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Summary

Many species of bacteria can couple anaerobic
growth to the respiratory reduction of insoluble
minerals containing Fe(III) or Mn(III/IV). It has been
suggested that in Shewanella species electrons
cross the outer membrane to extracellular substrates
via ‘porin–cytochrome’ electron transport modules.
The molecular structure of an outer-membrane
extracellular-facing deca-haem terminus for such a
module has recently been resolved. It is debated
how, once outside the cells, electrons are transferred
from outer-membrane cytochromes to insoluble elec-
tron sinks. This may occur directly or by assemblies
of cytochromes, perhaps functioning as ‘nanowires’,
or via electron shuttles. Here we review recent work
in this field and explore whether it allows for unifica-
tion of the electron transport mechanisms supporting
extracellular mineral respiration in Shewanella that
may extend into other genera of Gram-negative
bacteria.

Introduction

Many bacteria can couple anaerobic growth to the respi-
ratory reduction of Fe(III) or Mn(III/IV) contained in oxide
and phyllosilicate minerals. These solid substrates are
abundant electron sinks for life on earth, but they are
insoluble in water at neutral pH and consequently cannot

enter the bacterial cells. So, to exploit these electron sinks,
specific respiratory electron transfer mechanisms must
overcome the physical limitations associated with electron
transfer to extracellular terminal electron acceptors. Since
there is a high natural abundance of Fe(III) in minerals, the
substrate provides a massive electron sink for life in the
planet’s redox transition (or interfacial) zones. However,
until very recently we have not understood how bacteria
deliver electrons across their membranes to these
insoluble minerals, with a number of different mechanisms
being championed. Recent biochemical and structural
work on proteins or homologues of proteins that are essen-
tial for this process in the Shewanella genus of metal-
respiring bacteria is beginning to change this situation. We
review this progress here and explore whether it allows for
unification of the electron transport mechanisms support-
ing extracellular mineral respiration in Shewanella. We
then explore whether such a unifying model can extend
outside of the Shewanella genus into other genera of
Gram-negative bacteria.

Energy-conserving electron transfer across
two membranes

In the process of oxidative phosphorylation, ATP synthesis
in Gram-negative bacteria relies on a proton-motive force
across the inner (cytoplasmic) membrane, driven by
energy from respiratory electron transport. During cata-
bolism, electrons can reduce the inner-membrane
quinone (Q) pool via a number of Q-reductases, including
nicotinamide adenine dinucleotide (hydride NADH)
dehydrogenase, formate dehydrogenase (Fdh; Fig. 1) and
hydrogenase. The thermodynamic free-energy gap (DE
300–400 mV) in this process can generate a proton-motive
force of ~ 200 mV across the membrane (Fig. 1). For turn-
over of the quinone reductases to be sustained, the
reduced quinol (QH2) pool must be continually re-oxidized.
In the case of extensively studied soluble electron accep-
tors, such as O2 and nitrate, the cognate QH2 dehydroge-
nases are associated with the inner membrane and the
active sites can be readily accessed by these water-
soluble electron acceptors. Recycling the QH2 pool is,
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however, a challenge if the electron acceptor cannot enter
the cell, as exemplified by Fe(III) and Mn(III/IV) solid
phases. In this case the electrons must leave the QH2 pool
in the inner membrane, travel across the periplasm and the
outer membrane to reach the microbe–mineral interface
where a mechanism must exist to accomplish interfacial
electron transfer with sites on the mineral surface. This
process is explored in the sections that follow.

The Shewanella ‘porin–cytochrome’ model for electron
transfer across the outer membrane

It is widely accepted that c-type haems can play a major
role in electron transfer to metal ions. These electron-
carrying cofactors comprise of tetrapyrrole rings that
co-ordinate a central Fe ion via the four pyrrole nitrogens.
This ‘haem’ can carry one electron through the reduction
of Fe(III) to Fe(II) and is covalently attached to the
polypeptide chain via two cysteine residues in a CXXCH

motif on the polypeptide chain. This motif makes recogni-
tion of c-type cytochromes in a proteome translated from
a genome sequence relatively straightforward and many
Shewanella species are predicted to have greater than 40
such cytochromes, a number of which bind more than one
haem cofactor and are thus called multi-haem cyto-
chromes (Heidelberg et al., 2002).

In many species of Gram-negative bacteria, an inner-
membrane QH2 dehydrogenase (NapC/NrfH family) that
binds four haems serves to recycle the QH2 pool in the
inner membrane. Mutation of the gene cymA encoding a
NapC homologue in Shewanella species results in a defi-
ciency in mineral metal respiration (Myers and Myers,
2000). CymA can be modelled on the recently solved NrfH
structure, which reveals a tetra-haem chain that can move
electrons approximately 4 nm (i.e. ~ 30–40% of the width
of the periplasm) (Fig. 1) (Zargar and Saltikov, 2009).
Thus, CymA could deliver electrons from the inner-
membrane QH2 into the periplasm and so recycle the Q
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Fig. 1. A scheme for electron transfer from the inner cytoplasmic membrane to the extracellular environment in Shewanella oneidensis. The
scheme is illustrated with formate as electron donor. The formate dehydrogenase (Fdh)-CymA redox loop couples the net movement of two
positive charges from the membrane potential-negative (DY-) to the membrane potential-positive (DY+) side of the membrane per two
electrons transferred in one Q/QH2 cycle.
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pool (Fig. 1). A number of multi-haem cytochromes are
predicted to be located in the periplasm of Shewanella
species, including the small tetra-haem cytochrome (Stc)
and the tetra-haem domain of the fumarate reductase
flavocytochrome c3 (Fcc3), which can potentially receive
electrons from CymA (Ross et al., 2007; Schuetz et al.,
2009). However, recent results suggest that none of these
play a critical role in extracellular Fe(III) oxide reduction by
Shewanella oneidensis MR-1 (Schuetz et al., 2009; Cour-
solle et al., 2010). It cannot be excluded that one or more
of these can participate in shuttling electrons from the
inner-membrane CymA across the periplasm to the inner
face of the outer membrane, but there is most likely func-
tional overlap among the pool of periplasmic multi-haem
cytochromes in Shewanella.

In Shewanella species the challenge of moving peri-
plasmic electrons from the inner to outer face of the cell
membrane is solved by a protein complex that comprises
a 40 kDa deca-haem cytochrome (MtrA) and a trans-
outer-membrane b-barrel protein (MtrB). Models of MtrA
suggest that it contains two ~ 150 amino acid modules
with homology to the Escherichia coli NrfB protein. NrfB is
a 4 nm electron-transferring penta-haem ‘wire’ and so two
end-to-end NrfB molecules would yield a protein of
around 8 nm in length (Clarke et al., 2007; 2008). This is
broadly consistent with a recent low-resolution structure
of recombinant MtrA derived from small-angle X-ray scat-
tering (SAXS) that suggested a length of around 10 nm
(Firer-Sherwood et al., 2011). A role for MtrA in electron
transfer across the outer membrane was initially consid-
ered unlikely since in silico analysis predicts it to be a
soluble periplasmic protein. However, native MtrA actually
associates strongly with the periplasmic face of the outer-
membrane fraction in S. oneidensis and it has recently
been established that this is because it forms a tight
complex with the integral outer-membrane protein MtrB
(Ross et al., 2007; Hartshorne et al., 2009).

Modelling of MtrB suggests that it comprises a
28 strand trans-membrane barrel that could form a pore
some 3–4 nm in diameter (Hartshorne et al., 2009).
Genetic studies suggest that the mtrB gene is critical to
the Fe(III)-respiring process. However, MtrB’s role in elec-
tron transfer across the outer membrane has been
unclear since its amino acid sequence does not have an
obvious redox cofactor-binding motif. As MtrB is predicted
to be a large porin-type protein, one solution for moving
electrons across the outer membrane is to embed the
deca-haem MtrA within the MtrB barrel (Fig. 1) (Ross
et al., 2007; Hartshorne et al., 2009). In this way MtrA
provides the outer membrane-spanning electron wire,
which is insulated by an MtrB sheath – this is the ‘porin–
cytochrome’ electron transfer module. In principle, such
an MtrAB complex could span the outer membrane and
also extend into the periplasm where it could contact other

periplasmic electron transfer proteins. There is also a
possibility that MtrA could protrude sufficiently into the
periplasm to interact directly with inner-membrane CymA,
thus providing the link of the outer membrane to the
proton-motive inner-membrane electron transport system
(Fig. 1). This would depend on how deeply MtrA is embed-
ded into the interior of MtrB b-barrel. The recent analysis
of recombinant MtrA by SAXS suggested that MtrA might
be too wide to embed deeply into the barrel (Firer-
Sherwood et al., 2011). However, it should be recognized
that as yet there is no structure for MtrB and so the
dimensions of the internal cavity cannot be known with
any certainty.

What is the mechanism for microbe-to-mineral
electron transfer?

The model presented thus far can explain how electrons
are conducted from inside the cell to the extracellular
environment via outer-membrane porin–cytochrome elec-
tron transport complexes. However, it has been the
subject of a debate whether, once outside the cells, elec-
trons are transferred: (i) directly from outer-membrane
cytochromes to insoluble electron sinks, (ii) by assemblies
of cytochromes, perhaps associated with extracellular
appendages, sometimes referred to as nanowires or (iii)
via electron shuttles (Fig. 1). There is an emerging con-
sensus that a family of extracellular deca-haem cyto-
chromes plays an important role in all three models. This
is the MtrC family, which in Shewanella includes the
homologues OmcA and MtrF. The extracellular location of
these deca-haem cytochromes has been established by a
range of biophysical studies and through the demonstra-
tion that they are exported by the type II secretion system
(DiChristina et al., 2002; Donald et al., 2008; Shi et al.,
2008; Lower et al., 2009; Reardon et al., 2010). All three
proteins have been extensively characterized spectro-
potentiometrically and it has been shown that the 10
haems within each protein oxidize and reduce across a
very broad potential window between ~ +100 and
~ -500 mV (pH 7 versus the standard hydrogen elec-
trode) and readily exchange electrons at high rates with
graphite and, at slower rates, hematite electrodes in the
absence of redox mediating electron shuttles (Hartshorne
et al., 2007; Eggleston et al., 2008; Firer-Sherwood et al.,
2008). MtrC copurifies with MtrAB from S. oneidensis,
and the functionality of the MtrABC complex in trans-
membrane electron transfer was demonstrated in sealed
proteoliposomes (Hartshorne et al., 2009). Further su-
pport for a role for MtrCAB in trans-membrane electron
transfer comes from expression of mtrCAB in E. coli that
confers a capacity for hematite reduction on the recipient
organism (Jensen et al., 2010). It should be noted though
that the iron-reducing activity reported was very low com-
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pared to S. oneidensis and so the question of whether
MtrCAB on its own is sufficient to confer high rates on
mineral iron respiration remains.

Significant insights into the mechanism of microbe-to-
mineral electron transfer were recently provided by the
resolution of the structure of MtrF, a member of the MtrC
family, that may be functionally associated with an MtrDE
porin–cytochrome complex (homologous to MtrAB). The
mtrDEF genes are most highly expressed in aggregated
cell cultures of S. oneidensis, although as yet a clear
phenotype of an MtrF mutant has yet to be established
(McLean et al., 2008; Clarke et al., 2011). MtrF consists of
four domains (Fig. 2A). Five tightly packed haems are
covalently attached to domains II and IV, while domains I
and III each contain seven anti-parallel b-strands folded
together through an extended Greek key topology that
results in a split b-barrel structure. The overall haem orga-
nization is a ‘staggered cross’, in which a staggered 65 Å
octa-haem chain transects the length of the protein and is
crossed at the middle by a 45 Å tetra-haem chain that
connects the two split b-barrel domains. Each haem is
within 7 Å of its nearest neighbour(s), which will allow for
rapid electron transfer through the protein (Fig. 2B). The
overall arrangement suggests that MtrF is optimized for
trifurcated electron transfer across both the cytochrome
domains and into the flanking b-sheet domains via the
quadri-directional staggered haem ‘cross–roads’ junction.
A c-type haem has two propionate side chains and, thus,
a deca-haem cytochrome has 20 negatively charged
propionates. MtrF binds 18 calcium ions that may contrib-
ute to charge compensation for these propionates (Clarke
et al., 2011) and so it is perhaps notable that in
Shewanella sp. HRCR-1, the extracellular cytochromes
have been shown to be embedded in extracellular poly-
mers (EPS) that are rich in calcium ions (Cao et al., 2011).

MtrF shares 30% identity and 46% similarity with MtrC
and the sequence of alternating non-haem domains and
penta-haem domains is conserved. Thus, the crystal
structure of MtrF serves as the prototypical structure for
the ‘MtrC family’. From a physiological view point multi-
haem c-type cytochromes can be grouped broadly into
two functional classes. The first serves as periplasmic
electron wires, such as Stc and penta-haem NrfB (Clarke
et al., 2007), and tends to have a low protein-to-haem
ratio (~ 3 kDa protein/haem). The second has a catalytic
function, such as the penta-haem nitrite reductase or
octa-haem hydroxylamine oxidoreductase and tetrathion-
ate reductase. These exhibit a high protein-to-haem ratio
(~ 10 kDa protein/haem) because of the requirements for
the protein to form a scaffold to hold multiple haems and
contain sufficient additional polypeptide to construct an
active site with substrate/product channels (Clarke et al.,
2008). The crystal structure of MtrF reveals a hybrid of
these two classes; the penta-haem domains I and III have

a low protein-to-haem ratio of ~ 3 kDa protein/haem com-
parable to that of the electron shuttling multi-haem cyto-
chromes, but inclusion of the domains formed by the
Greek key split b-barrel domains gives an overall protein-
to-haem ratio for MtrF of 7 kDa protein/haem that is closer
to that of the catalytic multi-haem cytochromes. In the
context of mineral respiration this suggests multiple activi-
ties for this protein that may allow formulation of a unifying
model for extracellular electron transfer in Shewanella
that explains experimental observations of direct
‘microbe-to-mineral’ electron transfer, indirect ‘microbe-to-
shuttle-to-mineral’ electron transfer and electron transfer
via nanowires.

Cytochrome-mediated ‘microbe-to-mineral’
electron transfer

The question of whether the outer membrane-associated
deca-haem cytochromes, MtrC, MtrF and OmcA, can bind
to, and directly reduce, metal oxides such as reactive
ferrihydrite, or the more stable goethite (FeOOH) or hema-
tite (Fe2O3) has been controversial and has thus received a
great deal of experimental attention. It is a challenging
question to address. First, these oxides range significantly
in their free energy, crystallinity and hence solubility, reduc-
tion potential and overall reducibility. Their reduction poten-
tials range from a high of +61 mV for ferrihydrite (pH 7.0)
to a low of -230 mV for hematite (pH 7) (Fig. 3). Fe(III)
oxide–cytochrome interaction studies are necessarily per-
formed in vitro, using nano- and microparticulate aqueous
suspensions of laboratory synthesized oxides of controlled
properties. However, the partially hydrophobic character of
the cytochromes requiring a solubilizing agent to maintain
them in solution and the tendency for the oxides to aggre-
gate pose serious challenges for artefact-free kinetic
studies. Consequently, defensible electron transfer rates
have not been published. Additionally, interfacial orienta-
tion and approach distance are important variables influ-
encing interfacial cytochrome electron transfer rates
(Kerisit et al., 2007), and it is unclear whether optimal
interfacial configurations or associations assemble abioti-
cally under in vitro conditions. Hematite is the only one of
these common Fe(III) oxides that can be synthesized or
obtained in extended single crystal form enabling direct
microscopic, spectroscopic and electrochemical studies of
interfacial structure, orientation and electron transfer rate,
and important insights have resulted (e.g. Lower et al.,
2007; 2009; Eggleston et al., 2008; Meitl et al., 2009; Johs
et al., 2010). The thermodynamic properties of hematite,
however, make it a relatively weak oxidant with a relatively
narrow range of cytochrome redox reactivity. Ferrihydrite
displays a much larger redox range and is more environ-
mentally relevant, but it exists as 5–8 nm nanoparticles
that profusely aggregate and readily transform to other
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Fe(III) oxide phases subsequent to interfacial electron
transfer. These factors complicate the quantification of
interfacial contact area and site reaction stoichiometries
that are requisite for kinetic analysis.

A combination of measurements with fluorescence cor-
relation spectroscopy, optical waveguide lightmode spec-
troscopy and protein film voltammetry (PFV) have shown
that OmcA and MtrC can bind to hematite in an ionic-
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Fig. 2. The organization of multi-redox centred electron wires.
A. The molecular structure of S. oneidensis MtrF (adapted from Clarke et al., 2011).
B. Left, the iron sulphur cluster electron transfer wire of Thermus thermophilus NADH dehydrogenase (adapted from Roessler et al., 2009).
Centre, the position of the iron atoms in multi-haem electron transfer wire from S. oneidensis MtrF (adapted from Clarke et al., 2011). The two
flavin molecules are placed in hypothetical positions to illustrate a possible route of electron transfer. Right, the tetra-haem/flavin adenine
dinucleotide electron transport chain of FccA (adapted from Taylor et al., 1999).
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strength and pH-dependent manner (Xiong et al., 2006;
Lower et al., 2007; 2008; 2009; Eggleston et al., 2008).
PFV measurements have also shown that MtrC, OmcA
and MtrF can transfer electrons directly to graphite elec-
trodes with interfacial electron transfer rates that lie in
range of ~ 100 to 300 per second (Hartshorne et al., 2007;
2009; Firer-Sherwood et al., 2008; Clarke et al., 2011).
Inspection of the MtrF structure suggests electron input/
egress sites via haems 5 and 10, which are the most
solvent exposed haems (Fig. 2A). These haems are posi-
tioned so that the edges of the porphyrin rings are
exposed to the solvent, a configuration that has been
shown to be optimal for electron transfer to insoluble
minerals (Smith et al., 2006).

Using phage display technology a peptide with hematite-
binding motif has been identified in MtrC and OmcA that
has a conserved sequence of Ser/Thr-hydrophobic/
aromatic-Ser/Thr-Pro-Ser/Thr (Lower et al., 2007; 2008).
Molecular dynamic simulations with the peptide Ser-Pro-
Ser indicated that hydrogen bonding occurs between two
serine amino acids and the hydroxylated hematite surface
and that the proline induces a structure-binding motif by
limiting the peptide flexibility. However, this sequence
cannot be identified on the MtrF structure and so the
importance of this peptide is unclear at present. The shape
of OmcA in solution has been imaged using SAXS (Johs
et al., 2010). It has similar dimensions (34 ¥ 90 ¥ 65 Å)
to that of MtrF (30 ¥ 85 ¥ 70 Å). Neutron reflectometry
showed that OmcA forms a well-defined monomolecular
layer on hematite surfaces, where it assumed an orienta-
tion that maximized its contact area with the mineral
surface (Johs et al., 2010). The exact relationship of the
conformation of OmcA on a surface and MtrF in a mineral-
free state will require further study, perhaps by undertaking
atomic force microscopy studies with MtrF on hematite

surfaces and trying map the known structure onto the
images obtained.

Extracellular inter-cytochrome electron transfer
and nanowires

The deca-haem cytochromes are peripheral membrane
proteins, not integral membrane proteins like MtrB, and
are readily washed from the cell surface. Protein purifica-
tion and in vivo cross-linking experiments have demon-
strated that, in addition to forming a complex with MtrAB,
MtrC can also associate with OmcA (Shi et al., 2006;
Ross et al., 2007; Zhang et al., 2008; 2009). For example,
a heterotrimeric complex between OmcA and MtrC (2:1)
has been characterized in vitro (Shi et al., 2006; Ross
et al., 2007; Zhang et al., 2008). This raises the possibility
that outer-membrane deca-haem cytochromes can asso-
ciate to form electron transport chains that extend beyond
the cell surface. From the MtrF structure it is evident that
inter-cytochrome electron transfer could occur if the pro-
teins interact via domains II and IV that brings haems 5
and 10 of the partner proteins close enough for rapid
interfacial electron exchange (Fig. 4). If this was the case,
a chain of ~ 30 nm could form from the (OmcA)2 : MtrC
heterotrimer, and much longer chains could be envisaged
in a stable structured biofilm, perhaps in an extracellular
polysaccharide (EPS)–lipid–protein matrix. The possibility
that OmcA might be particularly important in inter-
cytochrome electron transfer through extracellular cyto-
chrome assemblies is supported by examination of the
distribution of MtrC and OmcA in EPS. Two forms of EPS
can be isolated from Shewanella sp. HRCR-1 that, like
S. oneidensis, also has genes encoding the MtrCAB and
OmcA systems. The EPS forms are referred as ‘tight’ and
‘loose’ and it is suggested that they are close to and more
distant from the outer membrane respectively. MtrC was
predominantly distributed into the tight EPS fraction, while
OmcA was equally distributed between the tight and loose
fractions (Cao et al., 2011). This is suggestive of OmcA
playing a role in distributing electrons away from the
MtrCAB complexes through the extracellular EPS matrix.

Pilus-like structures, or nanowires, have also been
proposed to play roles in metal reduction and current
production in microbial fuel cells, although the biological
relevance of these remains unclear. Preliminary experi-
ments have shown nanofilaments of Shewanella to be
conductive, although the mechanism and extent of their
conductivity have not been determined (Gorby et al., 2006.
There is also controversy over whether imaged nanofila-
ment morphologies have resulted from dehydration of EPS
during sample preparation and analysis (Dohnalkova
et al., 2011). Early measurements of electrical conduc-
tance by nanowires were limited to measurements across
the thickness of the ‘wire’, but recently electrical conduc-
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tivity along the length of the wire has been demonstrated
(El-Naggar et al., 2010). Pili are not essential for extracel-
lular electron transfer in Shewanella (Bouhenni et al.,
2010), but this does not exclude a role in formation of
nanofilament assemblies that contribute to extracellular
electron transfer. In Shewanella the appendages synthe-
sized by an mtrC/omcA double mutant are not electrically
conductive (Gorby et al., 2006). There could be two expla-
nations for this: (i) the MtrCAB–OmcA complex is required
to move electrons out of the cell to keep the wire charged
and/or (ii) MtrC/OmcA are required for conductance along
the length of the wire. At present it is not possible to
distinguish these two possibilities.

Cytochrome-mediated ‘microbe-to-shuttle-to-mineral’
electron transfer

Firm evidence for the importance of electron shuttles in
extracellular electron transfer came from experiments in
which mineral Fe(III) oxide deposited in porous glass
beads could still be reduced by Shewanella (Lies et al.,
2005). Additional experimentation with this model system
revealed that Shewanella could reduce and extract ferrihy-
drite from physically inaccessible intra-grain regions and

precipitate Fe(II) mineral forms on the grain surface proxi-
mate to their areas of colonization (Peretyazhko et al.,
2010). Further corroboration came from studies on the
molecular mechanism by which S. oneidensis adheres to
and respires Fe(III) oxides using surface-associated serine
proteases that function as bacterial adhesins. A mutant in
serine protease SO3800 was impaired in its ability to
adhere to Fe(III) oxides but retained wild-type Fe(III) res-
piratory capability, indicating that S. oneidensis can respire
insoluble Fe(III) oxides at a distance, in addition to via
direct contact (Burns et al., 2010). A recent study using
nanoelectrodes monitored by in situ optical imaging mea-
sured currents that were not correlated with the cell
number on the electrodes, suggesting that electron trans-
fer occurs predominantly by a shuttle-mediated mecha-
nism in this model system (Jiang et al., 2010).

Shewanella oneidensis MR-1 cells have been shown to
secrete water-soluble riboflavin and flavin mononucleotide
(FMN) and these appear to facilitate extracellular electron
transfer to Fe(III) oxides and electrodes (Marsili et al.,
2008; von Canstein et al., 2008; Baron et al., 2009; Cour-
solle et al., 2010). The exact mechanism by which flavins
reduce Fe(III) oxides remains undetermined, but flavin
mediated Fe(III) reduction is compromised in MtrAB and

Fig. 4. A cartoon showing a possible
molecular configuration for an MtrCAB-type
porin–cytochrome complex and extracellular
MtrC–OmcA cytochrome chains. The
structures of the deca-haem cytochromes
MtrC (red) and OmcA (blue) are based on
that of MtrF (Clarke et al., 2011). The
structure of MtrA (lilac) is based on that of two
penta-haem NrfB monomers fused end to end
(Clarke et al., 2007). The degree to which the
multi-haem cytochromes embed into the porin
sheath is not currently known and this cartoon
is therefore purely illustrative of one possible
arrangement.
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MtrC/OmcA mutants, suggesting a role for the porin–
cytochrome complex and the extracellular deca-haem
cytochromes in electron exchange with the flavin. MtrC and
MtrB are also required for reduction of the artificial extra-
cellular electron shuttle, anthraquinone-2,6-disulfonate
(AQDS), which is an analogue of redox-active components
found in humics (Lies et al., 2005). The broad redox poten-
tial operating ranges of the extracellular cytochromes
makes it thermodynamically possible to transfer electrons
directly to both flavins and AQDS, which have midpoint
potentials in the range of -100 to -200 mV (pH 7 versus
SHE) (Fig. 3). It should be noted that most Fe(III) reduction
in soils and sediments occurs with distributed nanoparticu-
late oxides that do not present an oriented or well-defined
surface for microbes to adsorb to. The advantage of diffus-
ible reductants such as flavins is to bypass the physical
restriction of this small oxide particle size as flavins are
excellent and rapid reductants that can function without
complexation.

The structure of MtrF gives tantalizing clues as to how
direct and flavin-mediated electron transfer to minerals
could operate together to sustain electron transfer. The
Greek key b-barrel motif of domains I and III is a common
fold among FMN-binding domains, where the barrel inte-
rior contains hydrophobic residues and the barrel surface
contains predominantly charged residues. This is there-
fore consistent with the electron shuttling model whereby
a flavin could bind transiently to these canonical flavin-
binding domains. Two haem termini (haems 2 and 7) are
within 14 Å of the centre of the nearest b-barrel domain,
which would allow electrons to be rapidly transferred into
flavin shuttles bound to the flanking domains (Fig. 2). It is
notable that, unlike Fe(III) reduction, flavin reduction is a
two-electron reaction and domains I and III may serve to
stabilize a semireduced state until the second electron
passes to bound semiquinone or the flavin may bind close
to two haems (e.g. Fig. 2) to allow for a concerted two-
electron transfer. This will require further investigation, but
it is notable that precedents for multi-haem chains reduc-
ing bound flavin can be identified in another structurally
defined group of Shewanella multi-haem cytochromes,
the Fcc3 tetra-haem flavocytochrome c fumarate
reductases. Here electron input to the flavin takes place in
rapid sequential single-electron transfer steps from the
terminal haem IV of the chain that is in turn very rapidly
re-reduced by the upstream haem III, minimizing the life-
time of the potentially reactive semiquinone (Fig. 2B)
(Taylor et al., 1999; Pessanha et al., 2009).

The MtrF structure appears to explain the observations
that the MtrC family of outer-membrane cytochromes is
required for flavin reduction. The question then is how
flexible is this site for reduction of other soluble mol-
ecules? For example, can it mediate binding and reduc-
tion of AQDS and soluble Fe(III) chelates? Resolution of

this will require further studies, including site-directed
mutagenesis of possible shuttle-binding residues. Elec-
tron shuttles could also function in cytochrome assem-
blies since the predicted inter-cytochrome electron
transfer sites (haems 5 and 10, Fig. 2) from the MtrF
structure are different from the more buried putative elec-
tron exchange sites with electron shuttles (haems 2 and
7). Flavins could consequently shuttle electrons from
cytochrome assemblies associated with extracellular
structures such as pili or EPS component scaffolds.

The relative importance of direct versus mediated elec-
tron transfer to mineral materials may change in different
environments and, in light of the MtrF structure, it seems
likely that the two processes can occur in tandem (Clarke
et al., 2011). The thermodynamic domain in which free
FMN operates is ~ -200 to -100 mV. This is consistent with
an electron shuttling role since a shuttle needs to be
sufficiently oxidizing to extract reductant from the multi-
haem cytochrome, but sufficiently reducing to enable it to
pass on these electrons to an Fe(III) complex or solid
(Fig. 3). Consistent with this model, FMN only partially
oxidizes reduced MtrF, suggesting that electron egress via
domains I and III (Fig. 2) represents low potential branches
of the MtrF haem network with termini tuned for FMN
reduction, while the terminus of the octa-haem chain span-
ning domains II and IV represents a higher potential branch
more tuned to electron transfer to Fe(III) minerals (Clarke
et al., 2011). A multi-mechanism electron transfer model is
attractive for natural environments including marine and
freshwater sediments, soils and subsurface materials
where solid-phase electron acceptors exist as dispersed
nano- and microcrystallites with complex surface mor-
phologies and structures complicating electron transfer by
direct contact. Moreover, these crystallites are often aggre-
gated or reside in physical locations such as grain coatings
or microfractures within lithic fragments with size dimen-
sions that prevent direct contact with the cell envelope. A
soluble, diffusible electron transfer agent or extended
extracellular network of cytochromes, low molecular
weight shuttles and EPS scaffold can bypass these impedi-
ments that challenge a cell surface-tethered protein.

Shewanella porin–cytochrome mediated electron transfer
as a unifying model for outer-membrane
electron transport?

The previous discussion has illustrated how different
mechanisms of microbe-to-mineral electron transfer based
on cytochromes, electron shuttles or nanowires may, in
fact, be subgroups of a common mechanism that is ulti-
mately dependent on electron transport across the outer
membrane via porin–cytochrome complexes (Fig. 1). The
respiratory flexibility of Shewanella species includes the
ability to utilize dimethylsulfoxide (DMSO) as a respiratory
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electron acceptor. In E. coli the active site of the DMSO
reductase, which is a molybdoenzyme, is located in the
periplasmic compartment. However, Shewanella are con-
figured to respire extracellular forms of DMSO that may be
abundant in oceans by localizing the Mo-containing cata-
lytic subunit to the outside of the cell (Gralnick et al., 2006).
The genes encoding the catalytic subunits in Shewanella,
dmsA and dmsB, cluster with genes dmsE and dmsF which
are predicted to encode homologues of MtrA and MtrB.
Thus, it is likely that respiratory DMSO reduction uses a
similar mechanism for moving electrons across the outer
membrane as found in extracellular mineral respiration.
Bioinformatic analysis also suggests that MtrABC homo-
logues are present in some Vibrio species (three out of 30
species we have surveyed).

Alongside Shewanella the best studied iron-respiring
genus is Geobacter, which appears to produce electrically
conducting nanowires (Reguera et al., 2005; 2006), but in
which there are no clear homologues of the MtrC/MtrF/
OmcA family. This is intriguing since Geobacter species
are not known to excrete flavins. Thus, there may be a
correlation between the synthesis of the MtrC deca-haem
family and secretion of flavins by bacteria. Geobacter
does, however, secrete other extracellular cytochromes
and one of these, the hexa-haem OmcS (Qian et al., 2010),
has been reported to be associated with the pilus nanow-
ires. Whether OmcS plays a role in current conduction
along the length of the wire or simply as a contact point for
mineral iron (III) reduction is not clear (Leang et al., 2010).
A recent study has presented evidence for Geobacter pili
being electrically conductive through an intrinsic metallic-
like conductivity mechanism (Malvankar et al., 2011).
There is though active debate in the literature between
advocates of this mechanism and advocates of an electron
super-exchange mechanism involving the redox cofactors
of multi-haem cytochromes (Strycharz-Glaven et al., 2011;
Malvankar et al., 2012; Strycharz-Glaven and Tender,
2012). This debate will be aided if molecular resolution of
the conducting pili and the pili–cytochrome interactions
can be resolved. However, in either mechanism of electri-
cal conduction, the pili will need to be ‘charged’ by elec-
trons generated from intracellular catabolism. It is therefore
notable that there are homologues of mtrA in some Geo-
bacter species that cluster with genes predicted to encode
large b-barrels; for example, genes BK32R6 and BK32R7
from Geobacter sp. M21 share 52% and 68% similarity with
S. oneidensis MtrB and MtrA respectively (Hartshorne
et al., 2009). This raises the possibility that electron trans-
fer through the outer-membrane porin–cytochrome com-
plexes charges the pili.Aporin that appears to be important
for mineral iron respiration in Geobacter sulfurreducens is
OmpJ (Afkar et al., 2005). Other than both being outer-
membrane b-barrel proteins OmpJ and MtrB appear quite
different, with OmpJ predicted to have 16 trans-membrane

strands compared to the 28 strands of MtrB. However, an
ompJ mutation in G. sulfurreducens, like an mtrB mutation
in S. oneidensis, has a detrimental effect on mineral iron
respiration and outer-membrane cytochrome assembly
(Afkar et al., 2005). This is suggestive of a common func-
tion, and so perhaps an example of convergent evolution.

Homologues of MtrA and MtrB (PioA and PioB) are
associated with Fe(II) oxidation in the phototroph
Rhodopseudomonas palustris (Jiao and Newman, 2007)
and Sideroxydans lithotrophicus ES-1 (MtoA and MtoB),
which grows on FeCO3 or FeS at oxic–anoxic interfaces at
circumneutral pH (Liu et al., 2012). In both cases the
bacterial-mediated Fe(II) oxidation occurs extracellularly
and so electrons must be moving into, rather than out of,
the cell, through the outer-membrane cytochrome–porin
complex. Thus, the S. oneidensis MtrAB module appears
to represent a widely used solution to electron transport
across the outer membrane, with functional diversity prob-
ably being achieved by non-conserved regions that confer
specificity for interactions with distinct extracellular
proteins. Questions remain, however, on the structure and
dynamic function of this module. For example, is the posi-
tion of the MtrA component within MtrB modulated to allow
MtrA to extend to different lengths into the periplasm or
the extracellular space in different systems? Could this
modulation be dynamic such that docking of MtrC or
OmcA on to MtrB results in structural changes that allow
MtrA to engage with extracellular cytochrome? These
possibilities will require further experimentation to explore.

The basic model of an outer-membrane b-barrel
sheath housing a redox protein partner could expand
beyond MtrB and its homologues. Genome analyses
reveal porin-type proteins of unknown function in iron-
respiring bacteria that do not have Mtr-type cytochromes,
but in which other water-soluble cytochromes or redox
proteins and outer-membrane porins are implicated in
electron transfer to the extracellular minerals. Thus,
embedding redox proteins into outer-membrane b-barrels
may provide a widespread mechanism for ‘water-soluble’
redox proteins that are predicted to be periplasmic, to
gain access to the extracellular environment in a phylo-
genetically diverse range of bacteria. In this respect it is
important to think outside of the ‘haem box’. The struc-
tures of a number of redox chains associated with the
inner membrane of bacteria that contain insulated ‘wires’
of iron sulphur clusters have emerged; for example, the
NADH dehydrogenase where such a chain of one
electron-transferring centres leads to a two-electron
reduction of flavin (Roessler et al., 2009) (Fig. 2B).
Mature poly-iron sulphur cluster proteins can be exported
by the TAT translocase into the periplasmic compartment
(Gralnick et al., 2006). It is therefore conceivable that
proteins bearing such clusters could also be ‘captured’
by large outer-membrane b-barrel proteins.
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Conclusion

Characterization of the MtrF structure has provided
insights into the function of a key family of extracellular
electron transfer proteins in Shewanella that reveal a
remarkable evolutionary response to the natural complexi-
ties of Fe(III) and Mn(III/IV) minerals in the environment.
Typically, these oxides and phyllosilicates are dispersed
and small in size, exhibit complex morphologies and
surface structures, and are often of limited physical acces-
sibility because of residence in particle aggregates and
coatings, and grain interiors. The MtrF structure is condu-
cive to multi-modal electron transfer through direct contact
with the surface of polyvalent metal oxides, and engage-
ment with water-soluble flavins that may, in their reduced
forms, distribute electron density to the surfaces of physi-
cally inaccessible oxide forms or other extracellular cyto-
chromes. This versatility allows for respiration and electron
disposal in different geochemical environments where the
oxidized forms of polyvalent metals may exist in highly
varied states as a result of lithology, drainage, sediment/
soil age and weathering/biogeochemical processes. Fur-
thermore, the MtrAB porin–cytochrome complex that
enables electron transfer across the outer membrane in
Shewanella may be a common motif that allows phyloge-
netically diverse organisms to engage in electron
exchange with their surrounding environment. The stage is
now set for structural, biochemical, microbiological and
environmental analyses to test the models presented here
and refine our appreciation of microbe-to-mineral electron
transfer at the molecular level.
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