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Abstract 

 

 Bacterial cellulose/polyaniline (BC/PANi) nanocomposites have been lately 

receiving attention by the scientific community towards the development of electronic 

applications. The current work aims to determine the most suitable BC modification method 

to obtain an effective drug delivery membrane through electric stimulus. Thus, the BC/PANi 

nanocomposites were synthesized through the employment of different BC matrixes 

(drained, freeze dried and regenerated), as well as through different polymerization methods 

(in situ and ex situ). Prior to modification, the effects of both drying methods (freeze drying 

and oven drying), and regeneration process on BC structure were studied. By freeze drying 

BC, the fibril network is preserved, leading to a more porous material. On the other hand, 

regenerated BC presented a compact surface due to the incapacity to reorganize into fibrils 

during the regeneration process. This way, freeze dried BC should be more suited for 

modification. To obtain a highly conductive nanocomposite, the in situ polymerization on 

drained BC should be employed. The introduction of PANi onto BC obstructed the pores, 

which led into a more compact and rougher material. Also, a decrease in the thermal stability, 

as well as a decrease in the BC crystallinity was observed. The nanocomposites were drug 

loaded with sodium sulfacetamide to evaluate the antimicrobial activity. It was observed that 

without electrical stimulus, only drug loaded drained in situ BC/PANi nanocomposite 

presented an inhibitory effect onto the Escherichia coli (E. coli) growth (13%). By applying 

electric stimulus onto this membrane, the inhibition in E. coli growth is further evidenced 

(20%). This way, in situ polymerization of aniline on drained BC presented to be an effective 

method to create a highly conductive membrane for drug release through electrical stimulus.  

  

Keywords: Bacterial cellulose, Polyaniline, cellulose modification, antimicrobial activity, 

electrical stimulus, inverse gas chromatography 
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Resumo 

 

 Os nanocompósitos de celulose bacteriana/polianilina (CB / PANi) têm recebido nos 

últimos tempos um grande interesse por parte da comunidade científica para o 

desenvolvimento de aplicações eletrónicas. Este trabalho tem como objetivo determinar o 

método de modificação mais adequado da CB para a obtenção de uma membrana eficaz na 

libertação de fármacos através de estímulo elétrico. Assim sendo, os nanocompósitos 

CB/PANi foram sintetizados utilizando diferentes matrizes de CB (drenada, liofilizada e 

regenerada) bem como através de diferentes métodos de polimerização (in situ e ex situ). Antes 

da modificação, foram estudados os efeitos tanto do método de secagem (liofilização e 

secagem no forno) como também o processo de regeneração na estrutura da CB. O processo 

liofilização levou à preservação da estrutura tridimensional, obtendo assim um material mais 

poroso. Por outro lado, a CB regenerada apresentou uma superfície compacta devido à 

incapacidade de reorganizar-se em fibrilas durante o processo de regeneração. Desta forma, 

a CB liofilizada aparenta ser a matriz mais adequada para modificação. Contudo, 

relativamente aos diferentes nanocompósitos obtidos, para se obter uma membrana com 

elevada condutividade, o método mais adequado é a polimerização in situ na CB drenada. A 

introdução de PANi na CB obstruiu os poros, levando à formação de um material mais 

compacto e rugoso. Também foi observado uma diminuição na estabilidade térmica bem 

como uma diminuição na cristalinidade da CB. A sulfacetamida de sódio foi incorporada 

nos nanocompósitos para avaliar a atividade antimicrobiana onde, sem estímulo elétrico, 

apenas o nanocompósito in situ com CB drenada apresentou um efeito inibitório sobre o 

crescimento de Escherichia coli (E. coli) (13%). Através da aplicação de estímulo elétrico sobre 

esta membrana, a inibição no crescimento de E. coli é potenciado (20%). Assim sendo, a 

polimerização in situ da anilina numa membrana drenada mostrou ser eficaz na libertação 

do fármaco por estímulo elétrico. 

 

Palavras-chave: celulose bacteriana, polianilina, modificação da celulose, atividade 

antimicrobiana, estímulo elétrico, cromatografia gasosa inversa 
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Chapter I – Introduction 

  

1.1 – Cellulose 

 

 Cellulose is the most abundant biopolymer found in nature, being produced by plants, 

tunicates, algae and some bacteria (1). In plants, this polymer is associated with 

hemicellulose and lignin, and in order to obtain pure cellulose it requires harsh chemical 

(alkali or acid) treatment (2). Bacterial cellulose (BC) is the most pure form of cellulose found 

in nature, where it does not have any of the aforementioned impurities present in plant 

cellulose (3). 

 From a chemical point of view, cellulose is a homopolymer consisting of glucose 

monomers linked by β–1,4 glucosidic bonds in such a way that one monomer is rotated 180º 

relative to the other (2). It also possesses three hydroxyl groups per monomer, which gives 

cellulose a highly hydrophilic behaviour (4). This confers to cellulose the ability to interact 

via inter– and intra– hydrogen bonding, resulting in a biomaterial with high crystallinity 

index and high tensile strength (4). In case of BC, due to the small fibre diameter of cellulose, 

the overall material presents high surface area and high porosity (5). BC also possesses a high 

thermal stability and biocompatibility (6).  

Cellulose structures present highly ordered (crystalline) and disordered (amorphous) 

regions and it possesses four different polymorphs named cellulose I, II, III and IV (1, 7, 8). 

Cellulose I is found in nature and can be either converted in cellulose II or III (1, 7). Cellulose 

II can be obtained either through mercerization or through regeneration (dissolution and 

recrystallization) (1, 7). Cellulose III can be obtained from cellulose I or II through liquid 

ammonia treatments and then by applying thermal treatment it can convert into cellulose IV 

(1, 7). Additionally, cellulose I possess two distinct structures: Iα and Iβ, which coexist and 

their proportion depends on the cellulose source (8, 9). Cellulose Iα is the dominant structure 

for most algae and bacteria whereas cellulose Iβ is dominant in plants and tunicates (9). The 

main difference between Iα and Iβ is the stacking of cellulose chains throughout the plane, 

having a triclinic and a monoclinic crystal system respectively (Figure 1). 
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Figure 1 – Schematic representation of cellulose Iα (-), Iβ (-) crystalline structures (based from (10)). 

 

1.1.1 – Bacterial cellulose  

 

 Bacterial cellulose (BC) was first discovered by Adrian J. Brown through the 

evaluation of the fermentation of “mother vinegar”, which produced a “jelly–like translucent 

mass on the surface of the culture fluid; this growth rapidly increases until the whole surface of the liquid 

is covered with a gelatinous membrane, which, under very favourable circumstances, may attain a 

thickness of 25 mm” (11).  

In order for BC biosynthesis to occur, glucose found in culture media is uptaken by 

glucose permeases found in cell membranes (12). Afterwards it is converted into glucose–6–

phosphate by glucokinase in order to trap glucose inside the cell and to facilitate its 

metabolism (13). Through phosphoglucomutase, the phosphate group is shifted from carbon 

6 to carbon 1, that can be converted into UDP–glucose by UDP–glucose phosphorylase (5, 

14). In this activated form, glucose is now able to be used by cellulose synthase for BC 

production (5, 14). Moreover, other sugars can be used as a carbon source for cellulose 

production, such as fructose, galactose, mannose, among others (15).  

Cellulose chains are formed by the polymerization of glucose by cellulose synthase, 

found in cell membranes (16). These chains are extruded to the culture medium, forming 
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nanofibrils. The fibrils further aggregate with each other, creating a ribbon–like structure 

(Figure 2) (17). BC fibrils are about 100 times thinner than plant cellulose, resulting in a 

highly porous material (5). This biopolymer has a structural role in cellulose–producing 

bacteria, which confers mechanical, chemical or biological protection within the 

environment, as well as a functional role by aiding in the competition for substrates (14, 18). 

Also it protects the bacteria from UV radiation, improves nutrient transport via diffusion and 

protects the bacteria from heavy metals (18). 

 

Figure 2 – Schematic representation of BC assembly (based from (19)). 

 

 Due to these remarkable properties, BC can be used in different areas, such as food 

(20) and pharmaceutical  industry (17). For instance, in the Philippines, Nata de coco is a 

popular snack which consists in the fermentation of coconut water by Acetobacter xylinum 

(18). In biomedicine, many patents were made involving BC, such as for artificial blood 

vessels, skin tissue and bone tissue repair, scaffold matrix, antibacterial masks, among others 

(16). Biofill® is a product of BC used to treat second and third degree burns, as a temporary 

substitute for human skin (21). There are several advantages regarding the use of this product 

such as immediate pain relief, close adhesion to the wound bed, reduced infection rate, faster 

healing and reduced treatment time and costs (21). Sony Corp. marketed loudspeakers and 

headphones with BC employed, having lower harmonic distortions when compared to 

conventional paper (22).  
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Moreover, BC can also incorporate polymerizable monomers into its network, 

occupying its void volume and interacting with the BC fibre chains (23). Researchers exploit 

this property in order to change and/or improve the characteristics of BC such as its 

hydrophobicity, electrical conductivity, surface reactivity, mechanical and thermal 

resistance, among others (23). In the following section, cellulose modification mechanisms 

during cellulose regeneration, as well as through in situ and ex situ chemical polymerization 

will be presented. 

 

1.2 – Cellulose modification  

 

To improve and give new properties to cellulose sometimes requires chemical 

modifications. In order to obtain a homogeneous substitution all hydroxyl groups should be 

available, but in native cellulose such does not happen due to the packing of chains (24). To 

overcome this problem, cellulose can be dissolved by disrupting the intra– and inter– 

molecular interaction in cellulose (24).  

Cellulose modification can also be achieved through in situ polymerization which 

consists in the polymerization of a monomer in the presence of a filler matrix (BC membrane) 

(25). This technique allows the filler to preserve its shape as also attain improved dispersion 

and higher filler–matrix interaction (25).The polymerization can be categorized between in 

situ and ex situ, meaning it occurs inside or outside of BC, respectively. Several researchers 

report the use of in situ polymerization, such as Hu et al. (26), Wang et al. (27), Lee et al. 

(28), Shi et al. (23) and Park (29). In these works, the monomer is incorporated inside of the 

matrix. This polymerization method allows a uniform dispersion of the monomer into the 

BC matrix which minimizes the aggregation of polymer–polymer molecules, increasing the 

interaction between BC and the growing polymer molecules (23, 26-30). The main limitations 

of this polymerization route are that it is only applicable when the polymerization takes place 

in liquid phase and that it is difficult to disperse hydrophobic monomers into the BC due to 

its hydrophilicity (30). In ex situ polymerization the dispersion of the monomer inside of BC 

prior to the polymerization is absent, which can cause a poor bonding between the organic 

matrix and the polymer (30).  
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The current work consists in the modification of BC through the polymerization of 

aniline during the regeneration process as also through in situ and ex situ polymerization. In 

the literature, it can be found the importance of the drying method for the properties of the 

BC membrane in terms of its morphology, crystallinity and swelling ability (31-33). However, 

it has not yet been studied the effect of using different BC matrixes for the nanocomposites 

synthesis. Thus, one of the main focus of this work will be the study of the BC matrix onto 

the synthesis of the BC/PANi nanocomposite. 

 

1.2.1 –Cellulose dissolution 

 

 Intermolecular forces, molecular weight, crystallinity and polar groups that may take 

part in hydrogen bonding, play an important role in the solubility and reactivity of polymers 

(24). In cellulose, due to the organization of the network makes it insoluble in water and 

many other solvents (34). The key to successfully dissolve cellulose lies in the ability to 

disrupt the hydrogen bonds, isolating the chains from each other (35). This is possible if the 

solvent system used overcomes the intermolecular forces established between cellulose 

chains, eliminating the cellulose supramolecular structure (35). This treatment gives a simple 

pathway to transform cellulose into other forms such as fibers, membranes, beads, hydrogels, 

etc. (36, 37). The development of new solvent systems to create regenerated cellulose is 

fuelled by the increasing interest in novel techniques suitable for shaping homogeneous 

chemical modifications.  

The first process of cellulose dissolution was discovered by Christian Schönbein, in 

1846 (38). It was discovered by accident when the researcher spilled a mixture of nitric and 

sulfuric acids and cleaned with a cotton apron where afterwards placed near fire to dry, where 

it ignited almost instantly (39). This happened due to the nitration of OH groups of cellulose 

(substituted by NO2 from nitric acid) creating cellulose nitrate (39). It is highly flammable 

and when heated it releases as much as three times more energy than gunpowder and 

produces far less smoke, being later on used in explosives (39). What made this material 

interesting is the fact that it can be dissolved, unlike native cellulose (38). The first studies 

regarding cellulose dissolution were made with plant cellulose, being later on also applied 

onto BC (34, 40, 41). 
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 Cellulose solvent systems can be categorized into non–derivatizing and derivatizing 

solvents (38). Non–derivatizing solvents implies that the solvent does not establishes covalent 

bonds with cellulose, only directly dissolving the polymer (24, 42). On the other hand, 

derivatizing solvents react with cellulose, changing its moiety in such a way that it breaks the 

hydrogen bonds (24, 42).  

One main problem regarding the dissolution of cellulose is the use of hazardous, 

corrosive or non–degradable solvents which hinders the dissolution process to be used in a 

larger scale. Also, the dissolution procedure is time consuming, being one of the reasons not 

to be used outside laboratory scale conditions. Quite a few liquids are able to swell cellulose 

but not able to dissolve it (24). Despite the difficulties regarding cellulose dissolution, there 

is a handful of solvent systems that can successfully do it. The most known solvent systems 

are dimethylacetamide/LiCl (DMAc/LiCl), NaOH/urea/water, N–methylmorpholine 

oxide (NMMO) and ionic liquids (40, 41, 43-46). In the current work, it will be used 

DMAc/LiCl for BC dissolution. 

 DMAc/LiCl is the most frequently used solvent systems to dissolve plant cellulose. It 

was first patented by McCormic in the 1981 (44), being highly efficient in dissolving high 

molecular weight cellulose with negligible chain degradation (24, 47). This solvent system 

seems to be very specific when it comes to the interaction with cellulose (24). In other words, 

neither DMAc with other lithium salts nor DMAc with other chloride salts seem to work in 

the same way as DMAc/LiCl (24). The dissolution mechanism proposed by McCormic (44) 

consists on the hydroxyl groups of cellulose interaction with Cl– via hydrogen bonding while 

Li+ is solvated by DMAc (Figure 3). For this interaction to take place, no water can be present. 
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Figure 3 – Schematic representation of the interactions established between cellulose and DMAc/LiCl (based from 

(48)). 

 This solvent system is colourless and enables the investigation of dissolved cellulose 

by 13C–NMR, size exclusion chromatography and light scattering techniques (38). Also, 

many reports were made regarding the electrospinning of cellulose using this solvent system 

(49-53). According to Li et al. (49) and Frenot et al. (50), there are some difficulties due to 

the concentration of cellulose and ions present in the solvent. Using low concentrations of 

cellulose it may occur electrospraying, forming particles instead of fibers (49). On the other 

hand, using high concentrations of cellulose it may obstruct the electrospinning due to the 

viscosity of the solution (49).  

 

1.2.2 – Intrinsically Conductive Polymers  
 

In 1977, the discovery of conductive polyacetylene was the starting point for 

researchers to find a new whole class of conductive materials: conjugated polymers (54). It 

led to the discovery of polyaniline (PANi), polypyrrole, polythiophene, among others (55). 

In 2000, a group of scientists who had discovered and studied conductive polyacetylene were 

awarded the Nobel Prize in Chemistry (56). Nowadays, the unique properties of these 

polymers makes them suitable for applications such as thin film transistors, supercapacitors, 

engineering scaffolds, implantable biosensors and implantable neural prosthetic devices (23, 
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57, 58). In the current work PANi will be used for the synthesis of BC conductive 

nanocomposites. 

 Intrinsically conductive polymers (ICP) possess a conjugated π–electron backbone 

(Figure 4) which exhibits unusual electronic properties such as low ionization potentials and 

high electron affinities (59). In the case of PANi, an amine group is found between the 

aromatic rings (Figure 4A) which should not present a polyconjugation system and therefore 

no conductivity. In order to assure polyconjugation, the lone pair of electrons from nitrogen 

participates in the π–electron backbone, giving the conductive properties (57). The electrical 

conductivity is possible when the electrons are able to move from one end of the polymer to 

another (55, 60). This property is closely related to the HOMO and LUMO orbitals, as 

depicted in Figure 4B. The lower the energy gap between these two orbitals, the easier it is 

for the electrons to flow through the material, conferring conductive properties (55). 

Although, polyconjugation alone is not possible to turn the polymer conductive. The 

oxidation of the material is required, creating “holes” in the HOMO orbitals, where an 

electron is missing. Neighbouring electrons can fill that position but they will create a new 

hole, and by repeating the process, it allows the charge to migrate long distances (61). The 

oxidation is possible by adding an acid to the reaction media (chemical oxidation), where the 

N radical is compensated by the counter ion of the acid (X-). In the current work, the counter 

ion will be chlorine since the reaction will be in the presence of HCl. ICP are commonly 

obtained through either electro– or oxidative–polymerization (62). 
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Figure 4 – Schematic representation of doped PANi π–system (A) and diagram demonstrating the energy gap 

(Eg) between metal, semiconductor and isolators (B) (based from (55)). X- – anion that interacts with the 

positively charged groups of PANi. 

 

Chemical oxidation occurs through the formation of covalent bonds between the 

monomer molecules at the expense of losing two protons with the aid of an oxidizing agent 

(57). Unlike radical oxidation, it requires large amounts of oxidizing agents since it is spent 

in every step of the chain–growth polymerization (57). In order for the polymerization 

process to occur, an oxidation potential of at least +1.05 V is required (57, 63). As such, 

persulfates are one of the most used oxidizing agents, which have an oxidation potential of 

+2.01 V (57). The properties of ICP synthesized via chemical oxidation are influenced by the 

reaction conditions, namely the chemical nature of the oxidants protonating acid, the 

concentration of the reactants (especially their molar stoichiometry), reaction temperature, 

templates added to the reaction mixture, among others (64). 

 PANi is one of the most used ICP due to its low–cost, stability in aggressive chemical 

environments, non–toxicity and low manufacturing cost (57, 64). The polymer depicts a 

“head–to–tail” configuration (Figure 5), which consists in para–substituted aniline monomer 

units coupled with each other (57, 65). The monomer aniline consists in a phenyl group 

attached to an amine group (Figure 5).  
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Figure 5 – Reaction mechanism representation of aniline polymerization through chemical oxidation (based 

from (57)). APS – ammonium persulfate. Polyaniline has three forms: leucoemeraldine (if x equals to 0), 

emeraldine (if x equals to 0.5) and pernigraniline (if x equals to 1). 

 

 Aniline (ANi) is easily oxidized due to its pronounced electron donor ability (57).  

Depending on the reaction conditions, it is possible to obtain PANi with different oxidation 

states. This polymer has three forms: a fully reduced (leucoemeraldine), half oxidized 

(emeraldine) and fully oxidized (pernigraniline), as seen in Figure 5. The reaction mechanism 

(Figure 5) encompasses three steps: the induction period followed by the chain propagation 

period and then the chain termination (57). In the induction period, the amine group in 

aniline is oxidized, generating a radical which reacts with another aniline molecule, resulting 

in a dimer. By further oxidizing the amine ends, the chain grows until either one of the 

reactants is depleted.  

 Several papers have reported BC/PANi nanocomposites, through different 

polymerization methods, obtaining a wide range of conductivity values, ranging between 

1.61x10–4 and 5.1 S/cm (23, 26-29, 66-68). These conductivity values falls into the category 

of semiconductive range (10–7 and 100 S/cm) (58).  
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1.3 –Inverse Gas Chromatography  

 

 The synthesis of new nanocomposites is of great importance, where it is explored new 

behaviours and functionalities beyond the starting materials (69). An array of advancements 

into functionalizing BC are presented in the literature, with the intent to create new BC 

nanocomposites (1, 70). These new materials need to be extensively characterized in order 

to give an insight in the properties obtained so that it can be designated into a potential 

application (69).    

  With the incorporation of PANi into the BC matrix, it is expected several changes 

to the starting material due to the changes in the established intermolecular forces. Thus, 

inverse gas chromatography (IGC) will be used, which will give us valuable information 

regarding changes in the surface moiety, pore availability and surface energy sites. Due to 

the relevance of this technique in the current work, the theoretical background will be further 

discussed. 

IGC has been applied in the last years as a reliable source of physicochemical data for 

many non–volatile materials (71). It consists in the injection of probe molecules (specific 

molecules with known properties), under controlled experimental conditions, in order to 

obtain certain properties of the material (72). The term “inverse” is applied since, unlike 

conventional gas chromatography (GC), the material of interest is placed in a 

chromatographic column, acting as a stationary phase (73).  

Applying this technique offers some advantages, such as its sensitivity and 

reproducibility, it requires low amount of material, can be run at a wide range of temperatures 

and it does not require pure solutes (72, 74). Additionally, unlike contact angle technique, in 

IGC the material does not require a previous treatment on the surface (75). For instance, in 

order to study powders via contact angle technique its necessary its compression, which 

results in surface morphology modifications (76).  

This technique can be applied into a wide range of materials, from organic (such as 

polymers and pharmaceuticals) (77) to inorganic (such as silica and other minerals) (78).  

 

 



Alternative synthesis methods of electrically conductive bacterial cellulose-polyaniline composites for 

potential drug delivery application 

 

12 
 

1.3.1 – IGC instrumentation 
 

 In sum, IGC consists in a mass flow controller; two ovens: one for the solute reservoir 

and one for the column with the packed sample; a detector and a computer (Figure 6). 

Helium is used as the carrier gas since it is inert, avoiding interactions with the column and 

the adsorbate. Adsorbate–adsorbate interactions are neglected when tests are conducted at 

infinite dilution, where the amount of probe injected is near the limit of detection of the 

detector (79). At infinite dilution, the probe molecules only interact with the most energetic 

active sites, following the Henry Law’s region (79). In that region, one should expect a 

symmetrical Gaussian peak and therefore a linear isotherm (80). 

 

Figure 6 – Schematic representation of the inverse gas chromatographer apparatus. 

 

IGC is equipped with two detectors: flame ionization detector (FID) and thermal 

conductivity detector (TCD). Compared to TCD, FID is better suited under infinite dilution 

tests since it has a higher sensitivity, up to 10–9 mol (81). Both detectors can detect organic 

molecules while FID, unlike TCD, cannot detect water (81).   

 In chromatography, retention time (tR) is commonly used in order to characterize each 

peak, although it changes considerably according to the experimental conditions (namely 

carrier gas flow rate and the pressure drop in the column). The latter parameter is of great 

importance since in chromatography the volume of the gas changes when it crosses the 

column, due to its compressibility property (82). The James–Martin compressibility factor (j) 
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takes in account the inlet and outlet pressure of the carrier gas in the column, correcting the 

pressure variations along the run (82). 

Retention volume (VN) considers the aforementioned parameters, offering more 

reliable and reproducible results (83). Adapting to IGC, VN can be defined as the volume of 

the mobile phase that left the column during the time the adsorbate was interacting with the 

analyte. This way, VN can be used as a reference parameter since it is affected by the 

interactions between the adsorbate and the sample (83). Further parameters can be taken into 

consideration, such as the temperature and the sample mass (77). This way, the values of VN 

are normalized, being now called specific retention volume (Vg), providing comparable 

results (84).  It can be deducted from the following equation (1): 

 

Vg=
F.j

m
.(tR–t0).

273.15

T
 (1)

   

where F is the carrier gas flow; m the sample mass; tR and t0 the retention time of the 

adsorbate and the inert reference gas respectively and T the absolute temperature. 

 

1.3.2 – Surface energy 
 

1.3.2.1 – Dispersive component  
 

  The surface of a solid is composed of free bonding functional groups, establishing an 

interface with the surrounding environment. An important surface parameter is its free 

energy, being defined as the energetic difference between the surface and the bulk per unit 

area of surface. According to Fowkes, surface energy interactions can be split in dispersive 

forces (Van der Waals interactions) and specific forces, such as acid–base, hydrogen bond 

and metallic interactions (85). From the injection of a series of n–alkanes, Schultz et al.  

determined the dispersive component, by applying the following equation (2) (86): 

 

∆GD=RTln(Vg)=2NA.(γ
S
D)

1
2.am(γ

L
D)

1
2+K (2) 
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where ∆𝐺𝐷 is the Gibbs free energy of adsorption of the dispersive component; R the perfect 

gas constant; NA Avogadro’s constant; am the cross–sectioned area of the adsorbate; γS
D the 

dispersive component of the material’s surface energy; γ
L
D the probe surface tension and K a 

constant. 

 From the previous equation, one should obtain a linear trend in the data, usually 

designated as the alkane line, being the slope equal to 2NA.√γ
S
D. Basically, a probe with a 

certain am√γ
L
D will have a given ∆𝐺𝐷 which corresponds to the vertical distance between the 

x axis and the data plotted (72).  

  

 

1.3.2.2 – Specific component 
 

 In the case of polar molecules, the free energy of absorption is above the alkane line, 

since both dispersive and specific interactions take place between the surface and the 

adsorbate. The latter interaction corresponds to the vertical distance between the polar 

adsorbate and the alkane line (72). From the specific free energy of adsorption it is possible 

to obtain the surface donor (γS
−) and acceptor (γS

+) numbers, based on the Good–Van Oss 

concept (87). Experimentally, one should use two probe monopolar molecules: one acid and 

one basic. This way, it is possible to obtain the parameters indicated above (88) from the 

following equation (3): 

 

∆GSP = 2NAam (√γS
−γL

+ + √γS
+γL

−) (3) 

    

where γL
+ and γL

− are the acceptor and donor numbers of the adsorbate and ∆𝐺𝑆𝑃 the Gibbs 

specific free energy of adsorption. 

 After obtaining the donor and acceptor numbers of the surface, it is possible to 

estimate the specific free energy of adsorption from the following equation, which 

corresponds to the geometric mean of the aforementioned parameters (4): 
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γS
SP = 2√γS

−γS
+ (4) 

     

 Now with both specific and specific surface energy, it is obtained the total surface 

energy (γS
Total), corresponding to the sum of the two components. 

 

1.3.3 – Acid-base character through Gutmann Method 
  

 Regarding the specific component of the surface, a different approach was taken by 

Gutmann (89). Similar to the Good–Van Oss method previously described, the adsorbates 

also have reference values, which are obtained experimentally. For the basic component, the 

donor number (DN) is defined as the enthalpy of interaction between the molecule being 

studied and SbCl5 (used as a reference Lewis acid) in 1,2–dichloroethane, a neutral solvent 

(79). On the other hand, for the acid component, the acceptor number (AN) was determined 

by correlating the induced chemical shifts in 31P NMR spectra of triethylphosphine oxide 

(used as a reference Lewis base) dissolved in the acid molecule being studied. Riddle & 

Fowkes issued that these chemical shifts can be influenced by Van der Waals interactions, 

improving the method by developing modified acceptor numbers (AN*) (90). By doing so, 

the donor and acceptor numbers can be compared and related to surface acidity and basicity 

from the following equation (5): 

 

∆GSP

AN ∗
=

DN

AN ∗
Ka + Kb (5) 

  

being Ka and Kb acid and basic interaction constants that characterize the polarity of the 

surface. By plotting the results with the previous equation, the slope should correspond to Ka 

while Kb to the intercept with the Y axis. 

 

1.3.4 – Surface nanomorphology 
 

 Surface nanomorphology gives us an insight about the deviation from a flat surface of 

a given sample due to the surface asperities, which is correlated to the retention time. Brendle 
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and Papirer have shown that a given isomer exhibited a lower retention time when compared 

to the corresponding linear alkane probe (91). In fact, the retention time can be either shorter 

due to the steric hindrance of the branched alkane probes to access the surface pores or longer 

if the probes can be inserted in the pores (91). The size exclusion effect is related not only 

from the surface morphology but also due to the molecular shape (92). In this study, n–octane 

isomers such as 2,5–dimethylhexane, 2,2,4–trimethylpentane and cyclooctane were used. 

The nanomorphology index is determined by the following equation (6): 

 

Morphology index = e
−∆Ga

M

RT  (6)

  

where ∆𝐺𝑎
𝑀 corresponds to the distance between the probe and the alkane line. If the 

morphology index is lower than 1 it indicates that the probe had steric hindrance with the 

surface of the material whereas values higher than 1 indicate the probe insertion into the 

pores. Thus, the closer the morphology index is to 1 it means that the given isomer behaves 

like the corresponding linear alkane, where it is considered that the surface is flat (92). 

 

1.3.5 –Surface area  
 

Surface area (SBET) of materials are commonly obtained from the Nitrogen adsorption 

isotherm at 77K, using the Brunauer–Emmett–Teller (BET) equation (93). This method is 

based on the relationship between the amounts of gas adsorbed at different gas pressures, at 

a fixed temperature T.  After a certain amount of gas pressure, the amount of gas adsorbed 

reaches a plateau, physically corresponding to the monolayer capacity (nm). IGC can 

evaluate these parameters, therefore being possible to determine the surface area. The original 

equation applied by Brunauer et al. is linearized (7), which is possible to obtain the 

monolayer capacity from the slope and the intercept. 

 

p

n(p0 − p)
=

c − 1

nmc

p

p0

+
1

nmc
 (7) 
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being p0 the gas pressure, p the adsorbate pressure, nm the monolayer capacity, n the amount 

of probe adsorbed and c a constant. 

 If the area of the probe used in the BET measurements is known, it’s possible to obtain 

the BET surface area (SBET) by the following equation (8): 

 

SBET  =  anmNA (8) 

1.3.6 – Surface Heterogeneity  
 

 Using the sorption isotherm results it’s possible to calculate the adsorption potential 

distribution, which will correspond to the energy profile of the surface (94). Firstly, to obtain 

the distribution function, partial pressures are converted into the adsorption potential (A) 

from the following equation (9): 

 

A = RTln (
p

p0

) (9) 

    

 Then, the distribution parameter (Φ) is determined, corresponding to the 1st derivative 

of the adsorbed amount with the adsorption potential, which will give us the energy profile 

plot.  

 

1.3.7 – Diffusion analysis  
 

 In diffusion analysis, different flow rates of mobile gas are used. The principle behind 

this procedure is that as the probe progresses from the inlet to the outlet, it spreads due to 

diffusion phenomena (80). The diffusion coefficient can be obtained from the width of the 

elution peak through the equation developed by van Deemter et al. as shown in equation 

(10). 

 

𝐻 = 𝐴 +
𝐵

𝑢
+ 𝐶𝑢 (10) 
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where H is the height equivalent to the theoretical plate (cm) and u is the carrier gas speed 

(cm/s). The parameters A, B and C are independent of the velocity of carrier gas, related to 

the column, gases and operating conditions respectively (80, 95). The parameter A is called 

eddy diffusion and is related to the size of support particles and irregularity of packing (96). 

The parameter B describes the longitudinal diffusion of the probe along the stream of carrier 

gas (96). The third parameter (C) is related to peak broadening which is due to the mass 

resistance within the column (96). Through the constant C it is obtained the diffusion 

coefficient (Dp) through the following equation (11): 

 

𝐶 =
8

𝜋

𝐾

(1 + 𝐾)2

𝑑2

𝐷𝑝
 (11) 

    

 where K is the partition ratio and d the film thickness. 

 

1.3.8 – Work of adhesion 
 

 When different solids contact each other, adhesion forces may occur. The intensity of 

the adhesion forces is intimately related to the surface energies of the materials one and two 

(97). Work of adhesion (Wadh) is a measure of the strength between two solid surfaces, being 

defined as the free energy required to separate reversibly a unit area of two phases in contact 

(98). This means that a higher Wadh value should reflect a stronger interaction between two 

materials. On the other hand, work of cohesion (Wcoh) is related to the interactions that a 

solid establishes with itself. In the current work the determination of both Wadh and Wcoh will 

be used to estimate the interactions between the membranes and the drug sodium 

sulfacetamide. The Wadh will represent the membrane-drug interactions while the Wcoh 

corresponds to the interactions inside the membrane. The former parameter can be calculated 

by the following equation (12): 

 

Wadh = 2√γS,1
D . γS,2

D + 2√γS,1
+ . γS,2

− + 2√γS,1
− . γS,2

+  (12) 

    

In the same way, Wcoh can be calculated by the following equation (13): 
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Wcoh = 2√γS,1
D . γS,1

D + 2√γS,1
+ . γS,1

− + 2√γS,1
− . γS,1

+  (13) 

 

Strzemiecka et al. (99) evaluated the dispersion of different carbon blacks on 

polyurethane, stating that not only the adhesion forces play an important role in the degree 

of dispersion but also the cohesion forces between the filler particles. Thus, it was presented 

the Wadh/Wcoh ratio, stating that it can be used as an indicator of the degree of the dispersion 

of the filler particles into the matrix.  
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Aim of the study 
 

The focus of the current work was the use of different BC modifications for the 

synthesis of a conductive BC/PANi nanocomposite with potential for drug delivery through 

electrical stimulus. In this regard, different BC matrixes were used (drained, freeze dried and 

regenerated), as well as different aniline polymerization methods (in situ and ex situ), 

obtaining different BC/PANi nanocomposites.  

Initially the different BC matrixes were evaluated, regarding the drying method (oven 

dried and freeze dried), as well as the regeneration treatments applied. Then, the different BC 

modifications were assessed to evaluate the physico-chemical changes occurred with PANi 

incorporation onto BC. Thus, both matrixes and nanocomposites were assessed regarding 

their structural, morphological and surface characteristics through Fourier transformed 

infrared coupled with attenuated total reflectance (FITR–ATR), scanning electronic 

microscopy coupled with energy dispersive x-ray spectroscopy (SEM-EDX), ultraviolet-

visible (UV–Vis), X-ray diffraction (XRD), thermogravimetrical analysis (TGA), atomic 

force microscopy (AFM), Swelling, Contact angle measurement and IGC.  

Then, the different nanocomposites were tested in terms of drug loading capacity and 

antimicrobial activity studies on Escherichia coli (E. coli) using sodium sulfacetamide as the 

reference drug.  
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Chapter II – Materials and methods 

 

 The BC matrixes and the nanocomposites synthesized in this work were subjected to 

a series of analyses to fully characterize the materials, obtaining an insight of the changes 

occurred during the drying and regeneration treatments, as well as due to the incorporation 

of PANi onto BC.  

 

2.1 – BC production 

 

 Gluconacetobacter sp. was statically cultivated in Hestrin and Schramm (HS) medium 

(previously autoclaved during 15 min at 121 ºC) in order to meet the bacteria cellular 

requirements for cellulose production. The composition of the HS medium can be found 

elsewhere (100). After being incubated for 7 days at 30 ºC, the membrane was removed and 

washed with NaOH 0.5 M, at 80 ºC during 2 h, and then neutralized with distilled water. 

The membrane was stored at 5 ºC until further use. 

 The BC membranes were oven dried (OD–BC) and freeze dried (FD–BC) in order to 

evaluate the drying effect and later on the influence of the matrix in the polymerization of 

aniline. Then, OD–BC was used to obtain regenerated BC (R–BC).  

 

2.2 – BC dissolution optimization 

 

 Prior to dissolution, OD–BC was placed on an Erlenmeyer. DMAc was added to 

obtain a BC concentration of 0.5% (w/v). Likewise, LiCl was added to obtain a percentage 

of 8% (w/v). These proportions were based on the work published by Li et al. (49). Different 

parameters were considered for the optimization of the dissolution procedure, which are 

found in Table 1 in the same order as they were applied. Swollen samples were left static 

overnight at room temperature. Heat–treated samples were placed in an oil bath at 110 ºC 

during 1 h. An ultrasonic bath Ultrasons–H (Selecta) was applied during 1 h at room 

temperature for the ultrasound–assisted solutions. 
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Table 1 – Dissolution parameters tested on BC dissolution. 

Cut 
Swelling in  

DMAc 

Swelling in  

DMAc/LiCl 
Heat Ultrasounds 

Stirring 

overnight 
Observation 

   x  x Swelling 

x   x  x Swelling 

x x  x  x Swelling, loss of white colour 

x x  x x x Dissolution 

x  x x x x Dissolution 

 

 In order to confirm that BC was fully dissolved, a drop of sample was observed in an 

Olympus BX 41 optical microscope coupled with a Moticam 10 camera using the software 

Motic Image Plus 2.0. 

 The regeneration process was employed by adding water gently in the dissolved BC 

solution, leaving under slow stirring (< 100 rpm) during 1 h, so that the R-BC gains some 

firmness. Afterwards the samples were washed through dialysis during 72 h using a dialysis 

tubing (benzoylated) with a molecular weight cut–off of 2000 Da (Sigma Aldrich). In the end, 

the samples were oven dried at 40 ºC. Based on the optimization results, the dissolution of 

BC by adding both DMAc and LiCl at the same time was used for future tests. 

 

2.3 – BC nanocomposites synthesis  

 

 For all the studies conducted, the BC nanocomposites were obtained through 

chemical oxidative polymerization with 3x3 cm BC membranes and solution reactions 

(aniline monomer and ammonium persulfate (APS)), both dissolved in HCl, and purged with 

N2 during 30 min prior to polymerization. Afterwards, the reaction mixture was kept under 

low stirring (<100 rpm) at room temperature. After 24 h of polymerization, the membranes 

were washed thoroughly with distilled water until no aggregates of polymer were in solution. 

The nanocomposites were then oven dried overnight at 40 ºC and weight out to determine 

the PANi content. The ratios applied in this work are based on the optimization of the 

nanocomposites conductivity obtained by Wang et al. (27) with a BC:ANi mass ratio of 0.10 

and molar ratio of Ani:HCl:APS of 1:1.2:1. 
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For ANi polymerization, three approaches were employed, including in situ and ex 

situ polymerization, as well as a novel method that polymerizes aniline during BC 

regeneration. The samples were named according to the type of BC matrix (drained – no 

prefix, freeze dried – FD, regenerated – R) and polymerization method (in situ – IS, ex situ – 

ES). The determination of the polymer content in the membranes was determined through 

the following equation: 

 

Polymer content =  
wcomposite−wBC

wcomposite
×100 (14) 

 

where wcomposite corresponds to the dried weight of the nanocomposite and wBC 

corresponds to the dry weight of BC used for the nanocomposite synthesis. 

 

2.3.1 – Synthesis of the nanocomposites through in situ and ex situ 

polymerization 
 

 The BC membranes used in this work were either drained through manual pressure 

or freeze dried. In situ polymerization is employed by letting stand during 1 h the monomer 

solution in contact with the membranes prior to addition of the oxidizing agent in order to 

incorporate the monomer inside the BC network (Figure 7). For ex situ polymerization, the 

incorporation step was absent and the ANi and APS solutions were added simultaneously 

(Figure 7). Since the polymerization reaction occurs within the first minutes, the amount of 

monomer incorporated prior to complete polymerization is insignificant.  
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Figure 7 – Schematic representation of the methodology employed for in situ and ex situ PANi polymerization. 

 

2.3.2 – Synthesis of the nanocomposites during the regeneration of BC 
 

 The dissolution process employed was the same as previously described, which 

consisted in swelling cut cellulose (0.5% w/v) into DMAc and LiCl (8% w/v) overnight, 

followed by heating at 110 ºC and ultrasound treatment during 1 h each. Afterwards, it was 

added ANi, leaving under agitation during 4 h (Figure 8).  Then it was added a solution of 

HCl and APS, leaving the reaction under low stirring (< 100 rpm) during 24 h. The 

proportions of ANi, HCl and APS were the same as the other nanocomposites synthesized 

(previous subsection). Then, the regenerated BC/PANi nanocomposite was washed with 

water to remove the excess polymer and then washed under dialysis during 72 h to remove 

the remnants of solvent used for BC dissolution. 

 

Figure 8 - Schematic representation of the methodology employed for the in situ aniline polymerization during 

BC regeneration. 
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2.4 – Drug loading capacity 

 

 The preparation of the drug–loaded samples was based on Trovatti et al. (99) and 

Almeida et al. (100) works, where membranes of 1x1 cm were soaked in 5 ml of 10% sodium 

sulfacetamide at room temperature during 24 h. Afterwards, the membranes were rinsed 

gently in distilled water during 5 min to remove the excess drug on the surface and then oven 

dried during 24 h at 40 ºC. Then, the drug content in the membranes were determined 

according to the following equation (14): 

 

𝐷𝑟𝑢𝑔 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 =  
𝑤𝐿 − 𝑤𝑈

𝑤𝐿
×100 (14) 

   

 where wU and wL are the weight prior (unloaded) and after (loaded) drug 

incorporation. 

 

2.5 – Antimicrobial Activity 

 

The antibacterial activity of the drug loaded membranes was assessed through the 

optical density method. This experiment was based on the published work by Figueiredo et 

al. (101) and Ul–Islam et al. (102). First, a fresh culture of E. coli (DH5 α strain) in Luria-

Bertani (LB) growth media was incubated in a shaking incubator at 37 ºC and 125 rpm during 

24 h, which presented an absorbance of 0.645, corresponding to 6.78 x 107 cells/ml.  

Then, in test tubes, 13.5 ml of LB growth media were added. In the same test tubes, 

1.5 ml of fresh culture of E. coli was added, followed by the addition of the membrane.  The 

absorbance was monitored at 0, 1, 2, 4, 6, 8, 10, 12, 24 and 48 h after exposure to the 

membranes (2x2 cm) by collecting 1 ml aliquots and measuring in a Genesys 10S 

spectrophotometer (Thermoscientific). The control of this experiment consisted in evaluating 

the bacterial growth in the absence of any membrane. The reference wavelength used was of 

600 nm, which is the most common wavelength used for E. coli growth monitorization, 

corresponding to the turbidimetry caused by the cell suspension (103). The control and 

samples were run in duplicates.  
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The experimental set-up for the antimicrobial activity test through electrical stimulus 

is depicted in Figure 9, which consists in the immersion of the conductive membrane (3x1.5 

cm) under the growth culture while applying a continuous potential difference of 5 V between 

the electrodes. The absorbance was monitored at 0, 1, 2, 4, 6, 8, 10, 12, 24 and 48 h after 

exposure to the membrane, by collecting 1 mL aliquots.  

 

 

Figure 9 – Schematic representation of the experimental set-up for the drug release through electrical stimulus. 

 

2.6 – Statistical analysis 

 

The statistical analysis of the data was carried using the IBM SPSS Statistics 23 

software. Differences in the measurements of a given parameter were assessed by one–way 

analysis of variance (ANOVA), followed by a Tukey’s post hoc analysis. For IGC, the error 

of the measurements was of 3% and as such the upper and lower values from the experimental 

value were determined. p-values of <0.05 were considered statistically different. 
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2.7 – Characterization methods 

 

2.7.1 – Attenuated total reflectance Fourier transformed infrared 

spectroscopy  

 

 FTIR–ATR  spectra of the samples were obtained with a Perkin Elmer Spectrum Two 

coupled with a Diamond ATR accessory (DurasamplIR II, Smiths Detection, UK). 32 scans 

were acquired in the range of 4000–650 cm–1, with a wavenumber resolution of 1 cm–1. 

 

 

2.7.2 – X–ray diffraction  

 

 The X–ray diffraction (XRD) measurements were carried out with a Phillips X’pert 

MPD diffractometer using Cu Kα radiation (λ of 1.54 Å) operating at 45 kV and 40 mA. The 

2θ range under analysis was of 5–60º. The crystallinity index (CI) of the samples was 

determined through Segal et al. method (104) according to the following equation 14: 

 

𝐶𝐼 = (1 −
𝐼𝑎𝑚

𝐼110
) ×100 (15)  

 

where Iam corresponds to the intensities of the amorphous region (18.0º and 13.8º for type I 

and type II cellulose respectively) and I110 correspond to the intensity at the (110) plane (22.7º 

and 21.0º for type I and type II cellulose respectively). To determine the Z value for each 

sample, to know if the sample was rich in either cellulose Iα or Iβ, the XRD profile were 

deconvoluted using PeakFit 4.12 software and then it was determined the d–spacing (d) at 

both (100) and (010) angles (around 14º and 16º respectively), by applying Bragg’s equation 

(16): 

 

𝑑 =
𝑛𝜆

2 𝑠𝑖𝑛 𝜃
 (16) 
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where n corresponds to the order of reflection (n=1) (105).  After obtaining the d–spacing for 

both angles, the Z value was obtained through the following equation (17): 

 

𝑍 = 1693𝑑1 − 902𝑑2 − 549 (17) 

    

if Z>0 represents rich cellulose Iα samples, whereas Z<0 represents samples rich in cellulose 

Iβ (106). 

 

2.7.3 – Thermogravimetrical analysis  

 

 The thermal stability of the BC matrixes, as well as the obtained nanocomposites were 

evaluated using a SETSYS Evolution 1750 thermogravimetric analyser (Setaram) from room 

temperature (25ºC) until 700 ºC, using a heat ramp of 10 ºC/min under an oxygen flow of 

20 mL/min. 

 

2.7.4 – Scanning electronic microscopy coupled with energy dispersive  

X–ray spectroscopy  

 

The samples were mounted and gold–coated in preparation for the SEM–EDX imaging 

analysis, performed using a scanning electron microscope SU3500. SEM images were 

obtained using a magnification of 3000x. The EDX analysis was performed under an 

accelerated voltage of 5 kV, with the aim to identify the chemical compositions of samples at 

the surface, determining the weight percentages (wt. %) of elements C, O, N, S and Cl. 

 

2.7.5 – Atomic force microscopy  

 

 To evaluate the surface topography of the samples, the AFM analysis was employed 

by an atomic force microscope (AFM, Solver PRO, NT–MDT, Russia) in tapping mode in 

air atmosphere. Samples were scanned with the standard Si (silicon) cantilever with a force 

constant of 22 N/m and at a resonance frequency of 325 kHz (tip radius was 10 nm and the 
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tip length was 95 µm), using a scan rate of 1.3 Hz. The surface roughness (Rq) was measured 

from representative images at 5x5 µm2 area, which corresponds to the average value of the 

surface height, which can be determined through the following equation (19): 

 

𝑅𝑎 =
1

𝐿
∫|𝑍 (𝑥)|𝑑𝑥

𝐿

0

 (18) 

 

where Z(x) is the function that describes the surface profile analysed in terms of height (Z) 

and position (x) of the sample over the evaluated length (L). 

 

2.7.6 – Electrical conductivity measurement 
 

 The nanocomposite conductivity measurements were made at room temperature 

using the 4–probe technique, as depicted by Figure 10 (107). The system was comprised by a 

Fluke 87 RMS multimeter (to measure the current), a Leader multimeter 856G (to measure 

the voltage) and a CV regulated power supply Lab 502. Since the sample thickness (t, µm) is 

lower than the probe spacing (S, µm), the resistivity (ρ, Ω.cm) was measured according to the 

following equation (19): 

 

𝜌 =
𝜋𝑡

𝑙𝑛(2)
×

𝑉

𝐼
  (19) 

 

where V is the voltage and I (A) the current intensity. Then, conductivity (σ, S/cm) was 

obtained through the following equation (20): 

 

σ =
1

ρ
 (20) 
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Figure 10 – Schematic representation of the 4–probe resistivity measurement principle (based from 107)). 

 

2.7.7 – Swelling capacity 

 

 Swelling studies were performed according to Figueiredo et al. (101) in order to 

evaluate the rehydration ability of the nanocomposites. This procedure comprises in the 

immersion of the membranes in distilled water, at room temperature, monitoring their weight 

increase during 48 h. Regarding the weight measurement, the samples were removed from 

the water and their surfaces were carefully wiped with dry filter paper. The swelling ratio 

(SW) was then determined from the following equation (21): 

 

SW (%) =  
Ws − Wd

Wd

×100 (21) 

    

 where Ws and Wd are the weight of the swollen and dried membrane respectively.  

 

2.7.8 – Contact angle measurement  

 

 A water droplet was aliquoted onto each membrane and the contact angle 

measurement was recorded with Krüss DSA–100 contact angle analyser, by using on average 

10 µL of ultrapure water. The image was processed with the software imageJ using the plug–

in drop_analysis, using the low–bond axisymmetric drop shape analysis approach (LB–

ASDA) developed by Stalder et al. (108). 
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2.7.9 – Inverse Gas Chromatography  

 

 The measurements were carried out on a commercial inverse chromatograph (Surface 

Measure Systems London, UK), equipped with both FID and TCD detector. The system was 

automatized with the Software SMS IGC Controller v1.8. Silanized glass columns with 3 

mm inner diameter and 300 mm length were used (dimethyldichlorosilane, Repelcote BDH, 

UK), packing the sample through vertical tapping. The samples were conditioned overnight 

followed by 2 h at temperature measurement to stabilize.  

Dispersive surface energy measurements were carried using a series of n–alkanes, 

from n–octane to n–undecane. For specific surface energy measurements, tetrahydrofuran, 

dichloromethane, ethyl acetate, acetonitrile and ethanol were used. For the nanomorphology 

index, cyclooctane, 2, 5–dimethylhexane and 2, 2, 4–trimethylpentane were used. In all 

previous analysis, a concentration of 0.2 p/p0 was employed. The isotherm measurements of 

n–octane was carried at different concentrations, between 0.05 and 0.2 p/p0. All 

measurements were carried with a flow rate of 10 mL/min and at 20–35 ºC for BC, 40–55 

ºC nanocomposites and at 70–85 ºC for PANi sample. The higher temperatures applied for 

the nanocomposites and PANi powder is due to the strong interactions of the probes with 

the samples.  

The probes were supplied by Sigma Aldrich, with analytic grade (> 99%). Methane 

was used as an inert reference gas and Helium was used as the carrier gas, both supplied by 

Air Liquide Company, with a purity above 99%. The physical constants used in IGC were 

taken from the literature and are displayed in Table 2 ((109)). 
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Table 2 – Physical constants of the applied probes in IGC. 

γL
D – Surface tension; a – cross–section area; DN – donor number from Gutmann method; AN* – acceptor number from 

Gutmann method; γL
+ – acceptor number from the Van Oss method  γL

− – donor number from the Van Oss method; χt
c – 

topological indexes. 

  

Probe 
𝜸𝑳

𝑫 
(J/m2) 

a   

(10–19 m2) 

DN 

(kcal/mol) 

AN* 

(kcal/mol) 
𝜸𝑳

+ 
(mJ/m2) 

𝜸𝑳
− 

(mJ/m2) 
χt

c 

n-undecane 0.0246 8.10 – – – – 11 

n-decane 0.0234 7.50 – – – – 10 

n-nonane 0.0227 6.90 – – – – 9 

n-heptane 0.0213 6.30 – – – – 8 

Tetrahydrofuran 0.0225 2.90 20.00 0.50 – – – 

Dichloromethane 0.0245 2.45 – 3.90 124.58 0 – 

Ethanol 0.0211 3.53 19.00 10.30 – – – 

Ethyl acetate 0.0196 3.30 17.10 1.50 0 457.67 – 

Acetronitrile 0.0275 2.14 14.10 4.70 – – – 

2, 2, 4–trimethylpentane – – – – – – 7.40 

2, 5–dimethylhexane – – – – – – 7.68 

Cyclooctane – – – – – – 8.32 
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Chapter III – Results and discussion 

 

3.1 – Influence of bacterial cellulose drying routes and 

regeneration on its final properties 

 

The final characteristics of the BC matrixes depend on their microstructure, which, in 

turn, might be influenced by the processing methods prior to BC modification (110). Thus, 

in this section, the effect of BC regeneration and the drying method (freeze dried and oven 

dried) on the final BC matrixes properties (structural, morphological, wetting and surface) 

was studied. In addition, the optimization of BC regeneration was made. 

 

3.1.1 – BC regeneration 

 

 The dissolution of cellulose has been used as an efficient route for cellulose 

modification (44). In the case of BC, due to the higher degree of polymerization it turns more 

difficult to accomplish a complete dissolution (46). In the current work, the dissolution of 

OD-BC was made by using the DMAc/LiCl solvent system, which can be found on the 

following subsection.  

 DMAc/LiCl solvent system is known for being time consuming essentially due to the 

solvent change process (49, 50, 111-113). Thus, to improve the dissolution procedure, 

parameters were considered and evaluated. These included the BC particle size, contact time 

with the solvent prior to activation, and activation of the solvent through heat and ultrasonic 

treatment. 

 Regarding the particle size, it was seen that large particles would only lead into 

cellulose swelling and not dissolution, thus BC was cut into small pieces to increase the 

contact with the solvent. The next attempt was letting BC into contact with DMAc during 

24 h and then add LiCl, followed by heating and overnight moderate stirring. This process 

also led to BC swelling, but with a loss of the characteristic white colour of dried BC. By 

letting BC in contact with the DMAc, a higher permeation of the solvent was observed, 

although it was not strong enough to dissolve BC chains. As such, after heat treatment BC 
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was subjected to ultrasound treatment into the sample where, after 1 hour of continuous 

ultrasound treatment the BC dispersion into the solution was observed. However, the 

dissolution was not complete. Thus, to prompt the full solution of BC, it was left under 

moderate stirring overnight and no suspended particles in solution were observed (Figure 

11). Throughout this process, the crucial steps for a successful dissolution of BC are cutting 

BC into small pieces, leaving under contact with the solvent overnight, as well as the 

ultrasonic treatment.  

 

 

Figure 11  – Dissolution of BC in DMAc/LiCl prior to dissolution (A) and after dissolution(B). 

 

Alternatively, another experiment was made by keeping BC in contact overnight with 

both the solvent and the salt, where a complete dissolution was also observed (Table 1). To 

confirm the complete dissolution of BC, a drop of partially dissolved and completely 

dissolved solutions were observed under the optic microscope (Figure 12). It was only seen 

traces of undissolved cellulose in the optimized process whereas in the unoptimized process 

(prior to stirring overnight) significant amounts of undissolved cellulose fibers were found. 

 

 

Figure 12 – Photomicrography (100x) of unoptimized BC dissolution (A) and optimized BC dissolution (B) in 

DMAc/LiCl. 
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 The regeneration process was made by gently adding water into dissolved BC, and left 

static during one hour to let water permeate R–BC, giving a rigid material. Afterwards, the 

membranes were washed overnight in distilled water and oven dried. The weight of the 

sample was higher than the amount of BC added, which indicates that the drying method 

was not efficient to remove the solvent (Li and Cl ions, as well as DMAc). Thus, the 

membranes were washed through dialysis during 3 days to guarantee complete removal of 

the solvent.  

 

3.1.2 – Structural properties 

 

3.1.2.1 – Fourier transformed infrared spectrometer coupled to 

attenuated total reflectance 

 

 To assess the influence of BC regeneration and drying process on BC structural and 

surface properties, the obtained BC films were analysed by FTIR–ATR. In Figure 13, it is 

possible to observe that both OD–BC and FD–BC have the characteristic peaks of cellulose at 

3340, 2894, 1632, 1434, 1373, 1312, 1162, 1051, 995, 894 and 666 cm–1 (Figure 13). The 

strong and broad band at 3340 cm–1 corresponds to the O–H stretching of the hydroxyl 

groups. Sharper peaks on FD–BC are observed, which indicates a more regular structure. 

This is the case of the peak presented at 1107 cm–1 that is clearly evident on FD–BC while for 

the remaining BC matrixes this peak is overlaid with the neighbouring peaks. The peaks 

obtained at 1632 and 666 cm–1, corresponding to the O–H bending and out of plane bending 

respectively (114). The peaks obtained at 2894, 1434, 1373, 1312 and 1051 cm–1 correspond 

to the CH and CH2 bond vibrations (114). Moreover, there is also a characteristic peak at 

1162 cm–1, corresponding to the stretching of ether groups (C–O–C), which can be found 

within the glucopyranose ring and between the glucose monomers (114).  

When comparing the FTIR spectra of R–BC with the spectra of OD–BC, the same 

peaks are observed, indicating that no chemical changes during the regeneration process of 

BC occurred. The absence of other peaks than those from BC, in R–BC sample, shows that 

the dialysis was successfully employed in the solvent remnants removal. However, the slight 
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changes in the relative intensity of the peaks seem to suggest that a change in the BC crystal 

structure may have occurred.  

 

 

Figure 13 – FTIR–ATR spectra of oven dried (OD–BC), freeze dried (FD–BC) and regenerated (R–BC) BC.  

(-) peaks corresponding to O-H bond (-) peaks corresponding to the C-H bonds (-) peaks corresponding to the 

C-O-C bonds. 

 

3.1.2.3 – X-ray dispersive spectroscopy 

 

The XRD spectra is found on Figure 14 and the CI were obtained by applying the 

equation developed by Segal et al. (104), which can be found on Table 3. OD–BC presented 

a CI of 79.15%, which is similar to the values found on literature, such as the ones reported 

by Yudianti et al. (115), of 75%, Cheng et al. (116), of 85%, and Tsouko et al.(117), of 81%. 

FD–BC presented a similar crystallinity index to OD–BC, which indicates that the same BC 

crystallinity is obtained by using both of drying methods. Both OD–BC and FD–BC present 

a XRD profile of cellulose type I, with characteristic peaks found at 14.5º, 16.73º and 22.7º, 
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corresponding to the (100), (010) and (110) planes, respectively (8, 115). The Z value for each 

sample was determined (Table 3), which suggests that the BC samples under analysis are rich 

in cellulose Iα (Z>1) (9). 

 

Figure 14 – X–ray diffraction profile of oven dried (OD–BC), freeze dried (FD–BC) and regenerated (R–BC) 

BC. 

 

Table 3 – Crystallinity index (CI), crystallite size (CrS), Z value, and cellulose II/I ratio of oven dried (OD–BC), 

freeze dried (FD–BC) and regenerated (R–BC) BC. 

 CI (%) 
CrS  

(nm) 
Z value 

Cellulose II/I 

(A1370/A666) 

OD–BC 79.15 4.80 14.09 0.83 

FD–BC 78.45 4.73 8.54 0.82 

R–BC 47.74 1.14 – 1.70 

 

In case of R–BC, it presents a CI of 47.74% which is lower when compared to both 

OD–BC and FD–BC. This is attributed to the rearrangement of the BC chains during the 

regeneration process, which led to an increase in the amorphous content (118). Not only the 

resulting cellulose matrix presented a lower crystallinity but it was also converted into type 

II cellulose, which is corroborated by a peak broadening on XRD as also by a small shift into 



Alternative synthesis methods of electrically conductive bacterial cellulose-polyaniline composites for 

potential drug delivery application 

 

38 
 

lower 2θ values (119). The peaks corresponding to the (110) and (002) are now found at 11.9º 

and 21.0º respectively (34, 43, 118). The peak broadening on XRD also indicates a lower 

crystallite size, as observed (1.14 nm), due to the amorphous content interference (120). The 

Z value for R–BC was not calculated since the equation is suited for cellulose I and the sample 

possesses the cellulose II allomorph. The conversion of BC from type I into type II of R–BC  

relative to OD–BC is supported by the ratio between the absorption at 1370 and 666 cm–1 

(A1370/A666), according to Abbot et al. (119), presented on Table 3. It is observed an increase 

in the value for R–BC, whereas for FD–BC the value remains nearly constant, when 

compared to the OD–BC.  

 

3.1.2.4 – Thermogravimetrical analysis 

 

The thermal behaviour of the BC matrixes is depicted in Figure 15, representing the 

mass lost due to thermal degradation. All samples presented a slight mass loss until 125 ºC, 

corresponding to the residual moisture content. At higher temperatures, two degradation 

regions are observed (280–335 ºC and 335–506 ºC), in both OD–BC and R–BC, being more 

pronounced in the former. The presence of the second degradation region is characteristic 

when TGA is performed under an oxygen atmosphere, due do the extensive formation of 

char at the surface of the sample, which restricts the accessibility of oxygen (121-124). For 

FD–BC, a second degradation peak is nearly absent, where most of the sample was degraded 

on the first region. This could indicate a more regular structure, which corroborates the 

increase of the peaks sharpness on FTIR–ATR of FD–BC in comparison to OD–BC (Figure 

13). The residue of the samples was lower than 1%, which means that for R–BC the dialysis 

was effective in the removal of Li+ and Cl– ions, as well as the initial step in the removal of 

the culture media impurities. 

 The onset degradation temperature obtained from TGA gives an indication of the 

thermal stability of the BC, where lower onset temperatures indicate that the thermal 

oxidation starts sooner, corresponding to a less stable material (125). Both OD–BC and FD–

BC present a similar onset temperature (300.8 ºC for OD–BC and 304.9 ºC for FD–BC) 

which means that they present a similar thermal stability. In case of R–BC a lower onset 

temperature is observed (277.9 ºC) which evidences a lower thermal stability.  
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dTGA gives valuable information regarding the thermal degradation profile of the 

samples, where the peak minimum corresponds to the maximum temperature degradation 

(Tmax). The main degradation step of oven dried BC presented a Tmax at 335 ºC, which is close 

to the values found in the literature for other oven dried BC (350–360 ºC) (8, 118, 119). For 

FD–BC, the Tmax value slightly decreases (3.6%), which indicates that the thermal stability is 

similar to OD–BC. On the other hand, for R–BC, an evident decrease in the Tmax is observed 

(8.4%), which indicates a loss in the thermal stability of the sample. The decrease in both 

onset temperature and Tmax value is closely correlated to the crystallinity index of the samples, 

where a decrease in the crystallinity index is followed by a loss in the thermal stability (8). 

For R–BC such happens because the solvent breaks the hydrogen bonds during the 

dissolution and in the regeneration step BC only partially recrystallizes, increasing the 

amorphous content when compared to the OD–BC, making cellulose more susceptible to 

thermal degradation (118). 

 

 

Figure 15 – Thermogravimetrical analysis (TGA and dTGA (inset)) of the oven dried (OD–BC), freeze dried 

(FD–BC) and regenerated (R–BC) BC. 
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3.1.3 – Morphological properties 

 

3.1.3.1 – Scanning electronic microscopy and atomic force microscopy 

 

The assessment of the changes at the BC surface through the employment of different 

drying methods and regeneration process was made by SEM and AFM. The SEM 

micrographs of the BC matrixes can be found in Figure 16. Through this figure it is possible 

to note that OD–BC presents entangled ribbon–shaped fibrils, producing a network–like 

structure, which agrees with the SEM micrographs found on literature (31, 115, 126). This 

structure confers BC unique properties such as large surface area and high water absorption 

ability (127). In FD–BC an evident increase in the number of fibrils is observed, which might 

be due to the preservation of its 3–D structure, making FD–BC more porous than OD–BC. 

OD–BC is more compact than FD–BC due to the collapse of the pores during oven drying. 

In case of R–BC, a smooth and compact surface is observed, with an absence of fibrils at the 

surface. The same observation was also reported by Lima et al. (34), Chen et al. (126) and 

Yudianti et al. (115). The most plausible explanation for the compact surface of R–BC is that 

during the regeneration process the BC chain aggregation was too fast, turning BC unable to 

create an organized structure. 

  

 

Figure 16 – SEM micrographs (3000x) of oven dried (OD–BC), freeze dried (FD–BC) and regenerated (R–

BC) BC. 

 

 The surface morphology was further explored by AFM (Figure 17), where at a higher 

magnification for OD–BC and FD–BC the fibers can be clearly seen, presenting a width up 

to 0.1 µm. A smoother surface for FD–BC is observed (Rq of 16.2 nm), when compared to 

OD–BC (Rq of 25.2 nm). Moreover, the difference in the depth among the surface of the 
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sample is more pronounced on OD–BC when compared to FD–BC, which probably led into 

a rougher surface. This could mean that during the freeze drying process, the 3–D structure 

is preserved, whereas by oven drying BC the pores collapse leading to regions with different 

depths. This way, it is evidenced that the processing technique, applied prior to BC 

modification, has influence in its surface morphology. 

 In case of R–BC it does not present fibers at the surface (Figure 17C, F), which 

confirms the compact nature of the sample. Furthermore, a slight decrease in the roughness 

of the surface is observed (Rq of 22.0 nm) which could be correlated to a more constant depth 

of the sample.  

 

Figure 17 – 3D–and 2D–AFM of oven dried (OD–BC (A, D)), freeze dried (FD–BC (B, E)) and regenerated 

(R–BC (C, F)) BC. 
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3.1.4 – Swelling and contact angle analysis 

 

The hydrophilic nature and water retention capacity of BC is positively affected by 

the fibril arrangement and high surface area per unit mass (128). To evaluate the rehydration 

capacity of the different BC matrixes, swelling studies were performed as can be seen in 

Figure 18. OD–BC presents a steady swell ability until 8 h, reaching a SWmax of 504% (Figure 

18, Table 4). For FD–BC, the rehydration ability was greatly enhanced, being statistically 

different (p < 0.05), probably due to the preservation of the pores during the freeze drying 

process (Table 4). During oven drying the pores collapse, resulting in a compaction of the 

fibers, which is corroborated by the SEM photomicrographs (Figure 16). In case of the R–

BC, the swelling stabilization occurs sooner, presenting a much lower SWmax, of 251%. This 

evidences that R–BC has a reduced reabsorption ability due to the compact structure. 

 

Figure 18 – Swelling behaviour of oven dried (OD–BC), freeze dried (FD–BC) and regenerated (R–BC) BC. 

 

Table 4 – Swelling maximum (SWmax) and contact angle of oven dried (OD–BC), freeze dried (FD–BC) and 

regenerated (R–BC) BC.  

 OD–BC FD–BC R–BC 

SWmax (%) 504.0a 4515.8c 251.4b 

Contact angle (º) 47.6 23.7 54.0 

Values in same row not sharing a common superscript are statistically different (p < 0.05).  
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 In addition to the swell ability, the contact angle measurements were performed for 

the several BC matrixes in order to search for changes in their hydrophilicity (Figure 19). 

OD–BC presented a contact angle of 47.6º, which is higher than the values reported in the 

literature (35.4º, 36.9º and 32.5º) (129-131). FD–BC presented a contact angle much lower 

(23.7º) than the value obtained for OD–BC, which indicates a higher hydrophilic behaviour. 

In contrast, R–BC presented a higher contact angle (54.0º), indicating an increase in the 

hydrophobic behaviour. The contact angle measurement agrees with the swelling maximum 

obtained, where the samples with higher contact angle presented lower swelling. A more 

hydrophobic behaviour is related to a lower water uptake of the sample. Thus, the 

hydrophobicity of the BC samples is the following: R–BC>OD–BC>FD–BC. 

 

 

Figure 19 – Contact angle analysis of oven dried (OD–BC), freeze dried (FD–BC) and regenerated (R–BC) 

BC. 

 

3.1.5 –Surface properties by IGC 

 

 To evaluate the effect of the drying method, as well as the regeneration process on the 

surface properties of BC, IGC was employed. Through this technique, the surface energy, 

the acid–base profile and surface nanomorphology were assessed. Regarding the surface 

energy, it was determined both surface components: 𝛾𝑆
𝐷 and 𝛾𝑆

𝑆𝑃. The acid–base profile was 

evaluated through the ∆𝐺𝑠
𝑆𝑃, the Ka and Kb values. For the surface morphology SBET, Dp and 

morphology index were determined. 

 

3.1.5.1 – Surface energy 

 

 Papirer et al. (132) evaluated by IGC different cotton cellulose samples, stating that 

some factors such as crystallinity, diffusion of probes into the bulk and surface morphology 
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play an important role in the interaction between the probes and cellulose surface, thus 

influencing the IGC data. BC surface energy can be found in the literature, where Castro et 

al. (133) and Ferguson et al. (134) reported a 𝛾𝑠
𝑑 value of 39.6 and 42.3 mJ/m2 at 20 ºC and 

30 ºC respectively. Although, some works that deviate from the previous BC surface energy 

values, such as by Pommet et al. (135), where a 𝛾𝑠
𝑑 value of 61.0 mJ/m2 was obtained. In this 

work, all BC matrixes had a  𝛾𝑠
𝑑 close to the two values mentioned initially. Table 5 shows 

the surface energy values of the BC matrixes under study, as well as other parameters which 

will be further discussed. 

 

Table 5 – Surface energy (γS
D, γS

SP and γS
Total,) and acid/base behaviour (ethanol/tetrahydrofuran ΔGS

SP ratio 

and Kb/Ka) of oven dried (OD–BC), freeze dried (FD–BC) and regenerated (R–BC) BC at 25 ºC. 

Sample 
γs

D 

(mJ/m2) 

γs
SP    

(mJ/m2) 

γS
Total 

(mJ/m2) 

ΔGs
SP 

(Ethanol/Tetrahydrofuran) 
Kb/Ka 

OD–BC 37.65a 37.64a 75.29a 0.79a 0.75a 

FD–BC 35.15ab 33.38b 68.52b 0.73b 0.57b 

R–BC 34.58b 28.51c 63.08c 0.70b 0.57b 

Values in same column not sharing a common superscript are statistically different (p < 0.05). The error of the measurements was 

determined to be 3% and as such the upper and lower values from the average were determined. γS
D – Dispersive component of the surface 

energy; γS
SP – specific component of the surface energy, γS

Total – Total surface energy;  

 

To understand the reason of the surface energy values fluctuations, the heterogeneity 

profile is assessed, which gives an indication of the number and energy of the surface active 

sites. The number of active sites is seen in the y axis whereas the energy of the active sites 

(adsorption potential) is related to the x axis. An increase in the y value corresponds to an 

increase in the number of active sites whereas an increase in the adsorption potential 

corresponds to an increase in the energy of the active sites. Compared with OD–BC, both 

FD–BC and R–BC showed a decrease in the 𝛾𝑠
𝑑 value of 6.6% and 8.2%, respectively. Both 

results are supported by the heterogeneity profile of n–octane (Figure 20), where it is observed 

a decrease in the adsorption potential maximum (Amax), meaning the presence of active sites 

with lower energy. Taking OD–BC as a reference, it is observed that by freeze drying and 

regenerating BC, the Amax shifts into lower values while presenting a higher number of active 
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sites. Thus, it is observed that the drying treatments applied affect the BC chains at the 

surface. 

 

Figure 20 – Heterogeneity profile of n–octane on oven dried (OD–BC), freeze dried (FD–BC) and regenerated 

(R–BC) at 25 ºC. 

  

3.1.5.2 – Acid–base surface character 

 

The injection of polar probes provided information regarding the acid–base properties 

of the BC surfaces under study. Differences in the ∆𝐺𝑠
𝑆𝑃 values of the BC matrixes in the polar 

probes were obtained (Figure 21), which indicates that the drying treatments applied on BC 

influence the polar groups arrangement at the surface. From the Figure 21, OD–BC presented 

higher interactions with all of the studied polar probes, followed by FD–BC and R–BC. This 

agrees with the polar surface energy (γs
SP), which follows the same trend (Table 5). The 

different probes have different energies of interaction since each probe interacts differently 

with the BC active sites. Acetonitrile has an amphoteric nature, which interacts with both 

acidic and basic groups. This means both acidic and basic groups can be found on the surface 

of the BC. 
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Figure 21 – Specific free energy of adsorption (ΔGS
SP) of the polar probes on oven dried (OD–BC), freeze dried 

(FD–BC) and regenerated (R–BC) BC. 

 

The interaction of the surface of BC matrixes with ethanol and tetrahydrofuran gives 

an insight about the basic and acid groups present in the surface, respectively. The ratio 

between these two probes is found in Table 5 (∆GS
SP(Ethanol/Tetrahydrofuran)). In both 

FD–BC and R–BC it is observed a decrease more evident in ethanol when compared to THF, 

indicating an increase in the acidic behaviour. The overall decrease in the interactions of the 

polar probes on R–BC in comparison to OD–BC is corroborated by both THF and EtOH 

heterogeneity profiles (Figure 22), which presents a lower amount of surface energy sites, as 

well as lower energy sites (lower Amax value). In case of FD–BC, through the heterogeneity 

profile of both THF and EtOH, the polar probes interacted with a higher amount of surface 

energy sites and at higher energies.  
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Figure 22 – Heterogeneity profile of ethanol (A) and tetrahydrofuran (B) on oven dried (OD–BC), freeze dried 

(FD–BC) and regenerated (R–BC) BC AT 25 ºC. 

 

Observing cellulose chemical structure, it is expected an amphoteric behaviour, with 

a predominantly acidic character, due to the electron acceptor (H from hydroxyl groups) and 

electron donor (O from glucosidic bonds and hydroxyl groups) groups (136). The Kb/Ka  ratio 

gives an indication of the basicity of the sample’s surface, where: (i) a Kb/Ka  higher than 1.1 

indicates a basic surface, (ii) a Kb/Ka  lower than 0.9 indicates a basic surface and (iii) a Kb/Ka 

between 0.9 and 1.1 indicates an amphoteric surface. OD–BC presented a Kb/Ka of 0.75, 

which shows an acidic behaviour. Castro et al. (133) reported the same acidic behaviour as 

the obtained OD–BC in the current work (Table 5). Other reports of acidic BC surfaces have 
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been found in the literature (135). Such phenomenon is observed due to the orientation of 

ether and hydroxyl groups in the BC surface. In both FD–BC and R–BC the acidic behaviour 

is more pronounced (Kb/Ka of 0.57), meaning that there is a higher number of acidic groups 

available in the surface, when compared to the basic groups. This parameter is corroborated 

by the ratio between the ∆Gs
SP of EtOH and THF presented in Table 5.  

 

3.1.5.3 – Surface nanomorphology 

 

 As seen above, the drying and regeneration treatments influence the arrangement of 

the BC fibrils. Thus, the surface morphology properties of the BC matrixes were further 

explored by IGC, with the aim to complement the observations previously taken. The SBET 

of OD–BC, FD–BC and R–BC were accessed through the isotherms using n–octane as the 

probe (Table 6). OD–BC presents a SBET surface area of 4.59 m2/g (Table 6), which is higher 

than the value reported by Castro et al., of 1.94 m2/g (133). By freeze drying, a statistically 

significant increment (p < 0.05) of the SBET surface area is observed which might be due to 

the preservation of the pore structure when compared to oven drying. The preservation of 

the pore structure made easier for probes to cross the sample, thus increasing the Dp value of 

FD–BC. The IGC measurements agrees with the SEM micrographs, where it is seen a more 

porous material in FD–BC when compared to OD–BC. 

Also, it is observed that OD–BC presents a higher SBET value when compared to R–

BC (Table 6), which might be due to the compact nature of R–BC, as previously suggested. 

This property is corroborated by a lower Dp, which by having a more compact cellulose 

network, it takes longer for the probes to cross the sample. The SEM micrograph of R–BC 

corroborates the IGC measurements, where a more compact structure is observed when 

compared to OD–BC.  

 

 

 

 

 

 



Alternative synthesis methods of electrically conductive bacterial cellulose-polyaniline composites for 

potential drug delivery application 

 

49 
 

Table 6 – Surface area (SBET), diffusion parameter (Dp) and morphology indexes of oven dried (OD–BC), freeze 

dried (FD–BC) and regenerated (R–BC) BC. 

Values in same column not sharing a common superscript are statistically different (p < 0.05). The error of the measurements was 

determined to be 3% and as such the upper and lower values from the average were determined. 

  

 The interaction of the probes with the surface is not only affected by the surface moiety 

of the sample but also by the topography of the surface (92). The morphology index gives the 

“deviation” of the sample surface from being planar, which was assessed with three probes: 

two branches alkanes (2,5–Dimethylhexane and 2,2,4–Trimethylpentane) and one cyclic 

alkane (cyclooctane). In all three matrixes, an adsorption phenomena (morphology index > 

1) into the surface is observed for cyclooctane, whereas for the remaining probes a steric 

hindrance is depicted (morphology index < 1), as displayed by Figure 23. It is important to 

highlight that these differences are related to the volume of the probe. No statistical 

differences (p < 0.05) in the morphology index of 2,5–dimethylhexane were observed, as seen 

in Table 6, which indicates that this probe had the same accessibility to the surface in all 

samples, being unable to discern differences in the surface topography. On the other hand, 

with the other probes differences between OD–BC and the remaining BC samples were 

observed. Both probes had an increase in the morphology index in R–BC and FD–BC, which 

indicates that the surface of OD–BC is rougher than FD–BC and R–BC.  

The morphology indexes are in accordance with the AFM results (see in section 

3.1.3.1), where it is observed that the surface roughness (Rq) is lower when BC is freeze dried, 

when compared to the oven drying method. For R–BC, similarly to FD–BC, a decrease in 

the surface roughness is observed through AFM. This way, R–BC obtained a higher 

morphology index when compared to OD–BC.  

 In sum, through IGC results it is evidenciated that changes in the surface morphology 

occurred in regard to the different drying methods employed, as well through BC 

regeneration. OD–BC presented a more compact structure (lower SBET and lower Dp) when 

compared to FD–BC which indicates a preservation of the supramolecular structure by freeze 

Sample 
SBET 

(m2/g) 

Dp 

(cm2/s) 

Morphology index  

2,5–Dimethylhexane 2,2,4–Trimethylpentane Cyclooctane 

OD–BC 4.59a 58.10a 0.66a 0.12a 1.92a 

FD–BC 7.05b 76.78b 0.69a 0.57b 2.24b 

R–BC 3.55c 12.9c 0.65a 0.60b 2.16b 
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drying. Troughout the regeneration process, the BC chains created a compact structure 

(lower SBET and lower Dp) when compared to OD–BC. In terms of surface roughness OD–

BC presented the lowest morphology index values indicating a rougher surface than FD–BC 

and R–BC, agreeing with the AFM results. 

 

 

Figure 23 – Morphology index of oven dried (OD–BC), freeze dried (FD–BC) and regenerated (R–BC) BC. 

  



Alternative synthesis methods of electrically conductive bacterial cellulose-polyaniline composites for 

potential drug delivery application 

 

51 
 

3.2 – Influence of the different BC modification towards the 

synthesis of conductive BC/PANi nanocomposites 

 

In the previous study, it was possible to observe that upon the processing technique 

the final properties of BC changed. For BC modification, FD–BC was chosen over OD–BC 

due to its increased swelling ability and BC structure preservation. Moreover, in this section, 

drained BC is added for comparative reasons, since BC is commonly modified in this way. 

In this section, a novel BC modification procedure, by using BC regeneration and aniline 

polymerization in one-step only, is presented and further discussed. 

Conductive BC/PANi nanocomposites have been receiving increasing attention from 

the scientific community not only for electronic applications but also for the development of 

novel electro-responsive drug delivery mechanisms. However, despite these recent advances, 

the translation of the different polymerization methods on BC electrical, structural and 

surface properties have not been extensively studied. Thus, different modification methods 

comprising the use of different BC matrixes (drained, freeze dried and regenerated), as well 

as different polymerization methods (in situ and ex situ polymerization) were used. The 

samples were named according the type of BC matrix (drained – D, freeze dried – FD, 

regenerated – R) and polymerization method (in situ – IS, ex situ – ES). 

 

3.2.1 – Structural properties 

 

3.2.1.1 – Fourier transformed infrared spectrometer coupled to 

attenuated total reflectance 

 

To confirm the polymerization of aniline onto BC network, FTIR–ATR was 

employed. Initially, PANi was studied, presenting characteristic peaks at 1557, 1483, 1332, 

1290, 1235, 1128 and 788 cm–1 (Figure 24). The peaks at 1557 and 1128 cm–1 correspond to 

stretching of the C–N of benzenoid ring while the peaks at 1483 and 1373 cm–1 correspond 

to the stretching of C=N of the quinoid ring (68). Also, the peaks at 1290 and 1235 cm–1 
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correspond to the stretching vibrations of C–N from secondary aromatic amines and C–N.+ 

in the polaron lattice of PANi, respectively (137). The peak at 788 cm–1 is related to the 1, 4–

disubstitution of the aromatic ring (138), which is in agreement with the reaction mechanism 

presented in Figure 5.  

The polymerization of aniline onto BC network was confirmed through the 

comparison of pure PANi and nanocomposite spectra (Figure 24) with the respective BC 

matrixes (Figure 13). Through the FTIR–ATR spectra it is possible to observe that the BC 

fibers were successfully coated with PANi, which means that both polymerization methods, 

as well as the BC matrixes used were viable for the synthesis of BC/PANi nanocomposites. 

 

 

Figure 24 – FTIR–ATR spectra of PANi and BC/PANi nanocomposites. PANi – polyaniline; D–IS – drained 

BC/PANi in situ nanocomposite; FD–IS –  freeze dried BC/PANi in situ nanocomposite; R–IS – regenerated 

BC/PANi nanocomposite; D–ES – drained BC/PANi ex situ nanocomposite; FD–ES –  freeze dried BC/PANi 

ex situ nanocomposite. 
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3.2.1.2 – Electron dispersive X-ray spectroscopy 

 

EDX was employed with the aim to evaluate the chemical composition at the samples 

surface. In Table 7, that displays the EDX data, it is possible to note several elements such 

as C, O, N, S and in some samples Cl were identified. The BC matrixes, prior to modification, 

presented only the elements C and O, indicating the absence of impurities. Furthermore. the 

presence of PANi on the surface of the nanocomposites is evidenced by the presence of N, 

along with an increase in the C due to the aromatic ring and a decrease on the amount of O, 

corroborating the data obtained from FTIR–ATR and IGC. A similar trend was previously 

reported by Shi et al. (2012) and Lee et al. (2012) through XPS, indicating the incorporation 

of PANi onto the BC fibers (23, 28). Moreover, the element S can be found on the 

nanocomposites due to the persulfate used in the synthesis, in which it is reduced into 

sulphate, establishing ionic interactions with the amine groups (23). Also, the presence of Cl 

was expected since the reaction was under a HCl acidic media.  

 

Table 7 – Energy dispersive X–ray spectroscopy data of the BC matrixes and BC/PANi nanocomposites. 

Sample 
Elemental composition (%) 

C O N S Cl 

OD–BC 52.03 47.97 n.d. n.d. n.d. 

FD–BC 59.37 40.63 n.d. n.d. n.d. 

R–BC 47.96 52.04 n.d. n.d. n.d. 

D–IS 71.15 14.22 10.66 3.97 n.d 

FD–IS 70.78 16.94 10.91 1.36 n.d 

R–IS 69.46 12.85 8.92 3.53 5.25 

D–ES 68.52 14.81 7.93 8.09 0.66 

FD–ES 73.23 12.03 12.29 2.20 0.25 

n.d – not detected; OD–BC – oven dried BC; FD–BC – freeze dried BC; R–BC – regenerated BC; D–IS – drained BC/PANi in situ 

nanocomposite; FD–IS –  freeze dried BC/PANi in situ nanocomposite; R–IS – regenerated BC/PANi nanocomposite D–ES – drained 

BC/PANi ex situ nanocomposite; FD–ES –  freeze dried BC/PANi ex situ nanocomposite.  
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3.2.1.3 – X-ray dispersive spectroscopy 

 

XRD was employed on the BC/PANi nanocomposites to study the effect of the 

polymerization of aniline onto BC network (Figure 25). With the introduction of the polymer 

into BC, it were obtained lower crystallinity indexes, when compared to the respective BC 

matrix prior to modification (Table 8). The decrease in the crystallinity index of BC with the 

polymerization of PANi was also reported by Wang et al. (28), Marins et al (68), Zhang et 

al. (69) and He et al. (152), which might be due to: (i) the introduction of amorphous PANi  

and/or (ii) the weakening of the intermolecular bonds established between the cellulose fibers 

in order to interact with the amine groups of polyaniline. Moreover, both drained and  freeze 

dried BC/PANi nanocomposites present the characteristic type I cellulose peaks, while R–

IS present type II cellulose, which indicates that no changes in the BC polymorph structure 

occurred with the PANi introduction, when compared to the initial matrixes (Figure 14). 

 

 

Figure 25 – X–ray diffraction profiles of BC/PANi nanocomposites. D–IS – drained BC/PANi in situ 

nanocomposite; FD–IS –  freeze dried BC/PANi in situ nanocomposite; R–IS – regenerated BC/PANi in situ 

nanocomposite; D–ES – drained BC/PANi ex situ nanocomposite; FD–ES –  freeze dried BC/PANi ex situ 

nanocomposite. 
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Slight differences in BC crystallinity are observed upon the different polymerization 

methods used (Table 8), meaning that the nanocomposite crystallinity is barely influenced by 

the employment of in situ or ex situ polymerization methods. This is observed in both BC 

matrixes (drained and FD–BC), where in situ and ex situ polymerization was applied. On the 

other hand, the crystallinity was greatly influenced by the BC matrix used on the 

polymerization process. The crystallinity of D–IS and D–ES BC/PANi nanocomposites 

greatly reduces (about 60%), whereas for FD–IS and FD–ES BC/PANi nanocomposites it 

decreases moderately (around 30%) in comparison to the corresponding BC matrix. This 

indicates that FD–BC could maintain its initial 3D structure, unlike drained BC. For R–IS 

BC/PANi nanocomposite, BC presents a type II cellulose due to the regeneration process, 

as discussed in the previous chapter, with a crystallinity index similar to R–BC.  

 

Table 8 – Crystallinity index (CI), and Temperature maximum (Tmax) obtained through XRD and TGA analysis, 

respectively, for the BC matrixes and BC/PANi nanocomposites.  

Sample CI (%) Tmax1 (ºC) Tmax2 (ºC) 

OD–BC 79.15 335 - 

FD–BC 78.45 323 - 

R–BC 47.74 307 - 

D–IS 19.48 254 452 

FD–IS 46.22 251 491 

R–IS 50.20 232 444 

D–ES 18.59 254 449 

FD–ES 53.72 276 475 

OD–BC – oven dried BC; FD–BC – freeze dried dried BC; R–BC – regenerated BC; D–IS – drained BC/PANi in situ nanocomposite; FD–

IS –  freeze dried BC/PANi in situ nanocomposite; R–IS – regenerated BC/PANi nanocomposite; D–ES – drained BC/PANi ex situ 

nanocomposite; FD–ES –  freeze dried BC/PANi ex situ nanocomposite. 
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3.2.1.4 – Thermogravimetrical analysis 

 

TGA and dTGA were used to study the thermal stability of the nanocomposites. 

Figure 26 presents the degradation profiles obtained for the several samples studied. Most of 

the obtained BC/PANi nanocomposites present three degradation peaks, except for R–IS 

BC/PANi nanocomposite, where during the 400–475 ºC region it presents a complex 

degradation profile, as seen by its dTGA (Figure 26). This complexity, in the R–IS BC/PANi 

nanocomposite, could indicate different degrees of polymerization of PANi probably due to 

the different reaction media conditions (presence of DMAc and LiCl) during the 

polymerization.  

For all nanocomposites, the first weight loss under 125 ºC corresponds to residual 

water that can be found on the samples, whereas the second weight loss, with a maximum 

temperature degradation (𝑇𝑚𝑎𝑥1) at around 250 ºC, corresponds to the degradation of the BC 

chains (26, 66). In Table 8, it is possible to observe that lower 𝑇𝑚𝑎𝑥1 were obtained for the 

BC/PANi nanocomposites when compared to the unmodified BC matrixes. This 

observation can be explained by the weakening of the hydrogen bonds between the cellulose 

chains due to the PANi introduction. This result corroborates the crystallinity indexes 

obtained through XRD, where it is observed a decrease on the crystallinity due to the 

incorporation of the conductive polymer. R–IS presented the lowest degradation temperature 

(231.8 ºC) when compared with the remaining nanocomposites which is probably due to the 

lower crystallinity of R–BC.  

For the degradation step related to BC (𝑇𝑚𝑎𝑥1) there are no significant differences 

between D–IS and D–ES BC/PANi nanocomposites, whereas for FD–IS and FD–ES 

BC/PANi nanocomposites, a small difference of 26 ºC is observed. Also, by using different 

BC matrixes, no significant differences in 𝑇𝑚𝑎𝑥1 values are obtained. In case of BC/PANi 

nanocomposites, the last degradation region is attributed to the PANi backbone 

decomposition. This way, the TGA profile evidences the PANi incorporation into BC. 

Freeze dried BC/PANi nanocomposites (FD–IS and FD–ES) present a higher 𝑇𝑚𝑎𝑥2 in 

comparison with drained BC/PANi nanocomposites (D–IS and D–ES). R–IS presents a 

similar 𝑇𝑚𝑎𝑥2 as both drained BC/PANi nanocomposites. Changes in the 𝑇𝑚𝑎𝑥2 value 
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indicate that PANi synthesized in the presence of a FD–BC led into a more thermal stable 

conductive polymer, probably due to changes in chain orientation and/or molecular weight. 

Considering the overall TGA data, it is observed that with the introduction of the 

polymer a less stable nanomaterial is obtained (lower onset degradation temperatures). 

 

Figure 26 – Thermogravimetrical analysis (TGA and dTGA (inset)) of drained (A), freeze dried (B) and 

regenerated (C) BC/PANi nanocomposites. D–IS – drained BC/PANi in situ nanocomposite; FD–IS –  freeze 

dried BC/PANi in situ nanocomposite; R–IS – regenerated BC/PANi nanocomposite; D–ES – drained 

BC/PANi ex situ nanocomposite; FD–ES –  freeze dried BC/PANi ex situ nanocomposite. 
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3.2.2 – Morphological properties 

 

3.2.2.1 – Scanning electronic microscopy and atomic force microscopy 

 

SEM and AFM were carried out in the current study with the aim to observe the PANi 

incorporation into the BC matrixes. The polymerization of aniline onto the BC matrixes was 

successful, as seen by the SEM micrographs presented on Figure 27. On both D–IS and D–

ES BC/PANi nanocomposites it can be seen fibers with a higher width when compared to 

OD–BC, indicating an effective coating of PANi on the BC fibers. In case of both FD–

BC/PANi nanocomposites, the incorporation of PANi is slightly different, where it can be 

observed flakes/granules, and nearly absence of fibers at the surface. On R–IS BC/PANi 

nanocomposite the surface became less smooth with the presence of PANi flakes on the 

surface. In all nanocomposites, a more compact surface is observed which indicates that the 

PANi incorporation covered the pores of the BC matrixes.  

 The surface morphology of the BC/PANi nanocomposites was further explored 

through AFM (Figure 28). When comparing the surface roughness (Rq) values of D–IS and 

FD–IS BC/PANi nanocomposites with D–ES and FD–ES BC/PANi nanocomposites 

respectively, there are no large differences, meaning that the polymerization process used (in 

situ and ex situ polymerization) does not influence the surface roughness.  

When using different BC matrixes, it is seen that D–IS and D–ES BC/PANi 

nanocomposites are slightly rougher when compared to FD–IS and FD–ES BC/PANi 

nanocomposites respectively. In case of R–IS, it presented the greatest increase in the surface 

roughness in comparison to the remaining BC/PANi nanocomposites. This corroborates the 

SEM results where R–BC shifts from a compact smooth surface into a rougher surface. 



Alternative synthesis methods of electrically conductive bacterial cellulose-polyaniline composites for potential drug delivery application 

 

59 
 

 

 

Figure 27 – SEM micrographs (3000x) of BC matrixes and BC/PANi nanocomposites. OD–BC – oven dried BC; D–IS – drained BC/PANi in situ 

nanocomposite; D–ES – drained BC/PANi ex situ nanocomposite; FD–BC – freeze dried BC; FD–IS –  freeze dried BC/PANi in situ nanocomposite; FD–ES 

–  freeze dried BC/PANi ex situ nanocomposite; R–BC – regenerated BC; R–IS – regenerated BC/PANi nanocomposite. 
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Figure 28 – 3D–AFM of BC matrixes and BC/PANi nanocomposites: OD–BC – oven dried BC; D–IS – drained BC/PANi in situ nanocomposite; D–ES – 

drained BC/PANi ex situ nanocomposite; FD–BC – freeze dried BC; FD–IS –  freeze dried BC/PANi in situ nanocomposite; FD–ES –  freeze dried BC/PANi 

ex situ nanocomposite; R–BC – regenerated BC; R–IS – regenerated BC/PANi nanocomposite.
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3.2.3 – Polymer uptake and Electrical conductivity 

 

  The polymer uptake and electrical conductivity of BC/PANi nanocomposites were 

evaluated to assess the influence of the polymerization method, as well as the employment 

of different BC matrixes into the synthesis of BC/PANi nanocomposites. The results are 

presented on Table 9. The polymer content, which was determined by equation 14, indicates 

that the in situ polymerization positively influences the polymer content incorporated. 

Moreover, the electrical conductivity of both in situ nanocomposites (D–IS and FD–IS) is 

1.9–2.6 times higher than the nanocomposites obtained through ex situ chemical 

polymerization, which could indicate changes in the PANi chain orientation and/or 

molecular weight. D–IS BC/PANi nanocomposite presented the highest conductivity. Thus, 

the underlying BC modification method should be highlighted as the most suitable for highly 

conductive BC/PANi nanocomposites synthesis. 

 D–IS and D–ES BC/PANi nanocomposites presented lower polymer contents in 

comparison to FD–IS and FD–ES respectively, which indicates the influence of the BC 

matrix used. FD–BC matrix presents a high porosity and high swelling ratio, which should 

contribute to higher incorporation yields when compared to drained BC. Nevertheless, 

higher conductivities were obtained for D–IS and D–ES BC/PANi nanocomposite in 

comparison to the remaining nanocomposites (FD–IS, FD–ES and R–IS). According to 

Kaur et al. (139), the materials obtained fall within the range of semiconductive materials 

(10–7–100 S/cm). In the literature, many authors reported BC/PANi nanocomposites, with 

different electrical conductivities, ranging from 10–7–10–1 S/cm (23, 27, 59, 66, 67).  
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Table 9 – Polymer content and electrical conductivity of the BC/PANi nanocomposites. 

Sample 
Polymer content 

 (%) 

Conductivity  

(10–3 S/cm) 

D–IS 43.39a, b ± 2.93 139.24a ± 28.16 

FD–IS 53.67b ± 7.44 3.11b ± 0.54 

R–IS 42.90a ± 2.66 1.48b ± 0.16 

D–ES 25.24c ± 4.19 55.32c ± 12.74 

FD–ES 48.34a, b ± 1.42 1.60b ± 0.13 

Values in same column not sharing a common superscript are statistically different (p < 0.05). The error of the measurements was 

determined to be 3% and as such the upper and lower values from the average were determined. IS – drained BC/PANi in situ 

nanocomposite; FD–IS –  freeze dried BC/PANi in situ nanocomposite; R–IS – regenerated BC/PANi nanocomposite; D–ES – drained 

BC/PANi ex situ nanocomposite; FD–ES –  freeze dried BC/PANi ex situ nanocomposite.  

 

3.2.4 – Swelling and contact angle analysis 

 

 Swelling studies were performed to evaluate the rehydration ability of the synthesized 

BC/PANi nanocomposites through the immersion in water and to evaluate the weight 

increase over time (Figure 29).  

 

 

Figure 29 – Swelling behaviour of BC/PANi nanocomposites. D–IS – drained BC/PANi in situ nanocomposite; 

FD–IS –  freeze dried BC/PANi in situ nanocomposite; R–IS – regenerated BC/PANi nanocomposite; D–ES 

– drained BC/PANi ex situ nanocomposite; FD–ES –  freeze dried BC/PANi ex situ nanocomposite. 
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Comparing the swelling values of the BC matrixes (see in section 3.1.4) with the 

BC/PANi nanocomposites, by introducing PANi a significant decrease in the SWmax was 

observed (Table 10), which can be due to the hydrophobic nature of PANi. Taking the 

respective BC membranes as a reference, for FD–BC/PANi nanocomposites the swelling 

ratio decreases more significantly on (around 90%) when compared to the remaining 

BC/PANi nanocomposites, that present a decrease around 60% in their swelling ratio when 

compared to the reference BC matrix. Through the comparison of the BC/PANi 

nanocomposites, both FD–IS and FD–ES presented a higher swelling ratio when compared 

to D–IS and D–ES, while R–IS was the nanocomposite that presented the lowest swelling. 

This way, it is observed that the swelling ratio was influenced mostly by the BC matrix used.  

 

Table 10 – Swelling maximum (SWmax) and contact angle of the BC matrixes and BC/PANi nanocomposites. 

 SWmax  

(%) 

Contact angle 

 (º) 

OD–BC 504.0a 47.6 

FD–BC 4515.8b 54.0 

R–BC 251.4c 23.7 

D–IS 229.7a 54.3 

FD–IS 377.3b 76.8 

R–IS 98.1c 85.6 

D–ES 155.6d 71.1 

FD–ES 413.6b 64.8 

Values in same row not sharing a common superscript are statistically different (p < 0.05). OD–BC – oven dried BC; FD–BC – freeze dried 

BC; R–BC – regenerated BC; D–IS – drained BC/PANi in situ nanocomposite; FD–IS –  freeze dried BC/PANi in situ nanocomposite; R–

IS – regenerated BC/PANi nanocomposite; D–ES – drained BC/PANi ex situ nanocomposite; FD–ES –  freeze dried BC/PANi ex situ 

nanocomposite. 

 

 To understand the wetting properties of the BC/PANi nanocomposites, the water 

contact angle of the nanocomposites was determined, which can be found on Figure 30. It 

was observed an increase in the contact angle on all nanocomposites, when compared to the 

respective BC matrix (1.1–2.7 times higher). The D–IS BC/PANi nanocomposite presented 

the lowest contact angle (54.3º) whereas R–IS BC/PANi nanocomposite presented the 

highest contact angle (85.6º). However, no direct correlation observed between the water 

contact angle of the samples with the polymerization method or BC matrix employed for the 

synthesis of BC/PANi nanocomposites. This observation can be correlated with the electrical 
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conductivity obtained, where the samples with higher conductivity presented a lower water 

contact angle, similar to the results reported by Liu et al. (140).  

 Taking into account of the different contact angle values, the order of hydrophobicity 

of the samples is the following: R–IS>FD–IS> D–ES>FD–ES>D–IS. 

 

 

Figure 30 – Contact angle analysis of the BC matrixes and BC/PANi nanocomposites: OD–BC – oven dried 

BC; FD–BC – freeze dried BC; R–BC – regenerated BC; PANi – polyaniline; D–IS – drained BC/PANi in situ 

nanocomposite; FD–IS –  freeze dried BC/PANi in situ nanocomposite; R–IS – regenerated BC/PANi 

nanocomposite; D–ES – drained BC/PANi ex situ nanocomposite; FD–ES –  freeze dried BC/PANi ex situ 

nanocomposite. 

 

 

 

 

 

 

 

 

 



Alternative synthesis methods of electrically conductive bacterial cellulose-polyaniline composites for 

potential drug delivery application 

 

65 
 

3.2.5 – Surface properties by IGC 

 

3.2.5.1 – Surface energy   

 

IGC was employed to evaluate changes at the surface of BC with the incorporation of 

the PANi polymer. With the introduction of the conductive polymer, the 𝛾𝑠
𝑡𝑜𝑡𝑎𝑙 of the BC 

matrixes significantly increases (Table 11) due to the PANi coating on the surface, which 

presents a high 𝛾𝑠
𝑡𝑜𝑡𝑎𝑙 value (Figure 31). This is reflected in the increase of both 𝛾𝑠

𝑠𝑝
 and 𝛾𝑠

𝑑 

values (Table 11). Through Tukey’s post hoc analysis, it is possible to observe that the data 

for 𝛾𝑠
𝑡𝑜𝑡𝑎𝑙 splits into three groups: (i) drained BC/PANi nanocomposites, (ii) regenerated and 

freeze dried BC/PANi nanocomposites and (iii) PANi powder (Table 11). This indicates that 

the BC matrix had an influence in the surface properties of the nanocomposite.  

 

Table 11 – Surface energy (γS
D and γS

SP, γS
Total) and acid/base behaviour (Kb/Ka and ethanol/tetrahydrofuran ΔGS

SP 

ratio) of BC/PANi nanocomposites at 25 ºC. 

Sample 
𝜸𝑺

𝑫  

(mJ/m2) 

𝜸𝑺
𝑺𝑷   

(mJ/m2) 

𝜸𝒔
𝑻𝒐𝒕𝒂𝒍   

(mJ/m2) 
ΔGs

SP 

(Ethanol/Tetrahydrofuran) 
Kb/Ka 

OD–BC 37.65a 37.64a 75.29a 0.79a 0.75a 

FD–BC 35.15ab 33.38b 68.52b 0.73b 0.57b 

R–BC 34.58b 28.51c 63.08c 0.70b 0.57b 

PANi 119.85a 123.8a 243.65a 1.20ab 3.46a 

D–IS 64.40b 65.97b 130.37b 1.20ab 2.55b 

FD–IS 67.74b 88.70c 156.44c 1.07c 1.88c 

R–IS 51.91c 105.90c 157.81c 0.99c 1.91c 

D–ES 63.70b 63.92b 127.62b 1.27b 2.26d 

FD–ES 75.00d 88.88c 163.88c 1.12ac 3.77e 

Values in same column not sharing a common superscript are statistically different (p < 0.05). The error of the measurements was 

determined to be 3% and as such the upper and lower values from the average were determined. OD–BC – oven dried BC; FD–BC – freeze 

dried BC; R–BC – regenerated BC; D–IS – drained BC/PANi in situ nanocomposite; FD–IS –  freeze dried BC/PANi in situ nanocomposite; 

R–IS – regenerated BC/PANi nanocomposite D–ES – drained BC/PANi ex situ nanocomposite; FD–ES –  freeze dried BC/PANi ex situ 

nanocomposite. γs
Total – Total surface energy; γs

d – Dispersive component of the surface energy; γs
sp – specific component of the surface energy. 
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Figure 31 – Surface energy measurements obtained at 25 ºC from BC matrixes and BC/PANi nanocomposites. 

OD–BC – oven dried BC; FD–BC – freeze dried BC; R–BC – regenerated BC; PANi – polyaniline; D–IS – 

drained BC/PANi in situ nanocomposite; FD–IS –  freeze dried BC/PANi in situ nanocomposite; R–IS – 

regenerated BC/PANi nanocomposite; D–ES – drained BC/PANi ex situ nanocomposite; FD–ES –  freeze 

dried BC/PANi ex situ nanocomposite. 

 

The increased 𝛾𝑆
𝐷 is corroborated by an increase of the C amount through EDX (Table 

7), where a higher number of C-H groups are present at the BC/PANi nanocomposites 

surface, in comparison to the BC matrixes. The heterogeneity profile of n-octane for all 

samples studied in this work can be found in Figure 32. It is possible to observe that PANi 

presents higher adsorption potential values when compared to the BC matrixes. Thus, with 

the incorporation of PANi, is expected an increase in the energy of the active sites. Such was 

observed, which corroborates the increase in the 𝛾𝑆
𝐷 values. Moreover, the increased 𝛾𝑠

𝑑 can 

be related to an increase of the surface hydrophobicity, as seen through the contact angles. 
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Figure 32 – Heterogeneity profile of n–octane from BC matrixes and BC/PANi nanocomposites at 25 ºC OD–

BC – oven dried BC; FD–BC – freeze dried BC; R–BC – regenerated BC; PANi – polyaniline; D–IS – drained 

BC/PANi in situ nanocomposite; FD–IS –  freeze dried BC/PANi in situ nanocomposite; R–IS – regenerated 

BC/PANi nanocomposite; D–ES – drained BC/PANi ex situ nanocomposite; FD–ES –  freeze dried BC/PANi 

ex situ nanocomposite. 

 

Also, the increment of the specific surface energy (𝛾𝑠
𝑠𝑝

) is supported by the increase in 

the adsorption potential maximum of ethanol and tetrahydrofuran, as observed in Figure 33. 

However, it is observed that the adsorption potential increases more significantly in ethanol 

(59.8–105.2%) when compared to tetrahydrofuran (24.2–61.5%), which indicates an increase 

in the basic surface nature in all nanocomposites. This indicates changes on the polar surface 

groups, which will be further explored with the evaluation of the specific free energy of 

adsorption (∆𝐺𝑠
𝑠𝑝

).  

 



Alternative synthesis methods of electrically conductive bacterial cellulose-polyaniline composites for 

potential drug delivery application 

 

68 
 

 

Figure 33 – Heterogeneity profile of ethanol (A) and tetrahydrofuran (B) from the BC/PANi nanocomposites at 25 

ºC. BC – oven dried BC; FD–BC – freeze dried BC; R–BC – regenerated BC; PANi – polyaniline; D–IS – 

drained BC/PANi in situ nanocomposite; FD–IS –  freeze dried BC/PANi in situ nanocomposite; R–IS – 

regenerated BC/PANi nanocomposite; D–ES – drained BC/PANi ex situ nanocomposite; FD–ES –  freeze 

dried BC/PANi ex situ nanocomposite. 

 

3.2.5.2 – Acid-base surface character 

 

Through the incorporation of PANi in the BC matrix, the surface moiety was 

changed, as displayed by FTIR–ATR and EDX. Thus, the acid–base character of the surface 
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was evaluated through IGC. Concerning the specific free energy of adsorption, the data is 

shown in Figure 34. Considering the high ∆𝐺𝑠
𝑠𝑝

 values of PANi, its coating onto the BC fibers 

should lead into stronger interactions with the polar probes. The different probes have 

different energies of interaction since each probe interacts differently with the active sites 

present at the surface. In general, to BC/PANi nanocomposites, there was an overall increase 

in the interactions with the polar probes, when compared to the BC matrixes, which indicates 

changes in the acid–base groups on the BC surface. When comparing the ∆𝐺𝑠
𝑠𝑝

 values it is 

seen that higher values are obtained for both FD–BC/PANi nanocomposites. This result 

agrees with the 𝛾𝑠
𝑠𝑝

 values, where it was higher for both FD–BC/PANi nanocomposites. 

With the polymerization of PANi on BC, the ∆𝐺𝑠
𝑠𝑝

 of ethanol increases more significantly 

when compared to tetrahydrofuran (Table 11), suggesting an increase of the basic character 

at the surface of BC/PANi nanocomposites, due to the amine groups in PANi. Thus, through 

the evaluation of polar probes by IGC it was possible to confirm the presence of PANi in the 

nanocomposite surface. 

 

Figure 34 – Specific free energy of adsorption (ΔGS
SP) of polar probes onto the BC/PANi nanocomposites at 25 

ºC BC – oven dried BC; FD–BC – freeze dried BC; R–BC – regenerated BC; PANi – polyaniline; D–IS – drained 

BC/PANi in situ nanocomposite; FD–IS –  freeze dried BC/PANi in situ nanocomposite; R–IS – regenerated 

BC/PANi nanocomposite; D–ES – drained BC/PANi ex situ nanocomposite; FD–ES –  freeze dried BC/PANi 

ex situ nanocomposite. 
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The Kb/Ka ratio of the BC matrixes shows an acidic character (0.57 to 0.75) due to 

the hydroxyl groups at the surface. For PANi powder a basic character is observed (Table 

11), which results from the presence of amine groups throughout the polymer chains. With 

the introduction of PANi in the BC matrixes, the BC acidic behaviour is shifted into a basic 

behaviour (Kb/Ka ranging from 1.88 to 3.77), corroborating the fact that the polymer can be 

found at the surface. Also, the percentage of N and O, presented in Table 7, gives an 

indication of the relative basicity of the BC/PANi nanocomposites. The percentage of N is 

associated with the amine groups of PANi whereas the percentage of O is associated to the 

hydroxyl and ether groups of cellulose. When compared to the Kb/Ka values (Table 11), it is 

seen that the presence of N and lower O values is associated with higher Kb/Ka values. 

 The Kb/Ka values are too dispersed which means that there is no correlation with the 

polymerization method nor the BC matrix employed with the acid–base surface properties. 

 

3.2.5.3 – Surface nanomorphology  

 

IGC was also employed to evaluate the surface nanomorphology and the influence of 

the BC matrix and polymerization method used in the BC/PANi nanocomposite synthesis. 

With the incorporation of PANi, the BC SBET is drastically reduced (64–85%). This decrease 

is probably due that during chemical polymerization, PANi incorporates on the fibers (higher 

widths) and pores are obstructed, which not only decrease the area available for probes to 

access (thus decreasing the SBET) but also makes harder for probes to cross the sample (lower 

Dp, (Table 12)). Through SEM it is observed that the surface becomes more compact (Figure 

27), corroborating the IGC results. This way, through SBET and Dp analysis from IGC it is 

possible to obtain information regarding the pore availability. 

 The SBET have no direct correlation with the polymerization method nor with BC 

matrix used for the synthesis of BC/PANi nanocomposites. On the other hand, the Dp values 

of D–IS and FD–IS BC/PANi nanocomposites are higher than the values obtained in D–ES 

and FD–ES BC/PANi nanocomposites, respectively. Thus, IGC evidences that the diffusion 

of the probes is influenced by the polymerization method applied, which indicates differences 

on the structure of the different nanocomposites. R–IS BC/PANi nanocomposite presented 
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the highest SBET and lowest Dp value, which differentiates from the remaining 

nanocomposites. The low Dp value can be due to the compact structure of R–BC whereas 

the high SBET value can be due to the surface roughness as seen through AFM. 

 

Table 12 – Surface area (SBET), diffusion parameter (Dp) and morphology indexes from the BC matrixes and 

BC/PANi nanocomposites at 25 ºC. 

 SBET  

(m2/g) 

Dp 

(cm2/min) 

Morphology index  

2,2,4–trimethylpentane 2,5–dimethylhexane cyclooctane 

OD–BC 4.59a 58.10a 0.12a 0.66a 1.92a 

FD–BC 7.05b 76.78b 0.57b 0.69a 2.24b 

R–BC 3.55c 12.9c 0.60b 0.65a 2.16b 

D–IS 1.61a 4.04a 0.60a 0.64a 0.84a 

FD–IS 1.07b 0.13b 0.63a 0.71b 0.60b 

R–IS 2.03c 0.02b 0.90b 0.88c 2.00c 

D–ES 1.52a 0.64c 0.43c 0.55d 0.62d 

FD–ES 2.04c 0.08b 0.47c 0.63a 0.53b 

Values in same column not sharing a common superscript are statistically different (p < 0.05). The error of the measurements was 

determined to be 3% and as such the upper and lower values from the average were determined; OD–BC – oven dried BC; FD–BC – freeze 

dried BC; R–BC – regenerated BC; D–IS – drained BC/PANi in situ nanocomposite; FD–IS –  freeze dried BC/PANi in situ nanocomposite; 

R–IS – regenerated BC/PANi nanocomposite D–ES – drained BC/PANi ex situ nanocomposite; FD–ES –  freeze dried BC/PANi ex situ 

nanocomposite.  

 

The morphology index of the BC/PANi nanocomposites was assessed observing on 

most probes a steric hindrance phenomena (morphology index < 1) (Table 12). Through 

Tukey’s post hoc analysis, the data obtained by 2,2,4–trimethylpentane fall into three groups: 

ex situ composites, in situ composites and R–IS BC/PANi nanocomposite. This indicates that 

this probe did not detect changes in the pore availability using different BC matrixes but it 

was influenced by the polymerization method used. For 2,5–dimethylhexane the results are 

dispersed which means that this probe did not evidenced differences in the pore availability 

of the nanocomposites by employing different polymerization methods or different BC 

matrixes. When comparing to the BC matrixes, the morphology index obtained by 

cyclooctane shows that the pore availability decreases in the nanocomposites since it shifts 

from an adsorption (BC matrixes) to a steric hindrance (BC/PANi nanocomposites) 

behaviour. This observation agrees with the SBET and Dp results (Table 12), since blocking the 
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BC pores results in a more compact surface, leading into lower SBET values. The cyclooctane 

morphology indexes obtained for D–IS and FD–IS BC/PANi nanocomposites are slightly 

higher than the ones obtained in D–ES and FD–ES BC/PANi nanocomposites. Also, in situ 

nanocomposites (D–IS and FD–IS) present higher morphology indexes in comparison to ex 

situ nanocomposites (D–ES and FD–ES). Thus, cyclooctane evidenced differences in the 

surface availability using different polymerization methods and BC matrixes. 

 Through AFM it was observed that the BC/PANi nanocomposites are rougher than 

the BC matrixes (Figure 28), which explains the steric hindrance observed for cyclooctane. 

R–IS BC/PANi nanocomposite depicted the highest surface roughness of all 

nanocomposites which interestingly presented an adsorption behaviour for cyclooctane 

(morphology index >1). This indicates that the surface topography of the sample contributed 

to the adsorption of the probe, as also seen through SBET measurement.   

 Thus, through IGC it was possible to observe an increase of the steric hindrance 

through the morphology index of cyclooctane, which is correlated with the incorporation of 

PANi on the surface. Moreover, this result corroborates the Rq values obtained through 

AFM, where a rougher surface is obtained. R–IS was the only nanocomposite who presented 

an adsorption phenomenon for cyclooctane which could mean that the surface topography 

was favourable for the adsorption of the probe. It was also evidenced differences in the surface 

morphology through the use of different polymerization methods (in situ and ex situ 

polymerization) as also through the use of different BC matrixes. 
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3.3 – Application of BC/PANi nanocomposites for potential drug 

delivery system 

 

The development of novel electrical responsive membranes for drug delivery are of 

great interest, which could offer promising new treatments, as a transdermal patch, for 

chronic diseases that require daily injections of daily dosages of medication. The synthesis of 

BC/PANi nanocomposites offers a simple pathway to obtain an electro-responsive 

nanocomposite. This chapter aims to study which of the BC modifications previously made 

are the most suited for an efficient drug delivery system through electrical stimulus.  

Due to the unique properties of PANi, for an effective drug delivery system, only 

charged and small drugs should be used (141). Sulfacetamide was chosen for this study, due 

to its antibacterial properties and negative charge. This compound acts as a competitor with 

p–aminobenzoic acid, which is an essential component of the bacterial growth (142). It is 

commonly used topically, against acne rosacea and seborrheic dermatitis (142).  

 

3.3.1 – Work of adhesion and drug loading 

 

The interaction of the drug with the BC matrixes and BC/PANi nanocomposites was 

studied through both Wadh and Wcoh determined by IGC. The Wadh corresponds to the 

interactions between the drug and the membranes while the Wcoh corresponds to the 

interactions established inside of the membrane. A higher Wadh/Wcoh ratio indicates a higher 

interaction of the drug with the membrane. Moreover, the interfacial interactions were 

compared to the amount of drug absorbed (Table 13). In case of the BC matrixes, the ratio 

presented is close to 1 which indicates good dispersibility of sodium sulfacetamide in BC. For 

the BC/PANi nanocomposites, both Wadh and Wcoh increased, more significantly in the last. 

This way the resulting ratio decreases, which indicates that the interactions between 

polyaniline chains found in the surface are stronger than the interactions between the 

nanocomposite surface and the drug. Based on this result it is estimated a lower dispersibility 

of the drug in the nanocomposite when they are compared to the BC matrixes. The same 
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analogy was made by Strzemiecka et al. when it evaluated the interactions between 

polyurethane and carbon black through IGC (99). 

 

Table 13 – Work of adhesion (Wadh), work of cohesion (Wcoh) and drug content (%) on BC matrixes and 

BC/PANi nanocomposites at 25 ºC. 
 

Wadh (mJ/m2) Wcoh (mJ/m2) Wadh/Wcoh Drug content (%) 

OD–BC 215.08 225.86 0.95 15.7 ± 1.0 

FD–BC 204.31 203.80 1.00 75.9 ± 2.3 

R–BC 193.57 183.18 1.06 7.2 ± 1.4 

D–IS 284.64 393.52 0.72 5.4 ± 0.3 

FD–IS 316.68 490.34 0.65 5.9 ± 0.3 

R–IS 330.03 527.46 0.63 1.8 ± 0.1 

D–ES 284.15 390.39 0.73 3.2 ± 1.1 

FD–ES 302.54 428.29 0.71 3.8 ± 0.7 

OD–BC – oven dried BC; FD–BC – freeze dried BC; R–BC – regenerated BC; D–IS – drained BC/PANi in situ nanocomposite; FD–IS –  

freeze dried BC/PANi in situ nanocomposite; R–IS – regenerated BC/PANi nanocomposite; D–ES – drained BC/PANi ex situ 

nanocomposite; FD–ES –  freeze dried BC/PANi ex situ nanocomposite. 

 

When comparing the drug content of each sample it is possible to observe that (i) BC 

matrixes absorbed higher amounts of drug than the nanocomposites and (ii) the freeze dried 

samples absorbed more than the drained–BC samples, followed by the regenerated samples. 

Regarding the observations done, BC matrixes presented a higher drug content probably due 

to a higher surface area (SBET), as observed by IGC. This way, it is possible to conclude that 

the drug loading capacity of the nanocomposites is affected by the BC matrix employed for 

the synthesis of BC/PANi nanocomposites. Moreover, with the incorporation of PANi it 

was observed that the pores were obstructed and as such it is expected a lower ability to 

absorb the drug.  

 

3.3.2 – Antimicrobial activity 
 

The growth dynamic of E. coli was evaluated by measuring the optical density at 600 

nm over time, in both unmodified and drug loaded membranes (Figure 35). Drug loaded 

samples are represented with the suffix (D) whereas unmodified samples are presented with 

no suffix. The control consists in the growth of E. coli in the absence of any membrane. The 
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antimicrobial activity of ex situ nanocomposites and regenerated BC/PANi nanocomposite 

were not evaluated due to the low drug loading contents. Figure 35 shows that in the first 2 

h, there was no significant increase in the growth of E. coli, which corresponds to the lag 

phase, where the cells are adjusting to the new growth conditions. Followed by the lag phase, 

E. coli presented a fast growth, corresponding to the log phase. Until 10 h, in all samples, 

there are no significant differences when comparing to the control, which means that both 

unmodified and drug loaded membranes did not influenced the growth at this stage.  

 

 

Figure 35 – Antimicrobial activity of the membranes determined through the optical density method at 600 nm. 

Unloaded membrane – no suffix; drug loaded membrane – (D); OD–BC – oven dried BC; FD–BC – freeze 

dried BC; R–BC – regenerated BC; D–IS – drained BC/PANi in situ nanocomposite; FD–IS –  freeze dried 

BC/PANi in situ nanocomposite; R–IS – regenerated BC/PANi nanocomposite; ES – drained BC/PANi ex situ 

nanocomposite; FD–ES –  freeze dried BC/PANi ex situ nanocomposite. 

 

After 24 h, a decrease in the bacterial growth is seen on both drug loaded FD–BC and 

D–IS BC/PANi nanocomposite membranes, when compared to the control, indicating that 

the membranes released their drug content, depicted by a decrease in the maximum cells 

density (Figure 36). FD–BC membrane presents the highest drug loading capacity when 
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compared to the remaining samples, which means that a higher amount of drug can be 

effectively released onto the growth media and interact with the bacteria. Taking in 

consideration the time needed to observe an inhibition onto E. coli growth, the membranes 

present a slow diffusion of the drug onto the media. In the remaining drug loaded samples 

there was no inhibition in the bacterial growth which suggests that the following hypothesis 

might have occurred: (i) the drug loaded in the membranes was not released (ii) the lethal 

dose of the drug is higher than the one loaded and fully released by the membranes and/or 

(iii) the drug was partially released in amounts lower than the lethal dose.  

 

Figure 36 – Cells number of E. coli after 24 h of contact time with the membranes under analysis. 

 

 Drug loaded drained in situ BC/PANi (D–IS (D)) was the only nanocomposite that 

presented an inhibitory effect on E. coli. Also, it presented the highest electrical conductivity. 

Thus, this membrane will be the nanocomposite chosen for the antimicrobial activity through 

electrical stimulus to release the drug. On Figure 37 it is observed that the E. coli grown in the 

presence of the drug loaded membrane submitted to electrical stimulus (shock D–IS (D)) 

presents a lower cells number in comparison to both the control and to D–IS (D).  
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Figure 37 - Antimicrobial activity of the membranes determined through the optical density method. Control – 

E.coli grown without the presence of membrane; D–IS (D) – drug loaded drained BC/PANi in situ 

nanocomposite; Shock D–IS (D) - drug loaded drained BC/PANi in situ nanocomposite submitted to electrical 

stimulus. 

 

 The drug loaded nanocomposite without electrical stimulus (D–IS (D)) presented a 

lower growth inhibition on E. coli (13%) when compared to the drug loaded nanocomposite 

submitted to electrical stimulus (shock D–IS (D), 20%).  Slight differences between the two 

membranes start at 4 hours after exposure, being accentuated over time. This preliminary test 

shows promising results regarding the use of drug loaded BC/PANi nanocomposites for drug 

release applications. Nevertheless, the current experiment was not optimized, needing further 

tests. Some parameters that should be taken into consideration during the optimization are 

the drug incorporation efficiency (using different drug concentration solutions) and the 

voltage applied onto the membrane. The current test was an indirect method to observe the 

release of the drug. Thus, a more suitable method for the direct quantification of the drug 

released should be considered, such as the determination through UV-Vis. 
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Chapter IV – Conclusion 

 

 The current work aims to determine the most suitable method for BC/PANi synthesis 

for drug delivery applications through electrical stimulus. The present research shows that 

the BC/PANi nanocomposites were successfully synthesized using different BC matrixes 

(drained, freeze dried and regenerated), as well as through different polymerization methods 

(in situ and ex situ). The electrical conductivities obtained varied between 1.48x10-3 to 1.39x10-

1 S/cm, which fall within the range of semiconductive materials. 

 The BC/PANi nanocomposites were submitted through a series of analysis to 

evaluate the influence of the different BC modification methods in the physico-chemical 

properties of the resulting material. FTIR–ATR and EDX evidenced a successful coating of 

PANI on BC fibers, being visible through SEM. The thermal stability of the different 

nanocomposites decreased in comparison to the original BC matrix, which could be 

correlated to the loss of the crystallinity content of BC during the modification. In this regard, 

the crystallinity of the freeze dried BC/PANi nanocomposites were less affected than the 

drained BC/PANi nanocomposites.  

 Inverse gas chromatography (IGC) has proven to be a valuable technique in the 

evaluation of the changes occurred with PANi incorporation into BC. It is observed a 

significant increase in the surface energy of the nanocomposites, as well as a shift from an 

acidic surface (BC matrixes) to a basic surface (BC/PANi nanocomposites). Moreover, 

changes in the BC structure due to the different modification methods was observed, where 

the different BC/PANi nanocomposites presented a more compact (lower SBET and lower Dp) 

and rougher surface. Thus, the current work evidence the influence of the different BC 

treatments in the properties of the resulting nanocomposite. 

 Through the antimicrobial activity tests, drug loaded drained BC/PANi in situ 

nanocomposite was the only BC modification that successfully presented an inhibitory 

growth on E. coli (up to 13%) without electrical stimulus. With the electrical stimulus, the 

inhibitory growth was further increased (up to 20%). Further investigation needs to be done, 

namely in the optimization of the drug loading efficiency, as well as the employment of 

different voltages. Also, the drug release kinetics should be studied, with the aim to 

understand the dynamic process of drug release. 
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