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Known problems of the autologous chondrocyte implantationmotivate the search for cellular alternatives. The aim of the study was
to test the potential of synovium-derived stem cells (SMSC) to regenerate cartilage using a matrix-associated implantation. In
an osteochondral defect model of the medial femoral condyle in a rabbit, a collagen membrane was seeded with either
culture-expanded allogenic chondrocytes or SMSC and then transplanted into the lesion. A tailored piece synovium served as a
control. Rabbit SMSC formed typical cartilage in vitro. Macroscopic evaluation of defect healing and the thickness of the
regenerated tissue did not reveal a significant difference between the intervention groups. However, instantaneous and shear
modulus, reflecting the biomechanical strength of the repair tissue, was superior in the implantation group using allogenic
chondrocytes (p < 0 05). This correlated with a more chondrogenic structure and higher proteoglycan expression, resulting in a
lower OARSI score (p < 0 05). The repair tissue of all groups expressed comparable amounts of the collagen types I, II, and X.
Cartilage regeneration following matrix-associated implantation using allogenic undifferentiated synovium-derived stem cells in
a defect model in rabbits showed similar macroscopic results and collagen composition compared to amplified chondrocytes;
however, biomechanical characteristics and histological scoring were inferior.

1. Introduction

Articular cartilage defects often result in pain, loss of func-
tion, and finally osteoarthritis (OA), which cause a significant
impact to the public health system in every developed coun-
try, where OA currently affects one in eight individuals [1].
Autologous chondrocyte implantation is a cellular therapy,
which has successfully been employed to treat large, isolated,
full thickness cartilage defects [2]. Several disadvantages such

as the need for two surgical procedures and a significant
donor site morbidity underline the need for modifications
of the procedure. Furthermore, typical complications such
as formation of hypertrophic regenerative cartilage, dis-
turbed bonding of repair cartilage, insufficient biomechanical
resistance of the newly formed cartilage, and delamination
[3] drive the search for alternative techniques. Mesenchymal
(stromal) stem cells, particularly synovium-derived mesen-
chymal stem cells (SMSC), represent a promising alternative
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cell source. This was concluded from their marker profile
expressed on the cell surface [4, 5], indicating a chondrogenic
phenotype, and their natural ability to form cartilage espe-
cially in the vicinity of chondrocytes [6]. Furthermore, the
formation of hypertrophic differentiation was significantly
less pronounced compared to that formed by bone marrow
mesenchymal stem cells [7, 8].

SMSC is available in a high quantity and their procure-
ment does not lead to significant donor site morbidity. The
cellular characteristics of SMSC suggest their suitability
for cartilage regeneration protocols based on their chon-
drogenic phenotype [5] including its maintenance after
several cell culture passages and their excellent ability to form
extracellular matrix [9]; however, how SMSC should be
applied to cartilage defects to reach best repair quality needs
to be determined.

Following this clinical paradigm, in the present study,
we hypothesized that undifferentiated SCMC can repair carti-
lage lesions in a rabbit model of medial condyle full-thickness
lesions just as efficient as allogenic culture-expanded chondro-
cytes. By using an allogenic transplantation approach, the
study design is relevant to clinical application and mimics an
off-the-shelf protocol [10]. The primary outcome criterion
was biomechanical stability, the secondary outcome criterion
the histological evaluation of repair quality. Explorative
outcomes were the immunohistological evaluation of the
expression of the collagen types I, II, and X, markers for
chondrocyte differentiation and hypertrophy.

2. Methods

2.1. Cell Preparation. We followed the methods of Kubosch
et al. [6].

Two animals were sacrificed 3 months before the experi-
ments and the knees dissected totally removing the cartilage
from the tibia and femur. At the same time, the knee synovia
was prepared. The cartilage was cut into small pieces,
washed, and transferred into DMEM F-12 10% (Lonza
BioWhittaker, Basel, Switzerland), fetal calf serum (FCS),
1% penicillin/streptomycin (P/S) (Invitrogen, Karlsruhe,
Germany), 0.5% gentamycin and 3% collagenase CLS type
II (Biochrom, Berlin, Germany). Minced cartilaginous tissue
was then enzymatically digested during the next 16 hours on
a shaking incubator at 37°C with 200 rpm. Subsequently, the
released chondrocytes were centrifuged, washed, and seeded
in expansion medium DMEM F-12 supplemented with 10%
FCS, 1% P/S, and 0.5% gentamycin. Expansion of chondro-
cytes was performed by seeding them on coated T-flasks with
a density of 2500–5000 cells/cm2. The cells were frozen after
reaching confluence. Thawed cells were grown and used
when reaching a log phase of growth (passage 2). Similarly,
the synovial tissue was cut into small pieces, washed, and
transferred into DMEM F-12 medium with 10% FCS (Bio-
chrom, Berlin, Germany), 1% penicillin/streptomycin (P/S)
(Invitrogen, Karlsruhe, Germany), 0.5% gentamycin (Bio-
chrom, Berlin, Germany), and 3% collagenase P (Roche,
Mannheim, Germany). The suspension was digested during
the next four hours on a shaking incubator (200 rpm) at
37°C. Subsequently, the released cells were centrifuged,

washed, and seeded in expansion medium DMEM F-12
(10% FCS, 1% P/S, and 0.5% gentamycin). SMSCwere seeded
on coated T-flasks with a density of 2500–5000 cells/cm2 for
expansion. The cells were frozen after reaching confluence.
Thawed cells were grown and used when reaching a log phase
of growth (passage 2). Both SMSC and chondrocytes were
amplified, growth synchronized, and used for the animal
experiments at passage 2.

2.2. Characterization of Rabbit Synovium-Derived
Mesenchymal Stem Cells (SMSC)

2.2.1. Chondrogenic Differentiation. Rabbit SMSC were
distributed in 15ml polypropylene tubes using 250,000 cells
per 500μl medium (DMEM high glucose) supplemented
with 10% FBS, 1% penicillin/streptomycin, 10% ITS (mixture
of insulin, human transferrin, and sodium selenite from
Corning, NY, USA), 1% sodium pyruvate (Thermo Fisher
Scientific, MA, USA), 100 nM dexamethasone (Sigma-
Aldrich, Brøndby, Denmark), 10 ng/ml TGFβ3 (PeproTech,
NJ, USA), and 50μg/ml vitamin C (Sigma-Aldrich). In order
to facilitate aggregate formation, the cells were gently centri-
fuged using 500g for 5min. Chondrogenic media were
changed every 2-3 days for 21 days, and cells were cultured
in 37°C and 5% CO2.

2.2.2. Osteogenic Differentiation. Rabbit SMSC were plated in
density of 20,000 cells/cm2 in standard DMEM (low glucose)
media and cultured until they reached 80–90% confluency.
After 24 h, rabbit SMSC were exposed to osteogenic media
described by Lee et al. [11], which contained DMEM
(5.5mM glucose), 10% FBS, 1% penicillin/streptomycin,
10mM β-glycerophosphate (Calbiochem-Merck, Darmstadt,
Germany), 100 nM dexamethasone, and 50μg/ml vitamin C
(Sigma-Aldrich). Osteogenic media were changed every
2-3 days for 21 days, and cells were cultured in 37°C and
5% CO2.

(1) Alkaline Phosphatase (ALP) Activity and Cell Viability.
ALP activity was measured at day 21 of osteogenic differenti-
ation and normalized to cell viability. In order to asses cell
viability, the cells were incubated with 20μl of CellTiter-
Blue reagent (Promega, Mannheim, Germany) and 100μl
media in 37°C for 1 h. After 1 h, the fluorescent intensity
was measured (560ex/590em) in FluoStar Omega microplate
reader (BMG Labtech, Birkerød, Denmark). Subsequently,
the cells were washed with Tris-buffered saline and fixed with
a mixture of 3.7% formaldehyde and 90% ethanol for 30 sec-
onds at room temperature. After that, the cells were incu-
bated with ALP substrate, 1mg/ml p-nitrophenyl
phosphate in 50mM NaHCO3 (pH=9.6) and 1mM MgCl2
at 37°C for 20min. The reaction was stopped by adding 3M
NaOH. Absorbance was measured at 405nm using the
FluoStar Omega microplate reader.

(2) Alizarin Red Staining. In order to assess matrix minerali-
zation, after 21 days of osteogenic differentiation, rabbit
SMSC were stained with Alizarin Red. Briefly, the cells were
washed with PBS and fixed with 70% iced-cold ethanol for
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1h at −20°C. Subsequently, the cells were washed with H2O
and stained with Alizarin Red solution (Sigma) pH=4.2 for
10min. After staining, the cells were washed with PBS for
5min in order to remove unbound dye.

2.2.3. Adipogenic Differentiation. For adipogenic differentia-
tion, rabbit SMSC were plated in a density of 30,000 cells/
cm2 in standard DMEM (low glucose) media and cultured
until the cells reached 100% confluency. Subsequently, the
media were replaced by adipogenic media adapted from Lee
et al. [11], which contained DMEM (25mM glucose), 10%
FBS, 1% penicillin/streptomycin, 500μM IBMX (3-isobutyl-
1-methylxanthine, Gibco, Herlev, Denmark), 1μM dexa-
methasone, 200μM indomethacin, and 10μg/ml insulin
(Sigma, Brøndby, Denmark). Adipogenic media were
changed every 2-3 days for 21 days, and cells were cultured
in 37°C and 5% CO2.

(1) Oil Red O Staining. After 21 days of adipogenic differen-
tiation, rabbit SMSC were stained with Oil Red O in order
to assess adipocyte formation. Briefly, the cells were washed
with PBS and fixed with 4% paraformaldehyde at room tem-
perature for 10min. Subsequently, the cells were washed with
3% isopropanol and incubated with 25mg Oil Red O (Sigma)
in 5ml of 60% isopropanol and 3.35ml H2O for 1 h.

2.3. RNA Isolation and Quantitative PCR. Total RNA was
isolated from the cells using TRIzol® reagent (Invitrogen,
Tastrup, Denmark) according to manufacturer’s protocol.
After 21 days of differentiation, the samples were dissociated
in TRIzol using the gentleMACS Dissociator (Miltenyi Bio-
tec, Lund, Sweden). cDNA was synthetized from 1μg of total
RNA using a RevertAid HMinus First Strand cDNA Synthe-
sis Kit (Thermo Scientific, MA, USA). Primers were designed
using Primer-BLAST software. Primer sequences are
described in Table 1 (Supplementary Figures available here).
Real-time PCR was performed in the StepOnePlus Real-
Time PCR System (Applied Biosystems) using Fast SYBR®
GreenMix (Applied Biosystems, Foster City, CA, USA). Each
sample was run in triplicates. The results were calculated
using ΔCt method. The data are presented as 2−ΔΔCt, giving
the relative expression change between day 0 and day 21.

2.4. Certification. The regional board for animal protection
approved the experiments with the decision from 9 March
2013 with additional modifications at 21 August and 11
September 2015 (G-13/75).

2.5. Anesthesia. The rabbits received ketamine (35mg/kg)
combined with medetomidine (0.25mg/kg) by intramuscular
injection. During the surgery, Ringer’s solution (10ml/kg/h)
was given through an intravenous access in the marginal ear
vein. Anesthesia was supplemented with 0.5–2% isoflurane
(double facemask with spontaneous ventilation, FiO2> 0.4).
Heart rate and blood oxygen saturation were monitored.
Prior to surgery and 3 days after, the rabbits received carpro-
fen, a nonsteroidal anti-inflammatory drug (4mg/kg s.c.) as
an analgesic and Baytril (enrofloxacin) 2.5% (0.4ml/kg) as
an antibiotic.

2.6. Operation. Female New Zealand white rabbits were
obtained from Charles River (Sulzfeld, Germany). The ani-
mals were kept applying specific pathogen-free conditions
and controlled room temperature. Acclimatization lasted 14
days. The animals were housed in cages with unrestricted
water and food supply and a typical day/night rhythm. By
the time of operation, the animals had reached a bodyweight
of approximately 3.5 to 4.2 kg with closed growth plates.
After shaving and disinfection, both knee joints were opened
by a central skin cut and a medial parapatellar arthrotomy.
Following this, the patella was laterally displaced. Hereafter,
the Hoffa fat pad with the synovium was partially resected,
and full-thickness cartilage lesions were prepared in the
central medial femoral condyle using a drill with a 3.5mm
diameter and a stop at 2mm depth. Attention was paid on
an exact vertical angle for the drilling direction. Considering
an average cartilage height of 0.5mm (Figure 1(a)), the sub-
chondral bone plate was opened. The defects of the control
group were covered with a synovium flap, matching the
prepared lesion size, and fixed with compression and fibrin
glue (Baxter, Unterschleißheim, Germany). For the groups
treated with cells, matching flaps of a bilayered collagen
type I/III scaffold (Chondro-Gide, Geistlich, Pharma AG,
Wolhusen, Switzerland) were prepared, passively seeded
with cells (porous side, 400,000 cells per defect; 15min adhe-
sion time) and fixed as described for the synovium flaps. For
inoculation, a cell suspension of 40,000,000 cells/ml was
prepared and 10μl dropped on the tailored scaffold. After
transplant fixation, the patella was relocated and the joint
moved followed by a visual control of the correct transplant
location. Hereafter, the arthrotomy and the skin were sutured
separately. Wounds were sealed using an aluminium spray.

We compared 4 groups (synovium flap, nontreated unin-
jured cartilage, transplantation of amplified chondrocytes, or
SMSC) and included 6 operated knees in each group (12 rab-
bits). The knees were randomly assigned to each group by
using a random number generator. The animals were sacrificed
after 6 weeks and the knees explanted and first biomechanically
tested. After this, specimens were histologically analyzed. In a
pilot study comparing the implantation of a collagen scaffold
with and without chondrocytes, significant differences were
found after 3, 6, 12, and 24 weeks (Oliver Huwert, unpublished
data). The differences, however, declined from 7 to 5.4 points
on a summary scale, evaluating macroscopic and histological
scoring (Supplementary Figure 1). This was probably caused
by the natural repair capacity of cartilage defects in rabbits
and forced the focus on the 6-week time point.

2.7. Clinical Evaluation of Rabbits. The rabbits mobilized
themselves immediately after weaning with full-weight

Table 1: Macroscopic evaluation.

Defect Group
ICRS
grading

p (versus
others)

Area
p (versus
others)

Synovium 1 2.2± 0.4 n.s. 96.8± 10.2 n.s.

ACI-SMSC 2 2.7± 0.8 n.s. 83.3± 30.3 n.s.

ACI-CHDR 3 2.7± 0.8 n.s. 79.2± 24.6 n.s.
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bearing. They had no clinical signs of pain. They were closely
observed one week until wound healing and had no signs of
infection. The rabbits did not limp longer than 2-3 days hav-
ing soon normal, species-specific moving patterns.

2.8. Biomechanical Evaluation. To define mechanical param-
eters, the multiaxial testing unit Mach-1 Model V500css
(Biomomentum, Montreal, Canada) for automated normal
alignment and indentation mapping with a multiple-axis
load cell by Honeywell Mod. 34 (Honeywell, New Jersey,

USA), a Newport Motion Controller ESP 301 (Newport,
Irvine, USA), and an indenter with spherical geometry of
1mm diameter was employed. For the biomechanical inves-
tigations, 10 different positions on the sample were exam-
ined. The positions were selected at the mapping module of
Mach-1 Software (Biomomentum, Montreal). Five positions
were selected on the healthy part of the sample (left condyle
in Supplementary Figure 4A), and five positions were
selected on the defective part of the sample (right condyle
in Supplementary Figure 4A). To avoid dehydration of the

Groups

Sy
no

vi
um

AC
I-

SM
SC

AC
I-

CH
D

R

M
ed

 co
nd

yl
e

p < 0.01

n.s.2

1.5

1

0.5

0

�
ic

kn
es

s (
m

m
)

(a)

Groups

Sy
no

vi
um

AC
I-

SM
SC

AC
I-

CH
D

R

M
ed

 co
nd

yl
e

p < 0.045

n.s.6

5

4

3

1

2

0

In
st

an
t m

od
ul

us
 (M

Pa
)

(b)

Groups

Sy
no

vi
um

AC
I-

SM
SC

AC
I-

CH
D

R

M
ed

 co
nd

yl
e

p < 0.045

n.s.20

15

10

5

0

Sh
ea

r m
od

ul
us

 (M
Pa

)

(c)

Figure 1: (a) Cartilage thickness. The cartilage thickness differs not significantly between the groups but is higher than normal caused by the
technique of defect preparation (n.s.: not significant). (b) Instantaneous or instant modulus. The instant modulus is significantly higher in the
group treated with amplified chondrocytes compared to the other intervention groups (n.s.: not significant). (c) Shear modulus. The shear
modulus reached significantly higher values in the group treated with amplified chondrocytes compared to the other intervention groups
(n.s.: not significant).
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cartilage during the measurements, the sample was moistur-
ized several times with phosphate-buffered saline (PBS).

2.8.1. Automated Indentation Mapping. For the automated
indentation mapping, the following parameters were set in
Mach-1 Motion: z-contact velocity of 0.5mm/s, a contact
criteria of 0.1015N, and a scanning grid of 0.5mm. The
indentation amplitude was set to 0.2mm and the indentation
velocity to 0.2mm/s. The relaxation time was set to 5 s.

2.8.2. Automated Thickness Mapping. Thickness was mapped
with the needle technique [12] by replacing the spherical
indenter with a 27G× 3/4″ intradermal needle (B. Braun,
Melsungen, Germany). The following parameters were input
into the Mach-1 Motion Software: stage velocity of 0.5mm/s;
contact criteria of 4N, and stage repositioning of 2x load

resolution. The needle on the mechanical tester was directed
vertically towards the sample at a constant speed until the
cartilage surface was penetrated and the needle stopped at
the subchondral bone edge.

2.8.3. Data Processing. The findings were analyzed using the
software Mach-1 Analysis Version 4.1.0.17 (Biomomentum,
Montreal) and Origin 9.1 Professional (Origin Lab,
Northampton, USA). The evaluation methods used were
according to Sim et al. [13]. Using automated thickness map-
ping results, the cartilage thickness was calculated at each
position from the difference between the vertical position of
the surface (where the load starts to increase) and the posi-
tion of the cartilage/bone interface (corresponding to the first
inflection point in the displacement/force curve) (see
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Figure 2: Rabbit SMSC have the ability to undergo chondrogenic differentiation in vitro in a pellet culture. Staining with Alcian blue (upper
row) and Safranin-O (lower row) indicates a successful production of glycosaminoglycans after 21 days. Chondrogenic differentiation capacity
declined remarkably with a further passage. Specimens were embedded in gelatin before staining. Quantitative PCR revealedmRNA formation
of typical cartilage markers such as collagen type II (g), Aggrecan (h), and Sox9 (i) in both passage 3 and 4 (n = 3, p < 0 05).
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Supplementary Figure 4B). The instantaneous modulus (IM
or instant or Young’s modulus) at each position was obtained
by fitting the load-displacement curve (with corresponding
thickness and effective Poisson ratio of 0.5) to an elastic
model for indentation [14] (see following equation).

IM = P
H

⋅
1 − v2

2ak ⋅ a/h v
, 1

with P= load,H= indentation depth, a= radius of the contact
region, ν=Poisson’s ratio, and k=correction factor depen-
dent on a/h and ν.

The shear modulus (G) is calculated as follows:

G = E
2 1 + v

2

An example for a typical strain-relaxation curve is pro-
vided in the Supplementary Material (Figure 4C).

2.9. Histology. After biomechanical testing, specimens were
fixed in 4% buffered formaldehyde solution. A thin-section
technique facilitated the preparation of the slides. The longi-
tudinally sectioned specimens were decalcified with ethylene-
diamine-tetra-acetic acid, dehydrated with ethanol, degreased
with xylene substitute (Histoclear®), and then embedded in
paraffin. The sections were made using a rotary microtome
(HM 340E, Microm, Thermo Fisher Scientific Inc., Waltham,
MA, USA). They were stained with hematoxylin-eosin
and Safranin-O. The image analysis of the sections was
done utilizing a light microscope (KS300, Carl Zeiss Ltd.,
Oberkochen, Germany) associatedwith a picture analysis unit
(Axioplan, Carl Zeiss Vision Ltd., Oberkochen, Germany).
Representative slides were selected and blindly evaluated by
two different examiners, determining the OARSI score [15].
The average and the median were calculated and used for
statistical group comparisons.

2.10. Immunohistology. For collagen type I, type II, and type
X immunohistochemistry, sections were incubated for
30min with 5% normal goat serum, followed by incubation
with a 1 : 50 monoclonal mouse anticollagen type I antibody
(MAB3391, Clone 5D8-G9, Chemicon, Hofheim, Germany),
a 1 : 50 monoclonal mouse anticollagen type II antibody
(MAB8887, Clone 6B3, Chemicon), or a 1 : 500 monoclonal
mouse anticollagen type X antibody (Clone COL-10,
C7974, Sigma, Taufkirchen, Germany) for 2 h, three wash-
ings with PBS, and incubation with a biotin-labelled goat
antimouse immunoglobulin for 30min (Acris, Herford,
Germany). Afterwards, sections were incubated with avidin
for 30min and with 3-amino-9-ethylcarbazole (AEC) sub-
strate for 10min. Representative slides were selected, blinded,
and evaluated by two different examiners, determining the
Remmele-Stegner Score [16] and comparing positive and
negative stains. The average and the median were calculated
and used for statistical group comparisons.

2.11. Statistics. All values were expressed as mean± standard
error of the mean. Regarding the scores and all numerical
values (if n < 5), statistical significance was tested

nonparametrically primarily using the Mann–Whitney U
test. Multiple comparisons were calculated using a post
hoc statistics with the Kruskall-Wallis H test. Probability
distributions of samples with n≥ 5 were analyzed by a
Kolmogorov–Smirnov test. Normally distributed samples
were then compared using a t-test, otherwise the samples
were nonparametrically compared as indicated. Statistical
significance was defined as p < 0 05.

3. Results

3.1. Cell Characterization. Rabbit synovial mesenchymal
stem cells (SMSC) differentiated readily into chondrocytes
in pellet culture after 3 weeks. Alcian blue staining of glycos-
aminoglycans of the pellets is shown in Figures 2(a) and 2(b).
Similar staining pattern of cartilage by Safranin-O was
observed (Figures 2(d) and 2(e)). The cells exhibited a par-
tially fibroblast-like phenotype. Chondrogenic differentiation
capacity declined remarkably after one further passage of the
cells (Figures 2(c) and 2(f)).

Furthermore, quantitative RT-PCR revealed overex-
pression of cartilage mRNA markers during chondrocyte
differentiation of SMSC. As seen in Figures 2(g)–2(i), colla-
gen type II (col2), Aggrecan (acan), and Sox9 mRNA were
significantly induced, and this was observed in both p3 and
p4 cells. However, the response was lower in p4 compared
to p3 cells.

Osteogenic differentiation of SMSC was evidenced by
typical morphological changes (Supplementary Figures 2A
and 2B). Alizarin Red staining visualized the formation of
mineralized extracellular matrix. However, both the intensity
of Alizarin Red stain and the lack of alkaline phosphatase
expression indicated a limited capacity for osteoblastic
differentiation (Supplementary Figures 2C and 2E). Quanti-
tative RT-PCR analysis corroborated this finding, showing
marginally increased collagen type I (col1) and osteocalcin
(OCN) mRNA expression after 21 days (Supplementary
Figure 2D). Similar to adipocyte differentiation, passage 4
cells had very limited osteoblastic differentiation capacity.

Rabbit SMSC were also able to differentiate in adipocytes,
demonstrated by an Oil Red O stain (Supplementary Figures
3A and 3B). Adipocyte’s differentiation was associated with
accumulation of small lipid droplets and the induction of adi-
pogenic genes such as PPARG (peroxisome proliferator-
activated receptor gamma) and AN (adiponectin) (Supple-
mentary Figure 3C). Together with a decreasing proliferation
rate, p4 cells almost lost their adipogenic differentiation
capacity (data not shown).

3.2. Gross Evaluation. The evaluation of the macroscopic
degree of recovery using the ICRS subscore for defect filling
[17] showed successful healing of the medial condyle lesions
reaching values ranging below 3. We did not observe differ-
ences between the intervention groups (Table 1). All knees
of the control group without intervention had naturally no
cartilage damage (ICRS subscore = 0). The results are not
separately reported, because there was no area of healing
or lesion. Furthermore, the percentage of surface in the
lesion containing repair tissue corresponding with the
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adjacent natural cartilage was evaluated as “area of healing.”
Most of the surface was covered by repair tissue, but we did
not detect differences between the groups evaluated 6 weeks
postinjury (Table 1).

The evaluation of the macroscopic degree of healing
using the ICRS score and the area of healing did not show dif-
ferences between the groups after 6 weeks. Each group was
statistically compared to every other group; the results are
indicated by n.s. (not significant).

3.3. Biomechanical Evaluation

3.3.1. Thickness. The thickness of the uninjured reference
cartilage of the medial femoral condyle was 0.50± 0.12mm.
There were no statistically significant differences between
the cartilage thickness obtained in the intervention groups:
1.47± 0.20mm for the synovium group, 1.35± 0.36mm for
transplanted SMSC, and 1.17± 0.44mm for transplanted
amplified chondrocytes (Figure 1(a)). The comparison
between the uninjured control and each of the synovium
group or the SMSC group revealed significant statistical dif-
ferences (p < 0 01); however, the direct statistical comparison
of the chondrocyte and the control group failed to reach sig-
nificance (p = 0 06).

3.3.2. Instantaneous or Instant Modulus (IM). The instanta-
neous or instant modulus describes mechanical stress resis-
tance of cartilage and correlates with osteoarthritic changes
[13]. Normal cartilage is predicted to have high IM values,
correlating with the instant modulus that was highest in the
uninjured control group reaching 4.69± 0.68MPa. There
were no statistically significant differences between the
groups with a transplanted piece of synovium (1.48
± 0.20MPa) and transplanted SMSC (1.35± 0.358MPa, p =
0 85). However, both groups had a lower instant modulus
than the control group (p < 0 001) and the group with trans-
planted amplified chondrocytes (2.42± 0.66MPa, p < 0 05).
Although numerically lower, the instant modulus of the
chondrocyte group was not significantly different from the
control group without defect (p = 0 06, Figure 2(b)).

3.4. Shear Modulus. The collagen content influences the shear
modulus, which describes the material’s response to shear
stress and provides a functional measure of cartilage health
[18]. The pattern of this analysis resembles the instant mod-
ulus. The shear modulus was highest in the uninjured control
group reaching 14.09± 2.05MPa. There was no statistically
significant difference between the group with a transplanted
piece of synovium (2.06± 0.63MPa) and transplanted SMSC
(1.90± 1.16, p = 0 85). However, both groups had a lower
instant modulus than the control group (p < 0 001) and the
group with transplanted amplified chondrocytes (7.27
± 1.97MPa, p < 0 05). Although numerically lower, the
instant modulus of the chondrocyte group did not statisti-
cally significantly differ from the control group without a
lesion (p = 0 06, Figure 2(c)).

3.5. Histological Evaluation. For qualitative histological eval-
uation of the regenerated tissue, the specimens were stained
by HE and Safranin-O (Figure 3(a)). The stains confirmed

uniform defect preparation and defect filling as well as the
expression of glycosaminoglycans. The bonding at defect
edges had partially a very high quality independent of the
intervention group. The defects were slightly conically
shaped, corresponding with the drill, which was used for
defect preparation. There were no signs of immunological
reactions against the implanted material evidenced by the
absence of macrophages or giant cells.

The OARSI score was employed to obtain quantitative
comparison. All uninjured cartilage areas had no sign of oste-
oarthritis (OARSI score = 0), which was significantly better
than the scores of all intervention groups. The lowest scores
were observed following treatment with amplified chondro-
cytes reaching 4.88± 1.43 points, compared to 8.11± 3.84
points (p < 0 05) in the synovium group and 8.71± 4.19
points (p = 0 05) in defects treated with amplified SMSC.
Only the comparison with the synovium group reached sta-
tistical significance level (Figure 3(b)).

3.6. Immunohistology. The quantitative evaluation of the col-
lagen type I, II, and X expression using the Remmele-Stegner
Score did not show differences between the intervention
groups after 6 weeks (Table 2), but all collagen types were
expressed in the different types of original or regenerative
cartilage tissue.

The evaluation of the collagen type I, II, and X expression
quantified using the Remmele-Stegner Score did not show
differences between the groups after 6 weeks. Each group
was statistically compared for each examined collagen to
every other group (n.s. (not significant)).

The levels of staining quality and intensity were com-
parable for collagen types I and II and lower for collagen
type X in the intervention groups. Figure 4 shows repre-
sentative slides for collagen types I (a), II (b), and X (c),
comparing the staining of the specific antibodies with their
isotype controls.

4. Discussion

The main finding of this study is that rabbit synovium-
derived stromal (mesenchymal) stem cells (SMSC) can dif-
ferentiate into the adipogenic, osteogenic, and chondrogenic
lineage in vitro; however, SMSC are most suitable to form
cartilage. Undifferentiated SMSC are eligible for matrix-
associated implantation in a defect model in rabbits; how-
ever, the gained biomechanical stability of the regenerated
cartilage and its quality, evaluated by a validated histological
osteoarthritis score, was lesser compared to the current stan-
dard protocol utilizing amplified chondrocytes.

Numerous studies have highlighted the chondrogenic
phenotype of SMSC [5, 6], which indicate an extraordinary
suitability for natural [19] and surgically induced cartilage
repair purposes [10, 20]. This was supported by findings in
pathological processes, showing that synovial chondrogenesis
leads to synovial chondromatosis [21]. A direct comparison
of mesenchymal stem cells of different origin pointed out sig-
nificant differences and a superiority of SMSC for cartilage
formation [22]. This data is in line with our findings, demon-
strating formation of high-quality cartilage with expression of
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glycosaminoglycans and collagen type II using rabbit SMSC.
In contrast, the ability for adipogenic and osteogenic differen-
tiation of these cells was limited. Lee et al. described similar
findings and subjoined that the expression of certain surface
markers, such as CD29 and CD90, differs between mesenchy-
mal stem cells of human and rabbit origin and that they vary
regarding their phenotype [11]. Despite this, different in vivo
models demonstrated comparable functioning and success
for rabbit SMSC applications [10, 11]. Beyond that, these cells
supported successful cartilage regeneration in animal models
of other species [20, 23] and in clinical applications in
humans. SMSC were for instance successfully used for
arthroscopically assisted cartilage repair resulting in

improved MRI features, histology, and clinical outcome
[24]. However, the study included only 10 patients without
standardized follow-up and control group. By demonstrating
that a single injection of SMSC was ineffective, but weekly
injections in rat knees had significant chondroprotective
effects, Ozeki et al. pointed out that the modus of application
possesses a decisive influence on treatment attainment [25].
Pei et al. demonstrated the successful usage of SMSC seeded
into nonwoven polyglycolic acid mesh in combination with
a synthetic bone substitute to repair osteochondral defects
in rabbit knee joints [10]. However, the cells were first treated
in an incubator 1 month before implantation using a growth
factor cocktail. Thereafter, the implants were biochemically,
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Figure 3: (a) HE (upper row) and Safranin-O (lower row) staining of the medial condyle showing the defect region with regenerative tissue
following the different interventions. The red color indicates the presence of glycosaminoglycans. (b) The OARSI score is lower in the lesions
treated with amplified chondrocytes compared to negative controls (n.s.: not significant).
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biomechanically, and histologically characterized, showing
that the maturation prior to implantation improved the con-
struct. The basis for the design of the presented study was the
need for easy-to-use protocols for clinical applications.
Therefore, the procedure was the same as a standard protocol
for the autologous chondrocyte implantation, in which the
chondrocytes were substituted with SMSC. Otherwise, the
cells had the same starting conditions regarding passage, ori-
gin from the same rabbit, allogenic transplantation, and via-
bility. The chondrocytes, currently the “gold standard,”
served at the same time as a control. Based on the very prom-
ising in vitro data of our own experiments and the results
published by other groups regarding their chondrogenic pre-
differentiation, we expected to see similar results, when the
in vitro predifferentiation, which was to date applied by all
other groups, was omitted [10]. This approach should avoid
another characteristic problem of preformed constructs, the
failure of sufficient boundary integration as observed by Fujie
et al. [26]. A successful testing of this procedure would also be
the prerequisite for a possible one-step protocol, which truly
would improve the perspectives of this method. However,
the undifferentiated SMSC failed to show the same efficiency
in cartilage repair as chondrocytes. Although the height of the
regenerated tissue in the defect was larger than that in all the
intervention groups compared to natural cartilage, the bio-
mechanical stress resistance was lower. Since the prepared
defect was 2mm and therefore larger than the natural carti-
lage height, this difference is obvious and similar between
the intervention groups. The measured height of the regener-
ated tissue correlated with the defect depth, which indirectly
confirmed the uniform configuration of the lesions. Neither
gross evaluation nor regeneration height differed in the inter-
vention groups, which directly leads to the conclusion that
the actual relevant parameter for the quality evaluation of
regenerative tissue is the instantaneous and the shear modu-
lus, reflecting the biomechanical stress resistance. Similarly,
this was described by an analysis using scaffold-free tissue-
engineered constructs utilizing SMSC [27], which exhibited
compressive properties similar to uninjured cartilage. How-
ever, also in this study, the constructs lacked the typical zonal
configuration of mature cartilage, having inferior surface
stiffness and water retention capacity. The lack of a direc-
tional differentiation environment may have caused this.
Therefore, the biomechanics could possibly be improved sig-
nificantly when combining SMSC in a scaffold with growth
factors, inducing chondrogenic differentiation such as TGFβ.

The collagen types I, II, and X characterize fibrocartilage
and chondrocyte dedifferentiation, typical hyaline cartilage,
and cartilage hypertrophy, respectively [28]. Although all

collagen types were expressed without statistically significant
differences between the intervention groups, differences were
found comparing the level of collagen types. Whereas the
quantity and quality for staining of collagen types I and II
equaled each other, the level of collagen type X expression
was least. This is a typical pattern for early cartilage repair
[29], especially when the regeneration is associated with par-
tial fibrocartilage formation.

Possible explanations for the less effectivity in cartilage
defect healing are the original differentiation capacity of the
synovial cells used. Caused by the anatomical conditions of
a rabbit with very small dimensions, it is difficult to separate
synovium from the rest of the surrounding tissue such as the
Hoffa fat pad. By this, other types of mesenchymal stem cells
derived from fat tissue or CD44+CD34− adventitial none-
ndothelial progenitor cells might have been mixed in the
implanted stem cell population and have influenced the
resulting cartilage-forming abilities [30]. The cells were also
not labeled for later tracing purposes. Furthermore, the
reported outcomes reflect only short-term results. The 6
weeks might simply have been not long enough to allow
chondrogenic differentiation in vivo and adequate cartilage
formation. However, an in vitro study using a transwell
coculture has demonstrated that already after 7 days, SMSC
could differentiate into chondrocytes forming typical
chondron-like structures without applying biomechanical
stimulation [6]. Moreover, biomechanical stimulation is
expected to significantly support cartilage formation [31].

There are several possibilities to improve the results fol-
lowing SMSC transplantation. First, the cells could be predif-
ferentiated during the amplification phase as shown before
[10]. However, this complicates the preparation process prior
to implantation and therefore challenges the production pro-
cess. Furthermore, a different scaffold could be used, provid-
ing biomechanical characteristics or/and a growth factor-
releasing mechanism, supporting spontaneous chondrogenic
differentiation [32]. The study does not address the influence
of time, which could lead to further maturation of the regen-
erative tissue under the influence of the natural environment.
Furthermore, other groups have tested injection techniques
of SMSC, showing successful treatment of osteoarthritis or
cartilage lesions [20, 25, 33]. However, the functioning
mechanism of this approach remains uncertain, because it
is not clear whether the cells are enriched in the lesion and
how the cells act.

5. Conclusion

Synovium-derived stem cells (SMSC) demonstrated a high
chondrogenic potential in vitro. When used for matrix-
associated implantation in a defect model in rabbits, undiffer-
entiated SMSC showedmacroscopic and immunohistological
repair results comparable to the current standard utilizing
amplified chondrocytes. However, biomechanical resistance
and histological scoring were inferior. Considering the large
evidence for the potential of SMSC in cartilage regeneration,
the search for alternative protocols and conditions should
continue. Furthermore, the study suggests that allogenic
implantation is possible for both mesenchymal stem cells

Table 2: Quantitation of immunostaining using the Remmele-
Stegner Score.

Defect
Collagen
type I

p
Collagen
type II

p
Collagen
type X

p

Synovium 6.1± 1.7 n.s. 6.1± 3.2 n.s. 1.8± 2.9 n.s.

ACI-SMSC 5.5± 1.6 n.s. 4.8± 2.8 n.s. 2.2± 1.6 n.s.

ACI-CHDR 5.1± 0.9 n.s. 4.0± 1.3 n.s. 2.6± 2.1 n.s.
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Figure 4: (a) Collagen type I staining of the medial condyle showing the defect region with regenerative tissue following the different
interventions. The slides of the upper row were stained with an isotype control antibody; the slides of the lower row were stained using
the specific antibody. Red color indicates positive staining. (b) Collagen type II staining of the medial condyle showing the defect region
with regenerative tissue following the different interventions. The slides of the upper row were stained with an isotype control antibody;
the slides of the lower row were stained using the specific antibody. Red color indicates positive staining. (c) Collagen type X staining of
the medial condyle showing the defect region with regenerative tissue following the different interventions. The slides of the upper row
were stained with an isotype control antibody; the slides of the lower row were stained using the specific antibody. Red color indicates
positive staining.
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and chondrocytes, offering a significant simplification of the
matrix-associated cell implantation.
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