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RESUMO 

 

As dicetonas vicinais, o diacetil e a 2,3-pentanediona, são um sub-resultado da 

biossíntese de valina, leucina e isoleucina por parte da levedura. Estes compostos conferem um 

aroma desagradável à cerveja e por isso a monitorização dos mesmos é imprescindível durante 

a fermentação. 

Uma nova metodologia para a determinação de compostos orgânicos voláteis em 

amostras de fermentação de cerveja por GC-MS foi desenvolvida, após a optimização da 

extração destes compostos por HS-SPME. As condições óptimas consistiram numa extração a 

40ºC durante 20 minutos, através da exposição de uma fibra Car-PDMS num vial de 20 mL, 

contendo 10 mL de amostra e 3,3 g de NaCl. Adicionalmente, desenvolveu-se uma metodologia 

para a determinação de aminoácidos por HPLC-fluorescência. 

As metodologias desenvolvidas apresentam boa linearidade nas gamas de concentração 

em estudo e valores de recuperação entre os 89,88-133,80% (voláteis) e os 77,60-112,39% 

(aminoácidos). A precisão, avaliada em termos de repetibilidade e reprodutibilidade, 

caracteriza-se por desvios inferiores a 10 e 15%, para a determinação dos compostos orgânicos 

voláteis e dos aminoácidos, respectivamente. Os valores de LOD e LOQ obtidos confirmam a alta 

sensibilidade dos métodos desenvolvidos. 

As metodologias acima referidas, bem como a metodologia standard para a 

determinação do FAN, foram aplicadas para monitorizar 21 aminoácidos e 22 compostos 

orgânicos voláteis em três cubas de fermentação lager. Diferentes métodos de conservação 

foram testados e a adição de cloreto de cálcio associada ao armazenamento a -26°C por 2 dias 

foi o tratamento escolhido para evitar a evolução das amostras até à análise das mesmas. 

 Identicamente ao que se verificou em relação às substâncias nitrogenadas, as principais 

variações a nível dos compostos orgânicos voláteis ocorrem também nas primeiras 150 horas 

de fermentação. A análise das amostras em estudo permitiu relacionar a abundância dos 

compostos nitrogenados com as baixas taxas de fermentação observadas, justificando assim a 

formação/redução tardia das dicetonas vicinais. Efectivamente, associou-se o aparecimento de 

um segundo pico de diacetil à exaustão dos aminoácidos do grupo A, da leucina e da isoleucina. 

 

Palavras-chave: Cerveja lager; Fermentação; Compostos orgânicos voláteis; Dicetonas vicinais; 

Aminoácidos.    
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SUMMARY 

 

Vicinal diketones, diacetyl and 2,3-pentanedione, impart unpleasant aromas to beer, 

when their concentrations are higher than their odour threshold limits. The formation of these 

off-flavours is related to valine, leucine and isoleucine biosynthesis. Therefore, vicinal diketones 

as well as amino acids determination is a major concern during beer fermentation.  

A new methodology for the determination of volatile organic compounds in 

fermentation samples by GC-MS, including a design of experiments for compounds extraction 

optimization by HS-SPME, was successfully developed. A 20-minute extraction at 40°C, by 

exposing a Car-PDMS fibre in a 20 mL vial containing 10 mL of sample and 3.3 g of NaCl was 

adopted. A methodology for the determination of amino acids by HPLC-fluorescence, including 

on-line derivatization was also developed. 

The developed methodologies present a good linearity in the concentration ranges in 

study. Recovery mean values ranged from 89.88 to 133.80% and from 77.60 to 112.39%, while 

methods precision, evaluated in terms of repeatability and reproducibility, showed variations 

lower than, respectively, 10% and 15% for volatile organic compounds and amino acids 

determination. Also, LOD and LOQ values confirm the high sensitivity of these methodologies.  

 The methodologies mentioned above and standard FAN methodology were applied to 

monitor 21 amino acids and 22 volatile organic compounds in three batches during the 

fermentation process. Conservation tests were performed and chloride salts addition and 

storage at -26°C for two days was the most suitable treatment for sample preservation. 

Volatile organic compounds evolution during the analysed lager fermentations showed 

that, similarly to nitrogenous compounds, major changes occur in the first 150 hours of 

fermentation. Low free amino nitrogen content may explain low fermentation rates and be the 

cause of delayed vicinal diketones formation/reduction. In addition to group A amino acids 

complete assimilation, leucine and isoleucine exhaustion leads to the occurrence of two diacetyl 

peaks and to increased fermentation time. 

 

Keywords: Lager beer; Fermentation; Volatile organic compounds; Vicinal diketones; Amino 

acids.
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SCOPE AND GOALS 
 

Data concerning beer global production have shown an increasing trend during the last 

decade, keeping beer on the top rank of the most consumed and popular alcoholic beverages. 

Together with consumption and production volume increase, the market demands and 

consumer’s preferences have also undergone changes which call for innovative technologies 

and a more comprehensive beer production knowledge (1). In the last years, scientific 

community together with beer industry have been focusing on the study of the chemical 

processes behind the formation of metabolites during the production process, namely during 

the fermentation phase, which have great impact in beer quality and stability (2, 3).  

For that reason, advanced analytical methods are continuously being developed in order 

to identify and quantify beer compounds formed in each brewing stage, so that producers can 

understand how to eliminate undesirable substances and promote those that contribute to a 

superior quality beer (2). This is of particular importance for the comprehension of beer off-

flavours formation, such as vicinal diketones, which impart a negative impact to beer 

appreciation, with a butter-like aroma (3). 

The present study keeps in line with the previous considerations and looks for the 

development and validation of analytical characterization techniques which allow to monitor 

key metabolites during the fermentation phase, probably the most important phase during the 

production process. The present study is carried out in strict collaboration with a local brewery, 

the Empresa de Cervejas da Madeira (ECM). To be precise, the present study intends to develop, 

optimize and apply a methodology to determine vicinal diketones (VDKs) and other important 

volatile organic compounds (VOCs) produced during beer fermentation. Amino acids 

concentration influence (total and in the individual terms) on vicinal diketones formation will be 

also evaluated. The developed methodologies will be used to characterize different 

fermentation lots, in order to analyse the importance of raw materials, some processes 

parameters, as well as the process variability. In this regard, the production of three different 

beers lots were followed, during 12 days. 

The present work is organized in four parts. This first part aims to established the scope 

and goals of the present study. Part II covers the background on the thesis theme, namely the 

main biochemical reactions involved in beer production. Special attention is devoted to 

metabolites produced by the brewing yeast during fermentation and their impact in the final 

beer perception. The process parameters which can also influence the final beer quality are also 
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presented. Due to the relevance for the present study, Part III is dedicated to vicinal diketones 

review, once the main goal of this work is to understand these metabolites evolution during 

beer fermentation. Part V gathers all the laboratorial methodologies implemented during this 

study and Part VI is dedicated to the presentation of the obtained results and to their discussion. 

Finally, Part VII includes the most important conclusions that result from this study and also adds 

some suggestions concerning improvements in future experiments.
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BACKGROUND 
 

Several centuries ago, right after the end of ice age, human began to plant cereals and 

other cultures in order to obtain food and learning how to preserve these for an extended 

period. Consequently, experiments have been carried out and soon early societies were able to 

germinate, mill and store cereals. Later, the first attempts of cereal fermentation were 

accomplished with the addition of fruits containing natural yeast to the wort and so, with no 

scientific knowledge, primordial beers were made. The dissemination of beer production culture 

and the different brewing preferences from region to region contributed to the diversity of 

modern beer styles, which vary according to malt type, adjuncts, yeast strains, alcohol content 

and taste. Simultaneously, the knowledge about fermentation and brewing related technologies 

also evolved (1). 

During the 18th and 19th centuries, new scientific principles about brewing were 

developed to explain the chemical reactions involved in fermentation, such as the concepts of 

substrate and enzyme and the importance of controlling the temperature of malting and 

brewing processes. Considering the pertinence of these discoveries, new equipment and 

technologies were developed as well and the progress in optics, for example, allowed the study 

of microorganisms in beer production process for the first time. Pasteur, studying the role of 

these organisms in the conversion of sugars in alcohol, the differences between aerobic and 

anaerobic metabolisms and the different yeast strains, gave one of the greatest contributions 

to the science of fermentation (1). 

In the latest years of the 19th century, several institutions were created worldwide and 

soon brewing became an accepted branch of natural sciences. Consequently, the 

industrialization of beer production created the modern market as we know today (1). In the 

21st century, beer is still one of the most popular beverages in the world and is actually the most 

consumed alcoholic beverage (4, 5). Besides that, and although the excessive intake of any 

alcoholic spirit is not recommended, several benefits have been associated to the moderate 

consumption of beer. Scientific studies revealed that many chemical compounds found in beer 

show different biological effects, as a title of example, antioxidant, antiviral, anti-carcinogenic 

and anti-inflammatory activities. Additionally, polyphenols from malt and hops and the lipidic 

constitution of beer can also have a great influence in the coagulation system and may explain 

the decrease of the incidence of cardiovascular diseases (6). 
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In the early 1800’s, Madeira Island (Portugal) began to import malt to produce beer and 

similar beverages and, in 1854, regulations started being applied to small breweries. Later, the 

increased consumption and production resulted in new local beer producers and in 1934, 

Empresa de Cervejas da Madeira (ECM) was founded by merging two pre-existing breweries. As 

the demand increased, new installations and equipment were acquired and nowadays ECM is 

the largest producer and distributor of beverages in Madeira, with more than 140 years of 

industrial experience. Up to 2013, ECM was internationally awarded several times and this 

company’s management system became certified by international standards ISO 9001 and ISO 

14001 (7). 

ECM has been made a continuous effort for upgrading its production techniques and 

has also participated in several collaboratives studies to acquire deeper product knowledge 

which can lead to process improvement.  

In a partnership between ECM and University of Madeira a study has been carried out 

in order to understand more extensively the processes inherent to beer stability during storage 

and their influence on the standard quality parameters and volatile fraction (7). The further data 

analysis study allows to detect statistically meaningful deviation from the desired scenario 

(month 0, fresh sample) after a period of 7 months of ageing in bottle, indicating that changes 

in terms of aromatic profile during this period can be perceived (8). Volatile metabolomics 

patterns of beer raw materials (9), terpenoid metabolomic pattern of hop-essential oil (10) were 

studied and a new methodology for the determination of prenylflavonoids in beers was also 

developed (11). Later, another study was carried out and a new optimized methodology was 

developed to determine two important beer off-flavours, diacetyl and 2,3-pentanedione (12).  

 

INTRODUCTION 
 

Beer is a fermented alcoholic beverage (3-5%, v/v) (5) produced from malt, cereals and 

hop, which are the raw materials used by yeast as a substrate to transform simple sugars in 

alcohol and carbon dioxide, in an aqueous and anaerobic environment (3). Besides the primary 

products of alcoholic fermentation, secondary metabolites are also produced and some of these 

impart a particular flavour to the final beer and have great relevance in beer colloidal and 

organoleptic stability. Contrarily, others induce certain off-flavours formation and contribute to 

beer degradation (4). The deepen understanding of all the raw materials properties, different 
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yeast strains metabolisms, the influence of adjuncts and brewing parameters is the modern 

industrial breweries main concern (2). 

Beer properties depend not only on the type and quantity of raw material used but are 

also significantly different according to all the processes involved in its production (13). 

Consequently and besides of contributing to beer appreciation, when high quality raw materials 

are used and production processes are optimized, beers can also provide a significant source of 

vitamins, proteins, organic acids, minerals and polyphenols to consumers (14). 

 

BEER RAW MATERIALS 
 

Water 
 

All chemical reactions related to beer production occur in an aqueous medium and 

water represents about 90% of the final composition of beer (15). The origin of the water used 

in wort manufacture is an important parameter in brewing because the amount and type of 

dissolved inorganic salts affects all the chemical reactions (5), influence reaction media’s pH 

value and consequently affects hop compounds extraction during wort boiling. A lower water 

pH value increases some enzymes activity and a higher value may contribute to undesirable 

polyphenols extraction from grains, thus affecting beer flavour (15). 

Some of the most important minerals found in the brewing water are the phosphor, 

which allows ATP production, integrates yeast’s phospholipidic membranes and acts as a 

buffering ion, the sulphur, used in amino acid metabolism and potassium and sodium, necessary 

to hydrogen ion bomb activation. Iron and magnesium are two important ions in respiration 

metabolism and in cell multiplication and growth. Magnesium is an important coenzyme in yeast 

fermentation process and finally, calcium is very useful in brewing once it protects α-amylase 

from thermal degradation, contributes to a desirable wort colour and also helps controlling 

yeast flocculation (2). 

At last, zinc is another important coenzyme to yeast metabolism (16) and optimal 

amounts of this ion, specifically when its concentration is up to 0.08 mg/L, increases 

fermentation rates (17). Zinc also affects protein production. However, even if some inorganic 

salts contain these metallic ions in brewing water, usually some of them are added during wort 

production to achieve an optimal yield later in fermentation (2). 
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Malt 
 

Malt is the major raw material used in brewing and is obtained by the germination 

followed by the desiccation of cereal grains. This is the main starch source for yeast metabolism 

during fermentation (5). Barley is the most common cereal used as malt in the brewing industry 

due to its superior starch content and moderate protein, enzymes and nitrogen levels (15). 

Barley husks also contain a relatively high amount of polyphenols comparing to other cereals, 

which impart astringency to beer flavour (5) and its content in amylose and amylopectin is 24% 

and 76%, respectively (15). Different type of malt (Figure 1) can be added to wort manufacture 

to impart special character to final beer. Special malts, which can be, for example, smoked, 

acidified, organic or toasted, contribute from 10 to 25% of total malt and enrich beer colour, 

flavour and stability but base malts englobe almost the total enzymatic capacity (15). 

Malting is a treatment applied to barley grains and is constituted by three important 

steps: steeping, germination and kilning (5). First of all, during steeping, selected cereal grains 

are immersed in water during 3 to 5 days, to increase their moisture content to approximately 

40% (15), which induces germination and inherent chemical reactions, such as enzyme 

production and the degradation of complex sugars and proteins in soluble and smaller molecules 

(5). This process lasts for about 8 days (15).  

 

 

Figure 1: Barley grains with different malting treatments (18) 

 

After this period, grain physiologic changes are blocked when germination is stopped by 

increasing temperature to 60-70°C during a few minutes, which decreases water content to 2-

5%  and stopsthe germination process (15). At this stage, Maillard-type reactions and 

caramelization of sugars caused by heating contribute to beer colour and flavour formation. This 

is an absolutely decisive step in the malting process, once it allows brewers to obtain different 

types of malts, according to kilning temperature and duration (5). 
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Consequently, the evaluated malt parameters by beer producers are barley variety, 

sugar extract yield, nitrogen content, grain size and modification, moisture, colour and enzyme 

capacity (19). At the end of malting, controlled germination was achieved and interrupted, 

enzymes were produced, starch was modified and malt grains are softer and more soluble (19). 

 

Hops 
 

Since ancient times, herbal species have been added to fermented products to enhance 

its durability during storage but, nowadays, hop (Figure 2) is the only specie industrially used in 

the brewing process. Precipitation, temperature, pesticides and other parameters can 

immensely affect hop aromas and beer quality (20). There are about 200 compounds in hop 

essential oils and most of them are volatile substances (15). These are mainly monoterpenes, 

terpenes and sesquiterpenes. Therefore, hop enhances beer flavour and may impart spicy, 

herbal, floral, fruity, citrus and pine aromas to final beer (21). 

Hops contain resins, essential oils, minerals and tannins as well (15) and some of these 

compounds are useful on colloidal and oxidative stability (21). Hop resins impart a characteristic 

and intense bitter flavour to beer and also contributes to microbiological stability of beer. These 

resins can be divided in insoluble α-acids and β-acids that can be isomerized and converted into 

respective iso-α/β-acids, that are dissolved in finished beer (5). Hop resins and isomers also 

showed activity against common beer spoilage microorganisms such as lactic acid bacteria. 

However, some microorganism strains seem to show resistance to these compounds (22). 

 

  

Figure 2: Hops flowers used in beer production (23)  
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Hops are also the most important source of polyphenols found in beer. Besides their 

importance in terms of antioxidant activity (14), they also affect physical stability of beer during 

storage, since some of these polyphenols tend to react with proteins, leading to the formation 

of insoluble complexes. Consequently, these colloidal particles may precipitate and affect the 

beer transparency and thereby reduce the shelf-life of this beverage (24). 

 

Adjuncts 
 

Besides malt, other cereals are used in beer production and malt enzymatic potential is 

usually enough to catabolize additional starch from adjuncts. For this reason, 15 to 20% of the 

cereals used in wort production are raw grains that have not been submitted to the malting 

process, that have a higher carbohydrate content, such as rice, wheat, corn, sorghum and even 

barley (2). These cereals have a lower production cost and add peculiar characteristics to beer 

or attenuate other flavours (15). Adjuncts are processed before being added to wort, so that 

grains become softer and gelatinized (25).  

In alternative to non-malted cereals, other adjuncts may be added during beer 

production like sugar, caramel and syrups. A higher content of adjuncts can affect beer quality 

due to off-flavours formation (15). Consequently, according to the cereals or additives chosen, 

adjuncts and their amount in wort production impart special characteristics to beer and also 

affect beer fermentation and quality (2). 

 

WORT PRODUCTION 
 

Wort is a complex and equilibrated solution that contains fermentable carbohydrates, 

amino acids and minerals and is a source of nutrients for yeast to perform alcoholic 

fermentation. In this solution, yeast can find all beer taste and aroma precursors that will define 

the organoleptic properties of final beer (15). During this process, several enzymes transform 

malt and other cereals grains in fermentable substances and other compounds that yeast can 

metabolize and that are necessary to yeast multiplication and growth. Thus, the main goal of 

wort production is to prepare everything that is needed for the fermentation (2). Wort 

production steps are summarized in Figure 3. 
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Figure 3: Wort production steps in brewing, adapted from Kunze (2) 

 

Mashing 
 

 Prior to wort manufacture, adjuncts and malt are selected, processed and weighted and 

then are separately submitted to a mashing treatment (3). Right after the cereals are crushed, 

warm water is added to malt so that starch from grains can be hydrolysed and gelatinized (7). 

At this stage, several reactions are performed at increasing temperatures, so that insoluble 

starch can be transformed into soluble and fermentable sugars (mainly glucose and maltose) by 

amylolitic enzymes and other simpler sugars are also produced, like branched dextrins (7). At 

each temperature level, different malt enzymes (amylases, phosphatases and proteases) are 

activated (15) and so complex proteins are also transformed in soluble peptides and amino acids 

(5). 

Adjuncts are similarly dissolved in warm water for a long period of time and are treated 

with phosphoric acid and calcium sulphate and chloride, so that a slightly acidic pH value is 

achieved, as usually required to a proper fermentation (2). Controlling the pH level is as 

important as setting the adequate temperature to optimal enzymatic activity in wort 

manufacture (15). Calcium chloride addition will also be indispensable later in fermentation, 

helping lager yeast to form calcium bridges and consequently flocculate, so that yeast can be 

easily removed (2). 

Malting
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• Cereal crushing
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Boiling
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Then, soaked malt and solid adjuncts are combined in one vessel and malt enzymes, 

specifically α and β-amylases, at approximately 65°C, degrade starch from malt and adjuncts in 

simpler sugars (7). This process is known as saccharification (15). Finally, the mixture is 

submitted to a higher temperature, so that enzyme denaturation occurs (2). At the end, the 

mixture is filtered in order to separate the solution were nutrients are dissolved from spent 

grains, through a process called lautering (7). 

 

Boiling 
 

 When wort separation is complete, the wort solution is transferred to a kettle and is 

boiled for 1 to 2 hours (20). At this stage, zinc chloride is added to ensure a good fermentation 

(2) and hop is also added and its resins are isomerized into bitter acids, important to beer 

flavour. Due to high temperature, some of these volatile compounds may evaporate (15). During 

boiling, caramelization and Maillard reaction also occur between reducing sugars and primary 

amines (7), leading to the formation of compounds that are important to beer flavour (26). 

These reactions and other phenomena, such as polyphenols oxidation and wort concentration 

impart a darker colour to wort (15).  

At last, protein coagulation is also provoked by increased temperature (7), which 

prevents beer haze that may be produced by the interaction between proteins and tannins (27), 

some of these prevenient from hops (24). 

 

Wort clarification, cooling and aeration 
 

After boiling, wort is transferred into a decantation vessel where suspense particles are 

removed and the wort becomes clarified (7) and, right after this, it is cooled until it reaches an 

adequate temperature for fermentation, which optimal values differ between bottom and top 

fermenting yeasts (2). Then, before yeast is inoculated, the wort is aerated so that fermentation 

media contains a proper oxygen level, usually from 4 to 14 mg/L, depending on yeast strain (28), 

required for a fast yeast cell multiplication and growth (2), although oxygenation needs to be 

restricted to avoid too vigorous fermentation (28). 

As mentioned before, beer quality and specifications are affected by raw materials (type 

and proportion) used in wort production. Nevertheless, wort production and fermentation 
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parameters are evenly important to define the produced beer type and quality (15). For 

example, when the employed malting and mashing methods lead to an excessive content of 

proteolytic enzymes,  increased ester formation occurs (2), due to the higher availability of yeast 

assimilable nitrogen compounds in beer (28). On the other hand, turbulence in wort production 

tanks increases fatty acid formation and, consequently, inhibits ester formation (2).  

 

FERMENTATION 
 

After the wort is cooled and enriched with oxygen, it is transferred into a fermentation 

vessel and, simultaneously, yeast is inoculated in wort. The fermentation main goal is to produce 

alcohol and carbon dioxide, as fermentable sugars are consumed by the yeast. However, while 

primary fermentation occurs, secondary metabolites are also produced such as esters, alcohol, 

fatty acids, aldehydes and ketones (7). In the fermentation vessel, all the parameters affect yeast 

physiologic and metabolic state and will influence beer final quality. Temperature, pH, pressure, 

reduction-oxidation potential, oxygen level and the type and concentration of nitrogenous 

compounds, sugar and minerals dissolved in wort will affect beer style and quality (2). 

One important consideration to have in mind is that, in fermentation vessels, yeasts are 

not in their preferential state, once the increasing ethanol and carbon dioxide levels are 

prejudicial to them and they need to get adapted to these hostile conditions (2). For this reason, 

a good yeast cell vitality is the key to have a sufficient metabolic activity so that a high quality 

beer can be produced (29). Therefore, studying the influence of fermentation parameters on 

the yeast metabolism is a common concern of modern breweries. The deepen knowledge of 

fermentation derived compounds, of their precursors and respective formation pathways is 

culminant to avoid or reduce off-flavours formation that affect beer stability, quality and 

appreciation (2). 

Together with raw materials, the yeast used in the fermentation process defines the 

beer style. The two major beer styles are the lager and ale beers. 

 

Brewing yeast and beer types 
 

Yeasts are non-photosynthetic unicellular fungi, widely used in food and beverages 

fermentation, that reproduce asexually by budding or fission. Brewer’s yeast belongs to the 

genus Saccharomyces and its main metabolic products, ethanol and carbon dioxide, are 
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produced from glucose and other similar sugars (30). Simultaneously, other chemical reactions 

occur and secondary metabolites are also produced. Some of these substances impart pleasant 

flavours to the beer, while others are considered as off-flavours and negatively affect beer taste 

and aroma (2). 

Yeast cells contain approximately 80% water and carbon is the main element found in 

these cells, followed by oxygen, nitrogen, hydrogen and phosphor. Additionally, 5 to 10% of 

yeast dry weight represents mineral elements. The most abundant macromolecule classes found 

in yeast cells, considering their dry weight, are proteins (40-45%), carbohydrates (30-35%), 

nucleic acids (6-8%) and lipids (4-5%) (17). Yeast also contains vitamins and even spent yeasts 

are often used as a nutritional supplement (31). 

In a general way, beers can be classified as ale and lager, according to the type of yeast 

added to wort, that produce typical and distinct beer flavour profiles (15). These differences 

result from the morphologic and physiologic characteristics of the yeasts and from their 

performance in fermentation. Systematic yeast classification follows parameters like 

fermentation and flocculation behaviour, fermentation performance, yeast propagation 

extension, fermentation by products formation and removal  (2) and attenuation limits (32).  

An ale or top fermenting beer ferments at higher temperatures (14-15°C) for a shorter 

period of time, the active yeast settles on the top of fermentation vessel and, usually, 

Saccharomyces cerevisiae strains are used (2). These specifications lead to a highly fruity beer, 

due to an increased esters formation (7, 15). On the other side, a lager or bottom fermenting 

beer may be obtained by using Saccharomyces uvarum, also known as S. carlsbergensis, which 

ferments at lower temperatures (4-12°C) for a longer period of time and that flocculates at the 

bottom of the fermentation vessel. Bottom fermenting yeast shows a smaller number of 

enzymes (2). Therefore, lager beers are lighter than the previous, once yeasts have a lower 

influence in beer flavour (7). The main differences between top and bottom fermentation are 

illustrated in Figure 4.  

Nowadays, modern breweries acquire pure yeast cultures and propagate them at 

brewery facilities in sterile wort (25). However, attention should be given to the fact that malt, 

adjuncts, industrial surfaces and equipment can be sources of wild yeast strains contamination, 

which may compete for nutrients with the brewing yeast and impart undesirable unpleasant 

flavours and turbidity to the beer (2). Also, bacteria like Lactobacillus and Pediococcus species 

and other microorganisms also contribute to malolactic fermentation and other chemical 

reactions, which affect beer quality (33).  
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Figure 4: Bottom and top fermentation characteristics, adapted from Kunze (2) 

 

In lager fermentation systems, vertical cylindroconical fermenters are used and the 

yeast is pitched between 7 and 8°C, and after a couple of days the temperature is increased to 

10 to 11°C. Then, 3 to 4 days later, at peak fermentation, temperature is allowed to ramp up in 

order to facilitate a rapid reduction of diacetyl (32). 

 

Yeast growth and multiplication 
 

When yeasts are transferred into fermentation vessels, six different growth phases can 

be distinguished. Firstly, during lag phase and depending on yeast strain, age and conditions, 

yeast metabolism is activated and this stage is over with the first cellular division (2). This process 

can be divided in bud initiation, DNA synthesis, nuclear division and, at last, cell separation (30). 

Next, the culture experiences an acceleration phase, where continuous and increased cell 

multiplication have place, until exponential or logarithmic phase is achieved. At this moment, 

growth rate is maximal and constant, generation time is minimal and yeast shows the highest 

vitality (2).  

Consequently, due to the low availability of nutrients and increased growth inhibitor 

metabolic products, a deceleration phase occurs and growth rate slows down gradually until a 

stationary stage is reached. At this moment, the living and dead cells number is similar and so 

there is a constant yeast cells number. Finally, yeast population is significantly reduced when 

the cell death rate increases, as a consequence of nutrient sources being almost fully drained 

and once ethanol and carbon dioxide contents increase, which starts inducing cell autolysis. This 

stage is known as decline phase. At this point, yeast should be removed in order to avoid intrinsic 

metabolites release into beer, which could cause major damages in beer quality (2). 

Bottom fermentation
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• Lower fermentation temperature
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fermentation vessels

Top fermentation
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Effectively, the duration and intensity of these stages is highly influenced by the 

substrate, water and oxygen content, by solution temperature and acidity and also by the 

physiologic state of the yeast (2). Yeast pitching, defined as the amount of inoculated brewing 

yeast, is another important parameter and must be adapted according to yeast viability, vitality, 

strain, flocculation capacity and according to the desired beer characteristics. For example, 

highly flocculent yeast strains tend to settle prematurely and additional yeast may need to be 

added to the fermenting wort. Wort composition, gravity, aeration and fermentation 

temperature also influence the pitching rate. (32). 

In beer industry, yeasts can be reused several times, depending on strain, wort gravity 

and other factors (34). However, re-pitching can originate microbiological contamination and 

yeast deterioration can also occur (35). Repeated re-pitching causes subtle changes in yeast 

flocculation and a decline in its viability and vitality (31). Thus, yeast re-pitching must be limited 

in order to avoid problems during fermentation (35). 

Free amino nitrogen (FAN) from wort is a group of low-molecular-weighted nitrogen 

compounds (36) that include amino acids, small peptides and ammonium ions (37), resultant 

from malt protein proteolysis during malting and mashing. When adapting to the new 

environment, yeasts use the available nitrogen to produce cellular proteins and other 

components. FAN is a good indicator of an appropriate cell growth and an efficient fermentation 

performance. Similarly to sugars, amino acids are absorbed by the brewing yeast by a 

preferential order (38). 

Amino acids from group A are the first being totally consumed by yeasts, while amino 

acids from group B are gradually consumed at a slower rate and usually are not completely 

absorbed. Then, amino acids from group C are assimilated even more slowly and incompletely, 

after groups A and B amino acids were exhausted. A fourth group englobes the un-preferred 

amino acids, which are almost never consumed (39). Valine, leucine and isoleucine are 

important compounds related to some beer off-flavours formation (3). This will be addressed in 

part II of the present thesis. 

 

Yeast metabolism 
 

Yeasts are able to use two different processes to produce energy: respiration and 

fermentation. Even if respiration is energetically more efficient under aerobic conditions, 

surprisingly, some yeast species use both respiration and fermentation in order to obtain energy 
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in environments with sufficiently high glucose and oxygen levels. This phenomenon is known as 

Crabtree effect (40). Most of brewing yeasts belonging to the Saccharomyces genus are 

Crabtree-positive. Energy obtained during fermentation in anaerobic environments by yeasts is 

used to produce cellular substances, to absorb and assimilate surrounding compounds, to break 

and excrete unneeded or hazardous molecules and to transport substances inside the cells (2).  

During alcoholic fermentation, glycolysis occurs and, from each glucose molecule, two 

ethanol and two carbon dioxide molecules are produced by yeasts and energy is also released 

during this process. This is the basic principle of beer fermentation chemistry. Other fermentable 

sugars can also be used as substrate but glucose is preferentially assimilated by the brewing 

yeast (15). Carbon dioxide concentration in beer is typically around 5 g/L for lager beers, but in 

certain specific beer styles can be as high as 10 g/L. The ethanol content of beer depends on the 

amount of fermentable sugars available in wort and usually oscillates between 3 to 5% (v/v) (5). 

The detailed metabolic pathway of glycolysis and alcoholic fermentation will be described below 

and is illustrated in Figure 5. 

 

 

Figure 5: Chemical transformations that occur during glycolysis (blue text boxes) and alcoholic fermentation (red text 
boxes), adapted from Kunze (2) 
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Firstly, during glycolysis, each glucose molecule is phosphorylated and glucose-6-

phosphate is produced and transformed into fructose-6-phosphate, which is also 

phosphorylated, originating fructose-1,6-biphosphate. This molecule ring is then split into two 

triose sugars that suffer several chemical rearrangements until two pyruvate molecules are 

formed. Subsequently, alcoholic fermentation begins and pyruvate decarboxylase transforms 

each pyruvate molecule into one carbon dioxide molecule and one acetaldehyde molecule and 

this last one is then converted to ethanol by alcohol dehydrogenase (2). 

During fermentation, yeasts are constantly absorbing and releasing substances. Some 

compounds are transported passively through the phospholipidic membrane, while others are 

subjected to active transportation, where specific transport proteins intervene. Nitrogen 

compounds, for example, are absorbed by yeast to produce cellular substances, phosphate ions 

become part of indispensable nucleotides and constitute intern and extern phospholipidic cell 

membranes, while carbohydrates are stored as energy reserves. Oxygen molecules are useful in 

fatty acids and sterols synthesis, which also integrate cell membranes (2). 

Minerals, like zinc, and other vestigial elements are also important to yeast and to 

fermentation (2). Zinc plays an important role in the function of many enzymes, including alcohol 

dehydrogenase (17). Some of these compounds can be found in wort, while others are produced 

by yeast from other complex molecules, but insufficient levels of any of them may cause serious 

problems during fermentation (2). 

As a result of these compounds intake and transformation, important beer flavours are 

formed. Fusel alcohols are by-products of the Ehrlich mechanism and are produced in parallel 

with protein metabolism. These compounds result from amino acids, after suffering 

deamination and subsequent decarboxylation and reduction. When excreted from the cell, 

these compounds impart pleasant aromas to beer. Lipid metabolism is a secondary process, 

which is only activated when nitrogen sources used in protein metabolism are exhausted. This 

is an oxygen dependent mechanism that affects yeasts cellular membrane malleability. Lipids 

are negligible components in beer but can influence its organoleptic and physicochemical 

properties (41). 

 

Secondary metabolites formation 
 

The concentration of fermentation by-products in beer varies according to yeast cell 

growth patterns, that depend on wort composition and fermentation extension (2). Pitched 
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yeast strain and condition as well as pitching rate are key pre-requisites to obtain high quality 

fermentation products. Aeration, by rousing or stirring, the size and geometry of fermentation 

vessels, wort pH and fermentation temperature and pressure will also influence the compounds 

produced during fermentation. Depending on yeast strain, the order of importance of these 

parameters may be different (20). 

The most important families of secondary metabolites produced during beer 

fermentation are the following: organic acids, higher alcohols, esters, aldehydes, sulphur 

compounds and vicinal diketones (2, 5, 15). These and other compounds concentrations are 

affected by different parameters that will be presented in the following paragraphs. 

 Higher alcohols formation is related to nitrogen compounds assimilation, by the 

deamination, decarboxylation and reduction of wort amino acids (15) and they may also be 

formed through carbohydrates metabolism (28). About 85% of beer higher alcohols are 

produced from three amino acids: L-leucine, L-isoleucine and L-valine (15). Most of these 

compounds are formed during primary fermentation and their formation is slightly increased at 

lager phase. Increased temperatures, higher wort extracts, intense aeration and lower amino 

acids levels increase higher alcohols formation, while lower temperatures, higher pitching rates 

and pressure lead to the opposite scenario (2).  

Of about 40 alcohols found in beer, n-propanol (13), 2-methylpropanol, 2 and 3-

methylbutanol and 2-phenylethanol are the most important alcohols that contribute to a 

positive beer flavour (5). These compounds contribute to a warming and alcoholic flavour (13). 

Concentrations higher than 100 mg/L negatively affect beer taste and acceptation. However, 

these compounds are characteristic of a finished beer (2). Higher alcohols are also the direct 

precursors of beer esters (5), through the reaction with acylated enzymes (13). 

During fermentation, yeasts assimilate nitrogen compounds such as wort amino acids 

and, after removing amine groups in protein synthesis, the remaining parts are released into 

beer as organic acids (2). These compounds are responsible for lowering beer pH (15) and, 

consequently, impart astringency to beer (5) and also contribute to beer microbiological stability 

(15). Vigorous fermentations lead to a higher level of organic acids (5). Some of the most 

important organic acids in beer are acetic acid, formic acid, succinic acid and malic acid (15). 

Unsaturated short-chain fatty acids, essentially from C6 to C10, are also produced during 

beer fermentation through the breakdown of longer-chain ones. They impart unpleasant 

flavours to beer and are also responsible for the inhibition of beer foam formation (17). 

Unsaturated fatty acid synthesis is promoted by oxygen and is associated with the inhibition of 
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ester formation (17). Usually, in finished beers, octanoic acid is the most abundant one, followed 

by hexanoic and decanoic (42-44) and total fatty acid content ranges from 15 to 30 mg/L (45). 

Sometimes, additive fatty acids flavour results in a perceptible rancid or goaty off-flavour (43). 

Esters are an important family of compounds in beer, resulting from chemical 

rearrangements between alcohols and organic acids (15) and are the most important aromas 

produced during fermentation (2). These compounds impart fruity (5) and floral (15) notes to 

beer aroma and ethyl acetate, isoamyl acetate and isobutyl acetate are the most important 

ones, once they are usually above their flavour threshold in this beverage (5). These compounds 

are produced by alcohols and fatty acids esterification and a typical beer has an ester content of 

10 to 30 mg/L. Esters formation is affected by almost all technological parameters. Higher 

aeration, wort concentration and temperature induces ester production, while pressure and 

insufficient aeration and wort concentration inhibits this process (2). 

Aldehydes are carbonyl compounds derived from alcohols oxidation, malt fatty acids 

and lipids (5) or from organic acids decarboxylation (15). Acetaldehyde is the most important 

aldehyde found in beer and is excreted into beer at the beginning of fermentation and it is a 

normal fermentation intermediate compound. As fermentation goes on, acetaldehyde 

concentration decreases (2), either by reduction to ethanol or oxidation to acetate. When 

acetaldehyde is above its threshold limit, it imparts a green apple aroma to beer (5, 15) which is 

not desirable in beer and for this reason its concentration must be controlled during 

fermentation (15).  Aldehydes are much more flavour-active than their corresponding alcohols 

(13). Acetaldehyde formation is induced by high fermentation temperatures, pitching rates, 

pressure, low aeration and by wort microbiological contamination (15). 

Sulphur compounds have a great impact in beer volatile profile, imparting important 

notes to the overall beer appreciation at low concentrations. However, when these are found 

above their threshold limits, they negatively affect beer flavour and quality (5). Beer sulphur 

compounds include hydrogen sulphide, mercaptans, sulphur dioxide and dimethyl sulphide. 

Once these compounds have high threshold limits and very unpleasant aroma, their chemical 

and biochemical removal is an important step in beer production. Sulphur compounds may also 

be result of beer microbiological contamination (2). 

Vinyl guaiacol, also known as 2-methoxy-4-vinylphenol, is produced through the 

decarboxylation of ferulic acid (46), either during barley roasting, wort boiling or fermentation 

(47). It presents a low odour threshold and a phenolic or medicinal aroma (46) and besides being 

appreciated in some ale beers, vinyl guaiacol aroma is often considered as an undesirable flavour 
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in lager beers (48). For that reason, the comprehension of its formation and possible strategies 

for controlling vinyl guaiacol during fermentation are important subjects in beer industry. Also, 

some yeasts are genetically manipulated so they cannot assimilate ferulic acid and in that case, 

vinyl guaiacol formation is strictly related to the presence of microbiologic contamination (49). 

 Vicinal diketones, diacetyl (2,3-butanedione) and 2,3-pentanedione are other 

problematic compounds that can be found in beer. They impart an unpleasant butter-like aroma 

to this beverage and are produced extracellularly by the spontaneous oxidative decarboxylation 

of α-acetohydroxy-acids. Amino acids such as valine, leucine and isoleucine are important 

compounds in vicinal diketones synthesis (50). These compounds will be carefully discussed in 

the next chapter. 

 

Yeast flocculation and removal 
 

Flocculation is a reversible process that involves yeast cells aggregation into large 

masses when sugars become less abundant and yeasts either sediment (bottom-fermenting) or 

remains suspended (top-fermenting) in the medium, forming a thick layer (17, 31). There are 

evidences that calcium ions and yeast membrane proteins interact to form salt-bridges between 

yeast cells, allowing them to stick together (20). This phenomena is very important to beer 

producers once it helps yeast removal at the end of primary fermentation (35). Flocculation 

must happen at the right stage of fermentation to avoid either insufficient yeast for repitching 

and a green beer with high residual yeast levels or a premature yeast mass that does not leave 

sufficient suspended yeast cells, which are required for beer maturation and inherent 

biochemical reactions (17). 

 

MATURATION AND FINAL STEPS 
 

Maturation or lagering starts right after most of the yeasts have been removed from 

beer. During this process, beer rests at very low temperatures for several weeks, in a highly 

carbonated atmosphere (20). Low temperatures are responsible for the precipitation of 

insoluble complexes, like those formed between polyphenols and proteins which, if not 

removed, may cause beer haze (15, 17). On the other side, residual yeast cells start a secondary 

fermentation by reducing some beer off-flavours, like vicinal diketones, into less flavour-active 

compounds (20). Diacetyl removal is one of the main purposes of beer maturation (51). 
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Simultaneously, beer flavour attenuation occurs once carbon dioxide, recently produced by the 

remaining yeast, promotes volatile organic compounds evaporation (45). 

When maturation is achieved, beer may suffer some treatments such as the addition of 

specific flavours and beer physical properties stabilizers (13). Then, beer filtration process 

begins, by using diatomaceous earth to remove precipitated compounds and all the remaining 

yeasts. Finally, beer must be pasteurized to insure its  microbiological stability (15).  
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INTRODUCTION 
 

Vicinal diketones, diacetyl and 2,3-pentanedione, are spontaneously produced as 

intermediates of amino acids synthesis by yeast during beer fermentation (50). These 

compounds impart an unpleasant buttery aroma (2) to beer even when present in low 

concentrations, due to their low threshold limit (52). Therefore, vicinal diketones affect beer 

organoleptic characteristics and their formation must be controlled during fermentation in 

order to guarantee final beer quality (17). Diacetyl and 2,3-pentanedione can also appear in beer 

as a consequence of the presence of some bacteria (3). However, after vicinal diketones 

formation, brewing yeasts are able to reduce these compounds into less flavour-active 

compounds that affect beer quality in less extent (52). 

The knowledge of vicinal diketones formation pathways is a major concern for the 

brewing industry, and its main goal is to reduce these compounds during fermentation and 

maturation processes. In order to achieve that, yeast metabolism and consequently 

fermentation parameters influence on it must be deeply understood (2). It is known that yeast 

strain (17), vitality (29),  wort composition, temperature and pH are some of the most important 

factors in vicinal diketones formation (50). Additionally to controlling these parameters, some 

brewers also implement other methods, such as enzymatic digestion and the use of immobilized 

yeasts (50, 53, 54). 

 

General description 
 

 Diacetyl (2,3-butanedione) and 2,3-pentanedione are natural by-products of alcoholic 

fermentation. These two compounds are vicinal diketones (55), containing two ketone groups 

connected to adjacent carbon atoms (56) and impart either pleasant or undesirable flavours, 

depending on the beverage. VDKs are undesirable in lager beers, once this type of beverage 

requires a clean flavour profile (51), but sometimes are appreciated in some ale beers (57). 

Diacetyl and 2,3-pentanedione threshold limits are substantially different and for that reason 

their impact in beer flavour also differs (58). 

 Diacetyl, also known as 2,3-butanedione, is a simple α-dicarbonyl compound, a yellow 

liquid at room temperature,  that is soluble in most organic solvents (59). This polar and 

hydrophobic diketone has a relatively simple structure of CH3-CO-CO-CH3 (60), showed in Figure 

6. In beers, excessive diacetyl concentrations  are considered as one of the most critical sensory 

defects (61). Diacetyl imparts a butterscotch (62) or buttery (56) flavour to beer and its threshold 
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limit is 0.10-0.15 mg/L, approximately 10 times higher than in 2,3-pentanedione (58). By default, 

modern breweries need to reduce diacetyl to below 100 µg/L, so that undesirable flavours are 

not detected in beers by consumers (62).  

 

Figure 6: Diacetyl chemical structure (63) 

 

 Another ketone similar to diacetyl, 2,3-pentanedione (Figure 7), can also be produced 

during the brewing process (52). This is an intensively yellow compound (64), with the structure 

CH3-CH2-CO-CO-CH3 (3), that gives  beer a honey-like (31) or buttery flavour (65) and its 

threshold limit is 1 mg/L (66). Due to this value, much higher than in diacetyl, 2,3-pentanedione 

has a lower influence in beer flavour (62). 

 

Figure 7: 2,3-pentanedione chemical structure (67) 

 

Vicinal diketones can be naturally found in wine, brandy, balsamic vinegar, roasted 

coffee, honey, ensilage and in many other fermented foods (60). Diacetyl is also the principal 

flavour and colourant found in butter and therefore is added to margarines to improve their 

organoleptic properties (64). This compound is also used as a flavouring agent in the production 

of coffee, flour, chocolate, cooking oils, popcorn, other snack foods, dairy products and baked 

goods, in order to impart a buttery aroma and taste (68). Diacetyl is also found in cigarettes 

smoke (69). On the other hand, 2,3-pentanedione is used as an artificial flavour in alcoholic and 

non-alcoholic beverages (64) and, sometimes, as a substitute for diacetyl (68). 

 

Toxicology 
 

For centuries, diacetyl exposure to humans through fermented foods, has been 

generally recognized as safe by the Food and Drug Administration (60).  In 1979, researchers of 
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the Department of Nutritional Sciences in California showed that diacetyl exhibits a dose-related 

mutagenicity in Salmonella typhimurium (70). Later, however, concerns have been raised that 

the inhalation of diacetyl vapours may be related to respiratory disorders in factory workers that 

were daily exposed to this compound (71). Consequently, substitute compounds with a similar 

chemical structures to diacetyl, such as 2,3-pentanedione, were also targets of investigation 

(72). 

In 2000, a group of eight workers from a microwave popcorn plant in Missouri showed 

moderate to severe respiratory airways obstruction (71). The same injuries were registered in 

long-term employees in similar facilities in Illinois, Ohio and Montana (60). After a careful 

medical examination, high-resolution computer tomographies from patients confirmed a 

thickening of their bronchial walls (71). Investigations were carried out in the factory and 

revealed increasing rates and the prevalence of airway obstruction related with the increased 

exposure to diacetyl (72).  

After analysing numerous microwave popcorns and flavouring production facilities, the 

National Institute for Occupational Safety and Health (NIOSH) concluded that diacetyl was the 

cause of these disorders and that workers were suffering from a rare disease, resembling 

bronchiolitis obliterans (68). Since that moment, this pathology became vulgarly known as 

popcorn worker’s lung disease (73). Exposure to concentrations as low as 0.02 mg/L showed to 

affect workers from 5 different production plants (74). 

Several experimental studies reported that the inhalation of diacetyl vapours cause 

dose-dependent irritations in the respiratory tract and necrosis of airways epithelial cells in rats 

and mice (59, 71, 72). Studies were also performed in human cultured epithelial cells exposed 

to diacetyl (75) and sensory irritation was estimated to occur above 20μg/g (59). As mentioned 

before, 2,3-pentanedione is used as a flavouring substitute for diacetyl. Toxicological studies 

showed that the exposure to this compound causes damages to epithelial cells, similar to those 

that were caused by diacetyl (76) and that a vascular endothelial growth factor may also be 

affected (72).  

Following these findings, NIOSH determined the exposure-response relationship for 

diacetyl and some limits were stablished. NIOSH suggests a exposure to diacetyl below 5 parts 

per billion as a time-weighted average during a 40-hour work week and a short-term exposure 

of 25 parts per billion for a 15-minute time period. Also, for 2,3-pentanedione, NIOSH 

recommends an occupational exposure comparable to the one that were recommended for 

diacetyl and a short-term exposure limit of 31 parts per billion during a 15-minute period. The 
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use of personal protective equipment and engineering control should be adopted as well in 

order to control workplace exposures (76). 

Other experimental studies showed that diacetyl can possibly mediate long-term 

neurological toxicity (77) and that adducts between diacetyl and DNA nucleobases cause its 

ternary structure disruption, which leads to cellular death (78). Additional experiments have 

been carried out and, fortunately, it was reported that dietary exposure to diacetyl it is not 

toxicologically significant and does not represents a risk to consumers, even if they are exposed 

to abnormal high concentrations of this substance. Therefore, lung disease in microwave 

popcorn workers is not related to diacetyl levels found in food and beverages but, instead, is 

correlated to the exposure of this compound in food production facilities (60). 

 

CHEMICAL TRANSFORMATIONS 
 

Diacetyl and 2,3-pentanedione are spontaneously produced by  non-enzymatic 

oxidative decarboxylation of α-acetohydroxy acids, intermediates in the biosynthesis of 

particular amino acids (51). Later in fermentation and during maturation, the brewing yeast is 

able to reduce these compounds into molecules with a higher flavour threshold (52), that have 

lower impact in beer flavour (58). These mechanisms, involving vicinal diketones formation and 

reduction, need to be deeply understood by beer producers so that these off-flavours do not 

affect beer quality and appreciation (17). Detailed formation and reduction mechanisms of VDKs 

will be carefully studied in this section. 

 

Formation 
 

 Brewing yeasts are the indirect producers of diacetyl and 2,3-pentanedione in beer, 

once these compounds are synthetized from excreted compounds resultant from yeasts 

metabolism (79). Additionally, when considering diacetyl, other mechanisms may also lead to 

its formation, such as by the chemical transformation of sugars, lipids and through the 

combination of the degradation products of these molecules. Maillard reaction (51) and 

bacterial presence, specially Pediococcus species, are other probable causes of diacetyl 

formation (57). Effectively, the mechanism explained below regarding vicinal diketones 

synthesis only approaches these compounds formation, after their precursors are excreted by 

the brewing yeast. 
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 Concerning beer, diacetyl and 2,3-pentanedione are by-products of amino acids 

synthesis, through the spontaneous and non-enzymatic oxidative decarboxylation by metal ions 

or dissolved oxygen (57) of α-acetohydroxy acids, excreted by yeasts during fermentation (79). 

These compounds are intermediates resultant from amino acids biosynthesis in the brewing 

yeast and are excreted before turning into vicinal diketones. Their formation rate is influenced 

by temperature, pH, oxygen content and metal ions composition (66). Acetohydroxy acids 

concentration in beer depends on yeast strain and is enhanced by rapid yeast growth (17). Non-

oxidative decarboxylation of α-acetolactate can also occur, resulting in the formation of acetoin, 

a less active flavour when compared with diacetyl.  

 Diacetyl is produced from α-acetolactate, as a by-product of valine and leucine synthesis 

and 2,3-pentanedione derives from α-acetohydroxybutyrate (Figure 8), an intermediate of 

isoleucine formation pathway (79). These α-acetohydroxy acids are produced from pyruvate and 

α-acetobutyrate, respectively (3) and their excretion is not yet fully understood, although it 

seems to be related with yeast protection against carbonyl stress (50). Conversion of α-

acetolactate into diacetyl and the equivalent transformation of α-acetohydroxybutyrate into 

2,3-pentanedione occur extracellularly and seem to be slow chemical reactions (62). This 

transformation is considered as a rate-limiting step in vicinal diketones formation (80).  

One of the most important factors affecting vicinal diketones formation is the FAN 

content present in the wort and, as mentioned before, some amino acids formation pathways 

are, inclusively, directly related to diacetyl and 2,3-pentanedione synthesis (3). During 

fermentation, amino acids uptake by yeast seems to follow a particular absorption priority, 

according to four distinct groups (65). Group B includes leucine, isoleucine and valine and these 

amino acids are usually transported into yeast cells 12 to 24 hours after the beginning of 

fermentation. These compounds seem to be produced by yeasts, while amino acids from group 

A are being consumed (3).  

Therefore, the regulation of these amino acids and consequently of vicinal diketones 

precursors is intimately related to enzyme activity and synthesis (80). For example, when valine 

uptake is sufficient in yeast cells, lower diacetyl levels are observed due to the feedback 

inhibition in valine biosynthesis pathway. Similarly, an increased uptake of isoleucine results into 

reduced levels of 2,3-pentanedione (56). Whether a higher FAN content in wort may be 

translated in a higher abundance of group A amino acids, group B amino acids do not need to 

be produced and α-acetohydroxy acids can be excreted to wort, resulting in intensified vicinal 

diketones formation (3). 
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Figure 8: Metabolic pathway of vicinal diketones formation and reduction in the brewing yeast, adapted from Krogerus 
and Gibson (50) 

 

 

Reduction 
 

 Contrarily to vicinal diketones formation, which occurs extracellularly, the brewing yeast 

is able to actively reduce these compounds into molecules with a lower impact in beer flavour. 

This process starts in beer fermentation but is completed later during the maturation process 

(51). Therefore, the VDKs produced in wort are reabsorbed by yeasts and then are enzymatically 

reduced (3) into molecules with a higher flavour threshold (51). In the case of diacetyl, this 

compound is firstly reduced to acetoin by diacetyl reductase, which is further reduced to 2,3-

butanediol by alcohol dehydrogenase (62). Concerning 2,3-pentanedione, a similar process to 

the previous also occurs and this compound is also enzymatically reduced to 3-hydroxy-2-

pentanone in a first step and then to 2,3-pentanediol (50).  
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FERMENTATION MANAGEMENT AND VICINAL DIKETONES IN BREWING INDUSTRY 
 

Vicinal diketones are a major concern to beer industry and controlling these compounds 

reduction, efficiently and reproducibly,  is one of the most important steps during fermentation 

and maturation (15). The first parameter that needs to be fulfilled in order to a complete 

reduction of vicinal diketones is the physiological state of the yeast (29) and so, selecting an 

appropriate yeast strain (17), with adequate viability and vitality (29), so that active yeasts can 

reduce these compounds (17). Vicinal diketones can be controlled as well through the regulation 

of fermentation conditions, wort composition and yeast improvement and modification. 

Minimizing oxygen sources and the addition of selected amino acids in wort are effective 

measures in VDKs reduction (79). 

The final concentration of diacetyl is conditioned by the level of α-acetolactate and the 

stage when it is excreted (3, 50, 61). Fermentation temperature influences yeast growth (62) 

and consequently fermentation rates. Thus, as this temperature decreases, although maximum 

diacetyl levels are lower, diacetyl formation and reduction is delayed and fermentation or 

maturation period need to be extended (3, 39). On the other hand, worts with high levels of FAN 

are intimately related to high fermentation rates and, although VDKs formation is enhanced, 

their reduction also occurs more efficiently and one diacetyl peak is observed. Therefore, if low 

levels of FAN are available, when group A and B amino acids depletion occurs, diacetyl synthesis 

is induced once again and fermentation shows the occurrence of two diacetyl peaks (3, 61, 81, 

82). Specifically, the increase of diacetyl in the fermenting wort is caused by valine depletion 

(82). 

An increased temperature at the end of fermentation process (diacetyl rest), adding a 

small amount of fresh wort with healthy yeasts (Krausening), the use of immobilized yeasts and 

the addition of reductases are some of the alternatives to achieve a sufficient vicinal diketones 

reduction (55). Increased contact time with yeast favours diacetyl reduction but is an inviable 

method, once it immensely increases production time. Other factors such as changing pH, wort 

content, temperature and, as mentioned above, the use of immobilized yeasts or enzymes seem 

to be either too expensive processes or tend to affect beer organoleptic characteristics. Even if 

FAN content  is optimized, other parameters can induce increased production of esters and 

superior alcohols (50), which is usually undesirable in lager beers (62).   

One promising method of decreasing diacetyl formation during fermentation is through 

the control of the valine content of the wort (51). Authors report that modifying other branched-
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chain amino acids concentrations in wort can also result in decreased diacetyl levels and faster 

beer production periods, without affecting fermentation performance (37, 51). Instead of using 

proteinases during wort production (83) or genetic modified yeast strains in fermentation (51), 

altering mashing conditions can also result in positive changes in FAN content, which is also 

helpful on diacetyl control. Additionally, increasing yeast pitching rate, wort initial oxygen 

content and temperature may also accelerate VDKs formation and, therefore, their reduction 

will be positively affected as well. Another important aspect to have in mind is to avoid bacterial 

contamination, specially of diacetyl producing species (3).  

 



 
 

 

 

 

 

  

 

 

 

 

 

 

PART V: Methodologies 
  



 
 

  



Vicinal Diketones Monitoring During Lager Beer Fermentation: The Importance of Nitrogenous Compounds 

 

57 
 

METHODOLOGIES REVISION 
 

EBC routine methods 

According to standard reference methods defined by the European Brewery Convention 

(EBC), there are several well documented procedures that are indispensable for controlling beer 

fermentation. The fermenting beer temperature and density are important parameters, once 

these allow brewers to follow the fermentation evolution by determining the extension of 

carbohydrates consume and the amount of ethanol produced by the brewing yeast (2).  

 

Free amino nitrogen determination 

The determination of free amino nitrogen (FAN)  is a reliable way of following yeast cell 

growth and fermentation performance (38). Relatively to the measurement of FAN in wort and 

beer, the EBC recommends a ninhydrin method based in the spectrophotometric measurement 

of sample colour at 570 nm. Ninhydrin acts as an oxidizing agent, causing the oxidative 

decarboxylation of α-amino acids which, consequently, causes the loss of a NH3 group and the 

formation of an aldehyde with less one carbon atom than the original amino acid. 

Simultaneously, fructose acts as a reducing agent and then, reduced ninhydrin molecules react 

with the unreduced ones, forming a blue complex. Potassium iodate from a diluting solution 

keeps the ninhydrin oxidized, avoiding that further colour reaction occurs (84). This method 

determines not only amino acids but also ammonia and terminal α-amino nitrogen groups of 

peptides and proteins (85).  

 

Amino acids determination in beer 

For years, amino acids in beer have been determined by methods based in cation-

exchange chromatography and in a subsequence derivatization step using ninhydrin, which 

allows detecting amino acid derivatives in the visible region. However, due to these methods 

limitations, methods based in reversed-phase high performance liquid chromatographic 

columns with pre-derivatization systems have been developed (86). Ion exchange and ligand 

exchange chromatography were also tested by other authors (87).  

Recently, automated pre-column derivatization and on-line reversed-phase LC 

separation with MS detection has been used for determining amino acids in the same matrix 
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and results showed good reproducibility of the derivatization process with a commercial amino 

acid analysis reagent (88). Ortho-phthaldialdehyde combined with 2-mercaptoethanol (MCE) is 

one of the most commonly used derivatization agent when HPLC reverse-phase (RP) column 

systems are chosen. This reagent mixture reacts with primary amino acids, forming substituted 

isoindole products, which are highly fluorescent (89). Additionally, carboxymethylation by using 

iodoacetic acid (IDA) can also be used to detection cysteine derivatives by fluorescence (90). 

During the last decade, amino acids have been determined by HPLC in combination with 

a pre- or post-column derivatization, using fluorescent derivatization reagents such as OPA, 6-

aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) and other compounds that induce UV-

visible absorption, like ninhydrin or dansyl chloride (91). Currently, RP-HPLC systems and pre-

column derivatization with OPA/2-mercaptoethanol are preferentially chosen for amino acid 

determination in various matrixes (92). In Table 1, some of the most recent methods and the 

analytical parameters used for amino acids determination in beers and other matrixes are 

summed up. The methodology presented later in this chapter includes a IDA/OPA/MCE 

derivatization based in previous works (90, 92). 

 

Table 1: Review of sample preparation, separation and detection parameters used in amino acids determination in 
beer samples 

 SAMPLE PREPARATION SEPARATION AND DETECTION 

Reference Matrix Degass 
Volume/

mass 
Derivatization 

agent 
Column Detector Temperature pH Eluents 

1 (93) 
beer and 
wool** 

yes 150 mg CEOC C18 column 
fluorescence 
and UV/MS 

25°C 8.8-10 

A: 20% ACN in 0.02M acetate 
buffer pH4; B: ACN/water 

60:40;  C: ACN/water 60:40 
with 0.1M borate buffer pH 

8.9; D: ACN/water 95:5 

2 (94) various* yes 10 mL OPA-IBLC 
Hypersil 

ODS2 
fluorescence 25°C 10.4 

A: sodium acetate buffer pH 
5.95; B: methanol/ACN 

3 (95) 
wine, beer 

and vinegar* 
no - OPA–MPA(NAC) 

Hypersil 
ODS2 bonded 

phase 

fluorescence 
and DAD 

- 9.3 
A: 23mmol sodium acetate 

trihydrate  
pH 5.95; B: Metanol/ACN 

4 (92) 

culture 
media, wine 
and beer* 

no 100 µl OPA/MCE 
Reversed 

phase 
Xtimate C18 

fluorescence 32°C 6 

A: 0.05 M sodium acetate, pH 
7.2; B: 0.1 M sodium acetate–
ACN–Methanol (40:45:15) pH 

7.2; C: methanol; D: ACN 

5 (96) beer* yes 10 mL AccQ.fluor Nova-Pak C18 fluorescence 37°C - 
A: AccQ.Tag; B: ACN; C: 

methanol 

6 (97) 
malt and 

beer* 
yes 5 µl 6-AQC C18 Hypersil 

fluorescence 
and UV 

40°C 5.05 

A: 140 mM sodium acetate, 17 
mM triethanolamine, pH 5.05, 

with 1 mM EDTA; B: 
Acetonitrile; C: Water 

7 (91) 
wine and 

beer* 
no 1 mL DEEMM ACE 5 C18-HL DAD 16°C 5.8 

A: 25 mM acetate buffer pH 
5.8 with 0.02% sodium azide; 

B: 80:20 acetonitrile/methanol 

 *HPLC, **reverse phase HPLC and LC-MS 
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Volatile organic compounds determination in beer 

According to previous publications, there are several different extraction, separation 

and detection methods that have been applied to beer flavours determination in the past. 

Considering extraction techniques, head-space (HS), solid-phase (SPE) and solid-phase micro 

extraction (SPME), as well as stir bar sorptive (SBSE) and liquid-liquid extraction are the most 

commonly used for this purpose. On the other hand, the separation of these compounds has 

been carried out mainly by chromatographic methods, such as gas (GC), liquid (LC) and high-

performance liquid chromatography (HPLC), while flavour compounds detection has been 

achieved by nuclear magnetic resonance and mass spectrometry in most of the cases (98).  

However, GC is considered the most appropriate separation technique used in the 

determination of beer flavour compounds (98). Considering extraction techniques, HS-SPME is 

the most successful extraction method used for the analysis of volatiles in beverages (99), due 

to the possibility of full automation, simplicity, speed, sensitivity and because it is a solvent-free 

technique (100). Finally, mass spectrometers, which allows a feasible flavour identification and 

quantification, are the most widely used detectors for this purpose. Innovative techniques, such 

as electronic nose and tongue, have shown to be valuable tools for the evaluation of beer aroma 

and flavours (98). 

Additionally, concerning vicinal diketones determination, high performance liquid 

chromatography (101) and liquid chromatography (3), including derivatization steps, as well as 

gas chromatography (12, 51, 102-104) have been used before. Effectively, gas chromatography 

coupled with mass spectrometry detection (GC-MS) presents higher levels of sensitivity for the 

quantification of diacetyl and 2,3-pentanedione (12). For years, the EBC and the Institute of 

Brewing (IoB) have been studying the suitability of reference methods assigned for vicinal 

diketones determination, which include either a derivatization process, followed by ultraviolet 

spectrophotometric measurement or a time-consuming GC method by using a capillary column 

(105-108). 

In the present work, a methodology to simultaneously determine diacetyl and 2,3-

pentanedione, the acetoin and 2,3-butanediol was develop, as well as other volatile compounds 

with a known influence in beer aroma profile and which are produced during beer fermentation. 

The methodology developed started with HS-SPME optimization and evaluates the importance 

and the optimum levels of several extraction variables (factors). The factors and the levels to be 

tested were chosen after a preliminary screening of information available in the literature (Table 

2). 
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Table 2: Review of treatments applied to samples and SPME conditions used in volatile organic compounds found in beer, by GC-MS 

 

 

 

 SAMPLE SPME 

Reference Main analyte Optimization Degas Volume +Salt Fibre Stirring 
Extraction 

temperature 
Incubation 

time 
Extraction 

time 
Derivatization 

1 (109) beer volatiles - yes 5 mL 27g/100 mL PDMS/DVB 1200 rpm 50°C 5 min 30 min - 

2 (101) beer volatiles - no 10/20 mL - - - 85°C - 30 min - 

3 (99) beer volatiles yes no 10 mL 3.5g DVB-Car-PDMS 500/250rpm 40°C 10 min 30 min - 

4 (100) beer volatiles yes no 5g/15 mL 2g Car-PDMS - 20°C 30 min 30 min - 

5 (110) beer volatiles - no 15/20 mL 5g PDMS - 50°C 10 min 30 min - 

6 (111) beer volatiles - no 10 mL - PA - 37°C 30 min 60 min - 

7 (112) carbonyl compounds yes no 10/20 mL - PDMS-DVB - 60°C 10 min 40 min - 

8 (102) beer volatile yes no 10/40 mL 3g DVB/CAR/PDMS - 60°C 1h (70°C) 30 min - 

9 (113) beer volatiles - no 5/20 mL - PDMS/DVB - 50°C 26°C 2 min yes 

10 (114) beer volatiles - yes 10/20 mL - PDMS/DVB 500rpm 40°C - 10 min - 

11 (115) volatiles - no 5/20 mL 1.75g DVB–CAR–PDMS - 45°C 20 min 40 min - 

12 (116) alcohols and esters - yes 10 mL - PA - 60°C - 50 min - 

13 (117) volatile phenols yes no 6 mL 0.4g/ mL DVB/CAR/PDMS 250rpm 80°C 5 min 55 min - 

14 (118) beer volatiles yes no 5/15 mL 2g PDMS 870rpm 24°C - 45 min - 

15 (119) carbonyl compounds yes no 5/20 mL - PDMS/DVB 250rpm 45°C 7 min 20 min - 

16 (120) beer volatiles - no 5 mL - PDMS/DVB - 40°C 1 min 5 min - 

17 (121) beer volatiles - no 5/10 mL - Car-PDMS - 45°C 2 min 15 min - 

18 (122) aldehydes - no 10/20 mL - PDMS - 20°C - 20 min yes 

19 (123) sulphur compounds yes no 10/15 mL - Car-PDMS - 45°C - 32 min - 

20 (124) beer volatiles yes yes 10/20 mL 2g DVB/Car/PDMS 400rpm 40°C 10 min 30 min - 

21 (12) carbonyl compounds yes no 5/20 mL - Car-PDMS yes 30°C 5 min 25 min - 
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CHEMICALS AND SOLUTIONS PREPARATION 
 

Free amino nitrogen determination 

Derivatization solution was prepared by dissolving 10g of Na2HPO4.12H2O (99.0-102.0%, 

José M. G. dos Santos, Portugal), 6g of KH2PO4 (99.0%, Panreac Quimica SA, Spain), 0.5g of 

ninhydrin (laboratory reagent grade, Fisher Scientific, UK) and 0.3g of D(-)-fructose (99%, Acros 

Organics, Belgium) in distilled water. After homogenizing, the solution pH was adjusted until a 

value of 6.6 to 6.8 was achieved and then mixture was diluted to a final volume of 100 mL. This 

solution was used for a maximum period of two weeks, stored at 2°C in an amber bottle. A 

dilution solution used for FAN determination was prepared by dissolving 2g of KIO3 (99.5%, 

Merck, Germany) into 600 mL of distilled water, followed by the addition of 400 mL of ethanol 

96%. The mixture was then homogenized and stored at 2°C. Glycine standard solution was 

prepared by dissolving 0.1072g of L-glycine (Sigma-Aldrich,USA) in distilled water, to a final 

volume of 100 mL. This solution was then diluted by transferring 1 mL of the concentrated 

glycine solution for a final volume of 100 mL, in distilled water. 

 

Amino acids determination 

Borate buffer solution was prepared by adding 2.47g of boric acid (99.8%, Chem-Lab, 

Belgium) into 80 mL of ultrapure water. pH was then adjusted to 10.5 by adding NaOH 

(12.5g/100 mL) and the solution was diluted to 100 mL. OPA-MCE was prepared by dissolving 

50 mg of 1,2-phthalic dicarboxaldehyde (≥98%, Acros Organics, Belgium) into 1.5 mL of absolute 

ethanol (>99.8%, Sigma-Aldrich, Germany), followed by the addition of borate buffer until a final 

volume of 10 mL is achieved. Then, 200µl of 2-mercaptoethanol (99%, Sigma Aldrich, Germany) 

were added to this mixture and, after homogenization, the solution was settled down for 90 

minutes before filtering and using. This solution was stored for 9 days at 2°C and re-filtered 

before reusing. IDA solution was then prepared by dissolving 0.583g of iodoacetic acid (99%, 

Panreac Quimica SA, Spain) in borate buffer, to a final volume of 10 mL. 

Individual amino acids solutions (10g/L) were prepared by dissolving 0.05g of each L-

amino acid with a minimum assay of 98% (L- arginine, phenylalanine, asparagine, aspartic acid, 

isoleucine, leucine, valine, lysine, serine, threonine, glutamine, glutamic acid, cysteine, alanine, 

tryptophan, citruline, glycine, ornithine, histidine, (Sigma-Aldrich,USA) and L-gamma-

aminobutyric acid (Fluka BioChemika AG, Switzerland) in HCl 0.1M to a final volume of 5 mL, 
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except for tyrosine (Sigma-Aldrich,USA), which was dissolved in HCl 1M to a final volume of 5 

mL. Then, a stock solution (300 mg/L) was prepared by dissolving all the individual amino acids 

solutions in synthetic beer and ethanol content was also adjusted in this step. From this solution, 

successive dilutions (0.1, 0.25, 0.5, 1, 2.5, 5, 20, 50, 100 and 300 mg/L), were prepared in order 

to use in methodology calibration, validation and for sample spiking. 

For chromatographic elution, mobile phase A (aqueous potassium di-hydrogen 

phosphate (99.0%, Panreac Quimica SA, Spain) buffer 10mM: HPLC-grade methanol (≥99.8%, 

Chem-Lab, Belgium): tetrahydrofuran (99.98%, Fisher Scientific, UK)) – 91:8:1, v/v) and B (100% 

HPLC-grade methanol) were prepared. A 20% HPLC-grade methanol aqueous solution was also 

prepared, for HPLC system cleaning purposes. The aqueous potassium phosphate buffer 10mM 

was prepared from a stock solution (200mM) and pH was adjusted to 7.3 with a potassium 

hydroxide (85%, Panreac Quimica, Spain) solution (1M). 

 

Volatile organic compounds determination 

Synthetic beer was prepared by dissolving 22g of tartaric acid (99.5%, Merck, Germany) 

and 80 mL of absolute ethanol (>99.8%, Sigma-Aldrich, Germany) in ultrapure water and by 

adjusting mixture pH to 4.0 with NaOH (12.5g/100 mL), before diluting this to a final volume of 

2 L. This solution was used for the preparation of standards used both in GC and HPLC 

methodologies calibration and validation. A calcium chloride (CaCl2.2H2Os, ≥99.5%, Chem-Lab, 

Belgium) solution (50 g/L) was also prepared for sample conservation purposes. A stock solution 

of 4-methyl-1-pentanol (97%, Sigma-Aldrich, Germany) was prepared by dissolving 30.5 µl of 

this compound in synthetic beer, to a final volume of 10 mL and then a diluted solution (100 

mg/L) was prepared to use as an internal standard in volatile organic compounds determination.  

Several volatile organic compounds stock solutions and respective dilutions were 

prepared in synthetic beer: Solution A – diacetyl (99%, Acros Organics Belgium) and 2,3-

pentanedione (97%, Acros Organics, Belgium) (5 g/L and 25 mg/L); Solution B - ethyl butyrate 

(99%, Acros Organics, Belgium), isobutyl acetate (98%, Acros Organics, Belgium)(2.5 g/L and 50 

mg/L); Solution C – hexanoic acid (≥99.5%, Sigma-Aldrich, Germany) and octanoic acid (≥98%, 

SAFC, Malaysia) (250 mg/L), Solution D – acetoin (≥97%.0, Fluka, Germany), acetaldehyde (99%, 

Panreac Quimica SA, Spain), (5g/L and 500 mg/L); Solution E – ethyl acetate (99.97%, Fisher 

Scientific, UK), isobutyl alcohol and isoamyl alcohol (99%, Acros Organics, Belgium) (5 g/L); 

Solution F –acetic acid gacial (99.7%, Panreac Quimica SA, Spain), 2,3-butanediol R (≥98%, Acros 

Organics, Belgium), and phenylethyl alcohol (99%, Acros Organics, Belgium) (5g/L); Solution G - 
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isoamyl acetate (≥99%, Acros Organics, Belgium) and ethyl hexanoate (≥99%, Sigma Aldrich, 

Germany) (250 mg/L). These solutions were diluted in synthetic beer to different final 

concentrations, in order to be used in methodology calibration and validation. 

 

CONSERVATION TESTS 

 
 Due to the impossibility to perform all the chromatographic analysis at the same day of 

sample collection, three different sample conservation strategies were evaluated, by testing 

lager beer fermentation samples obtained from a local brewery. Parameters used during these 

tests were selected in accordance to previous works, in order to ensure yeast immobilization: i) 

storage at different temperatures (2°C and -26°C), ii) calcium chloride addition and iii) sample 

pasteurization. The temperature treatment was also evaluated when combined with 

pasteurization and addition of CaCl2 (Figure 9). A set of samples without any treatment was also 

analysed, in order to evaluate samples evolution when fermentation is not interrupted. 

Storage conditions effect was evaluated 2 days later, after obtaining and analysing fresh 

samples. This was the period required to store samples in order to complete the analysis when 

samples were collected on consecutive days. Additionally, fresh samples were also collected 

from two additional points of fermentation, to ensure that storage influence is equal since the 

first day of fermentation. Each sample was obtained in triplicate and analysis of each triplicate 

was analysed 3 times. This procedure was also adopted for all analysis carried out in HPLC-

fluorescence, GC-MS and by UV-spectrometry. 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Different treatments applied during conservation tests to fermentation samples 
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stored at -26ºC for 2 days
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analysed while fresh

stored at 2ºC for 2 days

stored at -26ºC for 2 days
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SAMPLES 
 

Initially, pale lager beer samples from the same batch were used during the design of 

experiments (DoE) process, carried out for volatile organic compounds extraction. These beers 

were also previously used for scanning the retention time of compounds of interest and then 

for methodology calibration and validation. Absolute ethanol was also use for alcohol content 

correction in early fermentation samples.  

Pale lager beer fermentation samples were obtained from ECM and several samples 

were collected during the fermentation process, from three different fermentation vessels, all 

resultant from wort produced with the same raw materials and all of them were inoculated with 

a third-generation yeast (Figure 10). From each fermentation sample, triplicates with an 

approximate volume of 50 mL were collected and, at that time, 1 mL of calcium chloride (50 g/L), 

concentrated enough to stop fermentation (125), was immediately added to each flask. Then, 

replicates were homogenized and kept in ice during transportation. At the laboratory, aliquots 

from each replicate were obtained for FAN determination and for volatile organic compounds 

and amino acids analysis.  

 

Figure 10: Samples collected for analysis during lager beer fermentation, using a 3rd generation yeast 
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EBC ROUTINE METHODS  

As a complement of the academic laboratorial work, temperature and extract were 

determined in ECM. Analysis were performed according to the EBC standard reference methods, 

by using a thermometer and a standard densimeter, respectively. The results were used as a 

complement of other analytical data obtained during fermentation follow up period. 

 

FAN 
According to EBC standard method for FAN determination, 100µl from each 

fermentation replicate were diluted to a final volume of 10 mL in distilled water and kept at -

26°C, if not immediately analysed. Then, for the derivatization process, 1 mL of ninhydrin was 

added to 2 mL of diluted sample and, after homogenizing, the mixture was sealed and placed in 

a boiling water bath for 16 minutes, followed by a 20-minute period of cooling at 20°C. After 

that, 5 mL of the dilution solution were added to the cooled mixture and, right after, mixtures 

were homogenized and samples absorbance at 570 nm was measured in a dual beam 

spectrophotometer Shimadzu UV-Vis 2600 (Kyoto, Japan).  

Derivatization procedures were done in triplicate and absorbance of each replicate was 

measured in triplicate, as well. For each set of samples, in two test tubes, diluted sample was 

replaced by a glycine standard (10 mg/L) and in another tube, distilled water was used instead 

of sample, as a derivatization reaction control. 

After analytical determinations, absorbance data were converted into FAN values 

(mg/L), following the formula described below, where A1 is the sample absorbance at 570 nm, 

A2 is the mean absorbance value of glycine standard and d is the sample dilution factor (100). 

FAN results were then presented as mean and standard deviation values of measure. 

 

FAN (mg N/L)=
A1x2xd

A2
 

 

AMINOACIDS BY HPLC-FLUORESCENCE 
 

Methodology validation 

For amino acids method calibration, 200µl of each standard solution were added to 1.5 

mL of a 0.4M borate buffer solution and, after homogenization, samples were filtered using a 
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hydrophilic PTFE syringe filter (13mm 0.22um) obtained from Specanalítica, into a 300µl vial. 

This procedure was conducted in triplicate for each calibration solution. The repeatability (intra-

day) was determined by the quantification of 10 successive replicates of beer with three 

different standard solutions (low, intermediate and high concentrations of each analyte) and 

reproducibility (inter-day) was assessed by performing the same analysis in 3 different days over 

a week. The values are expressed in terms of relative standard deviation. Additionally, 5 vials 

were also prepared by replacing sample with synthetic beer, analytes-free. These samples were 

used for determining compounds recovery, by comparing them with samples used for the 

determination of this method repeatability. The concentration ranges in wort, fermentation and 

beer samples found in literature for each analyte (Table 3), together with some preliminary tests, 

were used to define the work range in the present work.  

 

Table 3: Review of amino acids typical concentration range in wort and beer 

 

 

 

 

 

  

Compounds 
Concentration 
range (mg/L) 
in literature 

References 

alanine 2.6-273.5 (93), (126), (95), (37), (92), (96), (127), (128), (91), (129), (130) 

arginine 3.8-100.4 (93), (95), (37), (92), (96), (127), (91), (129), (130) 

asparagine 0.38-206.0 (95), (37), (92), (127), (91), (130), (131) 

aspartic acid 0.34-89.9 (95), (37), (92), (96), (127), (91), (130), (131) 

citruline 4.2 (92), (131) 

cysteine 1.2- 13.5 (93), (132) 

leucine 0.1-205.8 (93), (126), (95), (37), (92), (91), (130), (131), (3), (133) 

isoleucine 0.17-82.9 (93), (126), (95), (37), (92), (96), (128), (91), (129), (130), (131), (3) 

GABA 7.72-193.6 (126), (95), (92), (91) 

glutamic acid 0.3-62.5 (93), (95), (37), (92), (96), (127), (91), (129), (130), (131) 

glutamine 0.90-26.0 (95), (92), (127), (91), (130), (131) 

glycine 0.8-145.5 (93), (126), (95), (37), (92), (96), (127), (130), (131) 

histamine 0.34-5.69 (92), (91), (134) 

histidine 2.2-54.9 (93), (37), (92), (96), (127), (91), (129), (130) 

lysine 0.137-77.8 (93), (126), (95), (37), (92), (96), (127), (91), (129), (130), (131), (134) 

methionine 0.46-28.6 (126), (95), (37), (92), (96), (127), (91), (130), (131) 

ornithine 1.3-10.2 (93), (126), (91), (131) 

phenylalanine 1.66-131.7 (93), (126), (95), (37), (92), (127), (91), (129), (130), (131), (133) 

serine 0.92-57.7 (126), (95), (37), (92), (96), (91), (130), (131) 

threonine 0.3-86.4 (93), (126), (95), (37), (92), (96), (127), (130), (131) 

tryptophan 3.84-27.5 (93), (95), (37), (92), (91), (129), (130), (131) 

tyrosine 1.19-205 (93), (126), (95), (37), (92), (96), (127), (91), (129), (130), (135) 

valine 0.8-188 (93), (126), (95), (37), (92), (96), (91), (129), (130), (131) 
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Sample preparation 

For amino acids analysis, due to high analyte concentration in beer fermentation 

samples, 100µl of each sample replicate was added to 1 mL of a 0.4M borate buffer solution 

and, after homogenization, samples were filtered using a hydrophilic PTFE syringe filter (13mm 

0.22um) from Specanalítica, into a 300µl vial. The different dilution used for samples was taken 

into account when converting fluorescence response into concentration values. Sporadically, 

samples were spiked with a standard solution in order to facilitate peaks identification 

confirmation. When not promptly analysed, samples were kept at 2°C, to avoid substances 

precipitation.   

 

Derivatization 

 Amino acids derivatization follow the procedure described by Pereira et al (2015) (90). 

Briefly, the derivatization reaction was performed in the sample injection loop. Firstly, 5µl of 

buffered sample were aspired, followed by 5µl of IDA solution and 10µl of OPA/MCE solution. 

Then, the mixture was kept in the loop for 2 minutes, allowing the occurrence of the 

derivatization chemical reaction. During this period, flow was maintained at 0 mL/min and, after 

this time, mobile phase flow was set to 1 mL/min, forcing the loop content to enter in the 

chromatographic column. 

 

Chromatographic optimal conditions and detection 

Amino acids were separated in a HPLC system using Waters (Milford, USA) liquid 

chromatograph connected to an Empower Pro Software and equipped with an auto-injector 

(Waters 2695, separation module) and a Multi λ Fluorescence detector (Waters 2475). 

Chromatographic analysis was performed using an analytical scale silica-based, reversed-phase 

C18 column (Atlantis T3, 4.6mm×250 mm), with a particle size of 5µm, purchased from Waters 

(Ireland) and a C18 pre-column. Two mobile phases, A (1% of tetrahydrofuran, 8% methanol and 

91% phosphate buffer 10 mM) and B (100% methanol) were used, according to the gradient 

shown in Table 4. The flow rate was set to 1 mL/min, the column temperature was kept at 35°C 

and total analysis time rounded 45 minutes. Fluorescence excitation and emission wavelengths 

were fixed at 335 and 440 nm, respectively.  
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Table 4: Elution parameters used for beer amino acids separation by HPLC 

  

 

 

 

 

 

 

 

VOLATILE ORGANIC COMPOUNDS BY GC-MS 
 

Extraction DoE and optimal conditions 

 For the optimization of volatile organic compounds extraction, three different solid-

phase micro extraction fibres were tested, after a preliminary screening of factors and definition 

of experimental conditions. Several qualitative and quantitative parameters were evaluated, 

including sample degasification, volume and agitation, salt addition and pre-incubation and 

extraction time, as well as extraction temperature (Table 5), according to the literature 

reviewed, as previously presented in Table 2. Extraction conditions were chosen after a careful 

statistical analysis of experimental design results (Definitive Screening Design), from 36 aleatory 

assays, which was followed by a complete validation of the analytical method, conducted at 

optimal factor levels. 

 

Table 5: Parameters tested during the optimization of volatile organic compounds extraction in beer by HS-SPME 

 

  

Time (min) Flow ( mL/min) Eluent A (%) Eluent B (%) Curve 

0 1 85 15 6 

9 1 71.5 28.5 6 

16 1 47 53 6 

18 1 47 53 6 

28 1 19 81 6 

35 1 0 100 1 

40 1 85 15 1 

Factor Qualitative/Quantitative Levels 

Degass Qualitative L1 - No; L2 - Yes (15min) 

Sample volume Quantitative L1 - 5 mL; L2 - 10 mL 

Adition of salt Qualitative L1 - No, L2 - Yes 

Type of Fibre Qualitative L1 - PDMS/DVB; L2 -CAR/PDMS; L3 - CAR/PDMS/DVB 

Agitation Qualitative L1 - No; L2 - Yes 

Pre-incubation time (min) Quantitative L1 - 0; L2 - 5; L3 - 10 

Extraction time (min) Quantitative L1 - 20; L2 - 30; L3 - 40 

Extraction temperature (°C) Quantitative L1 - 40; L2 - 50; L3 - 70 
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 Methodology validation  

During calibration, and following the selected and optimal parameters from the design 

of experiments for VOCs extraction, 10 mL of standard solutions with different analytes 

concentration, prepared in synthetic beer, were added into a 20 mL vial, containing 3.3g of 

sodium chloride, previously added. Right after, 5µl of 4-methyl-1-pentanol were added to the 

prepared sample and the vial was sealed and homogenized in a vortex. This procedure was 

conducted in triplicate for each calibration solution. The repeatability (intra-day) was 

determined by the quantification of 10 successive replicates of beer with three different 

standard solutions (low, intermediate and high concentrations of each analyte) and 

reproducibility (inter-day) was assessed by performing the same analysis in 3 different days over 

a week. The values were expressed in terms of relative standard deviation. Additionally, 5 vials 

were also prepared with no-spiked beer, in order to evaluate compounds recovery, by 

comparing them with samples used for the determination of this method repeatability. 

 

Sample preparation 

For organic volatile compounds analysis and by following the selected and optimal 

parameters from the design of experiments for VOCs extraction, 10 mL of fermentation aliquots 

were added into a 20 mL vial, containing 3.3g of sodium chloride, previously added. For samples 

corresponding to day 0, 3 and 5 of the fermentation process, 400, 200 and 100 µl, of absolute 

ethanol were added, respectively, replacing exactly the same amount of sample, so that ethanol 

content is equal. Right after, 5 µl of 4-methyl-1-pentanol were added to the prepared sample 

and the vial was sealed and homogenized in a vortex. This procedure was conducted in duplicate 

for each sample replicate. 

 

Compounds extraction, chromatographic method and detection 

 After sample preparation, VOCs extraction was achieved by exposing the selected SPME 

fibre, 85 mm carboxenepolydimethylsiloxane (Car/PDMS), into the vial for 20 min at 40°C, under 

no stirring. Then, by inserting the fibre into the GC injection port of a Trace GC Ultra, equipped 

with a TriPlus autosampler (SPME mode) and a mass spectrometer detector (single quadrupole 

- electronic impact ionization mode) from Thermo Scientific (Hudson, NH, USA), the analytes 

were desorbed for 3 min at 250°C. The column used was a 60 m × 0.250 mm DB-WAXetr with 

0.50μm of film thickness, from Agilent J&W (Folsom, CA, USA). Helium was used as carrier gas 

and a constant flow of 1 mL per minute was established. The transfer line and ion source 
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temperatures were both kept at 240°C. During the run time, the oven temperature was kept at 

40°C for 2 min, then increased up to 250°C at 4°C/min and it was finally kept at 250°C for 5 min. 

Total run time rounded about 60 minutes. 

The ions used for compounds quantification, as well as concentration range of each 

analyte in wort, fermentation and beer samples found in literature are indicated in Table 6. This 

ramp was defined after the injection of individual standards, in order to check their retention 

time and to confirm that there were no coeluted compounds. Concentration ranges of each 

analyte in wort, fermentation and beer samples, as well as their odour threshold and aroma 

descriptor found in literature are indicated in Table 7. 

 

Table 6: Ions mass list used for volatile organic compounds detection by mass-spectrometry. 

 

 

 

 

 

 

 

 

 

 

 

 

RESULTS TREATMENT  
 

The generation of the Definitive Screening Design and most of the computations (model 

estimation and optimization) were conducted in JMP-PRO ver. 12.1.0 (64-bit) (SAS Institute Inc.). 

Regular statistical analyses used for methodologies validation were performed with Microsoft 

Office Excel 2013, while statistical tests were performed in Minitab® ver. 17.1.0 (64-bit) (Minitab 

Inc). Tukey test was used to analyse variance between conservation tests samples, using a 

significance level of 0.05. 

 

Time (min) Mass list or range (amu) 

4.50-7.00 42, 43, 44, 45 

7.00-9.00 43, 45, 61, 70, 88 

9.00-10.50 86 

10.50-11.50 42, 43, 86 

11.50-12.30 43, 56, 73, 86 

12.30-13.10 43, 60, 71, 89, 101 

13.10-14.20 43, 57, 85, 88, 100, 115 

14.20-21.50 30-300 

21.50-25.00 43, 45, 55, 56, 69, 75, 88 

25.00-34.50 30-300 

34.50-36.00 43, 60, 87 

36.00-48.00 30-300 

48.00-49.50 77, 107, 135, 150 

49.50-60.00 30-300 
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Table 7: Review of typical concentration range, odour threshold, aroma descriptors of the volatile organic compounds 
found in wort and beer samples 

 

 

Compounds Concentration range in literature (mg/L) Odour threshold (mg/L) Aroma descriptor 

acetaldehyde 2-36 (17, 45, 55, 79) 5-50 (136, 137, 138, 139) Green apple, solvent-like (136) 

acetoin 1-86 (2, 28, 55) 8-50 (2, 28, 55, 139) Buttery, sweet, fatty (140) 

acetic acid 1-200 (2, 15, 45, 136) 90-130 (136, 137) Vinegar, acidic (136) 

2,3-butanediol 20-150 (2, 45) ≥100 (141) Fruity, creamy, buttery (140) 

decanoic acid 0.01-70 (2, 28, 115, 116 142) 10 (2, 28) Fatty, rancid, sour (140) 

diacetyl 0.008-1.18 (2, 28, 80, 136) 0.01-0.15 (2, 3, 28, 65, 136, 143, 144) Buttery, milky butterscotch (136) 

ethyl acetate 0.29-60.9 (2, 80, 110, 116, 142, 145, 146, 147) 3.9-33 (2, 28, 110,137, 138) Nail varnish, solvent-like (136)  

ethyl butyrate 0.0005-8.64 (2, 116, 136, 148) 0.3-0.4 (2, 28, 136, 137) Tropical fruits, mango, pineapple (136) 

ethyl caprylate 0.003-4 (45, 110, 145, 147, 149) 0.3-0.9 (58, 108, 145) Apple, aniseed (147) 

ethyl hexanoate 0.05-1.5 (2, 28, 45, 116, 136, 145, 146) 0.12-0.23 (2, 28, 136, 137, 146, 147) Estery, apple, aniseed (136) 

ethyl laurate 0.01-0.46 (2, 145, 150) 2-3.5 (2, 151) Oily, fruity, floral, fatty (151) 

hexanoic acid 0.6-6.5 (43, 115, 125, 142, 152) 5-10 (43)  Rancid, goaty (43) 

isoamyl acetate 0.01-59.16 (2, 80, 99, 110, 116, 118, 136, 142, 146, 147) 0.6-1.6 (58, 80, 110, 136, 137, 138, 146, 147) Estery, fruity, banana (136) 

isoamyl alcohol 2.5-70 (2, 15, 45, 118, 142, 145) 30-70 (2, 58, 80, 138, 146) Alcohol, solvent, banana (2) 

isobutyl acetate 0.03-10.12 (2, 116, 145, 146) 0.4-1.6 (2, 146) Banana, fruity (147) 

isobutyl alcohol 0.3-59.92 (2, 15, 116, 117, 142, 146) 80-200 (58, 146) Alcohol (2) 

octanoic acid 2-85.38 (2, 115, 125, 136, 142, 152) 4-13 (136, 137) Goaty, waxy, tallow (136) 

2,3-pentanedione 0.001-1 (12, 28, 143) 0.9-1.5 (3, 28, 65, 154) Buttery, rancid, sweet (137) 

phenylacetate 0.2-1.7 (2) 0.2-1.7 (2) - 

phenylethyl alchocol 8-138 (2, 15, 45, 115, 118, 146) 28-125 (2, 138, 146) Roses (2) 



 

 
 



 

 
 

 

 

 

  

 

 

 

 

 

 

PART VI: Results and discussion 
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METHODOLOGIES VALIDATION 

 

Amino acids determination by HPLC-fluorescence 
 

The determination of individual amino acids in beer was based in Pereira, Pereira (90). 

All the data related to calibration curves of each amino acid and to methodology validation were 

obtained from assays in synthetic beer. Results regarding this method calibration curve and 

validation can be found in Table 8. 

For all the amino acids, calibration curves showed a good linearity. Method accuracy 

was studied by analysing recovery mean values, varying from 77.60 (ornithine) and 112.39% 

(valine), except for cysteine which shows a punctual low recovery for one of the concentrations 

in study. The methods precision was evaluated in terms of repeatability and reproducibility, 

where variations were expressed as curve residual standard deviation values, which were lower 

than 10% and 15%, respectively, except for a punctual lysine value, for one of the three analysed 

concentrations. 

The LOD and LOQ values determined showed to be very appropriate for the 

concentration ranges in study. In fact, asparagine was the only amino acid that showed 

concentrations lower than this compound LOQ in an intermediate phase of fermentation, 

whereas all the other amino acids were quantifiable during the fermentation. A chromatogram 

resultant from calibration standards injection is shown in Figure 11. 

Concerning key amino acids, valine, leucine and isoleucine present, LOD values of 3.58, 

0.27 and 0.64 mg/L, LOQ values of 10.86, 0.81 and 1.95 mg/L, respectively. The recoveries mean 

values of 112.39, 96.99 and 81.57%. Linear range of isoleucine (R2=0.9999) covers 

concentrations from 0.10 to 50.34 mg/L, while for valine (R2=0.9998) and leucine (R2=0.9999) 

these values range from 0.10 to approximately 100 mg/L. These compounds precision 

parameters showed variations lower than 10%. 
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Table 8: Validation parameters for the determination of individual amino acids in beer by HPLC-fluorescence. C1, C2 and C3 concentrations correspond approximately to 0.25, 5 and 50 mg/L, respectively.

Compounds RT (min) Linear range 
(mg/L) 

R2 LOD 
(mg/L) 

LOQ 
(mg/L) 

Recovery (%) 
 

Repeatability (%) 
 

Reproducibility (%) 

C1 C2 C3 C1 C2 C3 C1 C2 C3 

Aspartic acid 4.30 0.10-100.22 0.9999 0.29 0.88 107.84 88.36 92.26 2.66 2.95 1.07 11.42 4.65 10.39 

Glutamic acid 5.90 0.10-100.02 0.9999 0.79 2.39 91.17 88.80 97.13 2.68 3.79 2.12 5.06 6.38 3.19 

Cysteine 6.86 0.10-4.99 0.9999 0.08 0.24 48.22 64.32 85.46 3.23 8.60 4.42 13.58 6.78 5.48 

Asparagine 10.15 0.10-20.02 0.9997 0.47 1.42 86.21 81.92 102.01 3.00 6.75 2.49 7.71 3.69 9.72 

Serine 12.07 0.10-50.04 0.9999 0.16 0.49 84.68 88.27 90.20 9.41 9.83 5.23 8.55 11.60 7.43 

Glutamine 12.66 0.10-50.24 0.9999 0.13 0.40 80.98 67.30 86.16 3.46 3.50 1.87 5.50 7.31 11.73 

Histidine 13.01 0.10-50.04 0.9999 0.07 0.20 - 73.78 93.07 - 5.36 2.90 - 6.43 4.58 

Citruline 14.75 0.10-50.04 0.9999 0.21 0.64 66.65 86.07 97.65 3.44 5.00 1.47 1.90 3.04 7.75 

Glycine 15.28 0.10-100.22 0.9998 1.57 4.77 82.24 88.46 95.90 5.25 2.92 0.79 12.01 5.91 5.40 

Threonine 15.52 0.10-100.22 0.9999 1.33 4.04 85.72 92.97 100.35 2.82 2.37 1.11 1.89 7.67 3.67 

Arginine 16.16 0.10-100.22 0.9999 0.43 1.31 62.76 85.86 99.85 6.00 3.12 1.54 15.09 1.86 1.99 

Tyrosine 17.20 0.10-100.22 0.9999 1.42 4.31 129.34 103.62 101.79 3.57 2.39 2.40 4.01 3.34 2.06 

Tryptophan 20.71 0.10-50.14 0.9999 0.59 1.80 69.70 85.64 96.35 2.31 6.06 3.98 3.12 3.06 8.30 

Valine 22.07 0.10-100.02 0.9998 3.58 10.86 81.13 79.44 176.61 1.74 2.06 1.74 3.00 4.22 5.36 

Isoleucine 24.36 0.10-50.34 0.9999 0.64 1.95 80.81 74.80 89.09 3.70 1.79 0.50 7.93 2.24 8.65 

Leucine 24.95 0.10-100.82 0.9999 0.27 0.81 94.35 95.68 100.94 1.07 2.39 0.66 6.08 3.87 4.27 

Ornithine 26.50 0.10-20.10 0.9999 0.07 0.21 74.47 67.43 90.90 4.08 4.98 2.09 7.83 7.94 5.96 

Lysine 27.38 
0.10-4.99 0.9999 0.04 0.13 

70.93 76.91 91.02 7.02 3.82 1.28 23.98 8.25 5.74 
0.10-100.22 0.9999 0.32 0.98 

Phenylalanine 32.66 0.10-100.02 0.9999 0.68 2.06 76.53 75.53 80.88 2.54 1.71 2.20 3.94 1.75 6.25 
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Figure 11: Chromatogram resultant from HPLC separation of amino acids calibration standard 
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Volatile organic compounds by GC-MS 
 

The optimal conditions for the extraction of volatile organic compounds were 

established from a Definitive Screening Design based on 36 assays, analysed in a random order. 

The response variables analysed were the peak area of each compound and the optimization 

task was done to maximize the peak area of each compound under study. According to the 

obtained results, the choosen conditions for the extraction of volatile organic compounds from 

beer are presented in Table 9. 

 

Table 9: Optimal conditions for the extraction of volatile organic compounds found in beer by HS-SPME 

Factor Optimal level 

Degas no 

Sample volume 10 mL 

Addition of salt Yes (3.3g) 

Type of Fibre Car-PDMS 

Agitation no 

Pre-incubation time (min) no 

Extraction time (min) 20 

Extraction temperature (°C) 40 

 

The selected fibre was the Car-PDMS. This was the fibre also used by Leça, Pereira (12) 

to study carbonyl compounds in beer. It was also found that carbonation does not significantly 

influence SPME sampling, in accordance with previous results reported by Pizarro, Pérez-del-

Notario (117). Concerning the sample volume, the results suggest that 10 mL in a vial with 20 

mL of capacity is the best option, since the extraction was not favoured when smaller sample 

amounts were used. Regarding the extraction time and temperature, the results indicate that 

these factors have a significant impact for almost every chemical families that were analysed 

and their settings were established according to VDKs best results. The agitation and incubation 

time factors were found to be relevant only for VDKs and acetoin, and therefore their settings 

were established based on the results of these compounds.  

Following the extraction conditions described above, injections of standard solutions 

prepared in beer and in synthetic beer were analysed and calibration curves for all the analytes 

in study were determined in both cases. From these results, the matrix effect was studied by 

comparing the deviations between the slopes of the calibration curves resultant from beer and 

synthetic beer. It was observed that this parameter was higher than 15% for the majority of the 

compounds analysed, confirming that matrix effect occurs in this case. For that reason, beer was 

used for the quantification of VOCs and for the validation of this methodology. The parameters 
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of each analyte calibration curve, as well as validation results can be found in Table 10. A 

chromatogram resultant from a standard solution injection is shown in Figure 12. 

 Considering the samples in study, the developed quantification method shows a good 

linearity in the concentration range in study and recovery mean values ranging from 89.88 (ethyl 

isovalerate) and 133.80% (phenylethyl alcohol) confirm the method accuracy. The methods 

precision was evaluated in terms of repeatability and reproducibility, where variations were 

expressed as curve residual standard deviation values, which were generally lower than 10%. 

Also, the determined LOD and LOQ values were appropriate for the concentration ranges in 

study. 

 Concerning VDKs, diacetyl and 2,3-pentanedione presented LOD values of 17.22 µg/L 

and 0.90 µg/L and LOQ values of 57.41 µg/L and 3.01 µg/L, respectively. Their recoveries mean 

values were 125.21 and 107.86%. Linear ranges of diacetyl (R2=0.9994) and 2,3-pentanedione 

(R2=0.9999) cover concentrations from 5.00 to 499.95 µg/L and 5.02 to 1256.10 µg/L, 

respectively. Concerning diacetyl reduction products, acetoin and 2,3-butanediol, these 

compounds present LOD values of 0.94 and 6.76 mg/L, LOQ values of 3.13 mg/L and 22.54 mg/L 

and their recovery mean values are 114.62 and 108.79%, respectively. Acetoin (R2=0.9999) and 

2,3-butanediol (R2=0.9987) linear ranges cover concentration from 10 to 200.38 mg/L and from 

1.00 to 146.40 mg/L. These compounds precision parameters showed variations lower than 

10%, except for 2,3-butanediol, which variations were lower than 20%. 
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Table 10: Validation parameters for the determination of volatile organic compounds in beer by GC-MS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Validation parameters for ethyl hexanoate (Table 10) were applied for the determination of ethyl caprylate, ethyl decanoate and ethyl laurate, while phenylacetate 

concentrations were extrapolated from ethyl acetate calibration curve. Also, the values presented for isoamyl alcohol include both isomers.

Compounds 
Kovats 

index 

Identification/ 
quantification 

mode (m/z) 
 

Linear range R2 LOD LOQ 
Recovery (%) 

 
Repeatability (%) 

 

 
Reproducibility (%) 

 

C1 C2 C3 C1 C2 C3 C1 C2 C3 

Acetaldehyde (mg/L) 483 42, 43, 44, 45 2.12-206.40 0.9999 1.44 4.79 100.72 103.33 101.89 6.45 4.36 3.23 10.03 3.22 7.14 

Ethyl acetate (mg/L) 881 43, 45, 61, 70, 88 1.00-50.06 0.9992 1.70 5.65 119.57 167.69 105.45 3.74 2.74 1.54 9.25 2.36 8.66 

Diacetyl (µg/L) 991 42, 43, 86 4.99-499.95 0.9993 17.22 57.41 116.68 142.12 116.82 4.06 1.44 2.26 6.31 6.36 11.03 

Ethyl butyrate (µg/L) 1050 43, 60, 71, 89, 101 75.16-10021 0.9999 145.72 485.75 98.47 98.71 83.96 2.90 2.34 2.53 2.25 3.76 10.22 

2,3-pentanedione (µg/L) 1075 
43, 57, 85, 88, 

100, 115 
5.02-100.49 0.9999 0.90 3.01 93.28 121.25 109.04 2.70 1.77 2.14 10.37 7.94 12.32 

Isobutyl alcohol (mg/L) 1101 30-300 1.00-100.25 0.9998 1.65 5.51 125.29 137.80 118.66 4.75 2.43 1.42 10.35 6.54 8.97 

Isoamyl acetate (µg/L) 1139 30-300 15.24-2540.40 0.9999 9.44 31.47 120.10 110.56 65.91 5.99 3.70 3.42 4.93 0.52 10.12 

Isoamyl alcohol (mg/L) 1218 30-300 1.00-100.08 0.9999 0.69 2.29 - - - 5.46 2.67 2.21 13.79 10.26 9.97 

Ethyl hexanoate (µg/L) 1256 30-300 
5.04-1008.04 0.9999 10.99 36.63 

100.10 107.57 73.61 7.92 4.27 2.97 5.37 7.56 10.60 
5.04-5040.20 0.9999 45.97 153.22 

Acetoin (mg/L) 1324 
43, 45, 55, 56, 69, 

75, 88 
0.10-200.38 0.9999 0.94 3.13 120.95 118.54 104.38 5.75 1.96 6.52 4.48 5.62 9.34 

Acetic acid (mg/L) 1480 30-300 2.50-200.15 0.9996 6.20 20.66 107.06 110.35 115.61 4.41 7.74 5.00 4.60 6.20 8.12 

2,3-Butanediol R (mg/L) 1556 30-300 (45) 1.00-146.40 0.9987 6.76 22.54 116.03 115.73 94.60 13.19 7.49 10.28 19.53 3.81 8.34 

Hexanoic acid (µg/L) 1866 30-300 260.12-10404.80 0.9999 125.40 418.01 115.11 113.16 107.44 5.99 5.09 2.27 5.06 8.57 1.87 

Phenylethyl alcohol 
(mg/L) 

1944 30-300 5.01-200.15 0.9999 1.99 6.65 131.80 142.80 126.79 5.14 10.35 2.78 13.27 8.58 3.69 

Octanoic acid (µg/L) 2076 30-300 49.14-50960 0.9999 508.78 1695.94 141.41 136.11 112.55 6.62 5.97 4.31 9.36 9.24 2.22 
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Figure 12: Chromatogram resultant from GC separation of volatile organic compounds calibration standard 
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CONSERVATION TESTS 
 

The main goal of testing different conservation options for beer fermentation samples 

was to immobilize yeast cells dissolved in the inoculated wort solution and to, consequently, 

interrupt brewing yeast metabolic activity, so that the sample could remain chemically stable 

during transportation and storage in the laboratory, until it was finally analysed. Data from the 

performed conservation tests compare the efficiency of each treatment and also show 

differences between samples analysed fresh and after two days in distinct storage conditions.  

The treatments applied to samples collected in the middle of fermentation were the 

addition of calcium chloride and thermal pasteurization, known to be effective in yeast 

immobilization. Chloride has a toxic effect on the brewing yeast at concentrations higher than 

300 mg/L (125) and stops fermentation when above 600 mg/L (125, 136). On the other hand, 

pasteurization is usually used as a common method to destroy microbiologic contaminants and 

yeast cells found in beer (20).  Additionally, storage for two days at 2°C and -26°C and its effect 

as a co-treatment for calcium chloride addition and pasteurization was also tested. 

For that purpose, using a Tukey statistical test with a significance level of 0.05, all 

treatments data were compared. The chosen treatment was selected after balancing the effects 

of the different conservation tests on free amino nitrogen content (Figure 13), vicinal diketones 

(Figure 14) and on the three amino acids related with VDKs formation (Figure 15). Treatments 

that show no significant differences in analytes concentration share identical characters. In this 

study, only treatments which result in small differences between fresh samples and samples 

stored during 2 days (at 2 and -26⁰C) were considered. Besides that, possible side effects that 

may occur as a consequence of calcium chloride addition or that may be caused by 

pasteurization were also taken into account.  

Starting with the conservation tests labelled as ‘no treatment, (…)’, the obtained results 

show that this treatment effect is different according with the chemical nature of the analysed 

compound. The treatment seems to be effective to avoid leucine and isoleucine concentration 

variations, since the samples stored at 2⁰C and -26⁰ C show no significant differences comparing 

to the fresh sample. Regarding FAN and valine, concentration of samples stored for 2 days at 

2°C was also similar to the fresh one and differences were only found in samples stored at -26⁰C. 

When observing VDKs concentration, both the samples stored at 2°C and at -26°C, that are 

similar to each other, are significantly different when comparing to the sample analysed while 

fresh. 
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Figure 13: FAN concentrations obtained for each conservation test using a 95% confidence interval; Identical 
characters show no significant differences 

 

According to literature, storage at 2°C may not be enough to inhibit yeast metabolism 

during beer fermentation, once yeast is capable of presenting a minimum development 

between 1 and 3°C (137), which in this study is more evident for VDKs in this study. Blanchette 

(3), when comparing fresh and samples kept at -50⁰C for at least a month, showed that 

concentration variations during storage are evident for 2,3-pentanedione. This author also 

concludes that, at this temperature, diacetyl concentrations do not vary significantly. Results 

found in Figure 14 reveal differences between fresh samples and those stored at -26⁰C, 

suggesting that a storage temperature lower than -26°C is needed to avoid diacetyl evolution 

when no other treatment is applied during sampling. Concerning amino acids evolution during 

beer fermentation samples storage, no conclusions were found in previous studies. 

Concerning the pasteurized samples, the FAN and amino acids concentrations show no 

significant differences between fresh samples and samples stored at 2⁰C. On the other hand, for 

VDKS, neither the concentrations of samples stored at 2°C or at -26°C are similar to the those 

observed in fresh ones. These results are in agreement with previous publications, where 

pasteurized and unpasteurized samples are compared when fresh and after storage at 22°C for 

almost an year (138) and at 40°C during 41 days (139). Analytical data from these studies show 

that pasteurization induces the formation of heat-induced volatile staling compounds, such as 

VDKs (2). Additionally, these studies also show that the content of volatile esters is higher in 
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unpasteurized beers, possibly due to active remaining yeast in these samples or as a 

consequence of the heat treatment suffered during pasteurization, which may cause the loss of 

these volatile compounds (138). This information is useful to predict the effects of storage on 

the VOCs that were not tested at this stage.  

 

 

Figure 14: VDKs concentrations obtained for each conservation test using a 95% confidence interval; Identical 
characters show no significant differences 

 

At last, diacetyl and amino acids concentrations from fresh samples treated with calcium 

chloride show no significant differences when compared with both samples stored for 2 days at 

2 and -26°C. Moreover, the results of FAN concentrations reveal that samples stored at -26⁰C 

are also similar to fresh samples, contrarily to those stored at 2⁰C. 2,3-pentanedione 

concentration is the only compound that shows significant differences between fresh and 

samples kept at -26ºC. 

After considering the observations mentioned above, it is possible to conclude that VDKs 

are the tested compounds that suffer more changes during storage, once their concentration is 

greatly affected both when beer fermentation samples are pasteurized and also when controlled 

storage temperature is the only treatment applied. When undergoing these treatments, FAN 

and amino acids contents are either not affected by storage temperature or their concentrations 

are only significantly different from fresh samples when they are kept at -26°C. 
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Figure 15: Amino acids concentrations obtained for each conservation test using a 95% confidence interval; Identical 
characters show no significant differences 

 

Effectively, when calcium chloride is added during sampling, concentrations from fresh 

samples show no significant differences from those kept either at 2 and -26°C, in the case of 

diacetyl and the analysed amino acids. For FAN and 2,3-pentanedione, data show that only one 

of the storage temperature, 2°C and -26°C, respectively, greatly influences their concentration, 

when compared with samples analysed while fresh. When compared with the remaining 

evaluated treatments applied to beer fermentation samples, it is possible to conclude that the 

implementation of chloride salts addition is an important step to avoid sample evolution during 

storage, once it does not induce major variations in the analysed compounds in this assay. 

Besides salts addition, when evaluating possible storage temperatures, storage at -26°C seems 

to be more adequate to avoid sample evolution.  

Consequently, the addition of calcium chloride during sampling, associated with storage 

at -26°C for 2 days, is the most efficient treatment to ensure proper sample preservation. 
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FERMENTATIONS GENERAL CHARACTERIZATION  
   

Samples from three lager fermentation vessels, all resultant from wort produced with 

one malt batch and inoculated with a third-generation yeast, were obtained from a local 

brewery. Since the beginning of fermentation and until the beginning of maturation, several 

aliquots were collected at fermentation days 0, 3, 5, 6, 8, 9, 10 and 12. Once wort batches for 

each fermentation vessel were produced sequentially (the beginning of the F1 and F3 differs 

about 12h) and samples were daily collected all at the same time, a deviation of a few hours 

between the beginning of each fermentation must be considered in samples from the same day. 

Therefore, when possible and necessary, fermentation time is always expressed in hours, 

instead of days. 

 

 

Figure 16: Temperature and extract during the analysed lager fermentations 

 

Figure 16 shows the values of temperature and extract obtained from fermentations 1, 

2 and 3 at the beginning of each day. Succinctly, for all the vessels, fermentation started at 8°C 

and followed a heating ramp until reaching a maximum temperature of 14°C, between day 5 or 

6, which was kept for 4 days. Then, another ramp was applied until the temperature was 

reduced to 7°C. Finally, at the end of primary fermentation, solution temperature was set to 1°C, 

so that beer maturation could occur.  
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In terms of extract, fermentations 1 to 3 follow a similar evolution. At the beginning of 

fermentation, extract values are slightly lower than 14g/L and, as alcoholic fermentation occurs, 

sugars are consumed until day 6 or 7, when extract values stabilize between 3 and 2g/L. At this 

point, sugars transformation into ethanol and carbon dioxide ceases but still, secondary 

metabolites are being produced and ethanol attenuation may occur until the end of maturation 

(2).  Little deviations observed between the three extract curves can be explained by the 

moment when sample was collected in relation to fermentation beginning in each vessel. 

Effectively, when looking to FAN consumption (Figure 17), concentrations also decrease 

very quickly at the beginning of fermentation, reaching minimum values somewhere between 

125 and 150 hours, suffering only minor variations until primary fermentation is over. Both sugar 

and FAN consumption curves demonstrate that cell growth exponential phase (125) occurred 

until the 6th or 7th day of fermentation, followed by the stationary growth phase. These results 

are similar to those obtained by Landaud, Latrille (140) although generally, nutritional 

components cease earlier in fermentation, as demonstrated before (3, 38, 61, 125, 141). 

Results show that FAN initial contents vary between 186.69 (F1) and 197.78 mg/L (F2), 

while final concentrations go from 104.05 (F1) to 111.67 mg/L (F2). These variations are 

consistent with values observed for bottom flocculent yeasts (Cheong, Wackerbauer et al. 2007, 

Lei, Li et al. 2013). Although the measured initial FAN contents are in accordance with several 

studies (38, 140, 142), another publication shows that an initial FAN concentration lower than 

300 mg/L can  lead to an obligatory extended fermentation time to achieve a proper diacetyl 

reduction (61).  

 

Figure 17: FAN consumption during the analysed lager fermentations; %RSD lower than 10 
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AMINO ACIDS UPTAKE DURING LAGER FERMENTATION 

 

 Individual amino acids concentrations were determined by implementing the developed 

HPLC-fluorescence methodology to lager beer fermentation samples. The obtained results are 

listed in Appendix I. Total amino acids evolution in the lager fermentations in study are shown 

in figure 18 and a preliminary observation of amino acids uptake shows that these curves are 

very similar to those observed for FAN consumption (Figure 17). 

 At the beginning of fermentation, total amino acids concentrations (Figure 18) achieve 

values close to 1000 mg/L, which are lower than those observed by other authors (81, 126, 143). 

This discrepancy may be related with the addition of nitrogen non-rich adjuncts during wort 

production of the analysed beer fermentations (2, 144). Different yeast strain, technological 

procedures used (96) and yeast vitality (3) may also explain the differences between the 

observed values and those found in literature.  Similarly to what was observed in FAN uptake 

(Figure 17), a relatively fast decrease of total amino acids concentration takes place during yeast 

exponential growth phase (125, 144), until 125 to 150 hours of fermentation. 

 

 

Figure 18: Total amino acids evolution during the analysed lager fermentations; Results from day 0 for F3 were not 
considered, once an unexpected error occurred during online derivatization for these samples replicates and because 
there was no fresh sample available for repeating the analysis.  
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observed and this author showed that yeast metabolism slows down intensively with decreasing 

fermentation temperatures (3). From this point forward, total amino acids concentration is 

basically constant in all fermentations, as yeast multiplication stops (144), except for a slightly 

increase, which occurs more or less 225 hours after the beginning of fermentation. This may be 

a consequence of the biosynthesis of an exhausted preferred amino acid by the brewing yeast 

(61).  

At the end of fermentation, total amino acids concentrations round about 400 mg/L, 

which means that a bit more than 50% of the amino acids were consumed. These concentrations 

are consistent with those described for Czech lager beers (96) but are higher than values 

determined in Hungarian beers (95). Considering the amino acids assimilation ratio determined 

in previous publications, about 35% of the amino acids are consumed in normal gravity wort (37, 

45), while in high gravity wort this ratio is as high as 45% (37).  

For a better understanding of amino acids uptake during beer fermentation, these 

compounds are distributed in four distinct groups, according to the metabolic preferences of 

the brewing yeast. In lager fermentations, amino acids belonging to group A are exhausted from 

the medium early at the logarithmic phase of yeast growth. At the same time, amino acids from 

group B are consumed at a slower rate but usually are not completely absorbed. Then, amino 

acids from group C are assimilated even more slowly and incompletely, after those from group 

A were already exhausted (39, 146). A fourth group englobes the un-preferred amino acids, 

which are almost never consumed, unless all the others amino acids have ceased (39).  This 

classification is summarized in Table 11. 

 

Table 11: Amino acids uptake according to lager yeast metabolic preferences, adapted from García et al. (1994)  (39) 
and Palmqvist and Äyräpää (1969) (146) 

Group A Group B Group C Group D 

glutamine histidine glycine proline 

asparagine valine phenylalanine γ-Aminobutyric acid 

serine methionine tyrosine  

threonine leucine tryptophan  

lysine isoleucine alanine  

arginine aspartic acid   

 glutamic acid   

 

Following this classification, amino acids were distributed in three groups, according 

their uptake curves observed during lager fermentation. Figure 19 shows amino acids uptake 
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patterns of each individual amino acids from groups A, B and C in lager fermentations 1 (F1), 

while Figure 20 summarizes the behaviour of each group of amino acids, elucidating the 

occurrence of different assimilation rates and concentrations at the end of fermentation. Data 

relative to fermentations 2 and 3 are not shown, once identic amino acid uptake behaviour was 

observed and these fermentations data would not add any other useful information to results 

discussion. GABA and alanine (coeluted amino acids in the applied methodology) were not 

considered here. 

Comparatively to the classification established in other studies, results obtained for 

these lager fermentations differ relatively to some amino acids uptake patterns. Threonine, for 

example, was classified as a group B amino acid, instead of belonging to group A, once this amino 

acid was not totally consumed during fermentation, contrarily to what was demonstrated in 

other studies (39, 146). Glutamine (Appendix I), also usually placed in group A, shows an unusual 

uptake curve as well and for that reason it was not included in Figures 19 and 20.  

There is a chance that these amino acids concentrations sharply decreased from day 0 

to day 1 or 2 and that, subsequently, yeast cells synthetized this preferred amino acid according 

to their metabolic requirements. In the future, in order to confirm this hypothesis and 

presuming that important changes in amino acids concentration may have occurred during the 

first 72 hours of fermentation, samples should be collected more frequently during this period. 

Additionally, collecting a wort sample before pitching may add useful information to this study. 

Besides that, other amino acids from group A, asparagine, serine and lysine, show initial 

concentrations lower than expected (39) but present typical uptake behaviours and were almost 

completely exhausted between the 3rd and the 5th day of fermentation. This is in accordance to 

previously presented results concerning lager static fermentations (39), although the same 

author shows that in fermentations with external agitation, these amino acids are already 

exhausted right after the second day of fermentation. Similar results were also verified in 

another static lager fermentation (38), while another study shows a lager fermentation in which 

group A amino acids are only fully exhausted after 100 hours of fermentation (147).  

Secondly, amino acids from group B (Figure 19B) show a slower assimilation than those 

from group A, once they stop being consumed after about 150 hours of fermentation, much 

later than showed in other studies (38, 39), where amino acids from groups A and B stop being 

assimilated at the same time, though those from group A are exhausted, contrarily to those from 

group B. Nonetheless, in agreement with other publications (38, 39, 147), assimilation ratio 

values for these amino acids are always higher than 50%.  
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Figure 19: Group A (A), B (B) and C (C) individual amino acids uptake in lager fermentation 1; %RSD lower than 15  
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Figure 20: Group A, B and C amino acids uptake in lager fermentations 1 

 

Finally, when analysing group C amino acids (Figure 19C), it is clear that histidine, glycine, 

tyrosine and tryptophan are barely consumed during fermentation, as reported by other authors 

(39, 146). Effectively, phenylalanine uptake curve (Figure 19B) is the only one that does not 

follow a typical uptake by this lager yeast, disagreeing with results found in literature (39, 146). 
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analysis of individual concentrations obtained, all the volatile organic compounds were 

organized in groups according to their chemical nature. The evolution of these compounds and 

total amino acids concentration during fermentation time in vessels 1, 2 and 3 are represented 

in Figure 21. 

Firstly, when analysing VOCs evolution, it is possible to conclude that each chemical 

family follows a characteristic evolution in the course of primary fermentation. However, it is 

clear that compounds start being produced at an early stage of fermentation, when amino acids 

are continuously assimilated by yeast, at its most active growth phase (125, 144). Then, after 

150 hours of fermentation have passed, most of the chemical families show no significant 

differences in concentration values until fermentation is over, except for higher alcohols, which 

concentrations suffer oscillations during this period. This observation elucidates the importance 

of amino acids in beer volatile organic compounds formation, as demonstrated before (3, 45, 

125). Indeed, the final concentration of higher alcohols in beer depends on the uptake efficiency 

of amino acids and sugars assimilation rate (80). 

Contrarily to other families, higher alcohols show three peaks at, approximately, 125, 

150 and 200 hours after yeast inoculation. These oscillations may be related to higher alcohols 

transformation into esters, once they are their direct precursors (5, 148) and to amino acids 

synthesis (61). After the third concentration peak, higher alcohol content decreases until 

reaching, more or less, 60 mg/L, in accordance to concentrations determined at the end of 

fermentation in other studies (37, 142), although pilsner finished beers may present higher 

alcohols content as high as 100 mg/L or more (142, 149). Phenylethyl alcohol, isoamyl and 

isobutyl alcohol approximate concentrations determined at the end of fermentations are, 

respectively, 30, 20 and 10 mg/L. These compounds are all below their odour threshold, in 

accordance to data found in literature (5).  

Esters are usually considered as the most important family of volatile organic 

compounds in beer, once they impart characteristic aromas to this beverage (2, 144). These 

compounds are produced during fermentation mainly by the esterification of fatty acids and 

alcohols (2). At the end of primary fermentation, total esters concentration in the analysed 

samples sums about 30 mg/L. These values are in accordance with results obtained by other 

authors (37, 142). Considering individual esters, ethyl acetate is the most abundant at the end 

of primary fermentation, ranging between 20 to 25 mg/L, approximately, followed by ethyl 

caprylate with about 3.5 mg/L and isobutyl and isoamyl acetate, both showing concentrations 

close to 2 mg/L. In turn, ethyl laurate and phenylacetate were found at residual concentrations.  
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Figure 21: Volatile organic compounds (chemical families) evolution and total amino acids uptake during the 
analysed lager fermentations  
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According to other publications (37, 150), ethyl acetate is also the most abundant ester 

found in  lager beers, and although isoamyl acetate concentrations from fermentation 1, 2 and 

3 are similar to those determined in these studies (37, 116, 142), ethyl caprylate amounts in 

lager beers are usually lower than 0.5 mg/L  (37). Besides this, most of the remaining esters show 

concentrations similar to the obtained results. Considering these compounds odour threshold 

limits, all esters except for phenylacetate, ethyl butyrate and ethyl laurate present 

concentrations higher than their threshold. In all the analysed fermentations, ethyl acetate final 

concentrations are slightly below this compound odour threshold but, once esters content may 

double during beer maturation (2), it is expected that ethyl acetate aroma will be perceptible in 

the final beer. Synergistic effects between esters odours were also suggested previously (81). 

The volatile fatty acids were the least abundant family during the entire course of 

fermentation, showing concentrations of approximately 6 mg/L at the end of this stage. 

Decanoic acid presents individual concentrations of 3 to 4 mg/L, while octanoic and hexanoic 

approximate concentrations are 1.45 and 1 to 2 mg/L, respectively.  These values are in the same 

order of magnitude of those reported by other authors, although usually octanoic acid is the 

most abundant one, followed by hexanoic and decanoic (42-44). All the analysed fatty acids 

concentrations are below their threshold limit.  

Acetic acid concentrations (appendix II) were also evaluated. At day 0, these values are 

close to 40 mg/l and then, after 150 hours of fermentation a significant concentration decrease 

occurs, follow by an increase of acetic acid until maximum values of approximately 100 mg/L are 

reached at the end of fermentation.  These values are in agreement with those observed in other 

beers. However, other authors affirm that acetic acid in beer may achieve concentrations as high 

as 1000 mg/L. Although at 100 mg/L the acetic acid flavour is perceptible, possible attenuation 

during maturation may contribute to lower this content bellow acetic acid threshold limit (151). 

Vinyl guaiacol relative areas (appendix II) were also measured during the course of 

fermentation and its concentration increased about 5 to 6 times in the first 150 hours. Then, 

vinyl guaiacol content declines to about half and then remains constant when yeast growth 

stationary phase starts and until the end of primary fermentation. This compound presents a 

low odour threshold described as phenolic or medicinal (46) and, besides being appreciated in 

some ale beers, vinyl guaiacol aroma is often considered as an undesirable flavour in lager beers 

(48). The quantification of this compound was not a primary goal of the present work, therefore, 

a more accurate determination of this compound in local beer samples will be necessary to 

understand its influence in beer aroma. 
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Finally, carbonyl compounds, which include diacetyl, 2,3-pentanedione, acetoin and 

acetaldehyde, are intensively produced until the fifth day of fermentation. Then, this content 

decreases drastically and, at 225 hours of fermentation, another (less intense) peak appears. 

Acetaldehyde (appendix II) was only quantifiable from day 0 to day 6. After the 6th day, this 

compound concentration was always lower than its limit of quantification and, consequently, 

below its odour threshold. Vicinal diketones and acetoin evolution during fermentation, as well 

as related compounds such as 2,3-butanediol, will be carefully studied in the next section. 

 

DISCUSSION 
 

This final section is dedicated to the study of vicinal diketones evolution during the lager 

fermentations in study. Therefore, the analysed compounds that are inherent to vicinal 

diketones formation in fermentations 1, 2 and 3 were all brought together, as shown in Figure 

22, 23 and 24, respectively, including secondary metabolites resultant from diacetyl reduction 

and the amino acids which formation paths are known to induce diacetyl and 2,3-pentanedione 

synthesis. Additionally, free amino nitrogen evolution during this period was also considered, 

once it represents a good indicator of yeast cell growth and fermentation efficiency (38). 

Starting with nitrogenous compounds uptake, as mentioned before, FAN evolution is 

characterized by an accelerated decline in the first 150 hours of fermentation, correspondent to 

yeast most active growth and multiplication stage. At the beginning of fermentation, group A 

amino acids are transported into the cell and assimilated by yeast. Group B amino acids uptake 

is also taking place at this stage (3), although at a lower rate (146). This last group includes the 

amino acids valine, leucine and isoleucine, which are related to VDKs formation. Then, from that 

point forward, these compounds also stop being assimilated by the yeast and their 

concentrations remain constant until the end of fermentation.  

The analysed fermentations (Figure 24, Figure 23 and Figure 24) show that valine is not 

completely removed from fermentation medium while, contrarily, isoleucine and leucine are 

almost consumed to exhaustion, after approximately 125 hour of fermentation, slightly earlier 

than valine. Actually, it was already demonstrated that sometimes these two amino acids  can 

be classified as belonging to group A (146). Also, much faster and more complete wort amino 

acids absorption was verified in ale beers, while lager beer show slower amino acids absorption 

rates and a higher residual content of amino acids at the end of primary fermentation (3), in 

agreement to the observed results. 



Vicinal Diketones Monitoring During Lager Beer Fermentation: The Importance of Nitrogenous Compounds 

 

97 
 

When looking to initial amino acids concentration, valine is the most abundant one in 

fermentations 1 and 2 with, approximately 250 mg/L, followed by leucine with about 200 mg/L 

and isoleucine, which shows concentrations rounding 100 mg/L, in fermentations 1 and 2. The 

same order is observed in fermentation 3 concentrations at the third day of fermentation. Other 

authors show that initial leucine concentrations range from approximately 150 to 300 mg/L and 

that this amino acid is more abundant than valine (37, 83, 146), which content usually ranges 

from 100 to 170 mg/L (37, 39, 83, 146). These values are much lower than those observed in the 

samples analysed in the present study. In these publications, isoleucine is always the least 

abundant amino acid and its concentration varies between 60 and 100 mg/L. Also, other author 

showed that high valine contents are usually associated to delayed diacetyl formation (152).  

Then, at the end of fermentation, valine concentration is, approximately 30 mg/L and 

leucine and isoleucine contents are lower than 5 mg/L. Similar concentrations of valine were 

found in other experiments, although the same authors had shown higher final concentrations 

of leucine and isoleucine (146). As mentioned before, high residual content of amino acids is 

typical of lager beers, contrarily to ale beers, in which amino acids exhaustion usually occurs. 

This behaviour also showed to be intensified when fermentation temperatures lower than 16°C 

are used, once yeast metabolism is dramatically slowed down at lower temperatures (3). These 

observations may justify the observed valine concentration but not leucine and isoleucine 

contents at the end of fermentation which, usually, are not typical of lager fermentations. 

 

Figure 22: VDKs related compounds evolution during lager fermentation 1; % RSD lower than 20 for acetoin and 2,3-
butanediol and lower than 15 for the other compounds 
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Figure 23: VDKs related compounds evolution during lager fermentation 2; % RSD lower than 20 for acetoin and 2,3-
butanediol and lower than 15 for the other compounds 

 

Figure 24: VDKs related compounds evolution during lager fermentation 3; % RSD lower than 20 for acetoin and 2,3-
butanediol and lower than 15 for the other compounds 
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When considering diacetyl evolution during fermentations, valine, leucine, 2,3-

butanediol and acetoin concentrations are intimately related to the synthesis of this vicinal 

diketone (2). Diacetyl, due to its extremely low odour threshold, is the most critical off-flavour 

produced during beer fermentation (3). Firstly, the referred amino acids biosynthesis by the 

brewing yeast is the metabolic process where an important intermediate, α-acetolactate, is also 

produced. This compound is then excreted to the wort and converted to diacetyl, through a 

spontaneous oxidative decarboxylation process (50). However, the brewing yeast has the ability 

of absorbing and enzymatically reducing diacetyl into less odour-active compounds, acetoin and 

then 2,3-butanediol, which have no negative influence on beer flavour (62). 

In the analysed lager fermentations, two diacetyl concentration peaks are observed 

(Figure 232, 23 and 24). The first peak occurs at approximately 130 hours after pitching, which 

maximum registered concentration varied between 200 (fermentation 3) and 250 µg/L 

(fermentation 1 and 2). Previous studies dedicated to VDKs formation report the occurrence of 

a single diacetyl peak with concentration values higher than 500 µg/L in the first two days (48h) 

of fermentation (3, 57), which period was not monitored in the analysed fermentations. 

Therefore, a more frequent sample collection in the first days of fermentation will be necessary, 

in order to properly control diacetyl peak formation during this period. The second diacetyl 

concentration peak shows concentrations ranging from 250 to 300 µg/L and occurs 

approximately, at 230 hours after pitching. In fermentation 1, a slight decrease of diacetyl 

concentration occurs at this stage, probably due to an unbalanced diacetyl formation and 

reduction ratio caused by the activation/deactivation of amino acids biosynthesis pathway (3).  

At the end of primary fermentation, diacetyl concentrations are slightly above its odour 

threshold limit, ranging approximately from 150 µg/L, in fermentation 1, to 200 µg/L, in the third 

fermentation vessel. It is expected that the remaining yeasts in solution are able to reduce 

diacetyl to values below this threshold limit during the maturation process (2, 51). According to 

results found in literature, the final concentration of diacetyl is conditioned by the level of α-

acetolactate and the stage when it is excreted, but also by the yeast ability to enzymatically 

reduce diacetyl at certain fermentation conditions (3, 50, 61). Fermentation temperature 

influences yeast growth (62) and consequently fermentation rates . Thus, as this temperature 

decreases, although maximum diacetyl levels are lower, diacetyl formation and reduction is 

delayed and fermentation or maturation period are extended (3, 39). 

As mentioned before, as diacetyl concentrations oscillate, other compounds levels also 

are affected. In a matter of fact, the increase of diacetyl in the fermenting wort is caused by 
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valine depletion (50), which can occur in two different extensions. Worts with high levels of FAN 

are intimately related to high fermentation rates and, for that reason, VDKs formation is 

enhanced, although their reduction also occurs more efficiently. In this case, group A amino 

acids are abundant and while these are being consumed, group B amino acids synthesis also 

occurs and, consequently, a single peak of diacetyl is observed. On the other hand, similarly to 

the results obtained in this study, when low levels of FAN are available and as soon as group A 

amino acids are exhausted, if group B amino acids depletion occurs, diacetyl synthesis is induced 

once again (3, 61, 81, 82).  

Therefore, the existence of two diacetyl peaks is consistent with the FAN levels 

determined, which are lower than those in fermentations with only one diacetyl peak. Two 

diacetyl peaks were also detected in lager fermentations with external agitation (39). This author 

also confirms that each round of yeast propagation reduces its metabolic activity, which may 

explain delayed diacetyl formation as well. The use of coloured malts and adjuncts that yield 

little nitrogen also leads to amino acids concentration decrease in the wort, which is usually 

associated with enhanced levels of diacetyl (152). 

The same way that group B amino acids exhaustion is accompanied by diacetyl 

formation, this compound is also reabsorbed and simultaneously reduced to acetoin by yeast, 

which is then reduced to 2,3-butanediol (51). Diacetyl transformation into acetoin is 

represented in the second half of diacetyl peak. At this stage, diacetyl formation occurs at a 

slower rate than diacetyl reduction and for that reason, when diacetyl concentration decreases, 

acetoin levels increase. Minor variations are observed in acetoin concentrations, once this 

compound is immediately transformed into 2,3-butanediol. This trend is more obvious at the 

end of fermentation. Final concentrations of acetoin and 2,3-butanediol range, respectively, 

from 10 to 20 mg/L and from 50 to 80 mg/L. Acetoin concentration values are slightly above 

respective threshold limits but this should not represent a problem, once further acetoin 

reduction into 2,3-butanediol, which presents a high odour threshold, will also occur later during 

maturation (51). 

Concerning 2,3-pentanedione, a maximum concentration peak of, approximately, 400 

to 450 mg/L can be observed 150 hours after pitching, both in fermentations 2 and 3. This occurs 

after the almost complete exhaustion of isoleucine, when yeast no longer needs to produce this 

amino acid and VDKs reduction rate is higher than the respective α-acetohydroxy acid formation 

rate, as demonstrated before (3). Then, contrarily to diacetyl, 2,3-pentanedione concentrations 

gradually decrease from this point over, achieving contents rounding the 15 µg/L at the end of 
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fermentation, once yeast is no longer producing VDKs precursors and it is now available to 

absorb 2,3-pentanedione and reduce it to its respective diol (3).  

On the other hand, when analysing 2,3-pentanedione in fermentations 1, this 

concentration curve suggests the existence of an eventual higher concentration peak 

somewhere between the 1st and the 3rd day of fermentation, similarly to diacetyl’s situation. This 

behaviour could eventually be verified in the remaining fermentations, though, more frequently 

collected samples will be needed in future studies, in order to confirm this. In fermentation 1, a 

slower reduction rate of this compound also occurs after 150 hours, when isoleucine stops being 

assimilated by the brewing yeast.  

Previous experiments report maximum 2,3-pentanedione concentrations similar to 

those obtained, although in an earlier stage of lager fermentations performed at 12°C, namely 

between 40 to 75 hours after pitching (3). According to this author, this peak presents higher 

values with increased fermentation temperatures and occurs later at lower fermentation 

temperatures. Another study shows that 2,3-pentanedione peak occurs in a similar stage of 

fermentation, although maximum values are slightly lower than those observed in this study 

(153). The final concentrations of 2,3-pentanedione are also similar to those determined before 

by Blanchette (3) and Tian (153). Final concentrations of this VDK determined during the present 

study are much lower than this compound odour threshold (2, 12), and for that reason, 2,3-

pentanedione aroma should be imperceptible in the finished beer. 

According to the results presented above, it is suggested that high quality and sufficient 

FAN and amino acids content should be ensured at the beginning of fermentation by, for 

example, supplementing wort with key amino acids, in order to accelerate fermentation rates 

and to avoid the simultaneous exhaustion of groups A and B amino acids. Additionally, changing 

fermentation temperature can also positively affect fermentation rates, avoiding yeast 

metabolic activity slow down. By following these practices, it would be possible to avoid the 

formation of two diacetyl peaks and to greatly reduce the fermentation time, without affecting 

beer quality. 
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CONCLUSION 
 

Beer quality depends not only on the chemical characteristics of the raw materials used 

but is also greatly affected by the processes involved in its production. The availability and 

quality of nitrogenous compounds is intimately related with fermentation rates and volatile 

organic compounds formation by the brewing yeast, including beer off-flavours, such as vicinal 

diketones. Two new methodologies were developed, one for the determination of amino acids 

by HPLC-fluorescence and another for the determination of volatile organic compounds by GC-

MS in beer fermentation samples. The second methodology development included a design of 

experiments for the optimization of analytes extraction by HS-SPME. Also, the EBC standard 

methodology for the determination of free amino nitrogen was also implemented. 

Firstly, the methodologies mentioned above were applied to beer fermentation samples 

in order to determine the most adequate conservation procedure to avoid their evolution during 

transportation and storage. It was possible to conclude that the implementation of chloride salts 

addition and storage at -26°C are important steps for avoiding beer fermentation samples 

evolution during storage, once this treatment does not induce significant variations in the 

analysed compounds and interrupts brewing yeast metabolism. When no storage treatment was 

applied to samples, vicinal diketones were the most affected compounds, when compared to 

nitrogenous compounds. In agreement to literature, sample pasteurization affected sample 

composition, including VDKs, which formation can be induced by heat. 

The developed methodologies and optimal conservation parameters were applied to 

three wort batches produced from the same raw materials, which were inoculated with a 3rd 

generation yeast. Eight samples were collected during the fermentation process, which lasted 

for 12 days. For each sample replicate, 21 amino acids, 22 volatile organic compounds and FAN 

levels were determined. Temperature and extract evolution were also monitored during this 

period. All the obtained data were analysed and relations between the analysed parameters, 

namely vicinal diketones formation and amino acids uptake, were established. 

Considering the uptake of free amino nitrogen and amino acids during lager 

fermentations, concentrations remained stable approximately at, approximately, 150 hours 

after pitching, later than what was shown in previous studies. This period is associated with 

exponential yeast growth, which ceases when nutritional compounds stop being assimilated by 

the brewing yeast and stationary stage takes place. Concerning yeast uptake preferences, most 
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of the amino acids consumption patterns showed to be in accordance with results found in 

literature for lager fermentations. Therefore, group A amino acids were completely exhausted 

in the first 100 hours of fermentation, while those from group B were assimilated at a slower 

rate, showing high and constant residual concentrations (about 100 mg/L) approximately 150 

hours after pitching. Finally, group C amino acids were barely consumed by the brewing yeast 

and also high concentrations were measured at the end of fermentation (about 100 mg/L). 

A careful observation of volatile organic compounds evolution during the 12 days of 

fermentation allowed to conclude that, similarly to nitrogenous compounds, major changes also 

occur in the first 150 hours of fermentation. After this period, only subtle concentration changes 

take place, except for higher alcohols, once these are eventually produced as vicinal diketones 

synthesis occurs and are also assimilated during ester formation by the brewing yeast. At the 

end of fermentation, higher alcohols were the most abundant family of compounds (ranging 

from 35 to 65%), followed by esters (about 9%), which were generally above their odour 

threshold limit. Carbonyl compounds were the third most abundant family (about 2-6%), while 

only residual fatty acids concentrations (about 1-3%) were found at this stage. 

At last, by interrelating all the obtained results, low free amino nitrogen (about 200 

mg/L) levels together with insufficient amino acids concentrations seem to result in low 

fermentation rates, caused by a slow yeast metabolic activity. Indeed, once group A amino acids 

are consumed until exhaustion, complete absorption of some group B amino acids, namely 

leucine and isoleucine, are the cause of delayed vicinal diketones formation and reduction by 

the brewing yeast. Thus, this leads to the synthesis of group B amino acids in the middle of 

fermentation and consequently to diacetyl and 2,3-pentanedione formation, causing the 

abnormal occurrence of a second diacetyl peak, 230 hours after pitching. Contrarily to 2,3-

pentanedione, diacetyl concentrations at the end of fermentation are slightly above their odour 

threshold limits (ranging from 150 to 200 µg/L) but it is possible to presume that no vicinal 

diketones related off-flavours will be detected in the final product, once their reduction to less 

flavour-active compounds will be certainly achieved during maturation. 

Effectively, high quality and sufficient FAN and amino acids content ensures faster 

fermentation rates, avoiding yeast metabolic activity slow down and the simultaneous 

exhaustion of group A and B amino acids. Wort supplementation with key amino acids and 

changes in fermentation temperature are factors that also positively affect fermentation rates. 

Following these practices, it would be possible to avoid the formation of two diacetyl peaks and 

to greatly reduce the fermentation time. 
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FUTURE PERSPECTIVES 
 

In addition to what was achieved in this study, suggestions for future work include: 

• Collecting samples more frequently in the beginning of fermentation in order to 

detect a more detailed evolution pattern of nitrogenous and volatile organic 

compounds; 

• Evaluating the effect of changing wort production and fermentation parameters 

(for instance, the temperature) on the occurrence of more than one diacetyl 

peak; 

• Testing the influence of different brewing yeast generation in vicinal diketones 

reduction rate. 
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APPENDIX 
 

Appendix I: Individual amino acids concentration values during the analysed lager fermentations; nq: non-quantifiable 

 

Fermentation 
time (days) 

Fermentation 
vessel 

Amino acids concentration (mg/L) 

aspartic acid glutamic acid cysteine asparagine serine glutamine histidine 

mean ±sd %RSD mean ±sd %RSD mean ±sd %RSD mean ±sd %RSD mean ±sd %RSD mean ±sd %RSD mean ±sd %RSD 

0 

F1 36.35 3.65 10.05 33.92 0.54 1.59 0.76 0.02 3.26 17.03 1.51 8.87 28.87 1.23 4.28 5.55 0.10 1.76 24.18 0.40 1.64 

F2 34.84 4.55 13.05 36.50 0.29 0.81 1.00 0.10 10.27 19.40 3.00 15.46 36.21 3.56 9.83 6.68 0.48 7.11 32.33 4.74 14.65 

F3 - - - - - - - - - - - - - - - - - - - - - 

3 

F1 22.04 2.42 10.98 36.17 2.88 7.98 1.12 0.18 16.01 1.47 0.13 9.03 1.47 0.20 13.80 6.65 0.83 12.52 20.26 2.59 12.80 

F2 30.01 2.93 9.75 40.87 3.90 9.55 0.84 0.12 14.11 3.42 0.32 9.37 2.71 0.22 8.24 5.93 0.45 7.52 25.44 2.38 9.35 

F3 30.49 1.71 5.60 34.91 2.47 7.07 1.23 0.12 10.06 5.85 0.46 7.91 3.99 0.13 3.33 4.83 0.25 5.25 28.34 0.33 1.15 

5 

F1 8.81 0.53 6.04 24.91 2.05 8.21 1.40 0.09 6.23 nq - - 0.97 0.03 3.13 29.84 3.70 12.39 17.68 1.38 7.81 

F2 9.74 0.55 5.64 27.20 1.49 5.49 1.31 0.11 8.06 nq - - 1.11 0.08 7.47 26.25 2.07 7.90 19.06 0.54 2.86 

F3 8.66 0.85 9.82 24.72 2.74 11.08 1.23 0.13 10.52 nq - - 0.92 0.10 11.34 19.91 2.49 12.53 17.94 1.14 6.36 

6 

F1 5.60 0.53 9.53 15.84 0.31 1.98 1.13 0.15 13.25 nq - - 0.59 0.04 6.10 17.01 1.48 8.69 14.76 1.34 9.06 

F2 6.65 0.54 8.19 17.56 0.26 1.48 1.22 0.14 11.07 nq - - 0.60 0.02 3.60 15.49 0.26 1.69 16.32 0.30 1.86 

F3 6.52 0.58 8.87 17.88 1.05 5.88 1.19 0.13 10.99 nq - - 0.62 0.06 9.07 15.51 0.49 3.18 16.42 0.65 3.94 

8 

F1 3.62 0.24 6.70 15.54 1.02 6.53 1.14 0.12 10.75 1.82 0.09 5.17 0.84 0.07 8.81 20.02 0.30 1.51 15.81 0.12 0.75 

F2 3.33 0.31 9.35 15.12 1.31 8.68 1.01 0.14 14.03 1.57 0.13 8.38 0.74 0.03 4.18 16.59 1.08 6.51 15.55 1.30 8.36 

F3 3.59 0.35 9.74 15.19 0.67 4.38 1.38 0.10 6.96 1.64 0.07 4.35 0.75 0.04 5.91 17.06 0.11 0.65 16.47 0.22 1.32 

9 

F1 4.69 0.43 9.26 15.41 0.85 5.49 1.51 0.14 9.48 2.06 0.11 5.11 0.77 0.04 5.74 22.86 0.64 2.80 16.15 0.42 2.62 

F2 5.02 0.36 7.10 16.71 0.62 3.70 1.62 0.18 10.99 2.11 0.09 4.08 0.79 0.05 5.82 20.52 0.52 2.54 17.24 0.54 3.16 

F3 3.74 0.18 4.73 15.04 1.50 9.94 1.49 0.16 10.68 1.92 0.14 7.45 0.72 0.11 14.55 19.44 1.96 10.07 16.32 1.56 9.56 

10 

F1 5.31 0.57 10.72 15.58 1.07 6.85 1.29 0.11 8.35 1.85 0.11 6.09 0.83 0.05 5.45 19.72 0.84 4.25 14.73 0.77 5.22 

F2 5.89 0.65 11.12 16.34 1.59 9.71 1.31 0.19 14.49 1.81 0.19 10.22 0.84 0.06 7.47 17.74 1.04 5.87 15.76 1.06 6.70 

F3 6.37 0.68 10.72 16.57 0.53 3.19 1.38 0.20 14.84 1.87 0.09 4.61 0.94 0.06 6.31 17.97 0.63 3.50 16.54 0.41 2.48 

12 

F1 5.47 0.58 10.67 14.24 0.75 5.30 1.21 0.12 9.71 1.76 0.14 8.14 0.70 0.04 5.88 20.93 0.67 3.18 15.23 0.64 4.23 

F2 2.63 0.43 16.17 13.68 1.63 11.92 1.15 0.12 10.80 1.68 0.23 13.74 0.71 0.07 9.55 17.47 2.06 11.82 15.86 1.83 11.56 

F3 5.73 0.70 12.13 15.01 0.77 5.15 1.45 0.14 9.96 1.86 0.16 8.44 0.82 0.07 9.09 19.05 0.46 2.41 17.00 0.67 3.94 
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Appendix I: Individual amino acids concentration values during the analysed lager fermentations; nq: non-quantifiable (cont.) 

 

 

Fermentation 
time (days) 

Fermentation 
vessel 

Amino acids concentration (mg/L) 

citruline glycine threonine arginine tyrosine GABA + alanine tryptophan 

mean ±sd %RSD mean ±sd %RSD mean ±sd %RSD mean ±sd %RSD mean ±sd %RSD mean ±sd %RSD mean ±sd %RSD 

0 

F1 4.29 0.16 3.66 19.07 0.40 2.07 37.32 0.60 1.62 70.50 2.32 3.28 66.90 1.26 1.89 162.42 3.27 2.01 24.92 1.36 5.46 

F2 5.20 0.35 6.73 20.75 0.78 3.74 42.80 1.03 2.40 79.30 2.67 3.37 71.30 3.24 4.54 167.98 19.65 11.70 24.51 1.51 6.17 

F3 - - - - - - - - - - - - - - - - - - - - - 

3 

F1 4.00 0.36 9.09 18.19 0.24 1.35 14.74 0.41 2.80 27.19 2.67 9.80 55.41 5.75 10.38 177.64 10.16 5.72 16.77 0.58 3.45 

F2 4.51 0.52 11.53 19.68 0.30 1.51 14.84 0.34 2.27 42.14 2.48 5.87 62.95 3.85 6.12 188.88 5.16 2.73 19.17 0.75 3.90 

F3 4.89 0.22 4.49 19.08 0.08 0.43 14.55 0.28 1.90 47.27 3.01 6.38 67.63 2.80 4.15 185.03 0.90 0.49 20.11 0.82 4.07 

5 

F1 4.01 0.38 9.52 17.21 0.22 1.26 15.74 0.26 1.67 15.89 1.99 12.51 48.98 2.23 4.55 191.07 7.00 3.67 16.18 1.12 6.92 

F2 4.72 0.06 1.29 18.16 0.49 2.69 14.75 0.49 3.29 17.72 1.31 7.41 52.82 0.78 1.48 202.97 4.77 2.35 16.03 0.73 4.58 

F3 4.64 0.26 5.63 17.66 0.26 1.48 13.48 0.20 1.46 16.77 1.84 10.96 53.27 3.43 6.43 190.34 3.82 2.01 14.74 0.58 3.92 

6 

F1 3.47 0.51 14.62 15.22 0.65 4.29 14.31 0.29 2.05 4.89 0.19 3.98 45.66 3.56 7.80 170.66 6.46 3.78 15.61 0.58 3.73 

F2 4.14 0.16 3.90 15.26 0.31 2.02 13.24 0.24 1.78 5.77 0.24 4.19 49.39 1.68 3.39 179.80 4.15 2.31 15.68 0.61 3.86 

F3 4.34 0.10 2.20 15.13 0.17 1.10 12.74 0.13 1.02 7.09 0.35 4.98 51.07 2.93 5.73 179.15 2.45 1.37 14.44 0.68 4.68 

8 

F1 3.69 0.10 2.67 15.17 0.16 1.06 14.89 0.12 0.83 4.01 0.08 2.06 48.27 1.49 3.08 182.60 1.93 1.06 16.49 0.81 4.89 

F2 3.96 0.48 12.07 15.73 0.71 4.49 13.75 0.30 2.18 4.30 0.28 6.61 49.61 3.33 6.72 185.52 5.84 3.15 15.75 0.58 3.66 

F3 4.34 0.10 2.26 15.30 0.17 1.11 12.99 0.15 1.19 5.09 0.04 0.86 51.96 0.85 1.63 184.67 0.95 0.51 15.41 0.38 2.44 

9 

F1 2.73 0.16 5.98 15.83 0.17 1.05 15.29 0.27 1.77 4.83 0.15 3.05 55.04 1.96 3.55 183.58 3.81 2.08 16.34 0.81 4.98 

F2 3.52 0.11 3.12 16.42 0.55 3.35 14.27 0.52 3.62 5.71 0.27 4.70 54.37 2.05 3.77 196.90 7.56 3.84 16.32 0.52 3.20 

F3 3.72 0.52 14.02 15.48 1.27 8.24 12.92 1.20 9.27 6.21 0.83 13.40 54.24 4.99 9.21 183.88 15.17 8.25 14.91 1.35 9.08 

10 

F1 2.46 0.32 12.82 15.12 0.19 1.26 14.64 0.15 1.04 4.29 0.14 3.21 55.87 2.79 5.00 175.56 5.11 2.91 15.88 1.00 6.28 

F2 3.06 0.28 9.18 16.14 0.46 2.84 14.04 0.45 3.20 4.90 0.34 6.96 56.27 6.85 12.18 191.74 7.91 4.12 16.30 1.14 6.97 

F3 2.89 0.13 4.48 16.06 0.74 4.59 13.73 0.56 4.11 5.68 0.41 7.16 55.84 2.86 5.12 190.38 7.57 3.98 16.97 1.07 6.30 

12 

F1 2.52 0.08 3.04 14.17 0.45 3.19 13.94 0.49 3.48 3.22 0.14 4.31 57.15 3.91 6.85 171.98 4.88 2.84 16.55 0.75 4.53 

F2 2.63 0.29 11.12 15.45 0.87 5.64 13.27 0.33 2.48 3.70 0.23 6.29 53.24 4.97 9.33 178.03 8.09 4.54 15.74 0.75 4.77 

F3 2.99 0.35 11.57 16.00 0.35 2.20 13.35 0.13 0.96 4.54 0.14 3.15 60.90 3.85 6.33 188.14 4.54 2.41 16.49 0.83 5.03 
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Appendix I: Individual amino acids concentration values during the analysed lager fermentations; nq: non-quantifiable (cont.) 

Fermentation 
time (days) 

Fermentation 
vessel 

Amino acids concentration (mg/L) 

unknown + methionine valine phenylalanine isoleucine leucine ornithine lysine 

mean ±sd %RSD mean ±sd %RSD mean ±sd %RSD mean ±sd %RSD mean ±sd %RSD mean ±sd %RSD mean ±sd %RSD 

0 

F1 6.64 0.06 0.96 114.55 2.16 1.89 65.87 1.21 1.84 37.64 1.82 4.83 81.93 1.44 1.76 1.43 0.10 6.87 39.94 1.43 11.12 

F2 6.55 0.61 9.27 125.56 2.32 1.85 66.69 8.82 13.23 41.55 1.59 3.84 91.97 2.28 2.48 1.51 0.20 12.93 46.24 6.50 14.06 

F3 - - - - - - - - - - - - - - - - - - - - - 

3 

F1 5.89 0.43 7.22 60.00 7.95 13.26 33.62 1.74 5.18 10.39 0.98 9.48 15.97 1.06 6.61 2.63 0.37 14.00 3.43 0.32 7.14 

F2 6.51 0.24 3.74 85.55 9.65 11.28 46.62 1.08 2.31 19.08 1.31 6.89 33.84 1.30 3.84 2.55 0.21 8.11 10.65 0.50 4.73 

F3 7.01 0.18 2.60 95.54 0.94 0.99 49.41 0.48 0.97 23.12 0.91 3.94 40.80 0.49 1.19 2.39 0.27 11.07 13.05 0.93 9.40 

5 

F1 7.04 0.37 5.32 37.02 3.98 10.74 18.86 0.96 5.07 3.98 0.35 8.91 3.57 0.22 6.24 2.49 0.44 17.56 1.14 0.18 11.91 

F2 6.50 0.12 1.80 46.47 2.47 5.31 23.70 0.49 2.07 6.05 0.24 3.99 6.14 0.28 4.49 2.68 0.31 11.49 1.02 0.08 7.38 

F3 6.36 0.34 5.39 46.78 3.92 8.39 24.61 0.42 1.71 6.39 0.24 3.69 7.33 0.30 4.10 2.38 0.35 14.59 0.78 0.09 15.38 

6 

F1 6.73 0.36 5.37 31.19 3.49 11.20 15.76 0.69 4.35 3.02 0.27 8.80 2.78 0.25 9.16 1.93 0.18 9.50 0.49 0.06 10.66 

F2 6.31 0.22 3.56 39.44 1.36 3.45 18.30 0.33 1.83 4.14 0.13 3.16 3.91 0.46 11.78 2.13 0.22 10.31 0.36 0.02 6.28 

F3 6.07 0.35 5.81 38.63 1.43 3.71 18.42 0.35 1.90 4.28 0.32 7.57 4.01 0.36 8.93 1.82 0.26 14.09 0.28 0.03 12.41 

8 

F1 6.71 0.15 2.29 34.47 0.61 1.78 16.62 0.13 0.78 3.35 0.09 2.57 3.22 0.24 7.58 1.66 0.20 12.21 0.32 0.05 13.97 

F2 6.36 0.42 6.55 38.46 3.28 8.53 18.62 0.53 2.84 4.20 0.26 6.10 4.47 0.16 3.47 1.51 0.08 5.12 0.11 0.00 0.76 

F3 6.20 0.27 4.30 40.96 0.87 2.13 18.77 0.26 1.37 4.52 0.14 3.18 4.34 0.26 5.96 1.90 0.21 10.86 0.20 0.03 13.91 

9 

F1 6.97 0.32 4.62 33.26 1.41 4.25 16.69 0.36 2.13 3.32 0.15 4.41 3.17 0.13 3.95 1.33 0.06 4.24 0.44 0.04 11.49 

F2 6.71 0.21 3.13 41.44 0.88 2.13 19.67 0.47 2.40 4.78 0.14 2.98 4.78 0.07 1.53 1.56 0.15 9.93 0.24 0.02 8.03 

F3 6.01 0.38 6.25 38.24 2.60 6.80 18.54 1.55 8.37 4.29 0.45 10.52 4.13 0.55 13.34 1.55 0.19 12.36 0.29 0.03 8.82 

10 

F1 6.60 0.34 5.15 32.41 2.17 6.68 16.34 0.31 1.87 3.29 0.17 5.07 3.34 0.12 3.60 1.22 0.18 14.38 0.59 0.04 12.01 

F2 6.75 0.32 4.72 39.65 3.10 7.83 19.28 0.67 3.47 4.55 0.32 6.97 4.74 0.37 7.81 1.50 0.20 13.21 0.57 0.06 11.07 

F3 6.67 0.51 7.59 41.20 1.26 3.06 19.61 0.74 3.78 4.80 0.22 4.51 5.06 0.31 6.05 1.61 0.02 1.42 0.55 0.07 6.79 

12 

F1 6.43 0.24 3.73 33.24 1.34 4.02 16.44 0.46 2.80 3.41 0.20 5.75 3.44 0.15 4.25 1.27 0.09 6.91 0.30 0.04 14.97 

F2 6.25 0.48 7.73 38.01 3.77 9.92 18.62 0.94 5.03 4.29 0.47 10.90 4.58 0.25 5.55 1.19 0.17 14.59 0.21 0.02 11.27 

F3 6.47 0.35 5.38 41.00 1.79 4.37 19.70 0.35 1.76 4.62 0.13 2.89 4.92 0.13 2.72 1.73 0.13 7.51 0.22 0.03 13.43 
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Appendix II: Individual volatile organic compounds concentration values during the analysed lager fermentations; nq: non-quantifiable 

 

 

Fermentation 
time (days) 

Fermentation 
vessel 

Volatile organic compounds 

acetaldehyde ethyl acetate diacetyl isobutyl acetate ethyl butyrate 2,3-pentanedione 

Concentration (mg/L) Concentration (mg/L) Concentration (µg/L) Concentration (µg/L) Concentration (µg/L)  Concentration (µg/L) 

mean ±sd %RSD mean ±sd %RSD mean ±sd %RSD mean ±sd %RSD mean ±sd %RSD mean ±sd %RSD 

0 

F1 4.82 0.13 2.64 nq - - nq - - 1667.62 2.63 0.16 nq - - nq - - 

F2 nq - - nq - - nq - - 1670.40 7.32 0.44 nq - - nq - - 

F3 nq - - nq - - nq - - 1666.37 1.67 0.10 nq - - nq - - 

3 

F1 61.79 7.06 11.42 nq - - 210.21 22.55 10.73 1788.85 17.07 0.95 nq - - 375.77 38.12 10.14 

F2 65.67 12.95 19.72 nq - - 156.42 10.62 6.79 1717.44 5.00 0.29 nq - - 257.19 21.25 8.26 

F3 43.94 9.93 22.61 nq - - 63.55 3.46 5.44 1740.91 93.38 5.36 nq - - - - - 

5 

F1 27.07 5.40 19.94 17.00 2.31 13.59 244.79 23.38 9.55 2117.00 42.98 2.03 97.55 13.42 13.76 270.97 28.96 10.69 

F2 41.69 6.90 16.56 12.12 1.84 15.14 248.61 26.00 10.46 2000.00 30.29 1.51 78.19 15.39 19.68 327.92 21.52 6.56 

F3 61.16 7.11 11.63 8.81 0.65 7.40 197.99 7.73 3.90 1932.36 20.40 1.06 56.90 7.60 13.36 189.62 38.81 20.47 

6 

F1 13.01 2.28 17.50 20.15 1.50 7.43 139.10 14.04 10.09 2155.64 49.82 2.31 133.42 7.05 5.28 238.61 19.82 8.31 

F2 15.49 2.78 17.97 16.41 0.84 5.11 193.07 6.03 3.12 2071.68 10.53 0.51 112.18 3.53 3.15 334.40 12.86 3.85 

F3 16.15 2.49 15.42 15.30 1.13 7.37 188.81 26.77 14.18 2035.21 27.61 1.36 105.44 6.37 6.04 335.69 20.60 6.14 

8 

F1 5.11 1.43 28.02 23.94 1.47 6.15 252.54 28.41 11.25 2077.44 65.76 3.17 116.56 16.44 14.11 109.28 11.78 10.78 

F2 nq - - 18.40 2.87 15.62 236.85 12.30 5.19 2000.15 62.26 3.11 105.16 13.15 12.50 105.26 4.34 4.12 

F3 nq - - 10.10 0.60 5.95 105.13 3.07 2.92 1903.36 19.31 1.01 75.39 8.60 11.41 104.86 7.96 7.60 

9 

F1 nq - - 22.23 1.50 6.74 256.85 26.94 10.49 2071.98 14.38 0.69 123.67 9.11 7.36 36.77 5.49 14.93 

F2 nq - - 20.96 1.90 9.06 249.70 19.00 7.61 2065.19 26.07 1.26 120.61 5.75 4.77 51.78 5.31 10.25 

F3 6.02 0.71 11.77 19.43 2.66 13.68 234.81 33.01 14.06 2053.58 47.12 2.29 122.29 16.44 13.44 63.55 6.51 10.24 

10 

F1 nq - - 26.25 1.44 5.50 273.48 10.79 3.95 2137.06 25.92 1.21 133.19 9.09 6.83 24.56 2.48 10.10 

F2 nq - - 20.92 1.07 5.12 223.72 9.64 4.31 2029.96 11.66 0.57 108.30 4.42 4.08 32.27 4.17 12.93 

F3 nq - - 19.42 2.05 10.54 233.13 10.39 4.46 2031.86 27.88 1.37 112.12 12.31 10.98 34.69 5.17 14.90 

12 

F1 nq - - 26.83 2.19 8.16 191.47 - - 1774.45 270.57 15.25 138.89 10.13 7.29 22.06 0.28 1.25 

F2 nq - - 20.93 2.79 13.34 138.12 13.09 9.48 1875.19 163.50 8.72 115.06 20.02 17.40 21.63 2.12 9.79 

F3 nq - - 21.84 2.47 11.32 214.60 12.18 5.68 2106.50 91.91 4.36 123.81 24.55 19.83 19.28 1.01 5.26 
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Appendix II: Individual volatile organic compounds concentration values during the analysed lager fermentations; nq: non-quantifiable (cont.) 

Fermentation 
time (days) 

Fermentation 
vessel 

Volatile organic compounds 

isobutyl alcohol isoamyl acetate isoamyl alcohol ethyl hexanoate acetoin ethyl caprylate 

Concentration (mg/L) Concentration (µg/L) Concentration (mg/L) Concentration (µg/L) Concentration (mg/L) Concentration (µg/L) 

mean ±sd %RSD mean ±sd %RSD mean ±sd %RSD mean ±sd %RSD mean ±sd %RSD mean ±sd %RSD 

0 

F1 nq - - nq - - nq - - nq - - nq - - nq - - 

F2 nq - - nq - - nq - - nq - - nq - - nq - - 

F3 nq - - nq - - nq - - nq - - nq - - nq - - 

3 

F1 nq - - nq - - 5.26 0.79 15.10 nq - - 54.5 6.0 11.0 2023.3 394.8 19.5 

F2 nq - - nq - - nq - - nq - - 45.6 8.8 19.2 717.1 161.2 22.5 

F3 nq - - nq - - nq -   nq - - 43.1 7.3 17.0 194.2 39.5 20.3 

5 

F1 13.79 0.78 5.67 1397.49 145.78 10.43 25.96 2.62 10.09 288.45 37.39 12.96 25.00 1.87 7.47 2881.26 572.24 19.86 

F2 12.05 1.10 9.10 981.84 120.59 12.28 25.36 2.57 10.13 308.97 54.91 17.77 42.10 7.07 16.79 3369.51 389.23 11.55 

F3 9.70 0.59 6.13 540.31 105.34 19.50 20.53 0.98 4.78 239.79 41.97 17.50 46.56 4.41 9.48 3487.76 426.17 12.22 

6 

F1 14.15 2.51 17.71 1844.21 134.91 7.32 25.85 1.88 7.26 431.34 25.84 5.99 11.58 1.01 8.70 3602.30 526.91 14.63 

F2 13.65 0.56 4.12 1445.84 75.42 5.22 25.76 0.91 3.52 359.20 8.86 2.47 17.00 1.66 9.75 2660.58 237.53 8.93 

F3 13.07 0.84 6.46 1289.58 111.25 8.63 25.57 2.85 11.13 348.31 20.25 5.81 21.04 1.78 8.47 2755.65 240.25 8.72 

8 

F1 14.45 1.84 12.72 1754.99 137.70 7.85 28.20 1.26 4.45 417.27 31.07 7.45 7.96 0.97 12.13 3960.14 314.92 7.95 

F2 12.22 2.31 18.94 1333.40 155.80 11.68 27.33 2.36 8.62 360.80 23.95 6.64 9.84 0.65 6.60 3458.33 221.84 6.41 

F3 9.08 0.57 6.32 860.74 103.28 12.00 19.80 0.77 3.91 151.06 15.54 10.29 11.74 0.46 3.94 825.96 153.99 18.64 

9 

F1 10.73 1.74 16.20 1836.04 148.06 8.06 21.16 3.15 14.91 405.27 37.64 9.29 12.26 2.35 19.12 3039.60 300.47 9.89 

F2 11.69 0.70 5.96 1856.28 196.93 10.61 21.37 1.96 9.16 449.63 27.87 6.20 11.40 1.86 16.30 3069.15 204.32 6.66 

F3 12.33 2.54 20.62 1703.33 267.47 15.70 23.74 4.31 18.14 411.22 64.46 15.68 11.98 1.74 14.56 3605.52 608.68 16.88 

10 

F1 13.81 0.78 5.67 2133.24 126.17 5.91 26.70 1.86 6.98 482.56 25.26 5.23 7.38 0.51 6.89 3694.82 235.88 6.38 

F2 12.05 0.72 5.95 1568.49 60.89 3.88 24.97 1.38 5.52 389.63 40.73 10.45 10.08 0.98 9.68 2728.69 509.34 18.67 

F3 11.91 1.18 9.88 1618.08 214.74 13.27 24.01 1.58 6.57 408.21 34.51 8.45 10.58 1.71 16.19 2564.33 216.09 8.43 

12 

F1 11.32 0.03 0.24 2112.81 - - 18.39 1.86 10.14 471.63 18.20 3.86 9.28 0.33 3.58 3072.64 212.33 6.91 

F2 10.90 0.85 7.80 1863.08 198.80 10.67 20.34 2.16 10.60 476.51 57.28 12.02 17.33 1.14 6.56 3750.00 739.30 19.71 

F3 10.96 1.25 11.39 2191.88 433.86 19.79 22.63 4.04 17.86 454.05 62.28 13.72 18.02 2.54 14.09 3214.75 642.97 20.00 
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Appendix II: Individual volatile organic compounds concentration values during the analysed lager fermentations; nq: non-quantifiable (cont.) 

 

 Fermentation 
time (days) 

Fermentation 
vessel 

Volatile organic compounds 

acetic acid 2,3-butanediol R ethyl decanoate phenylacetate ethyl laurate 

Concentration (mg/L) Concentration (mg/L) Concentration (µg/L) Concentration (µg/L) Concentration (µg/L) 

mean ±sd %RSD mean ±sd %RSD mean ±sd %RSD mean ±sd %RSD mean ±sd %RSD 

0 

F1 34.46 6.19 17.96 nq - - nq -   nq - - nq - - 

F2 51.34 9.70 18.89 nq - - nq -   nq - - nq - - 

F3 nq - - nq - - nq -   nq - - nq - - 

3 

F1 41.67 7.87 18.89 nq - - 1176.30 186.50 15.85 nq - - nq - - 

F2 61.56 8.21 13.34 nq - - 796.63 93.49 11.74 nq - - nq - - 

F3 63.27 11.29 17.85 nq - - 79.14 17.68 22.34 nq - - nq - - 

5 

F1 38.53 7.78 20.18 58.51 10.40 17.77 2726.50 587.95 21.56 78.41 7.72 9.84 235.25 50.54 21.48 

F2 76.13 15.66 20.56 70.85 15.42 21.76 2501.87 367.39 14.68 42.56 7.33 17.23 238.43 32.30 13.55 

F3 62.06 7.89 12.71 60.00 11.16 18.60 2462.32 366.05 14.87 22.49 3.71 16.48 208.17 46.63 22.40 

6 

F1 21.02 4.91 23.34 nq - - 989.30 154.55 15.62 62.51 5.95 9.52 76.06 14.60 19.20 

F2 34.49 5.00 14.50 43.06 6.60 15.33 1042.44 182.51 17.51 39.88 3.81 9.55 74.81 8.58 11.47 

F3 32.47 9.17 28.24 46.79 5.77 12.34 1367.11 174.84 12.79 40.20 3.79 9.42 183.30 23.47 12.81 

8 

F1 42.99 3.39 7.88 37.63 7.13 18.94 1227.60 189.21 15.41 63.71 1.25 1.96 nq - - 

F2 41.42 4.79 11.56 36.03 4.12 11.43 1072.69 187.60 17.49 47.36 6.95 14.68 nq - - 

F3 44.20 5.35 12.11 30.80 6.37 20.67 105.89 16.12 15.22 10.01 0.85 8.47 nq - - 

9 

F1 46.95 5.94 12.66 40.22 5.34 13.28 819.56 151.90 18.53 49.90 11.46 22.96 160.01 18.70 11.69 

F2 45.05 9.97 22.14 30.45 3.52 11.54 929.03 108.82 11.71 41.75 7.36 17.63 141.29 13.96 9.88 

F3 46.00 10.42 22.65 32.54 5.43 16.69 1103.74 214.85 19.47 43.81 7.95 18.16 51.77 10.23 19.76 

10 

F1 nq - - 32.05 6.34 19.79 701.10 72.03 10.27 61.34 1.95 3.17 nq - - 

F2 49.36 5.03 10.20 31.34 4.36 13.90 611.64 128.01 20.93 39.98 3.20 8.01 nq - - 

F3 23.35 4.36 18.67 32.01 4.78 14.92 683.59 114.80 16.79 40.71 3.38 8.30 nq - - 

12 

F1 91.35 7.91 8.65 57.54 - - 834.14 - - 43.24 12.49 28.88 68.23 - - 

F2 177.48 15.81 8.91 81.88 12.54 15.31 1000.39 263.85 26.37 38.41 6.24 16.25 62.26 8.81 14.15 

F3 129.23 13.65 10.56 49.10 10.64 21.66 1185.76 50.16 4.23 38.95 8.13 20.86 42.33 2.01 4.74 
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Appendix II: Individual volatile organic compounds concentration values during the analysed lager fermentations; nq: non-quantifiable (cont.) 

Fermentation 
time (days) 

Fermentation 
vessel 

Volatile organic compounds 

hexanoic acid phenylethyl alcohol octanoic acid vinyl guaiacol decanoic acid 

Concentration (µg/L) Concentration (mg/L) Concentration (mg/L) Relative area Concentration (µg/L) 

mean ±sd %RSD mean ±sd %RSD mean ±sd %RSD mean ±sd %RSD mean ±sd %RSD 

0 

F1 nq - - nq - - nq - - 0.94 0.08 8.89 nq - - 

F2 nq - - nq - - nq - - 1.12 0.16 14.57 nq - - 

F3 nq - - nq - - nq - - 0.24 0.05 20.17 nq - - 

3 

F1 nq - - 11.99 1.45 12.13 nq - - 2.25 0.28 12.37 1543.94 291.53 18.88 

F2 nq - - nq - - nq - - 1.80 0.37 20.86 1222.32 177.49 14.52 

F3 nq - - nq - - nq - - 1.18 0.05 4.06 864.18 136.94 15.85 

5 

F1 483.81 58.15 12.02 57.42 4.47 7.78 3052.77 298.29 9.77 5.59 0.55 9.77 5075.16 667.31 13.15 

F2 489.06 133.28 27.25 45.94 6.56 14.27 2396.81 486.42 20.29 4.66 0.72 15.50 4089.55 693.22 16.95 

F3 nq - - 30.54 3.08 10.08 nq - - 3.55 0.29 8.27 2719.89 370.52 13.62 

6 

F1 1238.87 136.52 11.02 42.75 3.93 9.20 2388.05 302.30 12.66 3.61 0.53 14.54 3209.90 295.69 9.21 

F2 834.84 151.76 18.18 35.53 3.41 9.59 1912.87 232.14 12.14 3.11 0.58 18.79 2569.70 474.05 18.45 

F3 nq - - 35.72 3.29 9.20 1956.27 258.73 13.23 3.28 0.49 14.94 2904.96 364.44 12.55 

8 

F1 1906.03 198.64 10.42 41.78 1.33 3.19 2102.63 52.29 2.49 2.82 0.19 6.67 3391.28 390.12 11.50 

F2 1790.63 229.58 12.82 40.11 4.43 11.05 2048.51 407.54 19.89 2.67 0.39 14.41 2920.37 387.43 13.27 

F3 688.41 33.09 4.81 14.37 0.47 3.24 nq - - 0.94 0.03 3.33 902.54 86.00 9.53 

9 

F1 1630.38 222.71 13.66 32.11 5.57 17.35 1771.38 335.52 18.94 2.72 0.53 19.53 4319.15 465.54 10.78 

F2 1570.10 136.62 8.70 34.49 4.28 12.41 1825.35 107.35 5.88 2.98 0.19 6.29 4636.06 382.16 8.24 

F3 1089.15 201.89 18.54 41.06 3.60 8.78 2107.00 331.77 15.75 2.95 0.57 19.18 4736.48 585.41 12.36 

10 

F1 2114.43 99.19 4.69 40.46 1.65 4.09 1972.32 195.85 9.93 3.31 0.16 4.93 2475.89 162.32 6.56 

F2 1755.26 131.76 7.51 34.68 2.72 7.85 1722.30 202.85 11.78 2.97 0.24 8.00 2593.99 153.02 5.90 

F3 1592.70 64.35 4.04 35.91 1.79 4.97 1832.71 236.86 12.92 3.10 0.14 4.40 3443.50 391.46 11.37 

12 

F1 1507.01 264.52 17.55 30.65 4.98 16.25 nq - - 2.52 0.31 12.38 3165.00 656.71 20.75 

F2 1406.96 261.42 18.58 32.78 2.84 8.67 1323.97 163.22 12.33 2.79 0.24 8.61 3648.32 87.26 2.39 

F3 1418.44 278.74 19.65 30.72 5.10 16.61 2343.47 488.83 20.86 3.15 0.57 17.95 3827.65 637.97 16.67 


