0.0023 0.0026 0.0026 0.0027 0.0028
n =500 [ 0.0018 0.0017 0.0018 0.0018 0.0019 0.0021 0.0021 0.0021 0.0023 0.0023 0.0024
1-2. Ratio of Truncated Integrated Mean Squared Error of fA(:v)
Bandwidth(cy,)
0.30 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.40
n =100 [ 0.0300 0.0320 0.0325 0.0365 0.0347 0.0362 0.0367 0.0402 0.0466 0.0474 0.0476
n =250 [ 0.0212 0.0217 0.0238 0.0256 0.0288 0.0292 0.0304 0.0336 0.0349 0.0364 0.0391
n =500 [ 0.0201 0.0198 0.0216 0.0215 0.0233 0.0266 0.0271 0.0274 0.0307 0.0318 0.0331
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~

1-3. Truncated Bias? of f(z) times 102

Bandwidth(cp,)
0.30 031 032 033 034 035 036 037 038 0.39 0.40
n =100 [ 0.155 0.168 0.187 0.209 0.202 0.216 0.223 0.243 0.288 0.293 0.291
n=2500.124 0.147 0.143 0.166 0.177 0.189 0.194 0.217 0.228 0.237 0.255
n=25000.130 0.126 0.144 0.142 0.156 0.174 0.182 0.186 0.206 0.215 0.222
1-4. Truncated Variance of f(z) times 102
Bandwidth(cp,)
030 031 032 033 034 035 036 037 038 0.39 0.40
n =100 (0.113 0.108 0.089 0.088 0.078 0.071 0.061 0.063 0.057 0.053 0.058
n =250 | 0.067 0.069 0.062 0.051 0.052 0.042 0.042 0.042 0.037 0.037 0.033
n =500 |0.052 0.044 0.038 0.041 0.034 0.037 0.031 0.025 0.028 0.024 0.023
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2-1. Truncated Integrated Mean Squared Error of m(z); pu(z) =1+

Bandwidth(cp,)
0.30 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38

0.39

0.40

n = 100
n = 250
n = 500

0.7602 0.4844 0.2709 0.1763 0.1730 0.1978 0.1995 0.2268 0.2546
2.9354 1.6461 0.6465 0.3121 0.1829 0.1312 0.1352 0.1500 0.1735
4.7715 3.4107 2.0658 1.2680 0.4694 0.1598 0.0804 0.0793 0.1090

0.2617
0.1918
0.1379

0.2727
0.2034
0.1657

2-2. Ratio of Truncated Integrated Mean Squared Error of m(z); u(z) =1+

Bandwidth(cp,)
0.30 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38

0.39

0.40

n = 100
n = 250
n = 500

0.6699 0.4427 0.2453 0.1506 0.1447 0.1666 0.1656 0.1915 0.2129
2.5023 1.4488 0.5960 0.2862 0.1644 0.1147 0.1112 0.1258 0.1451
3.8776 2.8852 1.8166 1.1313 0.4325 0.1481 0.0683 0.0642 0.0885

0.2188
0.1617
0.1160

0.2302
0.1726
0.1399
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2-3. Truncated Bias? of m(z); p(z) =1+

Bandwidth(cp,)
0.30 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.40
n =100 | 0.1003 0.0101 0.0127 0.0566 0.0929 0.1551 0.1610 0.1977 0.2287 0.2398 0.2514
n =250 [2.2897 1.0199 0.2701 0.0514 0.0447 0.0272 0.0845 0.1161 0.1504 0.1741 0.1896
n =500 [4.2924 3.0572 1.5916 0.8637 0.2396 0.0370 0.0085 0.0396 0.0772 0.1118 0.1514
2-4. Truncated Variance of m(x); p(z) =1+ =
Bandwidth(cp,)
0.30 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.40
n =100 | 0.6598 0.4744 0.2581 0.1197 0.0802 0.0426 0.0385 0.0291 0.0259 0.0218 0.0212
n = 250 [ 0.6456 0.6261 0.3763 0.2606 0.1785 0.1040 0.0507 0.0339 0.0230 0.0177 0.0138
n =500 |0.4790 0.3535 0.4741 0.4043 0.2298 0.1227 0.0719 0.0397 0.0317 0.0261 0.0142
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3-1. Truncated Integrated Mean Squared Error of m(z); u(x) =1+ x + cx?

Bandwidth(cp,)
0.30 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38

0.39

0.40

n = 100
n = 250
n = 500

0.9998 0.5321 0.2635 0.2114 0.2313 0.2152 0.2275 0.2281 0.2740
2.7636 1.4345 0.8243 0.4107 0.1434 0.1269 0.1445 0.1678 0.1891
4.7713 3.9076 2.3675 1.1192 0.5128 0.2336 0.0871 0.0978 0.1324

0.2797
0.2033
0.1524

0.3100
0.2186
0.1804

3-2. Ratio of Truncated Integrated Mean Squared Error of m(z); u(z) =1+ x + cx?

Bandwidth(cp,)
0.30 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38

0.39

0.40

n = 100
n = 250
n = 500

0.8815 0.3848 0.2076 0.1758 0.1982 0.1854 0.2031 0.1979 0.2431
2.0332 1.1349 0.6669 0.3233 0.1189 0.1068 0.1279 0.1485 0.1711
3.4901 2.7971 1.7596 0.8689 0.4127 0.1812 0.0775 0.0800 0.1201

0.2451
0.1832
0.1360

0.2760
0.1975
0.1659
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3-3. Truncated Bias? of m(z); u(z) = 1+ x + cz?

Bandwidth(cp,)
0.30 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.40
n =100 | 0.1790 0.0396 0.0281 0.0436 0.1070 0.1617 0.1816 0.1965 0.2422 0.2580 0.2911
n =250 [2.0779 0.8485 0.3181 0.0883 0.0166 0.0358 0.0834 0.1324 0.1681 0.1829 0.2003
n =500 | 4.3151 3.3632 1.9322 0.7674 0.2578 0.0735 0.0090 0.0335 0.0886 0.1267 0.1637
3-4. Truncated Variance of m(x); u(z) = 1+ z + cx?
Bandwidth(cp,)
0.30 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.40
n =100 [ 0.8280 0.4925 0.2353 0.1678 0.1242 0.0535 0.0458 0.0316 0.0318 0.0217 0.0188
n =250 [ 0.6856 0.5859 0.5062 0.3223 0.1268 0.0910 0.0611 0.0353 0.0209 0.0203 0.0182
n =500 | 0.4562 0.5443 0.4353 0.3517 0.2550 0.1600 0.0780 0.0643 0.0437 0.0257 0.0167
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I1. Double Exponential (Ordinary Smooth Class)

~

1-1. Truncated Integrated Mean Squared Error of f(x) times 10?

Bandwidth(cy,)
0.30 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.40
n=100(0.20 0.18 0.19 0.18 0.18 0.19 0.17 0.19 0.20 0.21 0.21
n=250(0.18 0.17 0.16 0.16 0.15 0.16 0.16 0.16 0.16 0.17 0.17
n=9500(0.18 0.18 0.16 0.16 0.15 0.14 0.14 0.14 0.15 0.15 0.15

~

1-2. Ratio of Truncated Integrated Mean Squared Error of f(z)

Bandwidth(cp,)
0.30 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.40

n =100 |0.0232 0.0225 0.0247 0.0252 0.0260 0.0304 0.0270 0.0319 0.0358 0.0368 0.0390
n = 250(0.0200 0.0195 0.0184 0.0190 0.0206 0.0208 0.0222 0.0231 0.0259 0.0271 0.0290
n =500 | 0.0203 0.0197 0.0184 0.0183 0.0178 0.0179 0.0189 0.0195 0.0207 0.0231 0.0240
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~

1-3. Truncated Bias? of f(z) times 102

Bandwidth(cp,)
0.30 031 032 033 034 035 036 037 038 0.39 0.40
n =100 | 0.137 0.128 0.129 0.127 0.132 0.142 0.135 0.152 0.160 0.165 0.172
n=2500.155 0.146 0.131 0.131 0.128 0.131 0.131 0.134 0.142 0.148 0.153
n =500 |0.170 0.165 0.150 0.156 0.156 0.133 0.134 0.132 0.135 0.139 0.144
1-4. Truncated Variance of f(z) times 102
Bandwidth(cp,)
030 031 032 033 034 035 036 037 038 0.39 0.40
n =100 [ 0.065 0.058 0.061 0.053 0.051 0.057 0.043 0.038 0.047 0.041 0.041
n =250 (0.029 0.031 0.026 0.025 0.024 0.023 0.024 0.020 0.019 0.019 0.017
n =15001]0.018 0.019 0.018 0.015 0.015 0.012 0.013 0.011 0.011 0.010 0.009
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2-1. Truncated Integrated Mean Squared Error of m(z); pu(z) =1+

Bandwidth(cp,)
0.30 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38

0.39

0.40

n = 100
n = 250
n = 500

0.4476 0.3142 0.3786 0.4084 0.4128 0.4469 0.4716 0.5084 0.5226
0.4850 0.2417 0.2120 0.2886 0.3533 0.3768 0.4118 0.4509 0.4765
1.0678 0.5247 0.2184 0.1247 0.1848 0.2882 0.3443 0.3958 0.4190

0.5369
0.4730
0.4490

0.5501
0.4917
0.4606

2-2. Ratio of Truncated Integrated Mean Squared Error of m(z); u(z) =1+

Bandwidth(cp,)
0.30 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38

0.39

0.40

n = 100
n = 250
n = 500

0.4166 0.2740 0.3286 0.4084 0.3621 0.4469 0.4158 0.4497 0.4624
0.4541 0.2135 0.2120 0.2475 0.3062 0.3259 0.3589 0.3957 0.4200
0.9593 0.4787 0.1976 0.1051 0.1285 0.2446 0.2956 0.3419 0.3643

0.4752
0.4159
0.3944

0.4842
0.4337
0.4062
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2-3. Truncated Bias? of m(z); p(z) =1+

Bandwidth(cp,)
0.30 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.40

n = 100
n = 250
n = 500

0.0192 0.1474 0.2551 0.3405 0.3848 0.4263 0.4558 0.5007 0.5157 0.5311 0.5448
0.0772 0.00772 0.0960 0.2157 0.3339 0.3581 0.4041 0.4457 0.4730 0.4700 0.4893
0.7807 0.1947 0.0124 0.0352 0.1285 0.2703 0.3359 0.3905 0.4156 0.4472 0.4587

2-4. Truncated Variance of m(x); p(z) =1+ =

Bandwidth(cp,)
0.30 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.40

n = 100
n = 250
n = 500

0.4283 0.1668 0.1235 0.0679 0.0280 0.0206 0.0158 0.0077 0.0068 0.0058 0.0053
0.4127 0.2345 0.1159 0.0711 0.0194 0.0186 0.0077 0.0051 0.0035 0.0029 0.0024
0.2870 0.3299 0.2059 0.0894 0.0563 0.0178 0.0083 0.0052 0.0033 0.0018 0.0019
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3-1. Truncated Integrated Mean Squared Error of m(z); u(x) =1+ x + cx?

Bandwidth(cp,)
0.30 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38

0.39

0.40

n = 100
n = 250
n = 500

0.4463 0.3390 0.3948 0.4411 0.4303 0.4804 0.5023 0.5377 0.5484
0.5046 0.2420 0.2232 0.3104 0.3714 0.4001 0.4327 0.4696 0.5067
1.2494 0.4271 0.1937 0.1744 0.2379 0.2903 0.3694 0.4184 0.4477

0.5676
0.5001
0.4643

0.5795
0.5201
0.4890

3-2. Ratio of Truncated Integrated Mean Squared Error of m(z): u(z) =1+ z + cx?

Bandwidth(cp,)
0.30 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38

0.39

0.40

n = 100
n = 250
n = 500

0.3657 0.2964 0.3487 0.3902 0.3877 0.4433 0.4570 0.4864 0.4973
0.3823 0.1922 0.1918 0.2782 0.3338 0.3622 0.3909 0.4230 0.4606
0.8806 0.3079 0.1509 0.1443 0.2095 0.2580 0.3294 0.3747 0.4023

0.5136
0.4534
0.4189

0.5204
0.4727
0.4450
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3-3. Truncated Bias? of m(z); u(z) = 1+ x + cz?

Bandwidth(cp,)
0.30 0.31 0.32 0.33 0.34 0.35

0.36

0.37

0.38

0.39

0.40

n = 100
n = 250
n = 500

0.0531 0.1671 0.2712 0.3657 0.4022 0.4577
0.0955 0.0253 0.1077 0.2381 0.3506 0.3823
0.9305 0.2042 0.0234 0.0500 0.1848 0.2735

0.4858
0.4254
0.3635

0.5300
0.4633
0.4124

0.5403
0.5032
0.4445

0.5616
0.4966
0.4623

0.5740
0.5176
0.4873

3-4. Truncated Variance of m(x); u(z) = 1+ z + cx?

Bandwidth(cp,)
0.30 0.31 0.32 0.33 0.34 0.35

0.36

0.37

0.38

0.39

0.40

n = 100
n = 250
n = 500

0.3931 0.1718 0.1236 0.0754 0.0280 0.0227
0.4090 0.2167 0.1155 0.0722 0.0208 0.0178
0.3189 0.2229 0.1703 0.1243 0.0531 0.0168

0.0165
0.0072
0.0059

0.0076
0.0062
0.0059

0.0080
0.0035
0.0032

0.0059
0.0035
0.0019

0.0055
0.0025
0.0016
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