
to generate resolving macrophages.3 Plasmin
was also able to increase apoptotic-neutrophil
efferocytosis by macrophages, indicating
a potentiation of the resolution of the
inflammation. Annexin A1 mediated the
actions on plasmin-inducing neutrophil
apoptosis and efferocytosis (see figure),
and in vivo administration of plasmin is
able to increase cell surface expression and
secretion of annexin A1 by macrophages.1

Annexin A1 is a potent anti-inflammatory
effector molecule of the resolution of
inflammation, being one of the main
mediators of glucocorticoid anti-
inflammatory actions, partially by mediating
apoptosis and clearance of apoptotic
neutrophils.10 The work of Sugimoto et al
suggests that resolving inflammation
through modulation of the plasmin system
could represent an advantageous therapy
with fewer side effects than the use of
glucocorticoids.

This study proposes the plasmin system
as an important effector in establishing an
efficient resolution of the inflammatory
process, paving the way for further
studies in the years ahead to test the
pharmacological modulation of the plasmin
system to achieve an efficient resolution of
inflammation. This will ultimately affect
the development of novel therapies for a wide
range of chronic degenerative diseases with
an inflammatory base that affect an increasing
elderly population in developed countries.
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Immune insights into AA
-----------------------------------------------------------------------------------------------------

Antonio M. Risitano FEDERICO II UNIVERSITY OF NAPLES

In this issue of Blood, Zaimoku et al demonstrate that the functional loss of the
HLA-B4002 allele is common in aplastic anemia (AA) patients, suggesting that
this allele plays a major role in the immune attack underlying the pathophysiology
of this disease.1

The immune-mediated pathophysiology of
AA is substantiated by the excellent clinical

response to immunosuppressive treatment,
and supported by a plethora of experimental
studies.2 Most studies suggest that AA is
attributable to a T-cell–mediated immune
attack targeting hematopoietic stem/
progenitor cells (HSPCs). Indeed, different
groups have documented in AA the presence
of an oligoclonal T-cell response in vivo,
with cytotoxic activity of these T-cell clones
on autologous HSPCs in vitro.3,4 However,
although T-cell repertoire oligoclonality
suggests the presence of an antigen-driven
T-cell response, the identification of putative
autoantigen(s) triggering such immune
response remains elusive. Different HLA
alleles were found associated with AA,
including DRB1*1501, DRB1*1502, B*5201,
and B*4002.5 Furthermore, neutral copy-
number loss of heterozygosity of the short arm
of the chromosome 6 (6pLOH) emerged as
a relatively common phenomenon in AA,5

suggesting the hypothesis that it may represent
a mechanism of immune escape for HSPCs.

In this work, Zaimoku et al confirm that
HLA-B*4002 is among the HLA alleles most
frequently carried by AA patients, and that
6pLOH is particularly common in theseHLA-
B*4002 AA patients.5 Using an ultrasensitive
flow cytometry assay exploiting a new
anti-HLA-B4002 monoclonal antibody,
Zaimoku et al demonstrate that HLA-B40022

granulocytes can be found not only in allHLA-
B*4002 patients with a 6pLOH, but also in the

majority of patients without 6pLOH. Indeed,
deep sequencing of HLA-B*4002 in sorted
HLA-B40022 granulocytes isolated from these
AA patients without 6pLOH documents that
the loss of HLA-B4002 was because of somatic
mutations in theHLA-B*4002 gene, leading to
the specific phenotype of HLA-B40022A1

granulocytes, which cannot be defined
as 6pLOH. These HLA-B40022A1

granulocytes were detected also in AA patients
with 6pLOH, leading to the conclusion that
HLA-B40022 granulocytes in these patients
are a mosaic of cells truly carrying 6pLOH
(HLA-B40022A2) and cells lacking HLA-
B4002 because of other structural gene
mutations. Indeed, the authors were able
to identify different HLA-B*4002 somatic
mutations leading to a loss-of-function
phenotype. In addition, in the same patients
a few missense mutations were found in
phenotypically normal (HLA-B40021)
granulocytes. All these observations suggest
that theseHLA-B40022 cells tend to expand as
a result of continuous immune pressure from
which they are spared.

The concept of possible immune escape in
the context of AA is not a novel concept in bone
marrow failure, since it was first introduced
by Rotoli and Luzzatto to explain the
pathophysiology of clonal expansion of
glycosylphosphatidylinositol (GPI)–deficient
cells in paroxysmal nocturnal hemoglobinuria
(PNH).6 Autoreactive T cells would target
normal HSPCs via someGPI-linked protein or
via the GPI anchor itself, eventually sparing
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PNH (GPI-deficient) HSPCs.6 CD1d-
restricted, GPI-specific T cells were found
with a higher frequency in PNH patients,
eventually suggesting that an immune attack
targeting the nonpeptidic GPI anchor
could account for the expansion of PNH
hematopoiesis.7 More recently, the same
CD1d-restricted, GPI-specific T cells have
been found increased in AA patients,
suggesting that the GPI anchor itself may serve
as the target antigen even in the autoimmune
process underlying AA.8With their new study,
Zaimoku et al show that immune escape in
AA may occur also as a result of HLA loss,
eventually providing evidence that HLA-
restricted antigen(s) may play a role in AA
pathophysiology. These novel findings only
appear to contradict their previous data,8

because in an autoimmune process like AA, the
oligoclonal T-cell responsemay target different
antigens, eventually shaping the clonal
dynamic of residual hematopoiesis. In this
context, HLA-B4002 seems to have a major
role in the presentation of some typical, still

unknown peptidic antigens, while CD1d does
the same for the glycolipidic GPI anchor.
This noncasual role of HLA-B4002 is also
supported by the observation that in presence
of effective immunosuppressive therapy the
aberrant HLA-B40022 cells may reduce
as a result of dilution from a restored,
phenotypically normal, polyclonal
hematopoiesis.1 However, because Zaimoku
et al did not perform the same deep
investigation on other HLA alleles, it is not
clear whether this propensity to somatic
mutations and subsequent functional
immune selection is specific of HLA-B*4002,
or rather it is a broader phenomenon
eventually pertaining to any HLA allele.

Recent studies exploiting next-generation
sequencing have documented the presence of
mutations within different genes frequently
involved in myeloid malignancies.9 The work
by Zaimoku et al demonstrated a surprisingly
high rate of mutations in the HLA-B*4002
gene, supporting an underlying autoimmune
attack rather than indicating a propensity

to progress toward myeloid malignancies.
Unfortunately, this study could not formally
investigate the mutation rate in AAHSPCs nor
any possible hotspot mutation within the HLA
locus. However, the finding described in this
article may lead to some speculations (see
figure): (1) somatic mutations are frequently
detectable in AA, possibly as a result of
Darwinian selection (ie, most mutations are
neutral, and they emerge simply because of
oligoclonal hematopoiesis)9; (2) some somatic
mutations may eventually lead to clonal
expansion because of an immune privilege (ie,
the so-called immune escape, which is well
established for PNH cells6 and now also for
HLA-B4002 cells1; it might be hypothesized
also for BCOR/BCOR-L mutations); and (3)
the causal role of other somatic mutations in
terms of possible malignant transformation
requires further demonstration (ie, mutations
in genes responsible of epigenetic regulation
may simply affect clonal dominance, whereas
mutations in splicing genes are more likely to
confer a malignant phenotype).10

In conclusion, the data from Zaimoku et al
spotlights the role of HLA-B4002 in the
autoimmune pathophysiology of AA. This
allele is involved in the recognition and
subsequent damage of normal HSPCs through
the presentation of the causative autoantigen
and the formation of the immune synapsis
required for T-cell–mediated cytotoxicity.
Although further studies are needed to identify
the candidate antigen(s) causing AA, current
data confirm the immune pathophysiology of
AA and allow a better understanding of somatic
mutations, hematopoietic mosaicism, and
clonal dynamics in the context of immune-
mediated bone marrow failure syndromes.
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Somatic mutations, hematopoietic mosaicism, and clonal dynamics in immune-mediated AA. (A) From the polyclonal

T-cell repertoire, some clonal T cells specific for some antigen expressed on HSPCs (see “Immune synapsis”) may

expand, leading to an oligoclonal antigen-driven T-cell response. (B) The immune synapsis: T cells may recognize

through their T-cell receptor–specific antigens, presented on (some) HSPCs within either HLA alleles (peptidic epitopes)

or HLA-like molecules (for lipidic epitopes; this is the case as with the GPI anchor presented within CD1d).6,7 (C)

Pathogenic T-cell clones may exert T-cell–mediated cytotoxicity over many HSPCs (via the immune synapsis depicted

in the inset), eventually leading to oligoclonal hematopoiesis.2,4 (D) Different somatic mutations may stochastically

occur within individual HSPCs; because of the underlying HSPC oligoclonality, any neutral mutation carried by surviving

HSPCs becomes evident (Darwinian selection).9 Individual mutations leading to specific functional phenotypes shape

the subsequent hematopoietic mosaicism and clonal dynamics through different mechanisms, including immune

escape, HSPC fitness, or proliferative advantage. In the absence of somatic mutations, HSPCs may undergo

exhaustion (first quadrant). Expansion of clones escaping the immune response may occur through different

mechanisms, such as GPI-deficient cells (PNH, second quadrant)6 or functional loss of HLA due to 6pLOH (third

quadrant) or to other structural HLA gene mutations (ie, B40022 cells).1 Other somatic mutations may contribute to

clonal dominance through distinct specific mechanisms (fifth quadrant)10: true malignant transformation for splicing

genes, survival/growth advantage, or increased HSPC fitness for epigenetic mutations; unknown (possibly immune

escape?) for BCOR-BCORL1 mutations. Ag, antigen; TCR, T-cell receptor. Professional illustration by Somersault18:24.
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HCT for SCID: one size does not fit all
-----------------------------------------------------------------------------------------------------

Mary Eapen MEDICAL COLLEGE OF WISCONSIN

In this issue of Blood, Hoeing et al further our understanding on the clinical
presentation and treatment of reticular dysgenesis (RD), a rare entity of the severe
combined immunodeficiency diseases (SCIDs).1 The SCIDs are phenotypically
and genotypically heterogeneous, and RD is considered 1 of the most severe
forms.2,3 RD is inherited as an autosomal recessive disorder and accounts for
,2% of SCID and classed as T-, B-, and natural killer–deficient SCID.2

Clinically, it is characterized by an absence of granulocytes and lymphocytes in
peripheral blood, hypoplasia of the thymus and secondary lymphoid organs, lack
of innate and adaptive humoral and cellular functions, and sensorineural hearing
deficit.3 Unlike classical SCID, RD presents very early, usually within a few days
after birth, and with life-threatening bacterial infections rather than opportunistic
infections. A complete blood count with differential should alert the astute
clinician to consider SCID in the differential diagnosis and undertake urgent
consultation with an immunologist. Children with RD have mutations in both
copies of the adenylate kinase 2 gene3 (see figure). The resulting defect in
mitochondrial adenylate kinase 2 results in defective maturation of lymphoid and
myeloid cells. Consequently, hematopoietic cell transplantation (HCT) is the only
treatment curative for this otherwise fatal disease.

In describing the natural history of the
disease, Hoenig et al note the high

proportion of premature births, infants small
for gestational age, life-threatening infections
much earlier than seen with classical SCID,
lymphopenia, and agranulocytosis. Other
hematological features observed in their cohort
included thrombocytopenia and hemoglobin
levels below the normal range. The most
common finding on examination of bone
marrow morphology was arrest of myeloid
differentiation at the promyelocytic stage. The
majority of infants presented within the first
week after birth. The authors recommend
a diagnostic workup for infants with
unexplained leukopenia because early referral

to a specialist and HCT is potentially
lifesaving. Although long-term survival
after HCT was 68%, graft failure or
persistence/recurrence of agranulocytosis
was the predominant cause of treatment
failure.1 Myeloablative transplant
conditioning regimens and transplantation
of T-cell–replete grafts were associated with
best outcomes.1

This is an important observation because
transplant strategies for classical SCID vary.
For classical SCID, grafts from HLA-
matched siblings or from unrelated donors
are unmodified and recipients receive
immunosuppression posttransplant for
graft-versus-host disease prophylaxis.4

Grafts from HLA-mismatched relatives are
T-cell–depleted and administered without
further immunosuppression for graft-versus-
host disease.4,5 Although the majority of
HLA-matched and mismatched related
donor transplants occur without a transplant-
conditioning regimen, recipients of unrelated
donor transplants receive transplant-
conditioning regimens that aremore likely to be
reduced in their intensity.4 For several other
primary immunodeficiency diseases, reduced
intensity conditioning regimens with alkylating
agents result in sustained engraftment and
long-term survival.6 Given the rarity of RD,
we have to conclude that myeloablative regimens
and transplantation of T-cell–replete grafts are
preferred to reduced intensity conditioning
regimens. Although RD is a SCID, it is
associated with other hematopoietic
abnormalities, primarily agranulocytosis;
this is likely why myeloablative transplant
conditioning regimens are needed to ensure
sustained engraftment of the transplanted
hematopoietic cells. However, the available
data do not allow for recommending specific
myeloablative regimen(s).

Timely referral is critical because donor
search, donor workup, and procurement of
graft typically takes 6 to 12 weeks depending
on donor source (ie, longer times are needed
for adult unrelated donors). Another,
often overlooked, aspect of transplantation
associated with survival and graft failure is
donor selection. An unaffected HLA-matched
sibling, when available, is the “gold standard.”
Selecting unrelated adult donors who are
HLA-matched to their recipient at the allele
level at HLA-A, -B, -C, and -DRB1 results in
the best survival and lowest rate of graft failure
for nonmalignant diseases.7 A similar approach
should be considered when selecting umbilical
cord blood units; better matched units are
associated with lower rates of graft failure.8

Mismatched related donor HCT, until
recently, has been associated with graft
manipulation (T-cell depletion) to overcome
the HLA barrier. The relatively new approach
of using posttransplant cyclophosphamide
with a T-cell–replete graft may be an
acceptable alternative. However, one must
be cautious in adopting strategies that are
tested for marrow failure for primary
immunodeficiency diseases.9,10

Although it is tempting to recommend
phase 2 trials to study optimal transplant
conditioning regimens, it is not feasible for
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