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Abstract 19 

High-latitude lakes usually have a high penetration of light, due to their low productivity 20 

and low concentration of dissolved organic matter (DOM), but large variations in lake optical 21 

properties can be found within and between regions. We investigated the underwater light 22 

regimes in relation to DOM in 18 oligotrophic, high-latitude lakes across mountain birch 23 

woodland, shrub tundra and barren tundra in NW Finnish Lapland. DOM variability was 24 

measured by quantification of organic carbon and analysis of UV-visible absorbance and 25 

fluorescence spectra. In 12 out of 18 lakes > 1% of PAR reached the lake bottom while UV 26 

radiation exposure was more variable with 1% UVB depth ranging from 0.1 to > 12 m. Lakes 27 

located in barren tundra had highest transparency, lowest DOC concentration and lowest 28 

chromophoric DOM (CDOM) absorption (mean values: Kd PAR 0.3 m-1, DOC 2.1 mg l-1, a440 29 

0.4 m-1), while lakes in shrub tundra and mountain birch forest were in general less transparent 30 

although still clear with a mean DOC concentration of 4.7 mg l-1 and CDOM absorption (a440) 31 

of 1.4 m-1. Solar attenuation and lake transparency were correlated with CDOM absorption 32 

(a440), but the relationship was affected by the quality of organic matter and the concentration 33 

of DOC. Our survey emphasizes the importance of catchment type on DOM characteristics and 34 

lake optics and suggest that changes in vegetation zones will alter the overall aquatic light 35 

milieu in oligotrophic high-latitude lakes. We predict that even small changes in CDOM quality 36 

may largely change the UV radiation exposure of the studied high latitude lakes with likely 37 

consequences on biota while changes in PAR may have smaller biological effects in these 38 

shallow lakes that are already illuminated to the bottom even in the darkest systems. 39 

 40 

Keywords: dissolved organic matter, high-latitude lakes, lake optical properties 41 

42 
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Introduction 43 

The concentration and optical qualities of dissolved organic carbon (DOC) and, in particular its 44 

chromophoric component, chromophoric dissolved organic matter (CDOM), play a major role 45 

in determining and understanding how lake ecosystems respond to disturbances such as global 46 

warming (Williamson et al., 1999). They regulate the transmission of both photosynthetically 47 

active radiation (PAR; 400-700 nm) and ultraviolet radiation (UVR; 280-400 nm) (Scully & 48 

Lean, 1994; Morris et al., 1995; Laurion, Vincent & Lean, 1997; Huovinen, Penttilä & 49 

Soimasuo, 2003; Bracchini et al., 2006) and therefore contribute to defining the species 50 

composition in lakes (Rautio & Korhola, 2002), the ratio between auto- and heterotrophic 51 

producers (Jansson et al., 2000, Forsström, Roiha & Rautio, 2013), and the overall benthic and 52 

pelagic productivity (Karlsson et al., 2009). 53 

 54 

The vegetation in the catchment, catchment to lake ratio, and the productivity of the lake have 55 

a prominent impact on the concentration and composition of DOM. In small oligotrophic lakes 56 

with low chlorophyll- a concentration and large catchment areas a high proportion of carbon is 57 

derived from terrestrial and wetland sources dominated by higher terrestrial plant productivity 58 

(Bade et al., 2007). The organic carbon leaching from forests and wetlands constitute mainly 59 

of slow-degrading and nutrient poor material dominated with humic and fulvic constitutes 60 

(McKnight & Aiken, 1998; McKnight, Aiken & Smith, 1991; McKnight et al., 1994) that are 61 

the most important components in absorbing solar radiation (Morris et al., 1995; Ferrari & 62 

Dowell, 1998). CDOM can also be generated within the water body by decomposition of 63 

phytoplankton or higher aquatic plant tissues (autochthonous input) scarce in fulvic and humic 64 

constituents (Benner, 2003) resulting in deep penetration of solar radiation (McKnight et al., 65 

1994). UV-visible absorbance and fluorescence spectroscopy provide information on the origin 66 

and chemical structure of DOM: autochthonous molecules of CDOM have a smaller absorbance 67 
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for a given wavelength than allochthonous molecules and show strong fluorescence between 68 

the wavelengths 293-308 nm (with a secondary peak around 360 nm), whereas allochthonous 69 

humic and fulvic materials fluoresce at longer wavelengths (McKnight, Aiken & Smith, 1991; 70 

McKnight et al., 2001; Belzile et al., 2001).  71 

 72 

Due to climatic warming, higher precipitation and associated vegetation and soil property 73 

changes in lake catchment areas, higher inputs of terrestrial DOMh to high-latitude lakes are 74 

expected (Vincent, Laurion & Pienitz, 1998; Sommaruga et al., 1999; Pienitz & Vincent, 2000; 75 

ACIA, 2005; Meehl et al., 2007). For other northern lakes, this scenario of increasing DOM is 76 

not applicable since some areas are showing opposing trends of drought and cooling (Pienitz et 77 

al., 2004; Fallu et al., 2005; Rolland et al., 2008). Whatever the direction of change, climatic 78 

change will not only alter the amount of DOM transported to high-latitude lakes, but may also 79 

change its chemical composition and absorption characteristics, mainly because of 80 

modifications that occur in the catchment vegetation (Curtis, 1998). These lakes already have 81 

low DOC concentrations and even small changes in CDOM concentration will alter the PAR 82 

and UVR penetration depth drastically (Vincent, Laurion & Pienitz, 1998; Rautio & Korhola, 83 

2002; Bracchini et al., 2006). Despite the fundamental floristic differences between different 84 

vegetation zones across and near the northern tree line, the influence of the catchment type on 85 

DOM composition at high latitudes has rarely been addressed.  86 

 87 

In this study, our objectives were 1) to evaluate how lakes in different vegetation zones differ 88 

from each other in their catchment features, DOM parameters and algal biomass, and 2) how 89 

these contribute to defining the attenuation of solar radiation in lakes. We measured the 90 

variability in DOM concentration, optical parameters and in the attenuation of solar radiation 91 

from 18 high-latitude lakes along a transect from the northern treeline to barren tundra in NW 92 
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Finnish Lapland, including three distinct vegetation zones. We hypothesized that lakes within 93 

each vegetation zone are more close to each other in their DOM variables than lakes between 94 

zones, which would allow estimating how the lake optics and carbon dynamics will change 95 

with climate change and moving vegetation zones. Information on lake optics and DOM 96 

characteristics has previously been reported from the region only for one lake and some small 97 

ponds (Rautio, Mariash & Forsström 2011; Roiha et al., 2012). This study was further carried 98 

out to enhance knowledge on the quantity and quality of DOM and to assess the applicability 99 

of DOM indices in high-latitude lakes. Because high-latitude lakes are often driven by benthic 100 

production that relies on high transparency (Rautio & Vincent, 2006; 2007; Hessen & Leu, 101 

2006; Karlsson & Säwström, 2009), and the majority of unproductive lakes are thought to be 102 

light rather than nutrient limited (Karlsson et al., 2009), it is crucial to understand the coupling 103 

between DOM, solar attenuation and phytoplankton, and how this might change with respect 104 

to global change. 105 

 106 

Materials and methods 107 

Study area and sampling 108 

A set of 18 small to medium size high-latitude headwater lakes were sampled between 109 

August 16 – 26 in 2004, during the autumn overturn. The study lakes are located about 450 km 110 

north of the Arctic Circle (Figure 1) in NW Finnish Lapland (68-69°N, 20-22°E) and over a 111 

range of different bedrock types. Four lakes are situated below the tree line (approx. 600 m 112 

a.s.l.) in the mountain birch woodland (MBW), ten lakes in catchment areas with mires and 113 

shrubs (ST), and four lakes in catchment areas with barren, rocky ground (BT), following the 114 

vegetation zones for this region (Virtanen & Eurola, 1997). The lakes were selected to cover 115 

large gradients in altitude, catchment and bedrock type, and optical characteristics. The study 116 

area lies in the transition zone between the North Atlantic oceanic climate and the Eurasian 117 
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continental climate. Above the treeline, the vegetation mainly consists of low dwarf shrubs, 118 

mosses, grasses and sedges. The catchment areas of the lakes are not impacted by direct human 119 

activities. Table I summarizes the main environmental information of the lakes.  120 

For this study, all the lakes were visited once, and water samples were taken from a depth 121 

of 1m with ajj water sampler (Limnos Ltd, Turku, Finland). In addition, three of the deepest 122 

lakes were sampled from deeper water layers (Table I). Water temperature, pH and conductivity 123 

were all measured in situ using a YSI 63 pH and conductivity instrument (YSI Incorporated, 124 

Yellow Springs, USA). Alkalinity, ammonium nitrogen (NH4-N), nitrate nitrogen (NO3+2-N), 125 

orthophosphate phosphorus (PO4-P), total phosphorus (TP), total nitrogen (TN), silica (SiO2-126 

S), and turbidity were analyzed in the Lapland Regional Environmental Centre using the 127 

standard methods of the National Board of Waters in Finland. DOC concentration was analyzed 128 

as non-purgeable organic carbon with Shimadzu TOC 5000A and chlorophyll a according to 129 

Jefferey and Humphrey (1975) at the Lammi Biological Station. Phytoplankton samples, also 130 

taken at 1 m depth, were preserved with acid Lugol’s solution and analyzed with an inverted 131 

microscope according to Utermöhl (1958). Phytoplankton biovolumes were calculated from 132 

cell densities based on measurements of the size of the species and the approximation of the 133 

shapes to geometrical figures. Biomass was calculated from measured algal volumes assuming 134 

a density of 1.  135 

 136 

DOM analyses and light measures 137 

DOM absorbance spectra were measured from filtered lake water as in Forsström, Roiha 138 

& Rautio, 2013. The spectral slopes of various range (275 to 295, 350 to 400 and 300 to 650 139 

nm), as well as the slope ratio SR (S275-295 to S350-400) were used to describe DOM quality 140 

(Stedmon, Markager & Kaas, 2000; Helms et al., 2008). In addition, we used the approach 141 

introduced by Loiselle et al. (2009), and calculated the spectral slope for each 20 nm interval 142 
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between 200 and 500 nm and plotted the resulting slopes by the center wavelength of each 143 

range to create spectral slope curves as function of wavelength, (S(λ), nm-1). The regression 144 

coefficients (r2) were, in general, greater than 0.99, and the addition of a constant to the 145 

regression model, as suggested by Stedmon, Markager and Kaas (2000) did not result in a better 146 

fit. We used S280 and S390 as indicators of algal or humic substances (Loiselle et al. 2009). 147 

Additionally, absorption at 320 and 440 nm is used as a measure of CDOM concentration and 148 

color and DOC specific a320 as a proxy of the degree of DOM color. Specific UV absorbance 149 

(SUVA) at 254 nm was calculated as the absorbance at 254 nm divided by the DOC 150 

concentration to estimate variation in landscape features and, hence, in the source of carbon 151 

(Weishaar et al., 2003). For comparison, CDOM absorbance was measured from one 152 

allochthonous (water taken from a nearby bog) as well as one autochthonous (a Scenedesmus 153 

sp. culture) source. 154 

From each sample, a synchronous fluorescence spectrum (SFS) was measured with a 155 

Cary Eclipse fluorescence spectrophotometer (Varian Inc., USA) as employed by Belzile, 156 

Gibson and Vincent (2002). The wavelength difference between excitation and emission beams 157 

was 14 nm. Fluorescence scans were standardized to quinine sulphate units (QSU) using a 158 

standard of quinine sulfate dehydrate (Sigma-Aldrich no. 22640) dissolved in 0.02 N sulfuric 159 

acid and corrected for the absorption within the sample (inner filter effect) according to 160 

McKnight et al. (2001). To characterize DOM composition, we calculated integrated areas of 161 

different wavebands (Retamal et al., 2007): low molecular weight compounds (LMW, emission 162 

range 280-323 nm), medium molecular weight compounds (MMW, emission range 324-432 163 

nm) and high molecular weight compounds (HMW, emission range 433-595 nm) and used their 164 

relative proportion (Lλ/Hλ and Mλ/Hλ) to describe CDOM composition. In addition, 165 

humification index (HI), a measure of the degree of polycondensation and humification of 166 
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DOM, was calculated according to Kalbitz, Geyer and Geyer (1999) from synchronous 167 

fluorescence scans as a quotient of fluorescence intensity at 470 and 360 nm. 168 

Transmission of downwelling UV irradiance (at 320, 340 and 380 nm) and PAR was 169 

measured with a PUV500 radiometer (Biospherical, San Diego, USA) in situ at each site. 170 

Diffuse attenuation coefficients (Kd) of UVR and PAR in the water column were obtained from 171 

the slope of the linear regression of the natural logarithm of down-welling irradiance (Ed) versus 172 

depth (Z), ln(Ed(Z)) = –Kd Z + c, where the constant c = ln(Ed(0-)), with Ed(0-)) being the irradiance 173 

just below the water surface. 174 

 175 

Statistical analyses 176 

Differences in catchment features, DOM parameters and algal biomass among vegetation zones 177 

were tested using ANOSIM followed by pairwise t-tests to identify differences. Data were 178 

normalised and Euclidian distances were used to generate resemblance matrix. A similarity 179 

percentage analysis (SIMPER routine) was used to assess the percentage contribution of each 180 

variable to the observed dissimilarities among vegetation zones. Principal component analyses 181 

(PCA, normalized values, Euclidean distances) with segmented bubble plots were used to 182 

visualize vegetation zones and associated statistically most important environmental variables 183 

that likely regulate light attenuation. Lake Kilpisjärvi was omitted from these analyses due to 184 

its large size that was two magnitudes of orders larger in catchment area, lake area and depth 185 

than the other lakes making it an outlier for most variables. 186 

BIOENV analyses routine were used to identify which environmental variables or 187 

combination of variables (altitude, catchment to lake ratio, catchment slope, turbidity, chl-a, 188 

phytoplankton biomass, DOC, SUVA, HI, a440, S300-650, Lλ/Hλ, Mλ/Hλ, S280, %LMW, 189 

%MMW, %HMW) best explained the changes in light attenuation (Kd PAR, Kd 320 nm) and 190 

transparency (transparency ratio) when lake data from different vegetation zones were pooled. 191 
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Other environmental variables were omitted from the analyses due to their high Pearson 192 

correlation (r > 0.90) with some included variables or because of missing values. The lakes 193 

Korsajärvi and Koddojavri were excluded as some of their DOM variables were outliers. The 194 

statistical analyses were carried out in Primer (version 7) and JMP (version 11). A significant 195 

level α = 0.05 was used for all statistical tests. 196 

 197 

Results 198 

Catchment and morphological parameters 199 

With the exception of Lake Kilpisjärvi (lake area 3710 ha, max depth 57 m), the MBW 200 

lakes were small (lake area 5-20 ha) and shallow (max depth 2 m). ST lakes had a relatively 201 

high range of size and depth (lake area 1-100 ha, max depth 4-24 m), whereas BT lakes were 202 

amongst the smallest (lake area 1-10 ha), but two of them were relatively deep (max depth 9 203 

and 12 m. Ratio of catchment to lake area ranged from 3 to 11 in MBW, from 7 to 42 in ST and 204 

from 4 to 32 in BT. Mean slope of the catchment was generally highest in ST (Table I). 205 

According to ANOSIM, there was a difference in catchment and morphological 206 

parameters according to vegetation zones (R = 0.412; p = 0.004) with all pairwise comparisons 207 

(p < 0.05 for all). Catchment slope contributed to explaining the variability between all zone 208 

comparisons (27-48%) while other important variables were altitude (39-62%) and catchment 209 

to lake ratio (26-29%). Figure 2a shows the PCA ordination of the lakes with the variability in 210 

catchment slope and catchment to lake ratio in different lakes. 211 

 212 

Temperature, water chemistry and algal biomass 213 

Due to their shallowness, the majority of lakes (11) were isothermal during the sampling. 214 

Lake water temperature varied between 5.9 and 11.9 ºC being highest at lowest altitudes. 215 

Conductivity had highest range in ST, between 0.7 and 4.3 mS m-1. The pH of three lakes, two 216 
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from MBW and one from BT, was < 6 (Ristijärvi, Koddojärvi, 1009) and the rest between 6.7 217 

and 7.8. Alkalinity averaged 0.125 mmol l-1. All lakes had low nutrient concentrations 218 

(inorganic nutrients mainly below the detection limit, total P 3-13 µg l-1 and total N 71-410 µg 219 

l-1) and low turbidity (< 1.0 FNU), with highest values generally measured from MBW. 220 

Chlorophyll a concentration varied between 0.2 µg l-1 and 2.4 µg l-1 and phytoplankton biomass 221 

was low (less than 0.5 mg l-1) in all the study lakes. Only in the deepest lake (Kilpisjärvi) of the 222 

three that were sampled from two different water layers, was chlorophyll a markedly lower in 223 

the deeper water layer compared to the 1m depth (Table I). Most lakes were dominated by 224 

chrysophytes (Chrysophyceae), but in a few lakes the dominating algal group was green algae 225 

(Chlorophyceae), cryptophytes (Cryptophyceae) or dinoflagellates (Dinophyceae). 226 

Dinoflagellates were most common in MBW lakes with high DOC and color (Korsajärvi, 227 

Koddojärvi and Ristijärvi) (L. Forsström, unpublished data).  228 

ANOSIM identified two groups separating the lakes above (combined zones ST and BT) and 229 

below the tree line (MBW) in water chemistry (R = 0.317; p = 0.003) and algal biomass (chl-a 230 

and biomass) (R = 0.343; p = 0.003). Figure 2b shows the distribution of Chl-a and 231 

phytoplankton biomass in lakes from different catchment areas. 232 

 233 

DOC concentration and DOM characteristics  234 

DOC concentration varied from 1.5 to 16.2 mg l-1 (Table II). Average DOC concentration 235 

was 9.7 mg l-1 in MBW, 3.0 mg l-1 in ST and 2.1 mg l-1 in BT. CDOM absorption coefficient at 236 

320 nm ranged from 1.0 to 61.0 m-1 (mean values: MBW 26.3 m-1, ST 4.0 m-1, BT 3.3 m-1). 237 

CDOM absorption coefficient at 440 nm, an indication of color, varied from 0.1 to 9.4 m-1, with 238 

only two MBW lakes having values > 1.1 m-1. DOC specific absorptivity varied from 0.4 to 3.8 239 

mg -1 m-1. SUVA254, a parameter indicating DOM quality, varied from 0.3 l mg-1 m-1 in barren 240 

tundra to 6.2 l mg-1 m-1 in mountain birch forest. Average SUVA254 was 2.9 l mg-1 m-1 in MBW, 241 
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1.4 l mg-1 m-1 in ST and 1.0 l mg-1 m-1 in BT. The spectral slope coefficient, S, had the smallest 242 

variation (0.014-0.02 nm-1) when calculated for the shortest wavelengths; 275-295 nm. Slopes 243 

for 300-650 nm and 350-400 nm had relatively similar ranges of variation (0.006-0.017 and 244 

0.005-0.017 nm-1, respectively), but it is noteworthy that S for these wavelength bands could 245 

not be calculated for all the study lakes: the BT lakes 1009 and Kuorroladdu had very low 246 

absorption, causing excessive interference around 350 nm, the area where the light source 247 

switches from UV to visible light. As the interference absorption at 320 nm could not be reliably 248 

measured, the spectral slope for these two lakes was calculated between 385-650 nm. In 249 

addition, sample from Lake Koddojavri (MBW) should have been diluted for reliable 250 

measurements for the shortest wavelengths (< 300 nm). 251 

In addition to traditional absorption slopes, spectral slope curves, S(λ), were used to 252 

describe differences in CDOM (Table II). Spectral slope values showed a large variation over 253 

the considered wavelengths (0.004-0.100 nm-1). S280, an indication of algal-derived DOM 254 

(Loiselle et al. 2009) was lowest in MBW lakes (mean 0.017 nm-1, min 0.014 nm-1, max 0.018 255 

nm-1) and highest in BT lakes (mean 0.019 nm-1, min 0.016 nm-1, max 0.025 nm-1). S390, 256 

associated with fulvic acids (Loiselle et al., 2009), was lowest in BT lakes (mean 0.013 nm-1, 257 

min 0.009 nm-1, max 0.017 nm-1) and highest in MBW lakes (mean 0.017 nm-1, min 0.017 nm-258 

1, max 0.017 nm-1). Shape of the spectral slope curve varied considerably between lakes from 259 

different vegetation zones (Figure 3a). Curves from the two highly-colored MBW lakes, 260 

Korsajärvi and Koddojavri, had high resemblance to bog-water taken from Markkinasuo 261 

(68°29’N, 22°16’E), a bog located close to the study region. These lakes show highest values 262 

in spectral slopes at around 350-390 and only a small peak at S280 with a maximum at around 263 

S390. In contrast, ST and BT lakes show similarities to a curve measured from a Scenedesmus 264 

phytoplankton culture, with a high peak at S280. However, at S390 they were closer to the DOM 265 

from bog than from phytoplankton with a relatively high peak at S390.  266 
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 267 

Synchronous fluorescence scans enabled further characterization of CDOM quality and 268 

identification of the CDOM sources, and showed differences between the study lakes (Figure 269 

3b). All lakes showed a fluorescence peak around 280-300 nm, indicating autochthonous 270 

CDOM, only the intensity varied reflecting concentration of CDOM in lakes from different 271 

vegetation zones. In all but two barren tundra lakes (1009 and Stuorralampi) the highest relative 272 

contribution of fluorescence was observed in the area of medium molecular weight, indicative 273 

of components originating from allochthonous processes. The highest share of LMW 274 

fluorescence, around 25% of total fluorescence, was found in lakes Kuorroladdu (MBW) and 275 

Somaslompolo (ST), two lakes with very high transparency. The highest MMW fluorescence, 276 

close to 50% of total fluorescence, was found in Kuorroladdu (BT), Peeralampi (ST) and 277 

Kilpisjärvi (MBW), whereas the highest HMW fluorescence was measured from 1009 (BT) 278 

and Stuorralampi (BT). Lλ/Hλ varied between 0.3 and 1.0, whereas Mλ/Hλ varied between 0.9 279 

and 2.1. Both ratios had a highest range in the barren tundra. The humification index (HI) 280 

ranged from 0.5 to 0.9 (Table II). Lake Koddojavri (MBW) showed such a high inner-filter 281 

effect (Lakowicz, 2006), that it was omitted from the SFS results. 282 

In lakes where sampling was done from two different depths, DOC concentration and 283 

aCDOM were lower or similar and DOC-specific aCDOM, a*320, was higher in deeper samples 284 

compared to samples taken from the 1m depth (Table II). In Kilpisjärvi (MBW) and Saanajärvi 285 

(ST), SUVA254 was higher in the hypolimnion than in the epilimnion, but in Mallajärvi (ST) it 286 

was the opposite. The relative amount of LMW fluorescence and Lλ/Hλ was always lower and 287 

HI higher in samples taken from the hypolimnion than in the epilimnion, but other indicators 288 

of DOM quality did not have an even trendS(λ) curves showed only minor differences when 289 

calculated from different depths (data not shown). 290 
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Several variables in the DOM dataset were highly correlated with each other, with highest 291 

correlations observed between a320 and a440 (Pearson’s correlation r = 0.988), S275-295 and S290 292 

(r = 0.983), S300-650 and S390 (r = 0.960), S350-400 and S390 (r = 0.934) and a*320 and SUVA (r = 293 

0.910). The DOM variables DOC, SUVA, SR, HI, a440, S280, S300-650, Lλ/Hλ, Mλ/Hλ %LMW, 294 

%MMW and %HMW were selected for ANOSIM which identified statistical differences in 295 

them according to vegetation zones (R = 0.496; p = 0.008) As for catchment parameters, all 296 

vegetation zones were different from each other (pairwise comparisons; p < 0.05 for all). a440 297 

(24-34%), DOC (25-32%) and SUVA (22-27%) explained the variability between lakes below 298 

and above the tree line while S280 (45%) separated the ST and BT lakes from each other. The 299 

distribution of a440 and S280 is shown in Fig. 2c. 300 

 301 

PAR and UV attenuation 302 

The transparency over the PAR waveband (400–800 nm) was generally high, with Kd 303 

values < 0.8 m-1 for all but two MBW lakes (Korsajärvi 2.6 m-1 and Koddojavri 2.4 m-1) (Table 304 

III). In 12 out of 18 lakes, > 1% of PAR reached the lake bottom. Kd at 320 nm, representing 305 

attenuation of UV-B radiation, varied between 3.1 and 70.4 m-1for the MBW lakes, between 306 

1.2 and 7.7 m-1 for ST lakes, and between 0.3 and 5.9 m-1 for BT lakes. In two BT lakes (1009 307 

and Stuorralampi) more than 1% of UV-B radiation reached the lake bottom and the average 308 

depth of 1% at 320 nm was 2.4 m. The inferred attenuation depth of UV (ZUV1%/Zmax) expressed 309 

as a proportion of lake maximum depth varied from 3% to 100%, and was more than 10% in 310 

10 lakes. The transparency ratio (1% depth of 320 nm UV relative to the 1% depth of PAR) 311 

varied between 3.5% and 50.9%, the average being 12.8%. Because Kd320 and 1% UV-B depth 312 

as well as KdPAR and 1% PAR depth were highly correlated (r > 0.9), the 1% depth values 313 

were excluded from the ANOSIM. The vegetation zones separated from each other (R= 0.384, 314 

p = 0.001) but according to SIMPER only the shrub tundra (ST) zone was different from the 315 
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two other while lakes below tree line (MBW) and on barren tundra (BT) were similar. The high 316 

variability within MBW and ST lakes (Fig. 2d) and the low number of lakes in these zones 317 

prevented SIMPER to separate them from each other. Kd320 explained most of the variability 318 

between MBW and ST lakes (48%) while transparency ratio explained the difference between 319 

ST and BT lakes (96%). 320 

The BIOENV analyses identified a440 as the most important environmental variable 321 

explaining light attenuation (Kd320 and KdPAR) and transparency of the lakes studied (Table 322 

IV, Fig. 4). Alone it explained 77% of the data variability but when considered with different 323 

combinations with S380, S280, DOC, SUVA and HI these parameters explained more of the 324 

variability than a440 alone. However, these supplementary variables alone explained clearly less 325 

of the light parameters than a440 (Table IV).  326 

 327 

Discussion 328 

Our data for high-latitude lakes from northern Finland show that DOM has a major 329 

influence on underwater UV-B and PAR attenuation and transparency ratio. Absorbance at 440 330 

nm (a440) with spectral slope at 390 nm (S390) explain nearly 90% of the optical variability 331 

between lakes while S280, DOC, SUVA and HI also importantly contributed to defining the light 332 

milieu in the lakes. The dominant importance of a440 is consistent with observations from other 333 

high latitude or mountain regions (Laurion, Vincent & Lean, 1997; Laurion et al., 2000; Belzile, 334 

Gibson & Vincent, 2002) while S390 is an indicator of fulvic acids of DOM (Loiselle et al., 335 

2009) that contribute to increasing DOM color and therefore influence PAR and UV 336 

attenuation.  337 

 338 

Landscape control of lake optics 339 
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Although our study lakes were located in a relatively small region of NW Finland, the 340 

results demonstrate that high-latitude lakes are not a cohesive group of lakes. Despite their 341 

globally low levels of some common features, such as low nutrient levels, low phytoplankton 342 

biomass and high transparency, they display high variability in catchment properties, lake 343 

morphology and DOM characterization depending on the lake’s location in the landscape. Such 344 

variability in especially morphological features is typical for postglacial lakes (Pienitz, Doran 345 

& Lamoureux 2008). Our analyses indicated that the lakes from below the tree line, from shrub 346 

tundra and from barren tundra separate from each other according to their catchment variables 347 

and DOM composition. Similar landscape control on lake physical and chemical parameters 348 

have been earlier documented for the same geographical area but using a different set of abiotic 349 

and biotic variables (Rautio 2001; Mariash et al., 2011; Roiha et al., 2012). The most unified 350 

group of lakes based on several variables was shrub tundra, despite the fact that it contained the 351 

highest number of lakes. The observed deviation from the other zones was mainly explained by 352 

catchment slope, catchment to lake ratio, a440, Kd and transparency ratio. Other important 353 

factors were the ratio of catchment slope, DOC, SUVA, S280 and S300-650. Taken together these 354 

factors indicate that DOM optics were different in different vegetation zones and imply that 355 

changes in zone locations will likely cause shifts in the light milieu of the lakes and 356 

subsequently in their productivity (Pienitz & Vincent, 2000; Karlsson et al., 2009). 357 

The variation in DOC has commonly been shown to be closely linked with UV and PAR 358 

attenuation (Schindler et al., 1996) and to be controlled by catchment area properties, lake 359 

morphometry and the relationship between catchment area to lake surface area (Williamson et 360 

al., 1996; McKnight et al., 1997; Sommaruga et al., 1999; Bukaveckas & Robbins-Forbes, 361 

2000; Xenopoulos et al., 2003; Winn et al., 2009). DOC concentration of our study lakes was 362 

low (median 2.7 mg l-1) and the range was comparable to results reported from the Adirondack 363 

Mountain Regions (Bukaveckas & Robbins-Forbes, 2000) and from Alaska and the NE USA 364 
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region (Morris et al., 1995). In our study, DOC contributed to light attenuation as a 365 

supplementary variable (with SUVA and HI) but no significant correlation was found between 366 

lake morphometric properties, size or topography of the catchment area and DOC. The 367 

concentration of DOC neither varied significantly among vegetation zones but here it is 368 

important to keep in mind the relative small number of lakes per zone that most likely restricted 369 

identifying some associations. However, DOC was negatively correlated with altitude (r = -370 

0.54), which can be related to altitudinal changes in catchment properties (e.g. less organic soils 371 

at higher elevations and variation in vegetation along an elevation gradient). A similar 372 

relationship between DOC and altitude has been reported in other comparable studies (e.g., 373 

Sommaruga et al., 1999).  374 

 375 

The relative importance between DOC and DOM parameters 376 

The present study supports the conclusion that DOM is better than DOC in explaining 377 

differences in light attenuation in low DOC lakes of high-latitude and high-altitude areas 378 

(Morris et al., 1995; Laurion et al., 2000; Sommaruga, 2001). The spectral irradiance across 379 

the PAR and UV ranges was tightly controlled by a440 that is often used as an indicator of 380 

CDOM color. Because a440 and a320 were highly correlated (r = 0.988) we used only a440 as an 381 

explanatory variable in our analyses but it is good to keep in mind that absorption in general 382 

provides an excellent indicator of spectral attenuation and can be used as an index of Kd when 383 

direct spectral measures are not possible. Absorbance measures are also faster, easier and 384 

cheaper to make than any of the other DOM measures, including analyses of DOC 385 

concentration and calculations of most spectrophotometric and spectrofluorometric data 386 

variables. 387 

Spectral attenuation correlated also with DOC but the relationship was not always 388 

predictable. In general, there was a positive correlation between DOC and KdPAR (r = 0.707), 389 
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and DOC and Kd320 (r = 0.692), but the relationship was not always linear. Lake 390 

Vuobmegasvarri (BT) and Lake Somaslompolo (ST) had the same DOC concentration (2.5 mg 391 

l-1), but the measured Kd320 differed considerably, the former lake having a relatively high 392 

Kd320 (5.9 m-1) leading to a 1% UV penetration depth of only 0.8 m, whereas the latter lake 393 

had a relatively low Kd320 (1.2 m-1), with a 1% UV penetrating to 3.8 m. These differences in 394 

the solar attenuation were likely due to differences in CDOM composition. SUVA and a*320 395 

indicated that DOC of Lake Vuobmegasvarri is more terrestrial compared to Lake 396 

Somaslompolo (SUVA: 2.2 and 0.6 mg-1 m-1, a*320 2.1 and 0.5 m-1, respectively). Same 397 

difference is seen in the ratio between S280 to S390. HI was slightly lower and the relative 398 

proportion of LMW fluorescence higher in Somaslompolo, reflecting a higher contribution of 399 

autochthonous carbon. Both lakes are closed-basin lakes, but while the catchment area of 400 

Vuobmegasvarri is mostly covered by various dwarf shrubs, grasses and sedges, the catchment 401 

of Somaslompolo consists mostly of esker and rock. Somaslompolo is also much larger and 402 

deeper, which means that all material entering the lake from the catchment is mixed into a larger 403 

volume of water. 404 

Similarly, Lake Vuobmegasvarri (BT) and Lake 613 (MBW) with relatively comparative 405 

UV attenuation behavior (Kd320 5.9 and 6.3 m-1, respectively), had very different DOC 406 

concentrations (2.6 and 6.9 mg l-1, respectively). Located in the barren tundra Lake 407 

Vuobmegasvarri does not have a high DOC concentration per se but this carbon seems to be 408 

dominated by terrestrial compounds as suggested by the relative high values of a440, a*320, and 409 

SUVA. Lake Vuobmegasvarri is small and shallow and has the highest catchment to lake area 410 

of the whole data set likely explaining the DOM composition efficient in solar absorbance.  411 

The lack of correlation between DOC, DOM and light parameters is consistent with 412 

earlier observations. When comparing different biomes, Jaffé et al. (2008) did not find a 413 

correlation between DOC and any of their DOM quality parameters, and concluded that 414 
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variations in DOM quality were not necessarily associated with DOC concentration. The lack 415 

of correlation is in some lakes also related to iron (Fe). Fe concentrations > 2mg l-1 are known 416 

to have an effect on the UV absorbance of DOC (Weishaar et al., 2003). Fe was not analysed 417 

during this study, but previous work from the same area indicate low Fe concentrations (mean 418 

0.14 mg l-1 for mountain birch woodland (n = 25) and 0.04 mg l-1 for barren tundra (n = 8)) 419 

(Korhola, Weckström & Blom, 2002) that should not influence UV absorbance. 420 

 421 

Phytoplankton as light attenuator 422 

Concentration of Chl-a was lower in our study lakes compared to other studies dealing 423 

with water column optics of high-altitude or high-latitude lakes (Morris et al., 1995; 424 

Bukaveckas & Robbins-Forbes, 2000; Laurion et al., 2000). Even with somewhat higher 425 

chlorophyll concentrations, the role of Chl-a in light attenuation has proved to be low in some 426 

comparable studies (Morris et al., 1995; Bukaveckas & Robbins-Forbes, 2000), and no 427 

correlation between KdPAR and Chl-a was found in our study either. Chl-a explained only 39% 428 

of light variability. Laurion et al. (2000) found a weak but significant correlation between 429 

KdPAR and Chl-a (but not between Kd320 and Chl-a) in lakes from the Alps and Pyrenees, but 430 

those lakes had, in general, higher Chl-a concentrations than in our data (mean Chl-a 1.6 µg l-431 

1 vs. 0.7 µg l-1, respectively). Our Chl-a samples were only taken from one depth (1 m), but 432 

since most lakes were isothermal during the sampling, we consider this one sample to be 433 

representative of the whole water column.  434 

The weak but significant positive correlation between Chl-a and DOC (r = 0.16) and 435 

phytoplankton biomass and DOC (r = 0.29) found in this study, likewise in lakes situated in the 436 

Adirondack area, USA (Bukaveckas & Robbins-Forbes, 2000) may result from a reduction of 437 

photoinhibition and an increase of nutrients associated with higher levels of DOC. The finding 438 

is interesting in respect to current climate change scenarios. Taken in conjunction with some 439 
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whole-lake experiments (e.g., Carpenter et al., 1998) these studies suggest that increasing DOC 440 

concentrations expected at high-latitudes due to global warming and associated vegetation 441 

shifts can lead to higher accumulation of algal biomass. However, other studies have not found 442 

a similar relationship (Sommaruga et al., 1999), and a simple measure of Chl-a does not give 443 

any information on changes in species composition or productivity. Our study lakes had very 444 

diverse and differing phytoplankton communities (L. Forsström, unpublished data), and it is 445 

likely that they will react differently to possible changes. A mesocosm study conducted in the 446 

same area showed a decrease of primary production, but an increase of the proportion of 447 

mixotrophic algae when DOC was added (Forsström, Roiha & Rautio, 2013). Bukaveckas and 448 

Robbins-Forbes (2000) concluded that DOC might be the major factor explaining the variation 449 

of primary productivity in lakes that are remotely situated from human induced eutrophication, 450 

but more studies are needed to assess the role of DOC for primary production in these areas. 451 

 452 

Current light climate and prospections for future 453 

Light penetrated deeply in the studied lakes. Attenuation of visible light varied in our data 454 

set from the values previously reported for the clearest inland waters at high latitudes or high 455 

altitudes (Kd < 0.2 m-1) (Kirk, 1994; Morris et al., 1995; Bukaveckas & Robbins-Forbes, 2000; 456 

Laurion et al., 2000) and for values reported for highly colored lakes located in boreal and 457 

alpine regions (Kd > 2.0 m-1) (Lindell, Gráneli & Tranvik, 1996; Ask et al., 2009). The average 458 

depth of 1% at 320 nm (2.4 m) is higher than the average calculated for sub-alpine lakes (1.9 459 

m), but lower than the average for alpine lakes (8.1 m) (Rose et al., 2009). The average 460 

transparency ratio (12.8%) was close to the average calculated for sub-alpine lakes (12.6%), 461 

but the ratio in Lake 1009 (50.9%) was close to the highest values reported in alpine lakes (Rose 462 

et al., 2009). In contrast to alpine lakes, our lakes are very shallow, and in several study lakes 463 

the UV exposure compared to lake depth (Z320 nm 1%/Zmax) was high enough (between 10-100%) 464 
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so that harmful effects to organisms are likely. A similar observation has also been reported for 465 

some lakes in our study region in the studies by Rautio & Korhola (2002 a; b). In 12 of 18 lakes 466 

> 1% of PAR reached the bottom having an important consequence for the total primary 467 

productivity of these systems; in many transparent, oligotrophic northern lakes >50% of the 468 

total system (pelagic plus benthic) primary production is confined to the bottom (Björk-469 

Ramberg & Ånell 1985, Rautio et al., 2011). 470 

Thawing permafrost and transformations of mires and wetlands that are consequences of 471 

warming temperatures (IPCC 2013) have an important influence for the solar attenuation. Also 472 

the more subtle changes in catchment characteristics related to changes in vegetation cover will 473 

modify DOM in the receiving water bodies. Our data show a strong Kd UVB response to small 474 

changes in CDOM and suggest that even minor shifts in CDOM quality may largely change the 475 

UV radiation exposure of transparent high latitude lakes with likely consequences on biota. 476 

Similar responses will occur for Kd PAR, however, the changes may not be large enough to 477 

cause major shifts in the relative importance of pelagic and benthic primary production in the 478 

studied lakes that are currently illuminated to the bottom due to the combination of shallow 479 

lake depth and low CDOM concentration and color.  480 
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Table I. Catchment and morphological parameters, temperature, water chemistry and algal parameters of the study lakes. Altitude above sea level (Alt a.s.l.; m), 680 

maximum lake depth (Max depth; m), lake area (ha), catchment area (Catch area; ha), catchment to lake area (C to L area), catchment slope (C slope; mean %), 681 

temperature (T; C), pH, alkalinity (Alk; mmol l-1), conductivity (Cond; mS m-1), ammonium (NH4; µg l-1), nitrate and nitrite (NO3+2; µg l-1), phosphate (PO4; 682 

µg l-1), total nitrogen (TN, µg l-1), total phosphorus (TP; µg l-1), silica (SiO2; µg l-1), turbidity (Turb; FNU), chlorophyll-a (Chl; µg l-1) and phytoplankton biomass 683 

(Phyto biom; mg l-1). 684 

 685 

Lake 

(code) 

Alt 

a.s.l. 

Max 

depth 

Lake 

area 

Catch 

area 

C to L 

area 

C 

slope 

T pH Alk Cond NH4 NO3+2 PO4 TN TP SiO2 Turb Chl Phyto 

biom 

Mountain birch woodland (MBW) 

Kilpisjärvi 

(NF000K) 

473 57 3710 27100 7 8 11.9 7.2 0.172 2.6 6.0 14.0 <2 100 6 1.2 0.2 0.61 0.11 

Kilpisjärvi 30 m       8.7 7.7 0.165 2.6 12.0 26.0 <2 140 5 1.3 0.2 0.13 0.04 

Korsajärvi 

(NF0356) 

528 2 20 212 11 2.9 7.1 6.9 0.102 1.3 7.0 <2 <2 320 13 3.0 0.9 2.38 0.42 

Ristijärvi 

(NF0354) 

571 2 11 32 3 2.2 7.2 5.6 0.017 0.4 <5 <2 <2 220 7 0.4 0.5 0.67 0.41 

Koddojavri 

(NF0344) 

571 2 5 56 11 2.7 7.3 5.3 0.021 0.9 7.0 4.0 <2 410 11 2.7 0.7 1.08 0.17 

Shrub tundra (ST) 

Mallalampi 

(NF000M) 

602 4 1 42 42 6.7 9.7 7.4 0.186 2.5 <5 3.0 <2 96 4 4.4 0.2 0.34 0.08 

Lake 613 

(NF0026) 

613 5 15 396 26 7.5 10.2 7.2 0.107 1.6 <5 <2 2.0 120 11 3.2 0.3 0.57 0.06 

Saanajärvi 

(NF0009) 

679 24 70 525 8 13.1 11.7 6.8 0.181 3.2 <5 <2 <2 110 5 1.1 0.2 0.75 0.07 

Saanajärvi 16 m       7.1 7.0 0.181 3.4 8.0 17.0 <2 120 5 1.2 0.2 0.71 0.07 

Masehjavri 

(NF0016) 

680 11 17 158 10 4.4 8.8 7.3 0.132 1.6 <5 <2 <2 140 6 2.4 0.3 0.45 0.11 

Peeralampi 

(NF0076) 

696 7 25 414 17 6.5 10.3 7.2 0.128 2.0 <5 <2 <2 130 7 3.5 0.4 0.96 0.17 

Toskaljärvi 

(NF0202) 

704 22 100 1338 13 9.1 8.5 7.8 0.392 4.3 <5 4.0 <2 74 7 1.5 0.3 0.36 0.14 

Somaslompolo 760 10 16 163 10 7.2 7.7 7.4 0.172 3.1 5.0 4.0 <2 85 8 2.2 0.4 0.87 0.18 
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(NF0223) 

Kohpejavri 

(NF0108) 

774 4 21 220 11 7.0 6.5 7.3 0.099 1.5 <5 <2 <2 120 5 2.8 0.3 0.28 0.16 

Mallajärvi 

(NF0002) 

776 13 17 118 7 10.3 10.6 6.7 0.050 0.7 <5 3.0 <2 81 6 1.5 0.3 0.71 0.06 

Mallajärvi 8 m       10.2 6.8 0.047 3.5 <5 4.0 <2 79 5 1.5 0.3 0.69 0.14 

Porevarri 

(NF0261) 

794 6 11 166 15 4.4 7.2 7.4 0.213 3.6 <5 <2 <2 110 9 2.9 0.5 0.86 0.31 

Barren tundra (BT) 

Kuorroladdu 

(NF0221) 

900 9 6 45 10 5 5.9 7.3 0.106 2.6 <5 2.0 <2 71 7 0.9 0.3 0.44 0.09 

Vuobmegasvarri 

(NF0099) 

900 4 1 39 32 10.6 7.5 6.9 0.108 1.5 6.0 <2 <2 120 6 2.5 0.5 0.44 0.11 

Lake 1009 

(NF0033) 

1009 12 10 98 10 6.5 8.8 5.8 0.011 0.4 <5 4.5 <2 72 4 2.5 0.1 0.16 0.03 

Stuorralampi 

(NF000S) 

1024 2 1 4 4 2 6.7 6.8 0.057 1.9 <5 4.0 <2 85 3 1.0 0.3 0.21 0.04 

686 
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Table II. DOC and DOM characteristics of the study lakes. Dissolved organic carbon (DOC; mg l-1), absorption coefficient of dissolved organic matter at 440 687 

nm (a440; m-1), absorption coefficient at 320 nm (a320; m-1), a320 divided by the DOC concentration (a*320; mg-1 m-1), UV absorbance at 254 nm measured in 688 

inverse meters divided by the DOC concentration (SUVA, mg-1 m-1), spectral slope for light absorption by DOM calculated on wavebands 300-650 nm, 275-689 

295 nm and 350-400 nm (S; nm-1), ratio of S275-295 to S350-400 (SR), spectral slope at 280 and 390 nm (S280, S390), percentage of the integrated area of low 690 

(%LMW), medium (%MMW) and high (%HMW) molecular weight compounds from total integrated area under the synchronous fluorescence spectrum, ratio 691 

of fluorescence integrated over the waveband 280-323 nm (Lλ/Hλ) and 433-595 nm (Mλ/Hλ) to that over the waveband 433-595 nm and humification index 692 

(HI). Nd = no data. 693 

Lake (code) DOC a440 a320 a*320 SUVA S300-650 S275-295 S350-400 SR S280 S390 %LMW %MMW %HMW Lλ/Hλ Mλ/Hλ 

Mountain birch woodland (MBW) 

Kilpisjärvi 

(NF000K) 
2.7 0.5 3.3 1.2 1.55 0.0166 0.0186 0.0127 1.5 0.0175 0.0169 24.0 48.5 27.5 0.9 1.8 

Kilpisjärvi 30 m 2.2 0.5 3.1 1.4 1.82 0.0165 0.0187 0.0125 1.5 0.0186 0.0169 14.9 45.4 39.7 0.4 1.1 

Korsajärvi 

(NF0356) 
13.8 4.8 34.3 2.5 2.46 0.0156 0.0142 0.0167 0.9 0.0140 0.0172 18.7 43.0 38.3 0.5 1.1 

Ristijärvi 

(NF0354) 
6.1 0.9 6.6 1.1 1.25 0.0163 0.0173 0.0155 1.1 0.0169 0.0169 23.6 39.1 37.3 0.6 1.0 

Koddojavri 

(NF0344) 
16.2 9.4 61.0 3.8 6.16 0.0150 nd 0.0164 2.2 0.0180 0.0167 nd nd nd nd nd 

Shrub tundra (ST) 

Mallalampi 

(NF000M) 
2.8 0.6 4.1 1.5 0.94 0.0159 0.0173 0.0133 1.3 0.0166 0.0168 18.6 42.3 39.2 0.5 1.1 

Lake 613 

(NF0026) 
6.9 0.8 5.7 0.8 0.98 0.0160 0.0174 0.0150 1.2 0.0166 0.0176 16.5 44.8 38.7 0.4 1.2 

Saanajärvi 

(NF0009) 
3.3 0.6 3.6 1.1 1.42 0.0164 0.0186 0.0140 1.3 0.0176 0.0166 19.9 44.7 35.4 0.6 1.3 

Saanajärvi 16 m 3.0 0.5 3.6 1.2 1.49 0.0161 0.0179 0.0128 1.4 0.0173 0.0168 15.3 52.3 32.4 0.5 1.6 

Masehjavri 

(NF0016) 
4.0 1.1 7.7 1.9 2.18 0.0159 0.0167 0.0152 1.1 0.0162 0.0171 15.5 45.6 38.9 0.4 1.2 

Peeralampi 

(NF0076) 
3.6 1.0 6.6 1.9 2.08 0.0156 0.0161 0.0145 1.1 0.0155 0.0166 14.4 48.8 36.8 0.4 1.3 

Toskaljärvi 1.5 0.3 1.8 1.2 1.47 0.0152 0.0176 0.0085 2.1 0.0168 0.0155 23.0 39.2 37.8 0.6 1.0 
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(NF0202) 

Somaslompolo 

(NF0223) 
2.5 0.3 1.0 0.4 0.56 0.0087 0.0190 0.0047 4.0 0.0179 0.0100 24.2 39.4 36.4 0.7 1.1 

Kohpejavri 

(NF0108) 
3.3 0.7 4.3 1.3 1.54 0.0156 0.0175 0.0142 1.2 0.0168 0.0163 18.5 45.1 36.4 0.5 1.2 

Mallajärvi 

(NF0002) 
2.4 0.3 1.9 0.8 0.94 0.0150 0.0170 0.0107 1.6 0.0167 0.0149 18.3 41.5 40.2 0.5 1.0 

Mallajärvi 8 m 2.4 0.3 1.8 0.8 0.89 0.0154 0.0171 0.0107 1.6 0.0170 0.0155 13.2 41.4 45.5 0.3 0.9 

Porevarri 

(NF0261) 
2.7 0.6 3.4 1.3 1.51 0.0156 0.0167 0.0135 1.2 0.1063 0.0161 22.4 41.1 36.6 0.6 1.1 

Barren tundra (BT) 

Kuorroladdu 

(NF0221) 
1.9 0.2 nd nd 0.43 nd nd nd nd 0.0141 0.0155 25.0 51.0 23.9 1.0 2.1 

Vuobmegasvarri 

(NF0099) 
2.6 0.8 5.1 2.0 2.24 0.0155 0.0159 0.0148 1.1 0.0156 0.0166 20.5 41.8 37.7 0.5 1.1 

Lake 1009 

(NF0033) 
1.6 0.1 nd nd 0.26 nd nd nd nd 0.0255 nd 13.6 36.6 49.8 0.3 0.7 

Stuorralampi 

(NF000S) 
2.2 0.3 1.6 0.7 0.86 0.0140 0.0173 0.0087 2.0 0.0168 0.0137 22.0 37.1 40.9 0.5 0.9 

694 
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Table III. PAR and UV characteristics in the lakes. Kd vertical attenuation coefficient for downward photosynthetically active radiation (Kd PAR; m-1) and at 695 

320 nm (Kd 320; m-1), attenuation depth of UV expressed as a proportion of lake maximum depth (Z320 1%/Zmax, %), 1% PAR depth, 1% UVB depth and 1% 696 

depth of 320 nm UV relative to the 1% depth of PAR (Transparency ratio) 697 

Lake (code) 
Kd PAR Kd 320 Z320 1%/Z max 

1% PAR depth 1% UVB depth Transparency 

ratio 

Mountain birch woodland (MBW) 

Kilpisjärvi 

(NF000K) 

0.2 3.1 3 19.1 1.5 7.7 

Korsajärvi 

(NF0356) 

2.6 41.0 5 1.8 0.1 6.2 

Ristijärvi 

(NF0354) 

0.7 7.3 25 Bottom 0.6 10.0 

Koddojavri 

(NF0344) 

2.4 70.4 5 1.9 0.1 3.5 

Shrub tundra (ST) 

Mallalampi 

(NF000M) 

0.5 3.7 20 Bottom 1.2 12.6 

Lake 613 

(NF0026) 

0.6 6.3 10 Bottom 0.7 9.6 

Saanajärvi 

(NF0009) 

0.3 4.1 4 16.4 1.1 6.9 

Masehjavri 

(NF0016) 

0.5 7.1 4 10.2 0.6 6.3 

Peeralampi 

(NF0076) 

0.5 7.7 7 Bottom 0.6 6.5 

Toskaljärvi 

(NF0202) 

0.3 2.2 8 16.4 2.1 12.8 

Somaslompolo 

(NF0223) 

0.2 1.2 30 Bottom 3.8 17.2 

Kohpejavri 

(NF0108) 

0.6 5.1 20 Bottom 0.9 10.7 

Mallajärvi 

(NF0002) 

0.3 1.8 13 Bottom 2.6 13.9 

Mallajärvi 8 m       
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Porevarri 

(NF0261) 

0.4 3.6 17 Bottom 1.3 9.9 

Barren tundra (BT) 

Kuorroladdu 

(NF0221) 

0.1 0.6 56 Bottom 7.8 15.2 

Vuobmegasvarri 

(NF0099) 

0.6 5.9 15 Bottom 0.8 9.3 

Lake 1009 

(NF0033) 

0.2 0.3 100 Bottom Bottom 50.9 

Stuorralampi 

(NF000S) 

0.4 2.1 100 Bottom Bottom 20.7 

 698 

 699 

 700 



Forsström, Rautio, Cusson, Sorvari, Albert, Kumagai & Korhola: DOM in high-latitude lakes 

 

 35 

Table IV. Combination of environmental variables, taken k at the time, giving the largest rank correlation ps, 701 

between environmental and light parameter similarity matrices. Bold indicates best combination overall. 702 

a440: absorbance at 440 nm, S280: spectral slope at 280 nm, DOC: dissolved organic carbon, SUVA: UV 703 

absorbance at 254 nm measured in inverse meters divided by the DOC concentration, S390: spectral slope at 704 

390 nm HI: humification index, and chl: chlorophyll-a.  705 

 706 

k Best variable combinations (ps) 

1 a440 

(0.73) 

S280 

(0.54) 

DOC 

(0.49) 

SUVA 

(0.49) 

S390 

(0.46) 

HI 

(0.39) 

Chl 

(0.39) 

2 a440, S390 

(0.87) 

      

3 a440, S390, S280 

(0.81) 

      

4 DOC, a440, S390, S280 

(0.79) 

      

5 DOC, SUVA, HI, a440, S390 

(0.80) 

      

 707 

708 
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Figure captions 709 

Figure 1. Map of the area showing the study sites and vegetational zones. Lakes located in the barren 710 

tundra are marked with black dots, lakes in shrub tundra with white dots and lakes in mountain birch 711 

woodland with grey dots.  712 

 713 

Fig. 2. Segmented bubble plot PCA ordinations for a) catchment and morphological parameters, b) 714 

phytoplankton, c) CDOM characteristics and d) UV and PAR attenuation. Segment sizes are 715 

proportional to the values of catchment slope (C slope), catchment to lake ratio (C to L), chl-a 716 

concentration (chl-a), phytoplankton biomass (Biomass), absorption coefficient at 440 nm (a440), 717 

spectral slope at 280 nm (S280), diffuse attenuation coefficient for UV-B (Kd320) and transparency 718 

ratio (T ratio) in different lakes. The numbers indicate vegetation zones. 1: mountain birch 719 

woodland (MBW), 2: shrub tundra (ST) and 3: barren tundra (BT). 720 

 721 

Figure 3. a) Spectral slope curves for absorption measurements and b) synchronous fluorescence 722 

spectroscopy scans of CDOM of lakes from barren tundra (Mallajärvi), shrub tundra (Lake 613) and 723 

mountain birch woodland (Korsajärvi). Spectral slopes are also shown for DOM from a bog and a 724 

Scenedesmus sp. phytoplankton culture to indicate differences between allochthonous and 725 

autochthonous carbon sources. Breaks in lines are for values that did not meet the regression 726 

coefficient requirement r2 > 0.95 (see methods for explanation). 727 

 728 

Figure 4. Relationship between absorption coefficient at 440 nm (a440) and different light 729 

parameters: diffuse attenuation coefficient for UV-B (Kd320) and PAR (KdPAR), and for the 730 

transparency ratio 731 

  732 
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 733 

 734 

 735 
 736 

 737 

Fig. 2. Segmented bubble plot PCA ordinations for a) catchment and morphological parameters, b) 738 

phytoplankton, c) CDOM characteristics and d) UV and PAR attenuation. Segment sizes are 739 

proportional to the values of catchment slope (C slope), catchment to lake ratio (C to L), chl-a 740 

concentration (chl-a), phytoplankton biomass (Biomass), absorption coefficient at 440 nm (a440), 741 

spectral slope at 280 nm (S280), diffuse attenuation coefficient for UV-B (Kd320) and transparency 742 

ratio (T ratio) in different lakes. The numbers indicate vegetation zones. 1: mountain birch 743 

woodland (MBW), 2: shrub tundra (ST) and 3: barren tundra (BT). 744 
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 746 

 747 

 748 
 749 

Fig. 3. a) Spectral slope curves for absorption measurements and b) synchronous fluorescence 750 

spectroscopy scans of CDOM of lakes from barren tundra (Mallajärvi), shrub tundra (Lake 613) 751 

and mountain birch woodland (Korsajärvi). Spectral slopes are also shown for DOM from a bog 752 

and a Scenedesmus sp. phytoplankton culture to indicate differences between allochthonous and 753 

autochthonous carbon sources. Breaks in lines are for values that did not meet the regression 754 

coefficient requirement r2 > 0.95 (see methods for explanation). 755 
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 760 

 761 
 762 

 763 

Fig. 4. Relationship between absorption coefficient at 440 nm (a440) and different light parameters: 764 

diffuse attenuation coefficient for UV-B (Kd320) and PAR (KdPAR), and the transparency ratio  765 
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