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Abstract 15 
Dissolved Fe (DFe) and Fe-binding dissolved organic ligands were analysed during two 16 

GEOTRACES cruises in the Mediterranean Sea in May and August 2013. 17 

DFe was relatively high near the surface probably due to atmospheric sources, whereas 18 

below 500-700 m depth the concentrations were relatively low, <0.4 nM, compared to typical 19 

concentrations of 0.6 nM at the same depths in the Atlantic Ocean. These relatively low 20 

concentrations are probably due to scavenging and ballasting by dust particles settling down 21 

through the water column. Especially in the Eastern Basin, and more prominent in its northern 22 

part, distinct patches with high DFe, up to 8.40 nM, were found between 200 and 3000 m 23 

depth. These patches were local, which indicates a point source and lateral transport from this 24 

source. Some of these patches coincided with sloping density lines indicating enforced along-25 

frontal currents providing lateral transport of DFe. Sources are probably seamounts and mud 26 

volcanoes, which were found to exist at the same depths as the elevated DFe. It is conceivable 27 

that a large eddy keeps infusions of DFe isolated from mixing with other water masses. These 28 

infusions could originate from slopes or from downwards cascading materials out of canyons.  29 

Fe-binding dissolved organic ligands increase the solubility of Fe enabling high 30 

dissolved Fe concentrations, and hence longer residence time. These ligands had median total 31 

concentrations between [Lt]=0.77 and [Lt]=1.74 nEq of M Fe and conditional stability 32 

constants between logK´=21.57 and logK´=22.13 (N=156). Median values of [Lt] were higher 33 

in the upper 100 m and its median concentration increased from west to east. The [Lt] 34 

concentrations did not relate to water mass or DFe concentration. The ligands were nearly 35 

saturated with Fe where DFe was elevated near the surface and completely saturated, ratio 36 

[Lt]/DFe≤1, in patches with high DFe at depth. The high DFe concentrations in these patches 37 

are extreme, if not even maximum, concentrations as any surplus Fe with respect to the 38 

ligands will tend to precipitate. Calculated inorganic Fe concentrations in the Mediterranean 39 

had minimum concentrations of 0.23 pM and below 100 m depth median concentrations that 40 

varied between 0.68 and 1.99 pM only. This suggests that the inorganic Fe concentration is 41 

the result of a steady state between binding by organic ligands and scavenging processes. 42 

Thus scavenging will not result in lower inorganic Fe concentrations and in this way the 43 

dissolved ligand concentration determines the concentration of DFe in the Mediterranean Sea.  44 

  45 

Keywords: GEOTRACES, dissolved Fe, organic ligands, Mediterranean Sea, dust, Fe 46 

speciation. 47 

 48 

1. Introduction 49 
The Mediterranean Sea is surrounded by land and this has a strong influence on the 50 

chemical composition of the water and mixing processes therein. It has a surface area of about 51 

2.5 million km2 and a mean depth of 1500 m, with typical basin depths of 3000 m, while 52 

maximum depths exceed 5000 m in its Eastern Basin. In the west, the Mediterranean is 53 

connected with the Atlantic Ocean by the Strait of Gibraltar which is 14.3 km wide and has a 54 

sill depth of 280 m. The Western and Eastern Basins are divided by the Sicily Strait, with a 55 

sill depth of 316 m. In that region and further into the Eastern Basin, volcanic and 56 

hydrothermal activities are abundant. In the east, the Mediterranean is connected with the 57 

Black Sea via the Sea of Marmara, (average depth 490 m) and the Channel of the Bosporus 58 

(31 km long, 3 km wide, and an average midstream depth of 64 m). These narrow and shallow 59 

connections with the Atlantic Ocean and the Black Sea, in combination with high net 60 

evaporation, result in the high salinity in the Mediterranean, 38 < S < 39. The Eastern Basin is 61 

warmest and most saline.  62 
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Near-surface, upper 300 m circulation of relatively fresh Atlantic Water is counter-63 

clockwise (cyclonic) (e.g., Millot, 1999; Millot and Taupier-Letage, 2005). This basin-scale 64 

circulation along the continents is unstable, resulting in smaller, 100 km diameter spin-off 65 

meso-scale eddies. These eddies are mostly found in the southern part of the basins. They are 66 

most intense in the upper 200 m with horizontal speeds up to 1 m s-1, but can reach the basin 67 

floor where they have horizontal speeds of typically 0.05 m s-1. These eddies can quickly 68 

transport dissolved and particulate materials into the deep through vertical speeds of 0.01 m s-69 
1, being approximately 1000 m per day (van Haren et al., 2006). Another even faster vertical 70 

transport process occurs in the northern part of the Mediterranean, being one of the few 71 

regions outside of the polar oceans where dense water formation occurs (Voorhis and Webb, 72 

1970; Gascard, 1973). Due to cooling and evaporation by continental winds in winter, surface 73 

waters can become denser than underlying waters so that they sink by turbulent, natural 74 

convective mixing in 0.1-1 km wide ‘chimneys’. The chimneys themselves are part of sub-75 

mesoscale eddies (Testor and Gascard, 2003), which further mix newly formed deep dense 76 

waters with overlying water masses with the aid of the Earth rotation (van Haren and Millot, 77 

2009). In the Mediterranean, this mainly occurs in the northern part of the Western Basin and 78 

in the Adriatic Sea of the Eastern Basin. This process occurs every year reaching depths of 79 

several hundreds of meters, but roughly every 8 years it reaches all the way to the bottom. 80 

More rarely, every few decades, formation of deep dense water occurs in the Aegean Sea 81 

(Roether et al., 2007). 82 

The influence of the surrounding continents on the chemistry of the Mediterranean is 83 

relatively large. In this study we focus on dissolved Fe (DFe). Rivers like the Nile and the 84 

Rhone are sources of dissolved and particulate matter. It is assumed that the influence of 85 

rivers as source of metals like Fe to seas and oceans is modest, since flocculation within the 86 

estuarine zone will remove the majority of these metals (Sholkovitz, 1976; 1993; Boyle et al, 87 

1977; Dai et al., 1995; Paucot and Wollast, 1997; Tachiwaka et al., 2004). However, lateral 88 

transport of DFe is known to reach very large distances of 1000 km or more in the upper 200 89 

m (De Jong et al, 2012; Rijkenberg et al., 2012) and in the deep ocean (Fitzsimmons et al, 90 

2014). Moreover, nepheloid layers originating from shelves can occasionally cascade down 91 

canyons and cover the whole bottom of the Western Basin (Puig et al., 2013) and groundwater 92 

discharge is important for nutrients in the oligotrophic Mediterranean (Rodellas et al., 2015; 93 

Trezzi et al., 2016).  In this way, transport of fluvial materials including Fe and organic matter 94 

reach much further, here bottom nepheloid layers can generate DFe inputs from below.  95 

Dust from the Sahara is expected to be a major source of DFe from above (Guieu et al., 96 

1991; Guieu et al., 1997, 2010b; Spokes and Jickels, 1996; Wagener et al. 2008, 2010) as it is 97 

for Al (Rolison et al., 2015). By using Al as crustal marker Bonnet and Guieu (2006) 98 

concluded that Saharan dust is the main source for atmospheric input of DFe in the North 99 

Western Mediterranean, but according to Heimbürger et al. (2014) dust coming from the 100 

north, i.e. Europe, can also be considerable here. Although mostly considered as a source of 101 

Fe, dust can act as a sink by scavenging and/or ballasting effects (Wagener et al, 2010). 102 

Another major source for DFe might be hydrothermal activity (Lupton et al. 2011; Nomikou 103 

et al., 2013). Two volcanic systems exist in the Mediterranean, the submarine Aeolian Arc 104 

near Sicily and the Aeolian Islands and the Aegean volcanic arc around the island of Santorini 105 

(Lupton et al. 2011; Nomikou et al., 2013).  106 

The chemistry of DFe and notably the organic complexation of DFe is essential to keep Fe 107 

that is supplied from internal cycling, as well as from external sources, in solution by 108 

enhancing its solubility and hence increasing its residence time. The concentrations of these 109 

ligands are determining how far DFe can be transported from its fluvial (Powell and Wilson-110 

Finelli, 2003; Buck et al., 2007; Gerringa et al., 2007; Abualhaija et al., 2015; Mahmood et 111 
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al., 2015; Bundy et al., 2015), hydrothermal (Bennett et al., 2008; Sander and Koschinsky 112 

2011; Hawkes et al., 2013; Kleint et al., 2016) and atmospheric (Wagener, et al., 2008; 113 

Rijkenberg et al., 2008) sources. Although the Fe-binding dissolved organic ligands are 114 

important, they are poorly defined and little is known about their sources and sinks 115 

(Hopkinson and Barbeau, 2007; Rijkenberg et al., 2008; Boyd et al., 2010; Gledhill and Buck, 116 

2012). Iron-binding organic ligands are ubiquitous in the oceans and in general are more 117 

saturated with Fe in deeper waters than in surface waters. In surface waters DFe is taken up 118 

by phytoplankton, probably ligands are produced by bacteria and possibly phytoplankton, 119 

together creating a high excess ligand concentration over DFe (Gledhill et al. 2004; Gobler et 120 

al., 2004; Butler et al., 2005; Buck et al. 2010; Thuróczy et al., 2010; Poorvin et al., 2011; 121 

Gledhill and Buck, 2012; King et al. 2012; Bundy et al. 2016). Therefore, a high binding 122 

potential exists for Fe released either by mineralisation of organic material or from external 123 

Fe sources via lateral or horizontal transport.  124 

There are only a few studies reporting research on Fe-binding dissolved organic ligands 125 

in the Mediterranean (van den Berg, 1995; Wagener et al., 2008). Van den Berg (1995) was 126 

one of the first to measure the Fe-binding ligands in the Western Mediterranean and 127 

concluded that 99% of DFe was organically complexed. He also found that the highest 128 

concentrations of Fe-binding organic ligands occurred in and just below the zone of maximum 129 

fluorescence, indicating an origin from phytoplankton and/or bacteria. Wagener et al. (2008) 130 

investigated the role of dissolved organic ligands in the dissolution of Fe from dust. The 131 

dissolution rate was linearly related to the concentration of Fe-binding dissolved organic 132 

ligands and to dissolved organic carbon (DOC). It is possible that dust is a source of ligands 133 

too (Saydam, and Senyuva, 2002; Gerringa et al., 2006) or triggers bacterial growth and the 134 

production of ligands (Wagener et al., 2008). In this research, DFe and Fe-binding dissolved 135 

organic ligands are studied in the Dutch GEOTRACES Section GA04.  136 

 137 

 138 

2  Methods and equipment  139 

Sampling 140 

 141 

GEOTRACES section GA04 in the Mediterranean consisted of two legs both on board 142 

the Dutch R/V Pelagia. A southern cruise (S), 64PE370, started 14 May 2013 departing from 143 

Lisbon (Portugal) and ended in Istanbul (Turkey) on 05 June 2013. A northern cruise (N), 144 

64PE374, left Istanbul on 25 July 2013 and ended in Lisbon on 11 August 2013. Figure 1 145 

shows the cruise tracks and sampling stations.  146 

 147 
Figure 1: Cruise tracks of the Dutch GEOTRACES Section GA04 in the Mediterranean Sea. The 148 

southern cruise (S) (64PE370) is indicated with a red line and red symbols, the cruise track consists of 37 149 
stations. The part of the southern cruise in the Sea of Marmara is indicated with a green line and green symbols. 150 
The northern cruise (N) (64PE374) is indicated with a blue line and blue symbols, it consists of 19 stations. The 151 
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stations where Fe-binding dissolved organic ligands were sampled are indicated by station numbers. 152 
Geographical names used in the main text are indicated. In yellow the occurrence of mud-volcanos is indicated 153 
where these are part of the volcanic active Hellenic and Aeolian Arcs (after Mascle et al., 2014).  154 

 155 
 156 

During the southern cruise, 35 S stations were sampled for DFe including 10 stations 157 

sampled for Fe-binding dissolved organic ligands. Stations 1S-4S were in the Atlantic Ocean, 158 

of which station 1S was sampled for Fe-binding dissolved organic ligands. Stations 5S-33S 159 

were sampled in the Mediterranean Sea (station 25 was not sampled). Of these stations 5S, 160 

8S, 11S, 15S, 18S, 21S, 24S and 29S were sampled for Fe-binding dissolved organic ligands. 161 

Stations 34S-36S were sampled in the Sea of Marmara. Here station 36S was sampled for Fe-162 

binding dissolved organic ligands. During the northern cruise, stations 1N-19N were sampled 163 

for DFe, except for station 16N. Stations 8N, 13N and 17N were sampled for Fe-binding 164 

dissolved organic ligands. 165 

The CTD-package consisted of a SeaBird SBE9plus underwater unit, an SBE11plusV2 deck 166 

unit, an SBE3plus temperature sensor, an SBE4 conductivity sensor, a Wetlabs C-Star 167 

transmissiometer (25 cm, deep, red) and an SBE43 dissolved oxygen sensor. The sensors 168 

were freshly calibrated by Seabird. In situ calibrations of the CTD-thermometers (type SBE-3) 169 

were done with a Seabird reference-thermometer (type SBE35). For the calibration of the conductivity 170 
sensor, salinity-samples were tapped on board for analysis back home. Most of the casts were tapped 171 

for Winkler titrations in order to calibrate the dissolved oxygen sensor. The Absolute Salinity (SA 172 

in g kg-1) and Conservative Temperature (CT in °C) have been computed using the GSW-173 

software of TEOS-10 (IOC, SCOR, IAPSO, 2010). Density was expressed as sigma-theta, the 174 

density anomaly referenced to the surface Fluorescence was measured as the beam attenuation 175 

coefficient at 660 nm using a Chelsea Aquatracka MKIII fluorometer. The fluorometer signal 176 

was calibrated against Chlorophyll a and is expressed as µg Chla dm-3. 177 

Water samples were taken from the ultra-clean NIOZ CTD-frame and filtered over a 0.2 178 

µm filter using N2 overpressure in a clean-air laboratory unit (Rijkenberg et al., 2015). 179 

Samples for DFe analysis were acidified immediately after filtration (see below). 180 

Approximately 900 mL samples were taken for the analysis of Fe-binding dissolved organic 181 

ligands. During the southern cruise these samples were stored at -18 °C. Part of these were 182 

analysed on board during the northern cruise, remaining samples were analysed at the NIOZ 183 

home laboratory. Samples taken during the northern cruise were kept at 4°C in the dark and 184 

analysed on board within two days after sampling. 185 

Figures of maps and transects were made using ODV (Schlitzer, 2016). 186 

 187 

Analysis of the characteristics of the Fe-binding dissolved organic ligands 188 

 189 

Competing ligand exchange adsorptive cathodic stripping voltammetry (CLE-aCSV) 190 

was performed using two systems consisting of a µAutolab potentionstat (Metrohm Autolab 191 

B.V.), a 663 VA stand with a Hg drop electrode (Metrohm) and a 778 sample processor with 192 

ancillary pumps and dosimats (Metrohm), all controlled using a consumer laptop running 193 

Nova 1.9 (Metrohm Autolab B.V.). For the on board measurements the VA stands were 194 

mounted on elastic-suspended plywood platforms in aluminium frames developed at the 195 

NIOZ to minimize motion-induced noise. Electrical noise reduction and backup power was 196 

provided by Fortress 750 UPS systems for spike suppression and line noise filtering (Best 197 
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Power). Sample manipulations were performed inside class 100 laminar flow hoods 198 

(Interflow B.V., the Netherlands). 199 

The characteristics of Fe-binding dissolved organic ligands, that is both the ligand 200 

concentration [Lt] (in nano-equivalents of molar Fe, nEq of M Fe) and the conditional binding 201 

constant K´ (M-1) with respect to [Fe3+], commonly expressed as log K´ are determined using 202 

2-(2-Thiazolylazo)-p-cresol (TAC) as an added measuring ligand (Croot and Johansson, 203 

2000). TAC was used with a final concentration of 10 μM, and the complex (TAC)2-Fe was 204 

measured after equilibration (> 6 hrs). The increments of Fe concentrations used in the 205 

titration were 0 (2x), 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.5, 2, 2.5, 3, 4, 6, and 8 (2x) nM. Using a 206 

non-linear regression of the Langmuir isotherm, the electrical signal recorded in nA (nano-207 

Ampere) was converted into a concentration in nM, and the ligand concentration [Lt] and the 208 

binding strength K' were estimated (Gerringa et al., 2014). 209 

Using [Lt] and K’, the concentration of Fe bound to a natural Fe-binding ligand [FeL], 210 

the concentration of inorganic Fe [Fe'] and the concentration of natural unbound ligand [L'] 211 

were calculated under the assumption of chemical equilibrium using: 212 

 DFe = [Fe3+] (1+1010+K′ [L′])   Equation 1 213 

and the ligand mass balance: 214 

[Lt]=[FeL]+ [L′],     Equation 2 215 

respectively, by repeated calculations using Newton’s algorithm (Press et al., 1986). 216 

The parameters from Liu and Millero (2002) were used and from these an inorganic side 217 

reaction coefficient of 1010 was obtained, as also determined by Hudson et al. (1992). Only 218 

during the northern cruise separate samples for determination of DFe (see below) were taken 219 

from the un-acidified Fe-binding dissolved organic ligand samples just before the analysis of 220 

the characteristics of the organic ligands. To be able to compare the results from both cruises, 221 

the DFe concentrations from immediately acidified samples were used for the calculation of 222 

the ligand characteristics. In 6 samples this DFe was either missing (4 samples) or so high that 223 

contamination was probable (2 samples). The sample taken at 501 m at station 1S was not 224 

analysed with FIA, DFe from measurements with inductively coupled plasma mass 225 

spectrometry (ICP-MS) was used instead giving comparable results (Middag et al., 2015). The 226 

other missing samples were from station 8N at 260 m, station 13N at 1000 and 1500 m, the 227 

contaminated samples were from station 13N at 100 and 2000 m depth. For these samples 228 

DFe was used which was measured in subsamples taken from the unacidified 1 L bottles just 229 

before analysis of the ligand characteristics and analysed by FIA. Earlier research showed that 230 

DFe in unacidified samples are on average 13% lower due to wall adsorption (Gerringa et al., 231 

2015). The results of the above mentioned samples do not deviate from the general trend with 232 

depth or between stations and were thus incorporated in the results. 233 

  234 
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Table 1: Concentrations of SAFe and GEOTRACES reference samples in nM kg-1. 235 
Columns show reference ID, the Intercalibration Consensus Values (ICV) and the bottle number of GS reference 236 
samples, the values measured during the cruises 64PE370 and 64PE374 in the North Atlantic Ocean, the 237 
Mediterranean Sea and the Sea of Marmara, including the standard deviation, and the number of sample 238 
analyses.  239 
SAFe S is a surface, SAFe D is deep reference sample and GS is a GEOTRACES surface and GD is a 240 
GEOTRACES deep reference sample (http://www.geotraces.org/science/intercalibration). 241 
 242 

 243 
 244 

ID  ICV ± SE (nM kg‐1)  Bottle nr  Measured ± SE (nM kg‐1)  N 

SAFe S  0.093 ± 0.008  8,47,48,76 0.067 ± 0.013  7 

SAFe D2  0.933 ± 0.023  29,191  0.963 ± 0.076  2 

GS  0.546 ± 0.046  12  0.836 ± 0.030  3 

    141  0.493 ± 0.021  2 

    154  0.736 ± 0.007  2 

    186  0.541  1 

    55  0.473  1 

GD  1.000 ±  0.100  87,238  1.088 ± 0.102  10 

 245 

 246 

The ligand characteristics were calculated with two models, one assuming the presence 247 

of one ligand class and the other assuming the presence of two ligand classes (Gerringa et al., 248 

2014) (Supplementary Table 1). We were unable to calculate the ligand characteristics for 2 249 

ligand classes because either only one ligand group was present, or ligand characteristics of 250 

the different ligand groups did not differ enough from each other to be distinguished as 251 

separate classes. 252 

The side reaction coefficient αFeL of the organic ligands was calculated as the product of 253 

K' and [L'],  254 

αFeL= K' * [L'] = [FeL]/[Fe'],    Equation 3 255 

αFeL reflects the complexation capacity of the dissolved organic ligands to bind with Fe, 256 

which can be seen as its ability to compete for Fe with other ligands and with adsorption sites 257 

on particles. The parameter αFeL is more robust to characterize the Fe-binding dissolved 258 

organic ligands than the K' and [L'] separately because the Langmuir equation does not treat 259 

K' and [L'] independently from each other. If an analytical error forces an underestimation of 260 

one, the other is automatically overestimated (Hudson et al., 2003). Moreover, in our 261 

equations, [L'] is, in contrast to [Lt], independent of DFe (Thuróczy et al., 2010). The ratio 262 

[Lt]/DFe (Supplementary Table 1 at the end of the manuscript) indicates the saturation of the 263 

ligands, which are saturated with Fe if the ratio ≤1, and unsaturated when >1 (Thuróczy et al, 264 

2010).  265 

Flow Injection Analysis of DFe 266 

The DFe concentrations were measured in filtered (0.2 μm, Sartorius Sartobran 300) 267 

and acidified (pH 1.8, 2 ml/L 12M Baseline grade Seastar HCl) samples at sea using an 268 

automated Flow Injection Analysis (FIA) (Klunder et al., 2011) and described in detail by 269 

Rijkenberg et al., 2014 Samples were analysed in triplicate and average DFe concentrations 270 

and standard deviation are given in the available in the GEOTRACES GA04 database 271 
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(http://www.bodc.ac.uk). The data is publicly available in August 2017 when the 272 

GEOTRACES Intermediate Data Product 2016 will be published. On average, the standard 273 

deviation of the measurements was 3.2%, generally being < 5% in samples with DFe 274 

concentrations higher than 0.1nM. Only standard deviation (SD) of measurements near the 275 

detection limit of the system were relatively high. The average blank was determined to be at 276 

0.033 nM during the southern cruise and 0.017 nM during the northern cruise. The blank was 277 

defined by the intercept of a low Fe sample loaded for 5, 10 and 20 seconds and was 278 

measured daily. The limit of detection, 0.019 nM during the southern cruise and 0.004 nM 279 

during the northern cruise, was defined as three times the SD of the mean of the daily 280 

measured blanks, loaded for 10 s. To better understand the day-to-day variations, a duplicate 281 

sample was measured again at least 24 hours after the first measurement. The relative 282 

differences between these measurements were of the order of 1-20%, while the largest 283 

differences were measured in samples with low DFe concentrations. To correct for this day-284 

to-day variation, a lab standard, a sample acidified for more than 6 months, was measured 285 

daily. The consistency of the FIA system over the course of a day was verified using a drift 286 

standard. For the long-term consistency and absolute accuracy, certified SAFe and 287 

GEOTRACES reference material (Johnson et al., 2007) were measured on a regular basis 288 

(Table 1). We did not measure a consistent DFe in the GS reference samples, like we did in 289 

the other references. We do not know the cause, we might have had a contamination in two 290 

GS bottles. The DFe data have been accepted for the GEOTRACES intermediate data product 291 

2017. 292 

3 Hydrography 293 

Stations 1S-4S were sampled in the Atlantic Ocean before entering the Mediterranean 294 

Sea. The Mediterranean Outflow Water (MOW) is readily recognized between 500 and 1500 295 

m by higher salinity (>36) and lower oxygen concentrations (<200 μg kg-1) (Figures 2 A, D). 296 

 297 

Figure 2: Southern cruise transect showing:  A: Absolute Salinity (SA) in g kg-1; B: Conservative 298 
Temperature (CT) in °C; C: Density as sigma-theta in kg m-3; D: Oxygen in μM kg-3; E: Fluorescence in μg dm-299 
3; F: Attenuation coefficient in m-1. 300 
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Salinity contours are given every 0.5 g kg-1between 36 and 37, and every 0.1 g kg-1between 37 and 39.5. Sigma-301 
theta contours are every 0.5 kg m-3 between 27 and 29.5, every 0.001 kg m-3 between 29.1 and 29.120 and 302 
between 29.173 and 29.2 and every 0.002 kg m-3 between 29.2 and 29.26. 303 

 304 

In the Mediterranean, the Atlantic Water (AW) characterized by relatively low salinity 305 

is present in the surface waters (<200 m) of especially the Western Basin. AW streams 306 

counter clockwise through the basins (e.g., Millot, 1999) and becomes warmer and more 307 

saline along its course. Formed in dense water formation areas in the Eastern Basin, the 308 

Levantine Intermediate Water (LIW) between 200 and 600 m in the southern cruise transect 309 

and 100-800 m in the northern cruise transect, streams to the west and spills into the Western 310 

Basin (see also Rolison et al., 2015). It is discernible by its relatively high salinity (>38.75 in 311 

the Eastern Basin and >38.5 in the Western Basin in the southern transect; > 38.8 in the 312 

northern transect) and in the northern transect also by its relatively high temperature (>14- 313 

14.5°C) and in the Western Basin by low oxygen  (Figures 2 A, B, D, 3 A, B, D). Below LIW, 314 

three deep water masses are distinguished, the Western Mediterranean Deep Water 315 

(WMDW), the Adriatic Mediterranean Deep Water (AdMDW) and the Aegean Mediterranean 316 

Deep Water (AeMDW). The AdMDW is less saline than the AeMDW (Figure 3 A).  317 

 318 

Figure 3: Northern cruise transect with A: Absolute Salinity (SA) in g kg-1; B: Conservative Temperature (CT) 319 
in °C; C: Density as sigma-theta in kg m-3; D: Oxygen in μM kg-3; E: Fluorescence in μg dm-3; F: Attenuation 320 
coefficient in m-1. 321 
Salinity contours are given every 0.1 g kg-1between 37.5 and 39.5. Sigma-theta contours are every 0.5 kg m-3 322 
between 27 and 29.5, every 0.001 kg m-3 between 29.1 and 29.120 and between 29.173 and 29.2 and every 0.002 323 
kg m-3 between 29.2 and 29.26. 324 

 325 

Water masses are not only separated vertically, but also horizontally, due to their 326 

different formation areas. Horizontally, water masses are separated by fronts, as can be seen 327 

between AdDMW and AeMDW, for example in Figure 3C. Fronts occur around eddies (for 328 

example near stations 7N, 8N and 9N in Figure 3C, as further discussed in section 5.2 in Deep 329 
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high DFe patches), and near continental boundaries. Dynamically, horizontal transitions in 330 

density give rise to along-frontal currents, due to the rotation of the Earth, causing advective 331 

transport. Near continental boundaries and around eddies such currents are expected to be 332 

strongest with velocities ranging between 0.1 and 1 m s-1 (Millot and Taupier-Letage, 2005). 333 

They become reinforced after dense water formation events, whereby density contrasts are 334 

sharpened. This gives rise to larger along-frontal currents, following vertical convection 335 

events. 336 

The Sea of Marmara has a surface layer of about 20 m with a relatively low salinity 337 

influenced by exchange with the Black Sea (S = 21.6 in the east, S= 23 in the west) 338 

(Beşiktepe et al., 1994). This layer contains high oxygen concentrations of 213-280 μg kg-1 339 

and fluorescence is relatively high, 0.5-1.1μg dm-3 (Figure 4 A, C, E). Below a very steep 340 

pycnocline at 20 to 50 m the salinity is >38.7 and the oxygen is reduced to 10.4-18.4 μg kg-1 341 

in the east and to 20-50 μg kg-1 in the west. The surface waters are transitional in character 342 

with a short residence time of months (Ünlüata et al., 1990; Beşiktepe, et al., 1994; Rank et 343 

al., 1999). Below 50 m salinity, temperature and oxygen concentrations are nearly 344 

homogeneous. According to Rank et al. (1999) the sub-halocline water is. This uniform deep 345 

water has a residence time of 6 years, which is influenced by intrusions from the 346 

Mediterranean (Rank et al., 1999, Ünlüata et al., 1990).  347 

 348 

 349 

Figure 4: Transect from the Southern cruise into the Sea of Marmara with A: Absolute Salinity (SA) in g 350 
kg-1; B: Conservative Temperature (CT) in °C; C: Oxygen in μM kg-3; D: Fluorescence in μg dm-3, E:  DFe in 351 
nM. 352 

There is no data available for oxygen at station 36 at 800 m, influencing the interpretation between 353 
stations by ODV. 354 

Salinity contours are given every 2 g kg-1between 20 and 39.5. 355 
 356 

4 Results  357 
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In the following paragraphs, median values are presented per depth layer (0-100m to show 358 

the influences of dust deposition, 100-1000 m to show properties in the LIW, and 1000-359 

2000m and >2000m for properties of the deep water and the deepest basins, respectively) and 360 

per geographical region, the Atlantic Ocean, the Mediterranean Sea, divided in the Western 361 

Basin and the Eastern Basin, and the Sea of Marmara. Medians with interquartile ranges 362 

(IQR) were calculated instead of average because DFe and also [Lt] had maxima in deep 363 

patches, which influenced the average values and increased the standard deviations, making 364 

median values more suitable. Note that for both the Atlantic Ocean and the Sea of Marmara 365 

only one station was sampled for the Fe-binding organic ligand characteristics, and thus the 366 

number of samples (N) is rather low. 367 

 368 
Figure 5: Southern (Figure 5A) and northern (Figure 5B) cruise transect showing DFe in nM. The southern 369 
transect consists of 721 data points, the northern transect consists of 421 data points. Station 25S was not 370 
sampled for DFe (see methods). See Figure 1 for the positions of the stations.  371 

 372 

In the Atlantic Ocean DFe was low in the surface waters (stations 1S-4S) and ranged 373 

from 0.01 to 0.18 nM in the upper 100 m (Figure 5A). The DFe increased with depth to 0.69 374 

nM at 1000 m in the MOW, and slightly decreased to 0.50 nM at depths larger than 3000 m at 375 

stations 1S and 2S (Figure 6A). Closer to the Mediterranean, DFe increased to 0.71-0.99 nM 376 

around 900 m (stations 3S and 4S), also in the MOW, being well below the Camarinal sill 377 

separating the Mediterranean from the Atlantic Ocean (Figures 5A, 6A).  378 
 379 
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 380 
Figure 6: Dissolved Fe (DFe in nM) with standard deviations (small values falling within the size of the 381 

symbol, see Supplementary Table 1) versus depth (m) of A: stations in the Atlantic Ocean (AW); B: stations 382 
from the southern cruise (S); C: stations from the northern cruise (N); D: stations from the Sea of Marmara. 383 

 384 
 385 

In the Mediterranean, the typical vertical profile of DFe was different from those in the 386 

Atlantic Ocean (Figures 6A versus 6B and 6C). In the Mediterranean, DFe was high near the 387 

surface (median DFe in upper 100 m=1.4 nM, IQR = 0.96, N = 290, ranging from 0.20 to 388 

15.35 nM), with highest near-surface DFe at stations in the north of the Eastern Basin 389 

(Figures 6B and 6C; station 27S with 15.35 nM and station 7N with 9.36 nM), decreasing to 390 

relatively low concentrations of <0.40 nM below 500-700 m (Table 2A). These deep 391 

concentrations were relatively low compared to concentrations of 0.5 nM at similar depths in 392 

the Atlantic Ocean (Rijkenberg et al., 2014, Hatta et al., 2015). The lowest deep DFe of 0.09 393 

nM in the Mediterranean was from station 18S at 3263 m. However, very high DFe of up to 394 

8.40 nM existed in distinct patches of both transects between 200 and 3000 m (at station 6N at 395 

1250 m; Figure 5B). These patches were mostly found in the Eastern Basin during our 396 

northern transect, (Figure 5B). The patches varied roughly between 230-400 km in width and 397 

between 400 and 1000 m in height.  398 

In the Sea of Marmara, DFe was elevated in the upper 100 m as in the Mediterranean 399 

and ranged between 0.94-4.93 nM. DFe decreased to 0.75-0.33 nM between 100 and 1000 m 400 

and increased close to the bottom only at one station (35S) to 1.80 nM at 1110 m (Figure 6D, 401 

Table 2A). 402 
  403 
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Table 2A 404 
 405 

Region  Atlantic OceanMediterranean Sea Western Basin  Eastern basin  Sea of Marmara

depth layer (m) 
DFe 
nM 

IQR 
 

N 
 

DFe 
nM 

IQR 
 

N 
 

DFe
nM

IQR 
 

N 
 

DFe
nM

IQR 
 

N 
 

DFe
nM

IQR
 

N 
 

0‐100  0.04  0.04  20  1.38  0.96  290  1.15 1.03  106 1.49 0.89  184 1.27 2.09 23 

100‐1000  0.38  0.42  38  0.54  0.37  472  0.57 0.41  170 0.53 0.33  302 0.52 0.28 21 

1000‐2000  0.67  0.07  15  0.37  0.31  120  0.40 0.19  49  0.34 0.42  71  0.47 0.76 4 

>2000  0.56  0.08  21  0.35  0.24  118  0.39 0.25  47  0.34 0.25  71 

         

table 2B           

           

depth layer m   
N 
 
 

logK′ 
 

(M‐1) 

IQR 
 
 

[Lt] 
(nEq of M Fe)

IQR
 
 

[L'] 
(nEq of M Fe)

IQR 
 
 

[Lt]/DFe
 
 

IQR 
 
 

Logalpha
 
 

IQR 
 
 

[Fe']
(pM)

 

IQR 
 
 

Atlantic Ocean                             

0‐100  2  22.06  0.44  1.13  0.35 1.10  0.35  43.4  20.5  13.07  0.29  0.03  0.01 

100‐1000  4  21.71  0.44  1.27  0.58 0.95  0.86  8.0  13.7  12.73  0.53  0.52  0.54 

1000‐2000  3  22.04  0.34  0.77  0.49 0.19  0.48  1.3  0.7  12.37  0.16  3.44  0.80 

>2000  4  21.88  0.23  0.99  0.23 0.50  0.19  2.0  0.5  12.52  0.19  1.87  0.63 

whole Mediterranean                

0‐100  48  21.93  0.67  1.70  1.00 0.45  1.08  1.4  1.2  12.50  1.00  3.28  26.11

100‐1000  61  21.78  0.58  1.30  0.82 0.67  0.97  2.2  1.6  12.61  0.57  1.64  2.39 

1000‐2000  14  21.89  0.54  1.32  0.58 0.83  0.86  3.3  2.5  12.69  0.44  0.84  1.10 

>2000  13  21.57  0.26  1.45  0.57 1.09  0.68  4.4  2.9  12.67  0.34  0.92  0.55 

East Mediterranean                

0‐100  24  21.94  0.64  1.74  1.36 0.57  1.20  1.4  1.2  12.72  0.98  1.77  14.83

100‐1000  24  21.66  0.52  1.51  0.82 0.89  0.84  2.7  2.0  12.49  0.23  1.99  1.27 

1000‐2000  8  21.55  0.41  1.61  0.43 1.24  0.70  4.0  3.4  12.54  0.41  0.92  0.84 

>2000  8  21.57  0.18  1.70  0.68 1.39  0.70  4.5  2.7  12.71  0.68  1.11  11.55

West Mediterranean                

0‐100  22  21.87  0.49  1.64  0.66 0.24  0.72  1.2  0.9  12.36  1.12  5.25  48.79

100‐1000  39  21.87  0.64  1.21  0.80 0.55  0.83  2.0  1.7  12.72  0.63  1.42  3.09 

1000‐2000  6  22.13  0.27  1.02  0.35 0.37  0.59  2.5  2.7  12.84  1.60  0.68  173.00

>2000  5  21.57  0.46  1.27  0.08 0.82  0.33  3.8  2.1  12.67  0.40  0.92  0.42 

Sea of Marmara                

0‐100  3  21.56  0.44  2.93  2.12 0.01  0.11  0.7  0.4  10.50  1.30 1160.01074.8

100‐1000  5  21.20  0.31  1.81  0.81 1.33  1.12  3.7  3.1  11.82  0.86  9.24  17.72

>1000  1  21.82    0.79  0.61  4.3    12.61    0.57 

 406 
Table 2: Median values per environment and per depth layer of  407 
A. DFe with the inter quartile range (IQR) of the median and the number of samples (N); 408 
B: ligand characteristics logK′, [Lt], logαFeL, the calculated [Fe´] and the ratio [Lt]/DFe with the inter 409 

quartile ranges (IQR) of the median and the numbers of samples (N) 410 
 411 

 412 

In the Atlantic Ocean, [Lt] varied between 0.54 and 2.01 nEq of M DFe (N=13, Figure 413 

7A) and had a median of 1.1 nEq of M DFe in the upper 100 m, 1.3 nEq of M DFe in the 414 

upper 1000 m and 0.8 and 1.0 nEq of M DFe in the 1000-2000 m below 2000 m, respectively 415 
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(Table 2B for IQR and N per depth layer). The median logK´ per depth layer varied between 416 

21.9 and 22.1 (N = 13). No trend with depth existed, but the values showed more variation in 417 

the upper 500 m and in the two samples taken just above the sediment (Supplementary Table 418 

1). The [Lt] in the Mediterranean Sea varied between 0.23 and 5.51 nEq of M DFe (Figures 419 

7B and 7C, Supplementary Table 1). LogK´ varied between 20.54 and 24.11. Only 17 LogK´ 420 

values out of 156 samples were higher than 22.5. These high values coincided with ligands 421 

that were saturated with Fe or nearly saturated as shown by the ratio [Lt]/DFe ranging 422 

between 0.6 and 2 with an average of 1.2. These high logK´ values are influenced by the fact 423 

that the ligands were near saturation and therefore had very few data points in the calculation, 424 

probably resulting in a correct [Lt] but not in very reliable K’ by lack of degrees of freedom. 425 

This is illustrated by the high standard errors only 5 of the 17 have an upper SE smaller than 426 

0.4 mol-1. Thus we assume that actually logK´ varied between 20.54 and 22.5, although all 427 

values were used for calculating means and medians in the following text. 428 

In the Sea of Marmara, high [Lt] up to 5.12 nEq of M DFe existed in the upper 100 m 429 

where fluorescence was high, in deeper water [Lt] varied between 0.79-2.21 nEq of M DFe; 430 

whereas logK´ varied between 21.97 and 20.90 with no apparent relation with depth (Figure 431 

7D, Table 2B). 432 

 433 
Figure 7: The concentration of Fe-binding dissolved organic ligands with standard errors ([Lt] in nEq of 434 

M Fe, small errors falling within the size of the symbol) versus depth (m) of A: stations in the Atlantic Ocean 435 
(AW); B: stations from the southern cruise (S); C: stations from the northern cruise (N); D: stations from the Sea 436 
of Marmara. 437 

 438 
When comparing the three regions, the median DFe per depth layer increased in the 439 

Atlantic Ocean with depth and decreased with depth in the other three basins (Table 2 A). The 440 

median [Lt] per depth interval generally decreased with depth in all regions. However, in the 441 

Western Mediterranean Basin it remained almost constant with depth between 1.51 and 1.74 442 

nEq of M Fe. (Supplementary Table 1 and Table 2B). The median [Lt] was lowest in the 443 

Atlantic Ocean (0.77-1.27 nEq of M Fe) and highest in the Sea of Marmara, ranging from 444 

0.79 to 2.93 nEq of M Fe. The median values of [Lt] in the upper 0-100 m and 100-1000 m 445 

were higher in the Western compared to the Eastern Basin of the Mediterranean (Table 2B). 446 

The median values of logK´ decreased slightly from west to east from 21.71-22.04 in the 447 

Atlantic Ocean, 21.55-21.94 in the Western Mediterranean, 21.57-22.13 in the Eastern 448 

Mediterranean to 21.2-21.82 in the Sea of Marmara.  449 

In the Atlantic Ocean, logK´ was fairly constant through the water column and ranged 450 

between 21.71 and 22.06. In the Mediterranean, both in the Western and Eastern Basins, 451 

logK´ decreased with depth, with an exception between 1000 and 2000 m in the Eastern Basin 452 

where a relatively high logK´ was found, 22.13 versus 21.87-21.57. In the Sea of Marmara, 453 
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log K´ varied between 21.20 and 21.82 unrelated with depth. The LogαFeL did not vary 454 

between the Atlantic Ocean and the Mediterranean Sea but was lower in the Sea of Marmara 455 

(Table 2 B). LogαFeL decreased with depth in the Atlantic Ocean from 13.07 to 12.52, it 456 

varied little between 12.36 and 12.84 in the Mediterranean Sea and it increased with depth in 457 

the Sea of Marmara from 10.50 to 12.61. The ratio [Lt]/DFe decreased with depth in the 458 

Atlantic Ocean from relatively high 43.4 in the upper 100 m to values round 1 and 2 in deep 459 

waters whereas in the other regions, the ratio increased with depth. In the Mediterranean and 460 

Sea of Marmara this ratio did not vary as much and remained between 0.7 and 4.45. Excess L 461 

decreased with depth in the Atlantic Ocean and increased with depth in the Mediterranean 462 

basins. In the Sea of Marmara excess L and DFe vary, in the surface DFe is relatively high 463 

and excess L is low (0.01-0.22 nEq of M Fe) (Figure 4, Supplementary Table 1 and Tables 2 464 

A, 2 B). 465 

 466 

5. Discussion 467 

5.1 Sources and sinks of DFe and Fe-binding dissolved organic ligands in the 468 

Atlantic Ocean and the Sea of Marmara 469 

Atlantic Ocean 470 
The depth-profiles of DFe at stations 1S-4S were similar to those observed by others in 471 

the Atlantic Ocean, with very low concentrations near the surface due to phytoplankton 472 

uptake and scavenging by dust, although seasonal increases in DFe are reported due to dust 473 

input (Sedwick et al., 2005; Thuróczy et al., 2010; Wagener et al., 2010; Rijkenberg et al., 474 

2012; 2014; Hatta et al., 2015, Sedwick et al., 2015). Calculated [Fe´] are very low 0.02-0.07 475 

in pM in the upper 100 m, lowest values obtained in the present research. Phytoplankton 476 

uptake of Fe was probably the reason for these low values. Increasing DFe concentrations 477 

with depth in the upper 500-1000 m (Figures 5A, 6A) are probably due to the release by 478 

degradation of organic matter and the DFe decrease below 1500 m at stations 1S-3S is 479 

probably due to scavenging (Bruland et al., 2014). Below 2000 m, DFe was close to 0.5 nM 480 

as also observed by Sarthou et al. (2007). Closer to the Strait of Gibraltar (Stations 3S and 481 

4S), DFe was higher in the MOW between 500 and 2000 m. Since the salinity and the density 482 

were also higher and the oxygen concentrations were lower at these depths (Fig 2 A,C,D), it is 483 

safe to conclude that the Mediterranean is the source of elevated DFe. Although they expected 484 

elevated DFe, Hatta et al. (2015) did not detect higher DFe in the MOW at their stations, in 485 

the same region as our stations. Also Thuróczy et al. (2010) did not detect elevated DFe in 486 

MOW at the position of our station 1S. However, at depths of the MOW Thuróczy et al. 487 

(2010) measured an increase in particulate Fe (PFe). Lenses of MOW, ‘Meddies’ or pulses of 488 

water are released into the Atlantic at different depths depending on density. These move with 489 

variable velocities and directions and are also dependent on season. In this way these 490 

hydrological features explain variability in DFe and it is thus not surprising that results are not 491 

overlapping here (Ambar et al., 2008).  492 

The calculated values of logαFeL for both the present study and that of Thuróczy et al. 493 

(2010) compare well, with values between 12.71 and 13.25 from their study and 12.05 and 494 

13.35 from this study. In both studies ligands got more saturated with depth until 1000-2000 495 

m, below which [Lt]/DFe remained constant with depth. At our station 1S, excess L and [Fe´] 496 

also remained constant below 1000 m. Apparently at this depth a steady state is reached for Fe 497 

between binding by organic ligands and scavenging by marine snow (Bruland et al., 2014). 498 

The [Lt] is slightly higher at 1000 m in the MOW. It is thus possible that the Mediterranean is 499 

also a source of dissolved organic Fe-binding ligands for the Atlantic Ocean. Buck et al. 500 

(2015) measured ligand characteristics East and South of the Strait of Gibraltar. They 501 

distinguished three different ligand groups with a sum [Lt] around 2-3 nEq of M Fe, higher 502 
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than the concentrations at our station 1S. However, logαFeL was between 13 and 13.5, which is 503 

close to our values of 12.05 and 13.35. This confirms that the side reaction coefficient (logα) 504 

is a useful parameter for comparing results of speciation data obtained with different chemical 505 

and mathematical methods (Town and Filella, 2000; Hudson et al., 2003; Gerringa et al., 506 

2016; Gledhill and Gerringa, submitted) 507 

 508 

Sea of Marmara 509 

In the Sea of Marmara the elevated DFe up to 4.93 nM was not restricted to the upper 510 

20-50 m, the layer influenced by the outflow of the Black Sea with low salinity high oxygen 511 

and high fluorescence, but it extended over 100 m. Below 100 m DFe decreased from 1.21 to 512 

0.18 nM. Changes in DFe are not related to changes in oxygen concentration (Figure 4 D,E). 513 

The sources of Fe are predominantly in the surface and determine the depth distribution in the 514 

upper 100 m. The sea is relatively polluted although not in Fe as concluded in sediment 515 

studies (Pekey, 2006). The sea is surrounded by land, with lateral supply from rivers like the 516 

polluted Dil Deresi, and from the Black Sea. The organic ligands at station 36S were weaker 517 

than in the Atlantic Ocean and in the Mediterranean Sea (see below). However, the lower 518 

conditional binding constants had comparable values between 20.74 and 22.2, obtained with 519 

the same method in the near-surface oxic layer of the Black Sea (Gerringa et al., 2016). The 520 

relatively high [Lt] between 1 and 2.8 nEq of M Fe in the Black Sea also compared rather 521 

well to the values between 0.79 and 5.12 nEq of M Fe in the Sea of Marmara confirming the 522 

role of the Black Sea as a source. Near the surface, the ligands were saturated at station 36S, 523 

excess L is very low and the three lowest [Lt]/DFe ratios in this research are found here; thus 524 

DFe concentrations were quite extreme if not maximum concentrations in the upper 100 m. 525 

The 100 m deep layer with elevated DFe can be explained by sinking particles, predominantly 526 

dust, releasing Fe enabled by excess L. Some of the sources for Fe, most probably rivers and 527 

the Black Sea may be important for the dissolved organic Fe-binding ligands as well. The 528 

proximity of land increases the chance that humic substances are an important part of the Fe-529 

binding ligand pool. This ligand group might be underestimated by our method, which is not 530 

very sensitive for humic substances (Laglera et al, 2011; Abualhaija et al., 2015; Bundy et al., 531 

2015). 532 

 533 

5.2 Sources and sinks in the Mediterranean 534 

As in other seas and oceans DFe and [Lt] do not systematically vary with water masses 535 

(Rijkenberg et al., 2014; Bruland et al., 2014; Gerringa et al., 2015; Buck et al., 2015; 536 

Thuróczy et al, 2011; Klunder et al., 2012). Even the LIW, considered to be an important 537 

water mass in the Mediterranean, cannot be recognized in both transects of DFe (Figures 2A, 538 

3A and 5), as was also concluded by Rolison et al. (2015) for DAl in the southern cruise. This 539 

most likely indicates the strong influence of vertical processes above the effect of horizontal 540 

processes. However in the West Atlantic Ocean, Gerringa et al. (2015) reported that [Lt] 541 

decreased along the flowpath of the NADW.  542 

 543 

Near-surface waters 544 

The high DFe concentration in the upper 100 m of the Mediterranean (Figures 5 A, B, 545 

and 6 B, C) suggests that dust is a major source of DFe, predominantly from the Sahara but 546 

also from anthropogenic sources (Guieu et al., 1991; 1997; 2010a; 2010b; Croot et al., 2004; 547 

Rijkenberg et al., 2008; Aguilar-Islas et al., 2010; Buck et al., 2010; Heimbürger et al., 2014). 548 

Guieu et al. (2010a) concluded that an increase in DFe up to 5.3 nM in the surface mixed 549 

layer in the Western Basin was due to dust input, with smaller concentrations in the Eastern 550 
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Basin. In that study, the fluxes of dust and thus metals varied strongly depending to the season 551 

and weather conditions. We found the highest DFe concentrations, close to Greece and in the 552 

Adriatic Sea. Along the southern transect, Rolison et al. (2015) also measured higher surface 553 

dissolved Al (DAl) in the Eastern Basin than in the Western Basin. River input of metals is 554 

expected to be important close to the coasts, although a large fraction of DFe and other 555 

dissolved metals may be lost by flocculation upon mixing with saline waters (Boyle et al, 556 

1977; Sholkovitz, 1976; Paucot and Wollast, 1997; Buck et al., 2007). Lateral transport of the 557 

remaining river DFe enabled by complexation (Jones et al., 2011) is most probably occurring 558 

at such a small scale that it is hard to be distinguished by us since we sampled far from the 559 

coast along the deepest part of the Mediterranean Sea. Except for stations in the Northeast 560 

(stations 26S-33S) and near the Adriatic Sea (stations 7N, 8N, 9N) where the cruise track 561 

came relatively close to the coast and rivers and lateral transport from land could play a role 562 

as source, dust is most probably the main source for the high near-surface DFe at our station 563 

locations in the Mediterranean.  564 

The importance of dust as source of DFe depends on the amount of dust, its Fe content 565 

and on the solubility of Fe. Fe-binding organic ligands in aerosols, like oxalate or aliphatic 566 

water soluble organic carbon compounds, increases the solubility of Fe from the dust (Paris et 567 

al., 2011; Wozniak et al., 2015). The solubility in seawater depends also on the nature of the 568 

dust particles (Visser et al., 2003; Baker and Jickells, 2006; Sedwick et al., 2007; Baker and 569 

Croot, 2010; Fishwick et al., 2014). Journet et al. (2008) found that Fe solubility of clays 570 

(illite) was even larger than that of Fe-oxides in dissolution experiments. However, also the 571 

characteristics and composition of the seawater influences Fe dissolution. Logically, it can be 572 

deduced that the solubility of Fe from dust is related to the excess ligand concentration in 573 

seawater. Indeed, Rijkenberg et al. (2008) found that the Fe-binding ligands play a key role in 574 

keeping Fe from Sahara dust in solution, as also concluded by Aguilar-Islas et al. (2010) in 575 

the Pacific and Fishwick et al. (2014) in the Sargasso Sea.  576 

Wagener et al. (2008) found that the dissolution rates of Fe from Sahara dust were 577 

linearly related to the concentration of dissolved organic ligands in sea water. Interestingly, 578 

they discovered that excess ligands were not always successful in dissolving Fe. The 579 

dissolving capacity depended on the season and probably on the presence of freshly produced 580 

ligands by biota. Our cruises were in summer, with relatively high biological activity (Van der 581 

Poll et al., 2015). Probably the presence of freshly formed ligands enabled a high solubility of 582 

Fe (Barbeau et al., 2001). Wagener et al. (2010) concluded that successive dust depositions 583 

could have different biogeochemical reactions near the surface of the Mediterranean. They 584 

found that repetitive dust depositions in mesocosms studies had opposite effects, no flux of Fe 585 

from the dust into the seawater occurred, the opposite happened, the dust particles cleaned the 586 

water column from Fe and scavenged DFe out of the water. Sarthou and Jeandel (2001) 587 

showed that near the surface in the north of the Western Basin the exchange flux of Fe from 588 

the dissolved to the particulate phase was high, but decreased considerably with depth. 589 

According to Aguilar-Islas et al. (2010) and Fishwick et al (2014) the dissolved Fe from dust 590 

was predominantly in the colloidal fraction. The distribution over different size fractions of Fe 591 

and the Fe-binding ligands is influencing the dissolution and residence time of Fe. This is 592 

discussed elsewhere and is outside the scope of this study (Wu et al., 2001; Croot et al., 2004; 593 

Fitzsimmons et al., 2015). Thus, DFe is the resultant of dissolution and scavenging and 594 

ballasting effects of Sahara dust. The dissolution of Fe from dust depends, apart from the 595 

nature of the dust, on the nature of the ligands (Wozniak et al., 2015; Aguilar Islas et al., 596 

2010) and on the age of the ligands (Wagener et al., 2010), as well as on the dust history of 597 

the environment.  598 

Even if this is not as apparent as for DFe, [Lt] is also higher near the surface (Figures 7 599 

B, C). Sources for Fe-binding dissolved organic ligands can be biological activity (Barbeau et 600 
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al., 2001; Rue and Bruland, 1995; Gerringa et al., 2006; Gledhill et al, 2004) and in the east 601 

the Black Sea as an additional source (Gerringa et al., 2016). Due to the high DFe, the growth 602 

of phytoplankton was not limited by a lack of Fe. According to Van de Poll et al. (2015), 603 

describing the southern transect, phytoplankton was nitrate-limited in the Eastern as well as in 604 

the Western Mediterranean Sea. If there is production of siderophores it is not to relieve Fe 605 

stress, only ligands resulting from degradation and viral lysis should be formed (Poorvin et 606 

al., 2011; Slagter et al., 2016). In the Western Basin diatoms were abundant, in the Eastern 607 

Basin Synechococcus was most abundant. In the Western Basin chlorophyll had maximum 608 

concentrations in the upper 50 m, while in the Eastern Basin its maximum was found between 609 

100 and 130 m (Van der Poll et al., 2015). No relationship could be detected between 610 

fluorescence and [Lt] in the southern transect. However, sample depths for DFe and [Lt] were 611 

not concentrated at the near-surface layer, the photic zone, hampering a detailed comparison 612 

of DFe and Lt versus fluorescence. 613 

Dust is another potential source of Fe-binding ligands (Johansen et al., 2000; Saydam et 614 

al., 2002; Gerringa et al., 2006; Paris et al., 2011;Wozniak et al., 2015). Although [Lt] was 615 

relatively high in the upper 100 m, the ratio [Lt]/DFe was lowest compared to deeper waters. 616 

The ligands were not completely saturated with Fe, since the ratio was almost never below 1, 617 

as it was the case in the Sea of Marmara. The median [Lt]/DFe was 1.4 in the upper 100 m in 618 

the Western Basin and 1.15 in the Eastern Basin. The median of DFe was 0.34 nM higher in 619 

the Eastern compared to the Western Basin, whereas the median in [Lt] was only slightly, 0.1 620 

nEq of M DFe, higher in the Eastern Basin compared to the Western Basin. Assuming that 621 

dust is the source, it is apparently not an equally important source for dissolved organic Fe-622 

binding ligands as it is for Fe. Dust as a sink for Fe-binding ligands is as far as we know not 623 

considered, yet scavenging and ballasting of organically complexed Fe must take place since 624 

almost all DFe is complexed. We can conclude that the elevated DFe, above its inorganic 625 

solubility, near the surface of the Mediterranean Sea is possible due to the complexation by 626 

dissolved organic ligands.  627 
 628 

Deep waters 629 

 630 

Apart from distinct patches with elevated concentrations, which are further discussed in the 631 

next section, DFe was relatively low below 300 m along the southern transect and below 500 632 

m along the northern transect. In most samples DFe was lower than in open oceans at similar 633 

depths. Station 18S and station 13N are good examples with deep DFe between 0.09 and 0.30 634 

nM and 0.19 and 0.27 nM, respectively. Surface DFe inputs from Sahara dust did not impact 635 

deep waters which could be due to DFe scavenging by sinking dust itself. Wagener et al. 636 

(2010) showed that Sahara dust supply does not always increase DFe. On the contrary, they 637 

showed that through scavenging DFe can be stripped from the dissolved phase by settling 638 

dust. Due to this scavenging a direct relationship between dissolution and excess ligands is 639 

not always straightforward. It is very probable that settling dust particles scavenge Fe even 640 

though it is in its organically complexed form. Subsequently, due to the decrease of inorganic 641 

Fe (Fe′) by scavenging, Fe can dissociate from the ligands, emptying the ligands over time 642 

and depth as shown by an increase in the ratio [Lt]/DFe with depth. Such an increase in the 643 

ratio indeed happened for stations 8S and 18S (Figure 8 B), but not for stations 21S and 24S 644 

which have high DFe patches at 2000 and 1250 m, respectively. Along the northern transect, 645 

an increase in the ratio was observed for stations 13N and 17N, but again not for station 8N, 646 

where high DFe patches existed (Figures 5 B, 8 C). The removal of Fe from the organic 647 

ligand complex has also been suggested by Thuróczy et al. (2011) for the Makarov Basin of 648 

the Arctic Ocean. The Arctic Ocean is far from being a dust impacted area, but due to the very 649 

long residence times of Deep Makarov Basin Water, scavenging was likely the reason for the 650 
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decrease in DFe and the simultaneous increases in [L′] and therefore the increase of the 651 

[Lt]/DFe ratio with depth. In the present research the median of calculated concentrations of 652 

[Fe′] below 1000 m are close to 1 pM (0.7-1.7 pM). This is comparable to [Fe′] at the same  653 

 654 
Figure 8: The ratio of Fe-binding dissolved organic ligands ([Lt] in nEq of M Fe) and dissolved Fe (DFe 655 

in nM) versus depth (m) of A: stations in the Atlantic Ocean (AW); B: stations from the southern cruise (S); C: 656 
stations from the northern cruise (N); D: stations from the Sea of Marmara. 657 

Values of samples off scale vary between 22 and 64, see supplementary table 658 
 659 

depths for our station 1S in the Atlantic Ocean as well as in the North Western Atlantic Ocean 660 

(median 0.2-0.5 pM from three cruises in the Western Atlantic Ocean, Gerringa et al., 2015; 661 

Table 2B). Because [Fe′] is calculated using the ligand characteristics which depend on the 662 

analytical method (Laglera et al., 2011; Buck et al., 2012; 2016; Abualhaija et al., 2015) and 663 

on how the parameters were calculated (Laglera et al., 2013; Gerringa et al., 2014; Pižeta et 664 

al., 2015; Buck et al., 2016) we only compare our data with data collected using the same 665 

methods. The methods in this research were also applied in the Western Atlantic, Gerringa et 666 

al. (2015) concluded that [Fe′] between 0.2 and 1 pM represent an equilibrium or steady state 667 

concentration between complexation by organic ligands and scavenging. Only where ligands 668 

were saturated with Fe, near hydrothermal vents where DFe was relatively high, [Fe´] were 669 

higher. In the present research median values in the deep (>1000 m) Atlantic Ocean and 670 

Mediterranean Sea vary between 0.52 and 3.44 pM and 0.68 and 1.99 pM, respectively and 671 

are never below 0.23 pM (Supplementary table 1). According to equation 3 the values of 672 

logαFeL should show the same small but reversed range by a factor 3 since high α results in 673 

low [Fe′]. Median values of logαFeL (values expressed with respect to Fe3+) of 12.49-12.84 674 

existed at depths >100m in Mediterranean waters, slightly higher than in the Western Atlantic 675 

Ocean with logαFeL =13.1 (Table 2B, Supplementary Table 1). Both the relatively small 676 

variation in [Fe´] and in logαFeL outside the deep high Fe patches indicate an equilibrium or 677 

steady state for Fe´ that exist between the organic ligands and scavenging particles. At a lower 678 

[Fe′], Fe is so firmly bound that scavenging is hardly possible. 679 

 680 

Deep high DFe patches 681 

The high DFe patches could be ascribed to Fe supply by (i) lateral transport from land 682 

and shelves, (ii) vertical transport from the sediment and (iii) vertical and lateral transport 683 

from hydrothermal vents. These processes might be reflected by elevated particle densities. 684 

Particle densities can be related to the attenuation coefficient. The attenuation coefficient is 685 

high in the surface probably due to phytoplankton (Figures 2 E, F, 3 E, F). Evidence of 686 

particles elsewhere is scarce. Along the southern transect only near the Straits of Gibraltar and 687 
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Sicily, elevated attenuation coefficients coincide with slightly elevated DFe (stations 5S and 688 

6S near 1000m depth and stations 11S and 12S at 2000 and 2500m depth, respectively).  689 

Along the northern transect more deep patches with higher DFe were found (Figure 5 690 

B). The attenuation coefficient is slightly higher near the bottom in the Western Basin, at 691 

station 15N, not coinciding with elevated DFe. It is also higher near the sills, especially near 692 

stations 7N, 8N and 9N (no data for station 6N exists) at the entrance of the Adriatic. The 693 

patches of elevated DFe at stations 7N, 8N and 9N are located at the southern end of the 694 

Adriatic Sea. At these stations, especially the most northern station 8N, the attenuation 695 

coefficient and oxygen are also elevated (Figure 3 D, F) and temperature is lower (Figure 3B). 696 

Elevated oxygen, higher than elsewhere in the Mediterranean, occurred also near the bottom 697 

at station 6N in the direction of the Aegean Sea at 1500 m. This is unexpected since the 698 

Adriatic Sea is known to suffer from anoxic periods (Koron et al., 2015). Elevated oxygen 699 

points to recent contact with the atmosphere and thus recently formed deep water. The 700 

attenuation coefficient is high and the temperature (<13.5°C) and salinity are low. Indeed this 701 

cold water can be identified as AdMDW originating from the shallow northern Adriatic where 702 

it formed in winter (Pollak, 1951). The DFe is elevated over almost the whole water column 703 

of stations 7N, 8N and 9N except for the deep samples 100-200 m above the sediment, 704 

apparently AdMDW contains less DFe. The elevated DFe in the layer just above the AdMDW 705 

is advected by strong currents as evidenced by the large horizontal density gradients (Figure 706 

3C). At station 8N, the ligand characteristics were analysed and the ligands were saturated at 707 

160 and 600 m depth. In between these depths and below 600 m the [Lt]/DFe ratio was 708 

between 1.5 and 3.9, thus enabling this high solubility in almost all depths with calculated 709 

[Fe′] between 0.3 and 1 pM. At 160 and 600 m depth, the calculated [Fe′] is 231 and 316 pM 710 

above the solubility of Fe, this DFe is expected to be labile and either complexed to relatively 711 

weak dissolved organic ligands outside the detection window of our method, or present as 712 

inorganic colloids. If we assume that particles above the sediment are the source, dissolved 713 

organic ligands enable Fe to stay in the dissolved phase and explain that DFe diffused away 714 

from the source (Klunder et al. 2012; Thuróczy et al, 2011).  715 

Highest deep DFe exists at mid depth, 0.81 nM at station 17N, 3.42 nM at station 18N 716 

and 1.35 nM at station 19N at 1750, 1750 and 1500 m, respectively. Samples from station 717 

17N have been analysed for organic ligands. At 1750 m depth the [Lt]/DFe ratio is 1.5, and 718 

thus ligands were not saturated, enabling the high DFe of 0.81 nM. These three stations are 719 

relatively far from islands and coasts. There is no information about hydrothermal activity 720 

here that could explain this elevated DFe. Density contours below 1000 m bend downward 721 

from stations 17N and 19N to station 18N. This suggests a deep mesoscale eddy, which is the 722 

prominent feature in the mid-southern part of the Western Basin (Millot and Taupier-Letage, 723 

2005; Schroeder et al., 2008). Apparently, DFe is transported by such an eddy. At these 724 

stations the densest water with relatively strong stratification is found below 2400 m, while 725 

the beam attenuation coefficient is only increasing in the lower 150 m above the bottom. Thus 726 

there is no indication that enhanced DFe results from deep-water formation. From our results 727 

we cannot distinguish the possible sources of DFe here.  728 

The stations 1N-9N, 11N, 12N and 15N are closer to land and thus lateral transport 729 

from shelves and islands can be the source of DFe here. Still more than one specific source of 730 

DFe must exist to explain the multiple deep elevated DFe patches. These are mainly found 731 

between 1000 and 2500 m (Figures 5 B, 6 B, C). The depth differences indicate that not one 732 

source but at least three different sources for the three different depths are involved. From 733 

such sources the enhanced DFe spreads relatively slowly through the basins. The spreading is 734 

partially diffusive, as suggested from the form of the DFe profiles around the depths where 735 

maximum DFe is found, a gradual decrease above and below the maximum DFe. This 736 

diffusive spreading across density stratification is likely dominated by turbulence, enforced by 737 



21 
 

internal wave breaking, in the vicinity of topography (van Haren et al., 2014). Horizontally, 738 

the spreading is via boundary currents near topography and eddies further in the interior. Such 739 

eddies are observed (Figures 2 C, 3 C) in the upper 500 m nearly everywhere, but especially 740 

strong in the Adriatic Sea. These eddies can explain transport of DFe to the high DFe patches, 741 

at station 6N (1000-1500 m), stations 7N, 8N and 9N (400-800 m) stations 17N-19N (800-742 

2500 m), and at stations 23S, 24S (1000-1500 m), 27S and 28S (near 700 m). However, 743 

density profiles do not indicate lateral transport for explaining the high DFe patches at station 744 

4N (1500-2200 m), although between stations 4N and 5N there is a horizontal gradient, and 745 

also not at stations 10N-11N (1000-2000 m). In the Southern transect lateral transport is not 746 

supported around station 21S (near 2000 m). Therefore, either the source here is nearby or 747 

transport is in a perpendicular direction to the E-W transect. Horizontal spreading indicates 748 

deep sources, and immediately hydrothermal vents come to mind since they are known deep 749 

sources deemed to be very important (Bennett et al., 2008; Tagliabue et al, 2010; Klunder et 750 

al. 2012; Rijkenberg et al., 2014; Hatta et al., 2015). Although there are two well-known 751 

volcanic active arcs, the Hellenic Arc in the Aegean Sea and the Aeolian Arc in the 752 

Tyrrhenian Sea near Sicily, the thus far known hydrothermal activity is restricted to very 753 

shallow depths of maximum 100 m (Beaulieu et al, 2015). 754 

Station 26S, 4100 m deep, is situated at the Rhodes depression which is 4500 m deep, 755 

nearby the Anaximander mountains of approximately 1200 m deep, also known for its mud-756 

volcanos (Figure 1). Although, as far as we know no references exist indicating mud-volcanos 757 

as a source of DFe, mud-volcanos exist in the Mediterranean Sea at depths that coincide with 758 

the presently observed high DFe patches. For instance the Anaximander Mountains are 759 

associated with faults allowing over-pressured fluids to be erupted at the seafloor and the 760 

Amsterdam mud-volcano (at 35°19.91´N, 30°16.12´E) at 2028 m is the most active (Lazar et 761 

al., 2012). The Texel mud-volcano is located near our station 24S, at 1600 m depth (Zitter, 762 

2004) the Kula and San Remo mud-volcanos are at 1650 m and close to our station 26S. The 763 

Milano mud-volcano is at 1900 m at 34 N, 24.8 E (Bonini and Mazzarini, 2010). The Chefren 764 

mud-volcano at 2900 m (approximately south of station 21S, but not close to this station, at 765 

32.6° N and 28,1° E) has been identified as a potential Fe source as its porewaters have very 766 

high Fe(II) concentrations (up to 1 mM) (Omoregie et al., 2008). Also Southeast of Sicily 767 

near our station 11N mud-volcanos were discovered (Figure 1; Mascle et al., 2014). 768 

It is conceivable that deep Fe sources can be formed by nepheloid layers, land, or due to 769 

steep topography and the sides of canyons, while most probably also mud-volcanos play a 770 

role.  771 

 772 

6. Conclusions 773 
 774 

The Mediterranean Sea and the Sea of Marmara have high DFe in the upper 100 m 775 

probably due to dissolution from dust. In almost all samples [Lt] was larger than DFe thus 776 

enabling the high DFe concentrations.  777 

In the Sea of Marmara, vertical processes determined the DFe concentrations which 778 

were elevated not only in the surface 20 m but well below the strong picnocline (22 to 38 g 779 

kg-1). 780 

Concentrations of DFe in the deep Mediterranean were either relatively low compared 781 

to the Atlantic Ocean, or relatively high in distinct patches. Deep DFe concentrations in the 782 

Mediterranean Sea were most likely low as a result of scavenging by sinking dust. This 783 

suggestion is the most probable explanation for our results and is supported by results from 784 

mesocosm experiments (Wagener et al., 2010). 785 

The presence of distinct patches in deep waters with elevated DFe can only be explained 786 

by a combination of physical processes and sources at specific locations and depths. The 787 
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outlines of the deep high DFe patches indicate lateral transport by, for example, mesoscale 788 

eddies from deep sources. These sources are probably diverse, and can be mud-volcanos, land 789 

and deep-sea mountains. Although no previous data is known about mud-volcanos as source 790 

of Fe and no supporting data such as an increase in particle density was observed, mud-791 

volcanos were located at coinciding depths where high DFe patches were found. In most cases 792 

in these patches the [Lt] was higher than DFe, explaining that these high dissolved 793 

concentrations can exist and be maintained for longer time.  794 

Calculated [Fe´] in deep waters were not below 0.23 pM. Apparently this is a steady 795 

state concentration due to competition between the Fe-binding dissolved organic ligands and 796 

scavenging particles. Lower [Fe´] does exist but only in the top 100 m in the Atlantic Ocean, 797 

at our station 1S, indicating that a phytoplankton bloom can lead to lower [Fe′]. 798 
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Supplementary table 1: Speciation data of the samples in which dissolved Fe-binding 1200 

ligands were analysed. DFe (nM) with standard deviation (SD) of triplicate measurements. 1201 

logK´ and [Lt] were obtained from speciation measurements and subsequent application of 1202 

the Langmuir isotherm to the obtained data (Gerringa et al., 2014). The standard errors (SE) 1203 

of the data relative to the fitted curve are given. Because K´ is expressed as logarithm the SE 1204 

is not symmetrical and lower (down logK´ SE) and upper (up logK´ SE) SE are both given. 1205 

The division over the species were obtained from calculations using a spreadsheet (see text in 1206 

methods for more detail). NA is missing data, NA for the error in logK´ means no standard 1207 

error could be calculated because the fit was not good enough. 1208 

 1209 
Cruise  Station  Depth   DFe SD  logK  down. SE  up. SE [Lt]  SE  [FeL]  [Fe']  [L']  logalpha  [Lt]/Fe

                             

   

m  nM 

 

M‐1  nEq of M Fe  M  pM  Eq of M Fe 

64PE370  1 5348 0.5  0.012  22.6  0.35  0.19  0.54  0.04  4.97E‐10  2.91  4.29E‐11 12.23  1.08 

64PE370  1 5000 0.45 0.005  21.76  0.18  0.13  0.96  0.13  4.48E‐10  1.52  5.12E‐10 12.47  2.13 

64PE370  1 3997 0.5  0.019  21.89  0.15  0.11  1.26  0.12  5.02E‐10  0.85  7.58E‐10 12.77  2.50 

64PE370  1 2999 0.53 0.005  21.86  0.2  0.14  1.02  0.12  5.26E‐10  1.47  4.94E‐10 12.55  1.94 

64PE370  1 1999 0.58 0.004  22.04  0.3  0.17  0.77  0.09  5.78E‐10  2.75  1.92E‐10 12.32  1.33 

64PE370  1 1499 0.65 0.022  22.32  0.25  0.16  0.75  0.05  6.43E‐10  2.88  1.07E‐10 12.35  1.16 

64PE370  1 1001 0.66 0.008  21.63  0.08  0.07  1.72  0.14  6.62E‐10  1.47  1.06E‐09 12.65  2.59 

64PE370  1 501 0.49 NA  22.2  0.22  0.15  1.11  0.09  4.91E‐10  0.50  6.19E‐10 12.99  2.26 

64PE370  1 300 0.14 0.002  20.94  0.55  0.24  1.43  1.07  1.41E‐10  1.25  1.29E‐09 12.05  10.07 

64PE370  1 199 0.11 0.009  21.79  0.42  0.21  0.66  0.15  1.12E‐10  0.33  5.48E‐10 12.53  5.89 

64PE370  1 101 0.05 0.004  21.63  0.14  0.11  2.01  0.28  4.49E‐11  0.05  1.97E‐09 12.92  44.67 

64PE370  1 48 0.03 0.003  22.49  0.35  0.19  0.78  0.06  3.40E‐11  0.01  7.46E‐10 13.36  22.94 

64PE370  1 9 0.02 0.001  21.62  0.1  0.08  1.47  0.16  2.30E‐11  0.04  1.45E‐09 12.78  63.91 

64PE370  5 899 0.3  0.003  21.84  0.07  0.06  1.7  0.08  3.02E‐10  0.31  1.40E‐09 12.99  5.63 

64PE370  5 800 0.27 0.003  21.79  0.19  0.13  0.71  0.08  2.72E‐10  1.01  4.38E‐10 12.43  2.60 

64PE370  5 600 0.37 0.008  21.69  0.27  0.17  0.94  0.17  3.67E‐10  1.31  5.73E‐10 12.45  2.55 

64PE370  5 400 0.75 0.017  21.78  0.21  0.14  1.42  0.17  7.48E‐10  1.85  6.72E‐10 12.61  1.89 

64PE370  5 249 0.73 0.006  22.2  0.18  0.12  1.62  0.1  7.30E‐10  0.52  8.90E‐10 13.15  2.22 

64PE370  5 190 0.8  0.018  21.95  0.05  0.05  2.46  0.07  8.01E‐10  0.54  1.66E‐09 13.17  3.07 

64PE370  5 160 0.8  0.011  22  0.09  0.08  2.17  0.1  7.97E‐10  0.58  1.37E‐09 13.14  2.72 

64PE370  5 129 0.86 0.067  21.54  0.1  0.08  1.57  0.14  8.60E‐10  3.49  7.10E‐10 12.39  1.82 

64PE370  5 98 0.96 0.007  21.94  0.13  0.1  1.87  0.15  9.54E‐10  1.20  9.16E‐10 12.90  1.96 

64PE370  5 69 0.99 0.035  21.78  0.18  0.13  1.37  0.2  9.83E‐10  4.21  3.87E‐10 12.37  1.39 

64PE370  5 39 0.77 0.006  22.57  0.3  0.17  1.25  0.07  7.66E‐10  0.43  4.84E‐10 13.26  1.63 

64PE370  5 27 1.17 0.016  22.25  0.19  0.13  1.15  0.06  1.13E‐09  39.25  1.62E‐11 11.46  0.98 

64PE370  5 9 2.4  0.019  22.77  0.16  0.11  3.25  0.08  2.40E‐09  0.48  8.50E‐10 13.70  1.35 

64PE370  8 2660 0.4  0.007  21.43  0.13  0.1  1.45  0.22  3.99E‐10  1.41  1.05E‐09 12.45  3.63 
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64PE370  8 2250 0.41 0.026  21.6  0.08  0.07  1.85  0.13  4.08E‐10  0.71  1.44E‐09 12.76  4.52 

64PE370  8 1750 0.35 0.008  21.7  0.07  0.06  1.96  0.15  3.52E‐10  0.44  1.61E‐09 12.91  5.57 

64PE370  8 1501 0.4  0.007  21.56  0.18  0.13  1.15  0.2  3.97E‐10  1.45  7.53E‐10 12.44  2.89 

64PE370  8 1000 0.43 0.012  21.41  NA  0.37  0.53  0.35  4.14E‐10  13.90  1.16E‐10 11.47  1.24 

64PE370  8 301 0.47 0.007  21.63  0.19  0.13  1.15  0.2  2.23E‐10  1.59  6.85E‐10 9.95  0.49 

64PE370  8 145 0.66 0.005  21.3  0.07  0.06  2.49  0.29  6.58E‐10  1.80  1.83E‐09 12.56  3.77 

64PE370  8 98 1.02 0.016  21.54  0.07  0.06  2.27  0.2  1.01E‐09  2.33  1.26E‐09 12.64  2.23 

64PE370  8 71 1.18 0.028  21.51  0.18  0.12  1.13  0.16  1.09E‐09  86.14  3.91E‐11 11.10  0.96 

64PE370  8 42 1.3  0.041  22.03  0.07  0.06  2.76  0.09  1.30E‐09  0.83  1.46E‐09 13.19  2.12 

64PE370  8 27 1.15 0.032  21.48  0.05  0.04  3.06  0.17  1.14E‐09  1.98  1.92E‐09 12.76  2.67 

64PE370  8 10 0.96 0.023  21.93  0.13  0.1  2.79  0.19  9.57E‐10  0.61  1.83E‐09 13.19  2.91 

64PE370  11 2781 0.41 0.007  21  NA  0.54  0.47  1.33  3.70E‐10  37.00  1.00E‐10 11.00  1.15 

64PE370  11 2250 0.34 0.015  21.89  NA  0.39  0.23  0.12  2.27E‐10  116.52  2.52E‐12 10.29  0.67 

64PE370  11 1751 0.41 0.012  21.94  0.21  0.14  1.34  0.16  4.13E‐10  0.51  9.27E‐10 12.91  3.24 

64PE370  11 1252 0.51 0.019  21.9  0.11  0.09  1.41  0.11  5.07E‐10  0.71  9.03E‐10 12.86  2.78 

64PE370  11 751 0.54 0.013  22.06  0.26  0.16  0.76  0.09  5.42E‐10  2.16  2.18E‐10 12.40  1.40 

64PE370  11 400 0.68 0.014  22.61  0.64  0.25  0.68  0.06  6.67E‐10  12.30  1.33E‐11 11.73  1.00 

64PE370  11 200 1  0.026  22.25  0.33  0.18  0.99  0.1  9.69E‐10  26.54  2.05E‐11 11.56  0.99 

64PE370  11 146 0.76 0.003  22.05  0.26  0.16  0.89  0.1  7.56E‐10  5.03  1.34E‐10 12.18  1.17 

64PE370  11 100 0.88 0.014  22.29  0.35  0.19  0.84  0.09  8.30E‐10  44.56  9.56E‐12 11.27  0.96 

64PE370  11 71 0.89 0.021  22.83  0.94  0.28  0.98  0.09  8.84E‐10  1.36  9.64E‐11 12.81  1.11 

64PE370  11 53 1.29 0.029  24.11  NA  0.62  1.33  0.05  1.29E‐09  0.28  3.63E‐11 13.67  1.03 

64PE370  11 40 1.41 0.033  22.27  0.61  0.24  1.51  0.25  1.40E‐09  7.04  1.07E‐10 12.30  1.07 

64PE370  11 10 2.57 0.092  21.93  0.17  0.12  2.29  0.16  2.28E‐09  287.33  9.33E‐12 10.90  0.89 

64PE370  15 610 0.42 0.014  21.7  0.33  0.19  0.76  0.19  4.13E‐10  2.37  3.47E‐10 12.24  1.83 

64PE370  15 524 0.35 0.028  21.92  0.07  0.06  1.42  0.06  3.50E‐10  0.39  1.07E‐09 12.95  4.06 

64PE370  15 445 0.41 0.009  22.06  0.17  0.12  1.65  0.13  4.07E‐10  0.28  1.24E‐09 13.15  4.05 

64PE370  15 365 0.42 0.017  21.87  0.27  0.17  1.36  0.2  4.23E‐10  0.61  9.37E‐10 12.84  3.21 

64PE370  15 284 0.55 0.013  21.95  0.28  0.17  1.21  0.15  5.52E‐10  0.94  6.58E‐10 12.77  2.19 

64PE370  15 205 0.55 0.001  22.13  0.14  0.11  1.26  0.08  5.52E‐10  0.58  7.08E‐10 12.98  2.28 

64PE370  15 160 0.63 0.019  21.98  0.13  0.1  1.5  0.1  6.30E‐10  0.76  8.70E‐10 12.92  2.38 

64PE370  15 130 0.71 0.011  22.08  0.3  0.18  1.13  0.12  7.04E‐10  1.37  4.26E‐10 12.71  1.60 

64PE370  15 100 0.68 0.021  21.28  0.17  0.12  1.14  0.22  6.70E‐10  7.47  4.70E‐10 11.95  1.68 

64PE370  15 70 0.69 0.01  21.76  0.16  0.12  1.29  0.13  6.90E‐10  2.00  6.00E‐10 12.54  1.86 

64PE370  15 39 1.53 0.039  22.02  0.19  0.13  1.73  0.2  1.52E‐09  6.84  2.12E‐10 12.35  1.13 

64PE370  15 10 1.56 0.018  22.16  0.12  0.09  1.93  0.08  1.55E‐09  2.86  3.76E‐10 12.74  1.24 

64PE370  18 3210 0.22 0.007  21.57  0.14  0.11  1.04  0.17  2.23E‐10  0.74  8.17E‐10 12.48  4.64 
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64PE370  18 2750 0.21 0.009  21.28  0.26  0.16  1.3  0.43  2.09E‐10  1.01  1.09E‐09 12.32  6.19 

64PE370  18 1999 0.24 0.011  22.12  0.23  0.15  0.95  0.09  2.43E‐10  0.26  7.07E‐10 12.97  3.91 

64PE370  18 1499 0.21 0.011  22.14  0.17  0.12  0.71  0.1  2.05E‐10  0.29  5.05E‐10 12.84  3.46 

64PE370  18 1000 0.27 0.013  21.93  0.15  0.11  0.82  0.08  2.71E‐10  0.58  5.49E‐10 12.67  3.01 

64PE370  18 600 0.39 0.011  22.74  0.75  0.26  0.8  0.06  3.90E‐10  0.17  4.10E‐10 13.35  2.05 

64PE370  18 300 0.49 0.023  21.68  0.14  0.11  0.88  0.1  4.85E‐10  2.57  3.95E‐10 12.28  1.80 

64PE370  18 205 0.62 0.016  22.28  0.26  0.16  0.91  0.08  6.20E‐10  1.12  2.90E‐10 12.74  1.47 

64PE370  18 125 1.16 0.037  21.6  0.16  0.12  1.62  0.25  1.15E‐09  6.18  4.68E‐10 12.27  1.40 

64PE370  18 101 2.01 0.035  23.21  NA  0.82  1.21  0.11  1.21E‐09  802.09  9.30E‐14 10.18  0.60 

64PE370  18 80 1.41 0.067  22.52  0.17  0.12  1.6  0.06  1.40E‐09  2.17  1.95E‐10 12.81  1.14 

64PE370  18 41 1.41 0.052  22.51  NA  NA  0.8  NA  8.00E‐10  612.40  4.03E‐13 10.12  0.57 

64PE370  18 9 1.6  0.035  22.05  0.85  0.27  1.02  0.16  1.02E‐09  581.56  1.56E‐12 10.24  0.64 

64PE370  21 2587 0.51 0.013  22.01  0.15  0.11  1.27  0.11  5.08E‐10  0.65  7.62E‐10 12.89  2.50 

64PE370  21 2380 0.53 0.033  22.1  0.13  0.1  1.22  0.08  5.31E‐10  0.61  6.89E‐10 12.94  2.29 

64PE370  21 2000 1.4  0.029  22.33  0.27  0.16  1.09  0.06  1.09E‐09  312.63  1.63E‐12 10.54  0.78 

64PE370  21 1500 0.51 0.034  22.55  0.29  0.17  0.75  0.04  5.09E‐10  0.60  2.41E‐10 12.93  1.47 

64PE370  21 1000 0.54 0.022  22.35  0.22  0.15  0.85  0.06  5.35E‐10  0.76  3.15E‐10 12.85  1.59 

64PE370  21 501 0.54 0.014  21.87  0.15  0.11  1.09  0.1  5.40E‐10  1.32  5.50E‐10 12.61  2.01 

64PE370  21 301 0.6  0.012  22.11  0.09  0.07  1.3  0.06  6.02E‐10  0.67  6.98E‐10 12.95  2.16 

64PE370  21 146 0.72 0.006  22.95  NA  0.43  0.57  0.05  5.70E‐10  146.44  4.36E‐13 10.59  0.80 

64PE370  21 101 0.82 0.006  22.48  0.33  0.19  1.02  0.07  8.18E‐10  1.34  2.02E‐10 12.79  1.25 

64PE370  21 70 1.15 0.018  22.93  0.48  0.22  1.24  0.05  1.15E‐09  1.49  9.05E‐11 12.89  1.08 

64PE370  21 40 1.67 0.023  22.56  0.43  0.21  1.53  0.08  1.53E‐09  139.03  3.03E‐12 11.04  0.92 

64PE370  21 10 1.87 0.087  21.98  0.14  0.11  1.86  0.12  1.82E‐09  50.66  3.77E‐11 11.56  0.99 

64PE370  24 2355 0.47 0.027  21.55  0.1  0.08  1.79  0.16  4.65E‐10  0.99  1.32E‐09 12.67  3.84 

64PE370  24 1749 0.35 0.008  21.87  0.2  0.14  1.29  0.14  3.49E‐10  0.50  9.41E‐10 12.84  3.69 

64PE370  24 1250 1.4  0.095  21.97  NA  0.5  1.17  0.02  1.16E‐09  230.42  5.42E‐12 10.70  0.84 

64PE370  24 750 0.59 0.025  21.54  0.06  0  3.17  0  5.91E‐10  0.66  2.58E‐09 12.95  5.35 

64PE370  24 400 0.64 0.034  21.25  0.07  0  3.23  0  6.40E‐10  1.39  2.59E‐09 12.66  5.04 

64PE370  24 205 0.63 0.003  21.17  0.09  0.07  3.32  0.48  6.23E‐10  1.56  2.70E‐09 12.60  5.31 

64PE370  24 160 0.5  0.015  20.85  0.93  0.27  1.95  0.27  4.97E‐10  4.83  1.45E‐09 12.01  3.88 

64PE370  24 130 0.5  0.006  22.05  0.17  0  1.1  0  5.03E‐10  0.75  5.97E‐10 12.83  2.18 

64PE370  24 114 0.62 0.001  21.28  0.06  0  1.89  0  6.18E‐10  2.55  1.27E‐09 12.38  3.04 

64PE370  24 100 0.83 0.001  21.79  0.08  0.06  2.29  0.12  8.33E‐10  0.93  1.46E‐09 12.95  2.75 

64PE370  24 70 1.18 0.033  21.66  0.06  0  3.37  0  1.18E‐09  1.18  2.19E‐09 13.00  2.85 

64PE370  24 40 1.4  0.025  21.78  0.09  0.07  3.42  0.21  1.40E‐09  1.15  2.02E‐09 13.09  2.45 

64PE370  24 9 1.63 0.027  21.44  0.08  0.07  2.72  0.23  1.62E‐09  5.38  1.10E‐09 12.48  1.67 
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64PE370  29 501 0.3  0.008  21.66  0.09  0.08  1.47  0.13  2.98E‐10  0.56  1.17E‐09 12.73  4.92 

64PE370  29 400 0.3  0.002  22.28  0.23  0.15  0.76  0.07  2.99E‐10  0.34  4.61E‐10 12.94  2.54 

64PE370  29 300 0.35 0.002  22.14  0.35  0.19  0.64  0.08  3.47E‐10  0.86  2.93E‐10 12.61  1.84 

64PE370  29 200 0.38 0.002  21.44  0.34  0.19  0.75  0.23  3.78E‐10  3.70  3.72E‐10 12.01  1.96 

64PE370  29 150 0.5  0.013  22.81  NA  0.31  0.77  0.07  4.96E‐10  0.28  2.74E‐10 13.25  1.55 

64PE370  29 100 0.59 0.031  22.34  0.18  0.13  0.64  0.04  5.81E‐10  4.54  5.85E‐11 12.11  1.09 

64PE370  29 79 0.72 0.026  21.94  0.34  0.19  0.99  0.15  7.19E‐10  3.05  2.71E‐10 12.37  1.37 

64PE370  29 70 0.92 0.007  21.44  0.12  0.09  1.73  0.24  9.18E‐10  4.10  8.12E‐10 12.35  1.88 

64PE370  29 40 1.67 0.021  22.09  0.15  0.11  1.68  0.1  1.64E‐09  30.97  4.30E‐11 11.72  1.01 

64PE370  36 1190 0.18 0.002  21.82  0.69  0.25  0.79  0.2  1.83E‐10  0.45  6.07E‐10 12.60  4.32 

64PE370  36 801 0.39 0.002  21.23  0.16  0.11  2.21  0.57  3.86E‐10  1.25  1.82E‐09 12.49  5.71 

64PE370  36 500 0.42 0.004  21.35  0.31  0.18  1.88  0.56  4.15E‐10  1.26  1.47E‐09 12.52  4.52 

64PE370  36 300 0.49 0.004  20.7  1.14  0.28  1.81  1.88  4.87E‐10  7.34  1.32E‐09 11.82  3.66 

64PE370  36 200 0.67 0.001  21.2  0.69  0.25  0.92  0.47  6.54E‐10  15.47  2.66E‐10 11.63  1.38 

64PE370  36 150 0.75 0.017  20.92  0.32  0.18  1.07  0.46  7.27E‐10  25.43  3.43E‐10 11.46  1.42 

64PE370  36 100 4.08 0.279  21.56  0.41  0.21  2.93  0.5  2.92E‐09  1156.96  6.96E‐12 10.40  0.72 

64PE370  36 75 3.06 0.028  21.09  NA  0.69  0.89  1.79  8.87E‐10  2173.32  3.32E‐12 9.61  0.29 

64PE370  36 9 4.93 0.039  21.97  0.16  0.12  5.12  0.28  4.91E‐09  24.50  2.15E‐10 12.30  1.04 

64PE374  8 801 0.59 0.001  21.1  0.06  0.05  4.31  0.5  5.92E‐10  1.26  3.72E‐09 12.67  7.27 

64PE374  8 600 2.35 0.034  20.91  0.13  0.1  3.97  1.01  2.33E‐09  17.52  1.64E‐09 12.12  1.69 

64PE374  8 260 1.85 NA  20.72  NA  0.32  1.87  2.04  1.68E‐09  169.24  1.89E‐10 11.00  1.01 

64PE374  8 220 1.56 0.033  21.4  0.4  0.21  1.57  0.44  1.49E‐09  72.13  8.21E‐11 11.31  1.01 

64PE374  8 190 0.64 0.004  21.65  0.13  0.1  2.05  0.2  6.39E‐10  1.01  1.41E‐09 12.80  3.20 

64PE374  8 160 0.37 0.003  21.7  0.17  0.12  1.45  0.17  3.69E‐10  0.68  1.08E‐09 12.73  3.92 

64PE374  8 130 1.38 0.002  21.7  NA  NA  0.29  NA  3.73E‐10  0.69  1.08E‐09 12.73  3.88 

64PE374  8 101 0.95 0.009  22.76  NA  0.44  1.12  0.15  9.46E‐10  0.95  1.74E‐10 13.00  1.18 

64PE374  8 79 0.36 0.002  21.65  0.11  0.09  1.71  0.15  3.61E‐10  0.60  1.35E‐09 12.78  4.72 

64PE374  8 40 0.98 0.002  21.8  0.19  0.13  1.5  0.16  9.78E‐10  2.97  5.22E‐10 12.52  1.53 

64PE374  8 8 2.84 0.024  21.62  0.15  0.11  2.7  0.25  2.66E‐09  172.94  3.69E‐11 11.19  0.95 

64PE374  13 3526 0.19 0.002  21.54  0.07  0.06  1.97  0.14  1.91E‐10  0.31  1.78E‐09 12.79  10.31 

64PE374  13 2750 0.27 0.002  21.6  0.12  0.09  1.75  0.22  2.71E‐10  0.46  1.48E‐09 12.77  6.46 

64PE374  13 2000 0.22 NA  21.27  0.12  0.1  1.77  0.34  2.18E‐10  0.76  1.55E‐09 12.46  8.08 

64PE374  13 1500 0.21 NA  21.34  0.16  0.12  1.76  0.31  2.12E‐10  0.63  1.55E‐09 12.53  8.26 

64PE374  13 1000 0.22 NA  21.37  0.07  0  2.28  0.19  2.18E‐10  0.45  2.06E‐09 12.68  10.46 

64PE374  13 499 0.29 0.002  21.28  0.16  0.12  1.57  0.31  2.86E‐10  1.17  1.28E‐09 12.39  5.47 

64PE374  13 300 0.28 0.006  21.46  0.14  0.1  1.54  0.25  2.75E‐10  0.75  1.26E‐09 12.56  5.58 

64PE374  13 205 0.47 0.002  21.41  0.14  0.11  1.47  0.22  4.69E‐10  1.82  1.00E‐09 12.41  3.12 
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64PE374  13 125 0.51 0.016  21.24  0.16  0.12  2.06  0.44  5.04E‐10  1.86  1.56E‐09 12.43  4.07 

64PE374  13 100 0.35 NA  21.22  0.07  0.06  2.65  0.28  3.48E‐10  0.91  2.30E‐09 12.58  7.59 

64PE374  13 80 0.19 0.003  21.82  0.12  0.09  1.76  0.14  1.91E‐10  0.18  1.57E‐09 13.02  9.21 

64PE374  13 40 0.57 0.003  21.83  0.24  0.15  1.28  0.16  5.70E‐10  1.19  7.10E‐10 12.68  2.24 

64PE374  13 8 2.3  0.01  20.54  0.19  0.13  5.51  2.81  2.28E‐09  20.40  3.23E‐09 12.05  2.39 

64PE374  17 2774 0.31 0.013  21.71  0.1  0.08  1.65  0.13  3.05E‐10  0.44  1.35E‐09 12.84  5.41 

64PE374  17 2249 0.48 0.006  21.45  0.24  0.15  2.09  0.45  4.76E‐10  1.05  1.61E‐09 12.66  4.38 

64PE374  17 1749 0.81 0  21.54  0.15  0.11  1.45  0.18  8.06E‐10  3.61  6.44E‐10 12.35  1.79 

64PE374  17 1250 0.43 0.017  21.33  0.1  0.08  2.05  0.26  4.24E‐10  1.22  1.63E‐09 12.54  4.82 

64PE374  17 749 0.47 0.01  21.5  0.18  0.13  1.97  0.32  4.68E‐10  0.99  1.50E‐09 12.68  4.20 

64PE374  17 400 0.57 0.002  21.5  0.14  0.1  1.74  0.22  5.68E‐10  1.53  1.17E‐09 12.57  3.05 

64PE374  17 200 0.56 0.011  21.73  0.22  0.15  1.24  0.17  5.62E‐10  1.55  6.78E‐10 12.56  2.20 

64PE374  17 145 0.54 0.004  21.56  0.16  0.12  1.43  0.2  5.35E‐10  1.65  8.95E‐10 12.51  2.66 

64PE374  17 100 1.26 0.004  21.71  0.36  0.19  1.49  0.28  1.25E‐09  10.01  2.43E‐10 12.10  1.19 

64PE374  17 75 0.72 0.005  22.25  0.19  0.13  1.79  0.11  7.24E‐10  0.38  1.07E‐09 13.28  2.47 

64PE374  17 65 1.02 0.004  22.34  0.24  0.15  1.44  0.09  1.02E‐09  1.12  4.18E‐10 12.96  1.41 

64PE374  17 41 1.43 0.004  22.54  0.42  0.21  1.71  0.11  1.43E‐09  1.47  2.80E‐10 12.99  1.19 

64PE374  17 10 2.14 0  20.83  0.2  0.14  2.74  0.95  2.09E‐09  47.51  6.51E‐10 11.64  1.28 
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