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ABSTRACT 

 

Psychometric Impacts of Above-Level Testing. (May 2011) 

Russell Thomas Warne, B.S., Brigham Young University 

Co-Chairs of Advisory Committee: Dr. Myeongsun Yoon 

  Dr. Ernest Goetz 

 

 Above-level testing is the practice of administering a test levelðof usually an 

academic achievement or aptitude testðto a gifted or high achieving child.  This 

procedure is widely accepted in gifted education circles, on the basis of theoretical 

claims that above-level testing raises the test ceiling, increases variability among gifted 

studentsô scores, improves reliability of data, reduces regression toward the mean, and 

improves interpretation of data from gifted students.  However, above-level testing has 

not been subject to careful psychometric scrutiny. 

In this study, I examine reliability data, growth trajectories, distributions, and 

group differences of above-level test scores obtained from the Iowa Tests of Basic Skills 

(ITBS) and Iowa Tests of Educational Development (ITED).  Subjects in this study were 

224 students who were tested a total of 435 times while enrolled in a gifted magnet 

program for middle schoolers.  Longitudinal analyses performed with hierarchical linear 

modeling indicate that substantial differences exist between students from 

overrepresented ethnicities (White and Asian Americans) and those from 

underrepresented ethnicities (Hispanic and African Americans) in both initial scores and 

the rate of score gains.  Gender differences existed only for the rate of score increases for 
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above-level reading scores.  Socioeconomic differences existed, but did not have a 

unique impact beyond that of the ethnicity variable. 

A discussion of these results within the wider gifted education research context 

and suggestions for further research are included.  An appendix to the study gives 

information about item difficulty indexes for every item in the ITBS/ITED core battery 

for the eighth, ninth, and tenth grade levels of Form C. 

 

  



v 

 

ACKNOWLEDGMENTS  

My name is the only one on the cover of this dissertation, but that should not 

imply that others did not have a hand in this work.  The strongest influences came from 

my committee members.  Dr. Myeongsun Yoon was indispensible for guiding me 

through the technical aspects of the studyðespecially in reporting standards for 

hierarchical linear modeling results.  She deserves an extra big kam sam ham nee dah.  

Dr. Ernest Goetz had an intense eye for detail as he reviewed the design for the study, 

providing useful suggestions for handling the practical elements of the study.  His 

careful examination of the drafts of every chapter also saved me from many 

embarrassing mistakes.  Dr. Joyce Juntune made this study possible through her 

connections with gifted personnel in Texas school districts.  Indeed, she is an essential 

resource for anyone who wishes to conduct a study on gifted students in the state.  

Finally, Dr. Aaron Taylor put to good use his knack for asking deep, probing questions, 

which often helped me see shortcomings in my work.  I am humbled and honored that 

these four extraordinary scholars and teachers would agree to take me as a student. 

Other professors in the Department of Educational Psychology at Texas A&M 

University made important indirect contributions to this study.  Dr. Oimon Kwok taught 

me everything I know about hierarchical linear modeling and structural equation 

modeling and clarified many misconceptions I had about statistical methods.  Dr. Bruce 

Thompson provided a firm foundation for my statistical knowledge through his classes 

and several theoretical conversations about the general linear model and other topics.  



vi 

 

Dr. Victor Willson provided encouragement, good humor, and an excellent training on 

longitudinal data analysis. 

Several classmates also provided substantive support, encouragement, and 

friendship during my years at Texas A&M.  Fatih and Sumeyye Kaya performed (and 

checked) the data entry from the two followupsðthereby saving me a lot of time.  Dr. 

Beth Barnes and Diana Hood helped me gain access to the data and helped me 

understand the local context in which the study took place.  Dr. Susan Skidmore was 

always willing to take the time to listen to my ramblings about obscure psychometric 

topics.  Dr. Ross Larsen was a willing co-author on two manuscripts and (hopefully) a 

lifelong collaborator.  Dr. Jiun-Yu Wu and Dr. Karen Lee were constantly supportive 

and believed in my study when problems arose while it was being carried out.  Other 

classmates were supportive or helpful in too many ways to list individually: Eun Sook 

Kim, Dr. Hsien-Yuan Hsu, Eunju Jung, Minjung Kim, Yan Li, Alma Contreras, Dr. 

Leena Landmark, Jackie Pacha, Maria Lazo, and Tammy Ramos.  The order of this list 

should not imply anything about the relative importance of these classmatesô support or 

influence; any omissions are unintentional. 

I also appreciate the friendship and encouragement of my Texas friends whom I 

met outside of a graduate student context: Dr. Donald Adams, Tony Brown, Rosalma 

Arcelay, Jared Porter, and Will Hausman all listened to way too many rants about how 

awful it is to be a graduate student.  Rich and Caroline White graciously opened up their 

home to me many times over the course of four yearsðespecially during college football 

season.  Other friends who live further away were also supportive of my dissertation and 



vii  

 

graduate school endeavors.  Dave Mortensen, Justin and Katie Ferrell, Dale and Judy 

Rex, Dr. Ed Gantt, and Fáiver González all remember when I was applying to graduate 

school years ago and now get to watch from afar as I finish up. 

I also appreciate the folks at the Research and Evaluation Network of the 

National Association for Gifted Children, especially Dr. D. Betsy McCoach.  The 

network named this study as the best doctoral-level research in progress at their 2009 

and 2010 national conferences, which was both an appreciated ego boost and a strong 

signal that what I was doing in this study was important to other researchers. 

Finally, Iôm thankful for my family through this entire process.  Even when they 

didnôt know what psychometrics was, they supported my decision to study it.  

Unfortunately, that decision has burdened my parents with the task of explaining to their 

friends how their son could be a psychologist and yet (a) never have any clients, and (b) 

care more about test items than about people.  It has also forced my brothers to one day 

explain to their children that their uncle actually likes standardized tests.  I also 

appreciate my familyôs sincere efforts to understand what exactly it is I study so they can 

stop asking the question, ñSo what is it you do, again?ò at every family gathering. 

The dissertation committee gave me a significant amount of freedom as I 

selected my topic and methodology, which I greatly appreciate.  But with that freedom 

comes a high level of responsibility for any shortcomings in this study.  I take full 

responsibility for any such problems, but I liberally share credit for the studyôs positive 

aspects with all those mentioned in these pages. 

  



viii  

 

TABLE OF CONTENTS  

Page 

ABSTRACT ...................................................................................................................... iii  

 

ACKNOWLEDGMENTS .................................................................................................. v 

 

TABLE OF CONTENTS ................................................................................................ viii  

 

LIST OF FIGURES ............................................................................................................ x 

 

LIST OF TABLES ............................................................................................................ xi 

 

CHAPTER 

 

I     INTRODUCTION ....................................................................................................... 1 

 

          Problem Statement ................................................................................................... 2 

          Research Questions .................................................................................................. 5 

 

II    LITERATURE REVIEW ............................................................................................ 7 

 

          Terminology and Search Procedures ........................................................................ 8 

          Development of Above-Level Testing ..................................................................... 9 

          Rationale of Above-Level Testing ......................................................................... 12 

               Raising the Test Ceiling .................................................................................... 13 

               Increasing Score Variability .............................................................................. 15 

               Improved Score Reliability ............................................................................... 16 

               Better Comparability and Use in Educational Planning .................................... 20 

               Regression Toward the Mean ............................................................................ 21 

               Other Research of Note on Above-Level Testing ............................................. 23 

          Discussion .............................................................................................................. 25 

               Alternatives to Above-Level Testing ................................................................ 29 

          Conclusion .............................................................................................................. 30 

 

III   METHODS ................................................................................................................ 33 

 

          Participants ............................................................................................................. 33 

          Instruments ............................................................................................................. 36 

          Coding and Statistical Power ................................................................................. 36 

          Analysis .................................................................................................................. 37 

 

IV   RESULTS ................................................................................................................. 46 



ix 

 

CHAPTER             Page 

 

          Descriptive Statistics .............................................................................................. 46 

               Research Question 1: Internal Consistency Reliability ..................................... 52 

          Hierarchical Linear Models .................................................................................... 54 

               Total Battery Score Results ............................................................................... 57 

               Reading Score Results ....................................................................................... 66 

               Math Score Results ............................................................................................ 72 

          Research Question 2: Rate of Score Gains ............................................................. 75 

          Research Question 3: Demographic Variable Impact ............................................ 78 

          Research Question 4: Intercept-Slope Correlations ............................................... 79 

          Research Question 5: Effect Sizes ......................................................................... 82 

 

V    DISCUSSION AND CONCLUSION ....................................................................... 84 

 

          Research Question 1: Internal Consistency Reliability .......................................... 84 

          Research Question 2: Above-Level Score Gains ................................................... 85 

          Research Question 3: Demographic Variable Impact ............................................ 86 

          Research Question 4: Intercept-Slope Correlations ............................................... 87 

          Research Question 5: Effect Sizes ......................................................................... 88 

          General Discussion ................................................................................................. 91 

               Implications ....................................................................................................... 92 

               Limitations ........................................................................................................ 93 

                    Internal Validity ........................................................................................... 93 

                    External Validity .......................................................................................... 96 

                    Other Study Limitations ............................................................................... 97 

               Further Research ............................................................................................... 99 

               Conclusion ....................................................................................................... 102 

 

REFERENCES ............................................................................................................... 105 

 

APPENDIX: ITEM STATISTICS ................................................................................. 126 

 

          Methods ................................................................................................................ 126 

          Analysis ................................................................................................................ 128 

          Results .................................................................................................................. 128 

          Discussion ............................................................................................................ 129 

 

VITA .............................................................................................................................. 181 
 

 

  



x 

 

LIST OF FIGURES 

FIGURE                    Page 

1         Relationship of time points in the study, cohort numbers, and grade levels .. 33 

2         Subject flow through the study ....................................................................... 35 

3         Average total battery score growth trends for above-level cohorts and  

           norm groups .................................................................................................... 64 

4         Average reading score growth trends for above-level cohorts and norm  

           groups ............................................................................................................. 70 

5         Average math score growth trends for above-level cohorts and norm  

           groups ............................................................................................................. 76 

6         Total battery score changes over time (n = 221) ............................................ 81 

  



xi 

 

LIST OF TABLES  

TABLE                    Page 

1         Descriptive Statistics for Gifted Grade 6 Cohorts 3 and 4 and National  

           Grade 8 Norms ............................................................................................... 47 

2         Descriptive Statistics for Gifted Grade 7 Cohorts 2 and 3 and National  

           Grade 9 Norms ............................................................................................... 48 

3         Descriptive Statistics for Gifted Grade 8 Cohorts 1 and 2 and National  

           Grade 10 Norms ............................................................................................. 49 

4         Cohort Group Mean Changes ......................................................................... 50 

5         Number and Percentage of Students Who Showed a Score Decline ............. 52 

6         Correlation of Dependent Variables and Level-2 Independent Variables ..... 55 

7         HLM Analysis Results (Total Battery Score) ................................................ 56 

8         HLM Parsimonious Models ........................................................................... 63 

9         HLM Analysis Results (Reading Score) ........................................................ 65 

10       HLM Analysis Results (Math Score) ............................................................. 71 

11       Slope-Intercept Correlations (Standardized †  Values) for HLM Models 

           (n = 84) ........................................................................................................... 80 

 

  



1 

 

 

CHAPTER I  

INTRODUCTION  

 Gifted education experts have long recognized that regular standardized 

achievement and aptitude tests are not suitable for testing the abilities of gifted children.  

Grade-level tests are designed to measure the middle levels of abilityðwhere the 

majority of studentsô abilities lieðas effectively as possible (Lohman, 2005; Minnema, 

Thurlow, Bielinski, & Scott, 2000; Stanley, 1977).  The emphasis that typical 

standardized tests place on average students often makes the tests unsuitable for 

obtaining accurate data on gifted children.  This has led researchers in gifted education 

to look for different methods of objective assessment of gifted students.  One method 

that gifted education researchers have used to test high ability children is called above-

level testing (Stanley & Benbow, 1981-1982).  Above-level testing is the procedure of 

administering a test to a gifted child who is younger or in a lower grade than the group 

for which the test was originally designed.

 Above-level testing is a widespread and accepted practice in gifted education, 

where it is used to screen students for Talent Search participation (Swiatek, 2007) and 

full -grade acceleration (Assouline, Colangelo, Lupkowki-Shoplik, Lipscomb & Forstadt, 

2009; Rogers, 2002).  Although there are isolated cases of above-level testing 

throughout most of the 20
th 

century (e.g., Almack & Almack, 1921; Hollingworth, 1926, 

1942; Stanley, 1951; Stedman, 1924; Terman, 1926; Terman & Fenton, 1921; Witty & 

Jenkins, 1935), it was not a regular and widely accepted practice until the 1970ôs.  In that 

________________________ 
This dissertation follows the style of Gifted Child Quarterly. 
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decade, Stanley began the first Talent Search and screened seventh- and eighth-grade 

gifted children for admission by administering the SAT to them.  Through the efforts and 

research of Stanley, above-level testing has become a widespread practice in gifted 

education, mostly in a Talent Search context (S.-Y. Lee, Matthews, & Olszewski-

Kubilius, 2008, for a review of the present state of Talent Search programs).  Above-

level testing is also advocated by gifted education researchers in academic acceleration 

(Assouline et al., 2009; Rogers, 2002) and other gifted education practices (Gross, 1999; 

Rogers, 2002). 

 Advocates of above-level testing give four main reasons for conducting above-

level testing: (a) above-level testing raises the test ceiling which also makes high-ability 

examineesô scores more variables and discriminating, (b) improves score reliability 

when scores are obtained from above-level tests, (c) makes gifted studentsô scores more 

comparable to the scores of the older pupils for whom the test was designed for, and (d) 

reduces regression toward the mean. 

Problem Statement 

 Above-level testing has rarely been the subject of psychometric study.  Indeed, 

most proponents of the practice cite a mixture of personal experience and theoretical 

considerations to justify the practice (e.g., Assouline et al., 2009; Olszewski-Kubilius, 

1998a; Swiatek, 2007).  Rarely have researchers attempted to examine the psychometric 

properties of above-level test scores such as reliability or the validity of using an 

academic test to screen younger students for gifted education programs and 

interventionsða population and purpose for which the test was not designed for.  
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Because current standards in education testing mandates that changes in the mode of 

administration of a test or change the population that takes a test be validated by the test 

user (American Educational Research Association [AERA] , American Psychological 

Association, & National Council on Measurement in Education, 1999), it is important 

that research be conducted on above-level testing. 

In this dissertation, I will  focus on two heretofore uninvestigated aspects of 

above-level test scores: reliability and predictors of above-level test score and score 

change.  Reliability is an important property of test scores, because it measures how 

stable those scores are across different conditions (Kaplan & Saccuzzo, 2005).  Although 

advocates of above-level testing claim that above-level testing raises the reliability of 

gifted studentsô test scores (e.g., Keating, 1975), reporting reliability of above-level test 

scores is rare (i.e., Loyd, 1980; Stanley, 1951).  Therefore, in this dissertation I will 

examine the reliability of a set of above-level test scores to see if the coefficients meet 

the recognized standards of reliability in research. 

Despite the widespread opinion among gifted education experts that above-level 

testing is a suitable method of measuring gifted childrenôs abilities, no research has 

attempt to examine the trajectory of score change for a sample of gifted students.  I will  

do this type of growth modeling through use of hierarchical linear modeling (HLM).  

HLM is a technique that also permits an investigation of how student characteristics (i.e., 

demographic factors) are related to both individual student scores and changes in student 

scores over time. 
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In addition to the reliability and change of above-level test scores, I will also 

examine the influence of demographic variables on observed above-level test scores.  

The impact of demographic variables is important to examine, because above-level test 

scores consistently show differences in the performance of different ethnic or racial 

groups (e.g., Ebmeier & Schmulbach, 1989; S.-Y. Lee & Olszewski-Kubilius, 2006).  

Moreover, gender group differences in above-level test scores are frequently observed, 

although not as consistently and with much smaller gaps than are observed between 

ethnic or racial groups (e.g., Barnett & Gilheany, 1996; Benbow, 1992; S.-Y. Lee & 

Olszewski-Kubilius, 2006).  Examining the strength the influence of demographic 

variables on above-level test scores could give clues into the barriers of entry that 

underrepresented groupsðmostly African Americans, Hispanics, and low income 

studentsðmust overcome before participating in programs like Talent Search. 

Another area of interest within gifted education is the investigation of the rate of 

student learning gains.  Because most academic achievement tests have ceilings that are 

too low to measure gifted studentsô learning gains, very little is known about the rate of 

long-term learning of gifted students.  Although theory dictates that gifted students 

should learn faster than their peers (Gagné, 2005), few studies have been done to 

determine specific information and influences on learning rate.  Through this study, I 

seek to examine the rate of score gains on an above-level achievement test and examine 

demographic influences on score gains. 

An examination of the psychometric and predictors of score and growth of 

above-level test scores may also provide researchers with important information that 
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could have implications for program evaluation and individual educational planning for 

gifted children.  Program evaluation is an area that gifted education practitioners and 

researchers have performed poorly (Borland, 2003; Gallagher, 2006; VanTassel-Baska, 

2006).  If above-level scores can be used to track gifted studentsô progress through an 

education program, then the practice may potentially be incorporated into program 

evaluation procedures. 

Research Questions 

The topics of above-level psychometric score characteristics and growth 

modeling will be addressed through the five research questions below: 

1. What is the internal consistency reliability of the global battery, reading/language 

arts, and mathematics scores drawn from an above-level administration of an 

achievement test? 

2. Do gifted children make larger achievement gains in overall, reading/language 

arts, and mathematics scores than average students in a more advanced grade? 

3. Do demographic variables (gender, ethnicity, and SES) influence the initial 

scores or rate of overall, reading/language arts, and mathematics score growth of 

gifted students? 

4. What is the relationship between initial above-level overall, reading/language 

arts, and mathematics scores and rate of score growth? 

5. What percentage of overall, reading/language arts, and mathematics score 

variance is explainable through time, demographic variables, and cohort 

membership? 
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These questions were answered through a longitudinal study in which all students in a 

local middle school gifted magnet program were administered above-level versions of 

the Iowa Tests of Basic Skills (ITBS) and the Iowa Tests of Educational Development 

(ITED).  Through this study I hoped to increase substantive and psychometric 

researchersô understanding of the properties and uses of above-level test scores. 
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CHAPTER II  

LITERATURE REVIEW
1
 

 Gifted education experts have long recognized that regular standardized 

achievement and aptitude tests are not suitable for testing the abilities of gifted children.  

Grade-level tests are usually designed to measure the middle levels of abilityðwhere the 

majority of studentsô abilities lieðas effectively as possible (Lohman, 2005; Minnema, 

Thurlow, Bielinski, & Scott, 2000; Stanley, 1977).  The emphasis that typical 

standardized tests place on average students has led researchers in gifted education to 

look for different methods of objective assessment in order to obtain accurate data on 

gifted children.  One method that gifted education researchers have used to test high 

ability children is called above-level testing (Stanley & Benbow, 1981-1982).  Above-

level testing is the procedure of administering a test to a gifted child who is younger or 

in a lower grade than the group for which the test was originally designed. 

The purpose of this chapter is to provide a comprehensive literature review that 

traces the genesis, development, and present status of above-level testing in gifted 

education.  In this chapter, I will place a special emphasis on the psychometric logic 

behind above-level testing as I describe the justifications that gifted education 

researchers have used in support of above-level testing.  I will also critically evaluate the 

current state of the literature supporting above-level testing, give recommendations for 

further research on the practice, and describe the research goals that I have for my study. 

                                                 
1
 A version of this literature review has been submitted to Roeper Review. 
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Terminology and Search Procedures 

Above-level testing can be contrasted with below-level testing, which is the 

administration of a test form to a child who is older or in a higher grade than the group 

for which the test was designed, such as in a special education situation (Minnema, 

Thurlow, Bielinski, & Scott, 2001).  Both above- and below-level testing are included in 

the term out-of-level testing, although some researchers use ñout-of-level testingò to 

exclusively refer to either above-level or below-level testing.  For the sake of clarity, this 

article will use the term ñabove-level testingò because there is less ambiguity with the 

term than with ñout-of-level testing.ò  It should be noted that above-level testing is also 

called off-grade testing (e.g., S.-Y. Lee et al., 2008) and off-level testing (e.g., Gross, 

2004), but these terms could be applied to below-level testing as well. 

Several procedures were used in the attempt to gather all relevant scholarly 

literature on above-level testing.  First, a search was performed for all of the above terms 

in the PsycINFO, ERIC, and Google Scholar databases and all relevant articles were 

read and analyzed.  Second, the reference lists of articles from the database searches 

were examined to find articles, papers, and other literature that did not appear in the 

database searches.  Third, the early case studies of high ability children were examined 

in order to find early (pre-1970ôs) examples of above-level testing.  Finally, a few 

miscellaneous searches on specific tests (such as the Army Alpha and the Terman Group 

Test) were also performed in order to see how those tests were used in above-level 

testing.  This final search procedure was performed in an effort to find additional early 

case studies of above-level testing.  It should be noted that the various terms defined in 
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this section also appear in the literature unhyphenated, which was taken into account 

during the literature search. 

Development of Above-Level Testing 

 Above-level testing is almost as old as standardized testing itself.  During the 

process of the creation and norming of the Army Alpha and Army Beta tests, elementary 

and high school students were administered both tests (Yoakum & Yerkes, 1920).  

Shortly after World War I, the Army Alpha was also administered to students as young 

as 11 years old in studies that would today be viewed as primitive validity studies 

(Almack & Almack, 1921; Madsen, 1920; Madsen & Sylvester, 1919). 

 Like many milestones in the history of gifted education, the first case of true 

above-level testing in the literature was conducted by Lewis M. Terman.  Along with his 

colleague, Jessie C. Fenton, Terman administered the Army Alpha and the Terman 

Group Test to a 7-year-old girl in November 1919.  The child scored 71 on the Army 

Alphaðapproximately equal to the average score of a fourteen-year-old native-born 

White American maleðand 151 on the Terman Group Test, which was the median score 

for grade 12 (Terman & Fenton, 1921, pp. 164-165).  Unfortunately, Terman and Fenton 

did not explain why they gave these above-level tests to the seven-year-old examinee.  

However, at the time, Terman was preparing for his landmark longitudinal study of 

gifted children and the test administrations may have served as a pilot test for the 

suitability of using the Army Alpha and the Terman Group Test in his later research.  

Indeed, the girl was later a member of the gifted sample in Termanôs study (Burks, 

Jensen, & Terman, 1930; Terman, 1926). 
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Terman would later administer the eighth-grade level of the Stanford 

Achievement Test in an above-level fashion to 100 high IQ students with an average age 

of 9.86 years in order to compare them to a group of 96 regular eighth-graders from a 

previous study performed by Kelley (1923).  Terman explained the logic of his choice of 

using above-level testing by saying, ñA group of gifted eighth grade children would not 

be satisfactory because their scores would too often be close to or actually at the 

maximum possible with the Stanford Achievement Testò (Terman, 1926, p. 310).  In 

other words, the ceiling for the Stanford Achievement Test was too low for gifted eighth 

graders, so Terman had to choose a younger group of gifted children for the test in order 

to measure the gifted childrenôs ability.  This desire to overcome the limited range of a 

grade-level test is a long-running theme in the literature on above-level testing. 

Other instances of above-level testing are scattered throughout the early gifted 

education literature.  Under Termanôs influence, Stedman (1924) administered the 

Terman Group Test and the Army Alpha to children as young as 11- and 9-years-old, 

respectively.  Similarly, Witty and Jenkins (1935) drew upon Termanôs work when 

administering adult-level tests (the Otis S. A., Army Alpha, and McCall Multi -Mental 

tests) to a 9-year-old African American girl.  Outside of Termanôs sphere of influence, 

Almack and Almack (1921) administered the Army Alpha to a convenience sample of 

gifted high school students, which included two 11-year-olds who had been accelerated 

in their school progress.  Similarly, Hollingworth (1926, 1942) seems to have 

independently thought of above-level testing when she gave the Army Alpha to children 

aged 7 to 13. 
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None of these other early researchers explained clearly why they were 

administering above-level tests.  Perhaps the problems of the low test ceiling of grade- 

and age-level tests were so obvious to these researchers that they didnôt bother 

explaining the rationale behind their above-level testing. For example, the pattern of 

Hollingworthôs (1942) records could indicate that she administered the Army Alpha in 

the early 1920ôs when her students were scoring at or near the ceiling of the 1916 

Stanford-Binet IQ test, but she did not explicitly say this. 

Also, none of the early above-level testing practitionersðincluding Termanð

indicated whether or how the above-level test scores were used in educational practice or 

planning for the gifted children.  The only exception to this is Hollingworth (1942), who 

stated that Army Alpha scores from two of her high IQ case studies (labeled Child C and 

Child F) influenced their placement in the special schools that she ran in New York City, 

but the details on the decision making process and the magnitude of the role of above-

level test scores in decision making are unclear. 

 Of all the early incidents of above-level testing, Hollingworthôs (1926; 1942) 

work had the greatest future impact.  In 1969, Julian Stanley of Johns Hopkins 

University encountered a mathematically bright 13-year-old boy.  Drawing upon his 

knowledge of Hollingworthôs work, Stanley administered the College Boardôs Scholastic 

Aptitude Test (SAT) to the child (Stanley, 1990).  Stanley, being a psychometrician and 

methodologist with a passing interest in gifted education (Benbow & Lubinski, 2006), 

had previously administered tests above-level, but these endeavors had generated little 

interest (Stanley, 1951, 1954).  The young teenager excelled at the SAT and eventually 
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earned a bachelorôs and a masterôs degree at age 17 after being heavily accelerated in his 

education (Stanley & Benbow, 1981-1982).  Within a few years, Stanley had found over 

2000 middle school students who scored above the mean of high school seniors on the 

SAT-M (Stanley, 1976, p. 75).  To accommodate those childrenôs special educational 

needs, Stanley created a curriculum of accelerated mathematical instruction.  This 

processðbased on above-level testingðis called Talent Search and has spread to other 

universities around the United States (see S.-Y. Lee et al., 2008, for a review of the 

present state of Talent Search programs). 

Stanley was familiar with Termanôs longitudinal study of highly gifted children 

(Burks et al., 1930; Terman, 1926; Terman & Oden, 1947, 1959) and understood the 

importance of following up on the educational outcomes of the high ability children that 

he found through above-level testing (Stanley, 1990).  Therefore, Stanley launched the 

Study for Mathematically Precocious Youth (SMPY) to study his high ability pupils 

(Stanley, 2005).  Much of the research on above-level testing has come out of SMPY 

and Talent Search programs, and what little independent research there is on above-level 

testing is highly influenced by Stanleyôs work.  This fact must be kept in mind when 

examining the literature on above-level testing. 

Rationale of Above-Level Testing 

 As researchers have written about above-level testing, they have given several 

empirical or theoretical justifications for the practice.  In my review of the literature, I 

have categorized these into four general claims about the benefits of above-level testing: 
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1. Above-level testing raises the test ceiling for gifted examinees which makes 

the observed scores of gifted students are more variable and discriminating 

when obtained from above-level tests. 

2. Score reliability improves when gifted examinees are tested above-level. 

3. Gifted pupilsô scores are comparable to regular students for whom the tests 

were designed. 

4. Regression toward the mean is reduced through above-level testing. 

The following section of this chapter will examine the psychometric theory behind these 

claims and also evaluate relevant empirical studies in an effort to judge whether above-

level testing is an empirically supported and theoretically justified practice. 

Raising the Test Ceiling 

The use of above-level testing has largely been driven by a practical need to 

examine the abilities of gifted children.  The literature in gifted education is full of 

examples of bright children obtaining the highest possible score on regular tests (e.g., 

Gross, 2004; Ruf, 2005).  Indeed, the oldest justification for above-level testing 

(Terman, 1926) was that it was needed to examine the abilities of children because 

regular tests were too easy for the gifted.  Although the reasoning is old, the claim that 

above-level testing is needed to raise the test ceiling and examine studentsô real abilities 

has been echoed in more recent times (e.g., Assouline et al., 2009; Feldhusen, Proctor, & 

Black, 2002; Olszewski-Kubilius & Kulieke, 2008; Olszewski-Kubilius & S.-Y. Lee, 

2011; Rogers, 2002; Stanley, 1977).  In fact, raising the test ceiling is the most 

commonly stated rationale for above-level testing. 
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Without question, the empirical literature supports the view that the test ceiling 

for gifted children is raised through above-level testing (e.g., Achter, Lubinski, & 

Benbow, 1996; Keating, 1976; C. J. Mills & Barnett, 1992; Terman, 1926; VanTassell-

Baska, 1986).  In fact, I have been unable to find an example in the literature of a group 

of gifted children who have not obtained higher scores on a test that was at least two 

levels above their age group than the maximum scale score of the grade-level test.  The 

fact that above-level testing has raised the test ceiling for high ability examinees is 

probably the most consistent finding presented in this literature review and one of the 

hardest to ignore. 

However, there is no strong consensus about what constitutes an observed 

ñceiling effect,ò beyond obtaining the maximum score possible on a grade-level test.  

Validation studies on the cutoff scores for children to be eligible to take the SAT or ACT 

to apply for Talent Search programs have frequently found that children who score at the 

95
th
 percentile or higher on a grade-level test tend to obtain scores on an above-level test 

that would be approximately average for students four or more years older than them 

(Ebmeier & Schmulbach, 1989; Lupkowski-Shoplik & Swiatek, 1999; Olszewski-

Kubilius, Kulieke, Willis, & Krasney, 1989; Olszewski-Kubilius & S.-Y. Lee, 2011; 

VanTassell-Baska, 1986).
2
  More research needs to be done to investigate the exact 

                                                 
2
 It should be noted that 7.0% of Lupkowski-Shoplik and Swiatekôs (1999) sample were tested two grade 

levels above their nominal grade, 35.8% were tested three levels above their nominal grade, and 67.2% 

were tested four or five grades above their nominal grade.  Unsurprisingly, as the difference between grade 

and the test level increased, proportionally fewer students obtained a high enough score for admission into 

Talent Search.  Olszewski-Kubilius & S.-Y. Lee (2011) found similar results when examining the impact 

of gifted studentsô age/nominal grade on above-level SAT, ACT, and EXPLORE scores. 
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purposes, populations, and conditions with which above-level testing should be 

attempted outside of a Talent Search setting. 

Increasing Score Variability 

 Raising the ceiling is also important in gifted education research because a low 

test ceiling produces findings that may be plagued by restriction of range problems, 

which usually attenuate correlations, water down effect sizes, and cloud the 

interpretation of statistics (Kaplan & Saccuzzo, 2005).  Moreover, a restriction of range 

makes examinees appear more alike than they really are, which causes problems in both 

research and practice (Johnsen & Corn, 2001).  Warne (2009) gave the theoretical 

example of two first-grade students who score in the 99
th
 percentile of math ability, 

saying, ñ. . . one of them may be able to do simple multiplication and the other one may 

be able to do pre-algebra.  Even though their percentile score is the same, their 

mathematical abilities are differentò (p. 50).  This restriction of range is present in 

almost any score metric, although some metrics (like percentiles) have lower ceilings 

than others (such as scale scores or IQ-like scores). 

 Gifted education proponents have proposed above-level testing as a solution to 

the restriction of range problem often found in gifted education (Lupkowski-Shoplik, 

Benbow, Assouline, & Brody, 2003; Keating, 1975, 1976; Swiatek, 2007; VanTassel-

Baska, 1996).  Empirical evidence on above-level testing has supported claims about the 

increased variability of above-level test scores.  For example, many studies associated 

with Talent Search programs have found that test scores were far more variable with 

above-level tests than with grade-level tests (e.g., Olszewski-Kubilius, 1998b; 
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VanTassell-Baska, 1986) and above-level test scores often form a distribution that is 

approximately normal (Keating & Stanley, 1972, p. 4; Lupkowski-Shoplik & Swiatek, 

1999, p. 269).  By raising the test ceiling, above-level tests also allow gifted childrenôs 

test scores to become more variable and better manifest the differences among the gifted 

(Lubinski, Webb, Morelock, & Benbow, 2001; Olszewski-Kubilius & Kulieke, 2008; 

Olszewski-Kubilius & S.-Y. Lee, 2011). 

The greater discrimination among gifted examinees of above-level tests is 

partially due to the increased variability among scores with above-level testing (e.g., 

Lupkowski-Shoplik et al., 2003; Olszewski-Kubilius & Kulieke, 2008; VanTassell-

Baska, 1986).  The importance of this improved discrimination among high ability 

students should not be understated.  Benbow (1992), for example, has shown that above-

level tests have the ability to detect differences among the top 1% of examinees and that 

the above-level test scores can make predictions about educational attainment, salary, 

and other important outcomes.  Lubinski, et al. (2001) showed that the discrimination 

power of above-level tests even extends to the top .01% of ability.  When one considers 

the poor discriminating power of regular grade-level tests among the top 5% of 

examinees, to be able to distinguish among the abilities in the top 1 in 10,000 students is 

a phenomenal property of above-level testing and one not to be treated lightly. 

Improved Score Reliability 

 Advocates of above-level testing claim that above-level test scores are more 

reliable for their special populations than grade-level scores (Keating, 1975, 1976).  The 

logic behind this claim is based on the fact that most grade-level tests are designed to 
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measure the largest possible number of students as efficiently as possible.  This means 

that the majority of test items correspond to the middle-level ranges of ability.  Because 

of the lower number of items corresponding to high levels of ability, the scores estimated 

from those items will usually be less reliable (Lohman & Korb, 2006; Minnema, 

Thurlow, Bielinski, & Scott, 2000).  Therefore, more difficult tests will have more items 

corresponding to many gifted studentsô abilities, and the observed scores will have 

higher reliability than scores obtained from a grade-level test. 

Kieffer, Reese, and Vacha-Haase (2010) used different logic to reach the same 

conclusion about grade-level tests generating poorly reliable data for gifted children.  

They stated that the constrained variance of gifted childrenôs grade-level test scores 

theoretically drives down reliability coefficients.  Because reliability can be understood 

as a squared correlation between true scores and observed scores, any constraints on the 

variance of observed scores will likely reduce reliability coefficients.  Kieffer et al. 

(2010) provided a convincing theoretical example of how a grade-level test and a 

selected population (like gifted students) can combine to generate scores with very low 

reliability. 

 Despite the sound psychometric reasoning of these theoretical arguments and the 

support for them among researchers examining below-level test scores (e.g., Bielinski, 

Thurlow, Minnema, & Scott, 2000), the only reports of above-level reliability 

coefficients from a gifted education researcher that I have been able to find are from 

Stanley (1951).  Even Stanleyôs report on reliability is of little use for todayôs 

researchers because of the age of the study.  Stanleyôs (1951) study also suffers from the 
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fact that the coefficient is a split-half reliability coefficient corrected by the Spearman-

Brown prophecy formula (in accordance with the accepted practice at the time).  

However, there is no evidence that the halves of the test were sufficiently equivalent.  

Also, Stanley used an instrument (the Nelson-Denny Reading Test) that has not since 

been used in above-level testing. 

It seems that gifted education researchers quietly assume that the above-level 

tests they use will produce sufficiently reliable scores when administered to gifted 

students, despite the fact that these tests were not designed with such unusual examinees 

in mind.  Test scores are a product of many different factors: sample characteristics, 

testing environment, test items, previous exposure that a child has had to test content, 

and many other issues.  Because reliability is not a property of tests, but rather a property 

of test scores (Kieffer, et al., 2010; Thompson & Vacha-Haase, 2000; Vacha-Haase, 

Kogan, & Thompson, 2000), the assumption that above-level tests will produce high 

reliability coefficients may be erroneous.  Above-level tests are administered to different 

populations under different conditions and for different reasons than when the same tests 

are administered as grade-level tests.  For this reason alone, future researchers who 

conduct analyses on above-level test scores should report reliability information on their 

data.  Indeed, current reporting standards in both education and psychology require all 

researchers to report the reliability of the data at hand (AERA, 2006; Wilkinson & the 

Task Force on Statistical Inference, 1999). 

At least one researcher who was not directly concerned with gifted education has 

administered above-level tests and examined the ensuing reliability coefficients.  Loyd 
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(1980) found that the most able students in her study obtained the most reliable scores 

with the highest level of the test she administered, even when the children were younger 

than the population that the test was designed for (p. 117).  However, Loydôs exploration 

of reliability in above-level testing is incomplete because she still encountered ceiling 

effects that often prevented the most able students from obtaining highly reliable scores 

on some subtests (p. 97).  Therefore, more research is needed to determine whether the 

assumptions on the reliability of above-level test scores are tenable. 

Reliability coefficients are likely the most common measure of score reliability, 

but they are not the only one available to researchers.  The standard error of 

measurement (SEM) is another viable option for reporting reliability information.  

However, because reliability coefficients and the SEM are algebraically related, the 

SEM still carries the assumption that it is constant across all score levels, which limits 

the usefulness of the SEM in examining the reliability of extreme scores.  Researchers 

also have the option of reporting a conditional SEM, which varies according to observed 

score and is therefore better than a reliability coefficient or the regular SEM.  The 

mechanics of producing a conditional SEM are beyond the scope of this article, but the 

interested reader should consult Kolen, Hanson, and Brennan (1992).  However, the 

technical manuals for a few multi-level tests, such as the Cognitive Abilities Test 

(Lohman & Hagen, 2002, pp. 59-61), give conditional SEM values for different scores 

on different levels of the test, permitting researchers to estimate how much error would 

be reduced by administering a different test level. 
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Better Comparability and Use in Educational Planning 

 Despite the young age of some above-level testing examinees, many gifted 

education researchers believe that high ability students are often better compared to 

groups that consist of older children.  In other words, children who are advanced 

cognitively should sometimes be compared to cognitive peers and not age peers.  This is 

an implication of one definition of giftedness in which gifted children are understood as 

being in a more advanced stage of cognitive development than their age peers 

(Morelock, 1992).  When a childôs cognitive development is drastically out of sync with 

that of his or her age peers, that child has different educational needs than his or her age 

peers.  Indeed, his or her needs may better resemble those of a regular developing older 

child (Morelock, 1992).  Therefore, an above-level achievement test comparison to 

norms consisting of older children may provide better information and be more 

informative about the childôs educational needs. 

 As researchers have interpreted above-level test scores, they have mostly come to 

the conclusion that such scores can be interpreted the same way that the scores would be 

interpreted for the testôs norm population.  For example, Gross (2004) administered 

above-level tests to her sample of highly gifted children (IQ 160+) and found that 

interpreting the test scores as if the children belonged to the older norm group was 

supported by her intense behavioral observations and interviews of her sample.  This 

ease of interpretation makes sense under the theory that intellectual giftedness is merely 

a case of advanced cognitive development.  It should be noted, however, that Gross used 

career interest inventories, personality tests, and educational planning tests in above-
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level testing, and score interpretation of such tests may be radically different than above-

level achievement test score interpretations. 

 The claim that above-level test scores from gifted children can be interpreted the 

same way as scores from a regular population taking the same test is bolstered by a study 

examining factor structure and measurement invariance between high school and gifted 

seventh grade students.  Minor and Benbow (1996) found that the structure of test 

responses on the SAT-M was identical for both groups of students, as were the 

magnitude of the factor loadings and the item error variances.  This study supports the 

claim that test results can be interpreted identically for high schoolers and gifted seventh 

graders, despite the age difference between the two groups.  However, Minor and 

Benbowôs study is flawed, because it relies on item parcels, which simulation studies 

have shown can distort item structure, hide a lack of invariance, and inflate goodness-of-

fit statistics (Meade & Kroustalis, 2006; Nasser & Wisenbaker, 2003).  Moreover, Minor 

and Benbow did not compare the invariance of item intercepts across groups, meaning 

that not all aspects of true measurement invariance have been investigated for any 

above-level test. 

Regression Toward the Mean 

 Regression toward the mean is the statistical phenomenon where examinees who 

obtain extreme scores tend to obtain scores closer to the mean when retested.  In other 

words, gifted students seem less gifted when retested and struggling students seem to 

improve when retested (on average).  Regression toward the mean occurs any time two 

scores are not perfectly correlated (i.e., when r Í 1.0 or -1.0).  This imperfect correlation 
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can result from unreliable scores, the passage of time, or merely because two scores 

measure different constructs. 

 Regression toward the mean is a severe problem in gifted education.  Lohman 

and Korb (2006) in their landmark article ñGifted Today but Not Tomorrow?ò showed 

with real longitudinal data that about half of students who obtained scores in the top 3% 

of the Iowa Tests of Basic Skills composite battery did not obtain scores in the top 3% 

five years later (p. 465).  Similarly, when Terman retested some children in his gifted 

sample about eight years after they were originally identified, he found that the average 

IQ had decreased.  Some of these changes in scores ñ. . . were doubtless due to the 

statistical regression always found in a group of deviates selected on the basis of a 

fallible test . . .ò (Burks et al., 1930, p. 45). 

 The formula for calculating the amount of regression to the mean is rather 

simple.  First, one must obtain a predicted retesting z-score (ᾀǶ) from the following 

equation: 

ᾀǶ ὶ ɇᾀ 

where rxx is the test-retest reliability of the scores, and z1 is the z-score of the first 

obtained score.  Thereafter, the amount of regression toward the mean is calculated by 

ȿᾀǶȿ ȿᾀȿ 

which can easily be converted back to the units in which that the original scores 

measured.
3
 

                                                 
3
 For a more detailed and technical treatise on the relationship between reliability, high ability, and 

regression toward the mean, see Ziegler and Zielger (2009). 
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Therefore, the amount of regression toward the mean is a result of two values: 

the original observed scores and the reliability of the observed scores.  Regression 

toward the mean should be reduced by either (a) obtaining scores closer to the mean, or 

(b) increasing reliability.  Theoretically, above-level tests serve both of these functions, 

because gifted childrenôs scores are usually closer to the mean of the norm population of 

the above-level test (e.g., Barnett & Gilheany, 1996) andðas stated earlierðabove-level 

tests should also raise reliability coefficients.  However, the impact of above-level 

testing on regression toward the mean has not been empirically tested. 

Other Research of Note on Above-Level Testing 

 Since the late 1970ôs, above-level testing has become a widely accepted practice 

in gifted education, due mostly to the promising results from Talent Search programs 

and the test scoresô strong ability to predict outcomes important to stakeholders.  Most of 

this evidence stems from SMPY.  For example, Benbow (1992) showed that pre-

adolescentsô SAT scores are moderately good predictors of AP Calculus test scores, 

College Board Achievement Test scores, the number of math and science courses taken 

in high school, the selectivity of the college attended, and undergraduate GPA.  Later 

follow-ups of the SMPY sample or subsets of the sample showed that the predictive 

power of above-level testing extended even further into the future.  SMPY students who 

obtained high scores on above-level tests were later 25 times more likely than average to 

obtain a doctorate (Lubinski et al., 2001, p. 725).  Also, the top quartile of Talent Search 

students were more likely than those in the bottom quartile to earn a higher income than 

average (effect size h = .16), acquire a patent (h = .18), and obtain tenure at a university 
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(h = .28) (all effect sizes from Wai, Lubinski, & Benbow, 2005, pp. 486, 487; see also 

Lubinski & Benbow, 2006).  To say that these results are impressive would be an 

understatement, especially because some of these outcomes occurred decades after the 

above-level test scores were obtained.  Oszewski-Kubilius (1998a) appropriately stated 

the usefulness of the SAT as an above-level instrument when she said, ñRarely has the 

field of education had such powerful predictive tools at its disposalò (p. 136). 

 Extensive research has been performed in order to determine when above-level 

testing is most appropriate for Talent Search purposes.  This is because the tests are 

between two and five years above the childôs grade level and it is in the childôs and the 

program administratorsô best interest to administer such a difficult test only if necessary.  

Empirical studies show that testing four or five levels above grade should only be done if 

the child can obtain a score at the 95
th
 percentile or higher on a regular grade-level test 

(Ebmeier & Schmulbach, 1989; Lupkowski-Shoplik & Swiatek, 1999), although the 

standard may be lowered if the test level is closer to the studentôs grade or if the program 

isnôt as intensive or selective as Talent Search (Olszewski-Kubilius et al., 1989). 

Threlfall and Hargreaves (2008) conducted a study to see if 475 gifted 9-year-old 

children use the same problem solving strategies for math items as 230 average 13-year-

old children.  Giving both groups novel problems, the researchers examined the 

proportion of students in the groups who chose to use various problem solving strategies.  

Despite the large number of students in each group, Threlfall and Hargreaves did not 

find any statistically significant differences between the proportion of students who used 

each problem solving strategy.  This lends credence to the belief that above-level test 
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scores can be interpreted for gifted students the same way that the test scores can be 

interpreted for the norm group.  However, Threlfall and Hargreaves used item types that 

neither subject group had ever seen before, whereas in most above-level testing the older 

group would have been exposed to mostðif not allðitem types on an achievement test. 

 A final, more miscellaneous study on above-level testing should be noted.  

Pervasive evidence of gender differences among the top echelons of mathematical ability 

(e.g., Benbow & Stanley, 1980) prompted a study on item bias of the SAT-M with 

regards to gender (Benbow & Wolins, 1996).  In the study, the researchers found that 

despite most items on the test being easier for the male gifted adolescents, there was no 

evidence of any meaningful item-level bias in the SAT-M.  To date, this is the only 

study on item-level bias with above-level testing.  Other group differences in above-level 

test scores (e.g., differences among ethnic groups) warrant further investigations of item 

bias in above-level testing.  

Discussion 

 The research performed thus far in above-level testing has provided a firm 

foundation for research into how above-level tests function with gifted populations.  The 

findings also have led to experimentation in above-level testing in non-academic 

domains (Achter et al., 1996; Gross, 2004).  However, there are still some issues that 

remain unresolved.  Most importantly, research on the psychometric properties of above-

level test scores is mostly limited to the SAT and its subtests.  Some work has been done 

on other Talent Search tests, such as EXPLORE (Colangelo, Assouline, & Lu, 1994; 

Lupkowski-Shoplik & Swiatek, 1999; Olszewski-Kubilius & Turner, 2002) and the 
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Secondary School Admissions Test (Lupkowski-Shoplik & Assouline, 1993; C. J. Mills 

& Barnett, 1992).  But these studies do little beyond showing a raised test ceiling or 

establishing cutoffs on grade-level tests for eligibility to take an above-level test for 

Talent Search admission.  Given the widespread endorsements of above-level testing of 

the gifted (e.g., Assouline et al., 2009; Colangelo, Assouline, & Gross, 2004; Gross, 

1999; Rogers, 2002), more psychometric studies are needed to understand how items 

and tests ñbehaveò when administered to a younger, gifted sample.  Also, more tests 

should be evaluated for their suitability for above-level testing. 

 Evidence for validity of interpretations of above-level tests is also lacking in the 

published literature.  Despite statistically identical structures and relatively similar 

interpretation of above-level testing scores, most researchers and practitioners who 

conduct above-level testing use above-level academic achievement tests as aptitude tests 

for younger, gifted students (e.g., Assouline et al., 2009; Lubinski & Benbow, 1994; 

Stanley, 1977).  In other words, researchers are using tests of past learning (i.e., 

achievement tests) as estimators of future potential (i.e., aptitude tests). 

Some readers may find a contradiction between using an achievement test in the 

service of evaluating aptitude and the claim that above-level test scores can be 

interpreted as if the gifted students were members of the older norm population.  The 

contradiction is a real one, despite a conceptualization that the distinction between 

achievement and aptitude tests is unclear (e.g., Merwin & Gardner, 1962; Schmeiser & 

Welch, 2006; Zwick, 2006).   Modern theorists recognize aptitude as a product of 

interest, motivation, affect, the specific environment, intelligence, meta-cognitive 
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abilities, and academic experiences (Corno et al., 2002).  At most, above-level tests may 

measure the knowledge-based and reasoning aspects of academic aptitude.  The exact 

degree to which a given above-level test measures aptitude or achievement may be the 

result of a wide variety of factors, some of which may be unique to each examinee (e.g., 

the test level, the age of the child, the opportunity to learn the more advanced material, 

test content).  Further research is needed on this issue and whether above-level testing 

can equal or surpass traditional ability tests in measuring high levels of academic 

aptitude. 

So what construct(s) do above-level academic achievement tests measure?  At 

the very least, the SAT, ACT, EXPLORE and similar tests measure the suitability of 

participating in a Talent Search program.  This interpretation of above-level test scores is 

likely beyond dispute.  The only other specific interpretation that has been studied is as a 

measure of academic preparedness for acceleration.  Unfortunately, the only studies that 

have examined this interpretation have been in conjunction with the Iowa Acceleration 

Scale (Assouline et al., 2009) and are not peer-reviewed (see Appendix D in Colangelo 

et al., 2004, for a summary of this research).  The lack of an interpretation framework of 

above-level test scores outside of a Talent Search context may be one of the great 

stumbling blocks that prevent school personnel from using above-level testing more 

often. 

 There is also little understanding of the circumstances under which above-level 

tests should be administered outside of a Talent Search or grade acceleration context.  

Can above-level tests be used to identify gifted children in a local school district?  Are 
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above-level tests useful for program evaluation or accountability purposes?  Do above-

level tests manifest racial bias that is absent when they are administered to regular 

samples?  How can above-level testing impact day-to-day instruction in schools?  

Should practitioners distinguish between the test level administered to a gifted child and 

the norm group used for comparison when interpreting scores?  What are the cognitive 

response process that a gifted child uses when answering above-level test items?  These 

questions and others are in dire need of investigation before above-level testing becomes 

a common practice outside of Talent Search programs.  Researchers could also explore 

more advanced psychometric questions, such as the possibility of growth modeling to 

measure academic progress, the investigation of above-level tests with item response 

theory methods, or the impact of linking methods on observed above-level test scores.  

Studies examining all of these issues would broaden understanding of exactly how 

above-level testing affects the psychometric properties and interpretation of scores. 

 Many of these new issues in above-level testing will require a change in research 

on how the practice has thus far been conducted.  For example, improving the 

interpretation of above-level test scores and understanding what construct(s) they may be 

measuring may be difficult to determine with the SAT.  A multi-level, vertically aligned 

test, such as the Iowa Test of Basic Skills (ITBS; Hoover, Dunbar, & Frisbie, 2001) 

would be a more appropriate instrument for this type of research, because the nationally 

representative norms and carefully documented item content at each test level would 

permit researchers to understand the relative influence of student ability and test content 

on above-level test scores.  The ITBS and similar instruments would also be more 
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appropriate for studying growth modeling, program evaluation, and many other topics 

related to above-level testing. 

Also, gifted education researchers will likely need to branch out from Talent 

Search samples in order to better understand above-level testing.  The vast majority of 

the above-level testing research cited in this literature review is an outgrowth of Talent 

Search programs, which Matthews (2008) has criticized for several reasons: a total lack 

of random assignment or sampling, an operational definition that equates giftedness with 

a high test score, and a lack of economic or cultural diversity.  All of these 

characteristics limit generalizability of Talent Search findingsðincluding those 

reviewed in this article.  To combat these problems, future researchers must use above-

level testing with gifted non-Talent Search samples. 

Alternatives to Above-Level Testing 

 Above-level testing is not the only feasible method of collecting high quality 

information about intellectually gifted childrenôs abilities or achievement.  Practitioners 

have the option of selecting tests with naturally high ceilings for purposes of 

identification.  Traditional intelligence tests, such as the Stanford-Binet 5 or the 

Wechsler Intelligence Scale for Children ð Fourth Edition, have high ceilings, 

sufficiently high reliability for intellectually gifted/high intelligence examinees, and a 

clear interpretive framework supported by a large body of research (Roid, 2003; 

Wechsler, 2003).  The Screening Assessment for Gifted Elementary and Middle School 

Students ð Second Edition also has a high ceiling and acceptable reliability in the gifted 

range (Johnsen & Corn, 2001). 
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 For purposes of tracking learning and educational progress, however, options for 

evaluating intellectually gifted children are more limited.  One possible alternative to 

above-level testing is to use computer adaptive testing (CAT; Gershon, 2005) to track a 

gifted childôs progress through a curriculum.  A suitable CAT assessment would need a 

large pool of items that span a continuum across several grade levelsðwhich would 

likely make CAT financially unfeasible unless the local district or state already had such 

a system implemented as part of their regular assessment procedures.  If practitioners do 

not wish to make cross-grade score comparisons, then content-based assessments are 

also a viable possibility.  However, because many of these assessments do not meet the 

rigorous standards of psychometric practice, these may not be suitable for research or 

high-stakes decisions. 

Conclusion 

 Overall, the research examined in this literature review supports the practice of 

above-level testing.  As researchers and practitioners perform above-level testing, they 

can be assured that the basic assumptions behind the practice are psychometrically 

soundðespecially as those assumptions relate to test ceilings and gifted studentsô score 

variability.  However, further research is needed to investigate the reliability of above-

level testing scores, the suitability of more instruments for above-level testing, 

regression toward the mean, the usefulness of the procedure in non-Talent Search 

settings, and the validity of score interpretations. 
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 In this dissertation, I will attempt to shed light on some of the areas of above-

level testing that are thus far uninvestigated.  Specifically, I designed this study to 

examine five research questions: 

1. What is the internal consistency reliability of the global battery, reading/language 

arts, and mathematics scores drawn from an above-level administration of an 

achievement test? 

2. Do gifted children make larger achievement gains in overall, reading/language 

arts, and mathematics scores than average students in a more advanced grade? 

3. Do demographic variables (gender, ethnicity, and SES) influence the initial 

scores or rate of overall, reading/language arts, and mathematics score growth of 

gifted students? 

4. What is the relationship between initial above-level overall, reading/language 

arts, and mathematics scores and rate of score growth? 

5. What percentage of overall, reading/language arts, and mathematics score 

variance is explainable through time, demographic variables, and cohort 

membership? 

In addition to the knowledge that will be gained through the examination of these 

questions, this study is designed to overcome some of the criticisms that Matthews 

(2008) made of Talent Search research.  For example, as described in the following 

chapter, the sample in this study will be less selective than a Talent Search sample and is 

more economically and ethnically diverse than many samples that have been described 

in previous research on above-level testing.  Moreover, this studied occurred in the 
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context of a school district and regular gifted education practicesðnot the 

extracurricular setting of Talent Search programs or the rare pre-screening for grade 

acceleration.  Through these research questions and design, I hope to gain a greater 

understanding of above-level test scores and their interpretation. 
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CHAPTER III  

METHODS 

Participants 

The participants in this study were all the students at a gifted middle school 

magnet program located in a mid-sized district in the southern United States during the 

2008-2009 and 2009-2010 school years.  The students in the study were divided into 

four cohorts.  Figure 1 shows the grade level for each cohort at each point in the study.  

Cohort 1 consisted of those students who were in the eighth grade during the first year of 

the study (i.e., the 2008-2009 school year).  Cohort 2 consisted of students who were in 

the seventh grade during the first year of the study.  Cohort 3 consisted of students who 

were in the sixth grade during the first year of the study.  Cohort 4 consisted of students 

who were in the fifth grade during the first year of the study (i.e., they did not enter 

middle school until the second year). 

 

 

Figure 1  Relationship of time points in the study, cohort numbers, and grade levels.  All 

time points are six months apart.  Members of Cohort 1 were only present for time point 

1.  Members of Cohort 2 and 3 were present for all time points, but advanced grades at 

time point 2.  Members of Cohort 4 were only part of the study at time point 3. 
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Because the magnet program that serves students in grades 6-8, Cohort 1 was only 

measured during the first year of the study (Time 0 and Time 1) and Cohort 4 was only 

measured in the second year (Time 3) of the study.  Therefore, the research questions 

that address rate of score gains were only investigated with Cohorts 2 and 3.  All other 

research questions were addressed with data from members of all four cohorts. 

During Year 1 of the study, the program included 138 students.  During the 

second year, the program included 170 students.  The exact cohort sizes varied between 

37 and 61 students, with cohorts tending to grow larger as time progressed.  The exact 

size of each cohort at each point in the study is displayed in Figure 2.  In total, 224 

students were tested at least once, with 435 above-level tests administered in total.  One 

hundred twenty-six students were White (56.2%), 72 were Hispanic (32.1%), 22 were 

African American (9.8%), three were Asian American (1.3%), and one was of unknown 

ethnicity (0.4%).  One hundred students were male (44.6%), 123 were female (56.2%), 

and one student (0.4%) was of an unknown gender. 

The cohorts varied in their gender and demographic makeup.  Cohorts 2 and 4 

were both 40.0% male and 60.0% female.  In contrast, Cohort 1 (48.7% male and 51.3% 

female) and Cohort 3 (53.7% male and 46.3% female) had a much more even gender 

balance.  Cohort 1 was noticeably less Hispanic than the other cohorts (20.5% compared 

to at least 31.5% for all other cohorts).  Cohort 3, on the other hand, had proportionally 

far fewer African American students (just 3.7%) compared to the other cohorts (between 

8.3% and 15.7%).  Finally, Cohort 2 had a drastically lower proportion of White students 

(only 47.1%) compared to the other cohorts (all 53.3% or greater).



 

 

 

 

 

Figure 2  Subject flow through the study.

3
5 
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Instruments 

The instruments used for this study were Form C of the Iowa Tests of Basic 

Skills (ITBS; Hoover, Dunbar, & Frisbie, 2001) and Form C of the Iowa Tests of 

Educational Development (ITED; Forsyth, Ansley, Feldt, & Alnot, 2001).  These two 

tests are well-respected measures of academic achievement that permit comparisons 

across grades on a scaled metric.  Comparisons can also be made across the two 

instruments because the ITED is merely an upward extension of the ITBS (Forsyth, 

Ansley, Feldt, & Alnot, 2003).  At each testing point, students were given the ITBS or 

ITED test level that was designed for the grade two years above their actual grade (i.e., 

sixth grade students took the eighth grade test, seventh grade students took the ninth 

grade test, and eighth grade students took the tenth grade test) as part of normal 

procedure at the magnet program.  In Year 1, students were administered the ITBS or 

ITED in November 2008 and May 2009.  In Year 2, students received the ITBS or ITED 

only in May 2010.  Year 2 only had one measurement time because of budget constraints 

that resulted from the current nationwide recession. 

Coding and Statistical Power 

Variables were coded as follows: the time points of the baseline (November 

2008), first followup (May 2009), and second followup (May 2010) were coded as 0, 1, 

and 3, respectively.  These values were chosen so that each unit represented six months 

and the spacing between values was proportional to the amount of time that passed 

between each testing, which is common practice in longitudinal studies (Hedeker & 
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Gibbons, 2006). Cohorts were dummy coded so students in Cohort 3 were the baseline 

group for all comparisons. 

Because of the limited number of students who were tested in all three time 

points (n = 84), ethnicity groups were combined in order to increase statistical power.  

White and Asian American students were combined because these students were 

overrepresented compared to the districtôs general student population.  African American 

and Hispanic students were also combined into a group of students in underrepresented 

ethnicities.  This is consistent with the ethnic/racial makeup of most gifted programs 

nationwide (Konstantopoulos, Modi, & Hedges, 2001; McBee, 2006, 2010; Yoon & 

Gentry, 2009). Socioeconomic status was operationalized so that students who were 

eligible to receive free or reduced lunch were labeled as low-SES.  Students who were 

not eligible to receive free or reduced lunch were combined into one SES category of 

middle- or high-SES students. Finally, the critical p-value (Ŭ) was changed from the 

traditional .05 value to .10 in order to increase statistical power and compensate for the 

relatively small sample size in this study. 

Analysis 

Research question 1 was investigated using KR20 values (Kuder & Richardson, 

1937) to determine internal consistency reliability.  KR20 values were calculated for 

each cohort at each measurement time and data were not combined across cohorts, test 

levels, or measurement occasions. 

 For research questions 2-5, which involved the investigation of student growth 

over time, HLM was used across the three time points.  HLM is a necessary statistical 
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procedure in this case because the data points are dependent, with measurement 

occasions nested in persons.  Moreover, HLM is widely recognized as an appropriate 

statistical method for examining change and growth within persons (Ferron, Hogarty, 

Dedrick, Hess, Niles, & Kromrey, 2008).  There were three hierarchical linear models to 

answer research questions 2-5ðone model each for the core battery, reading/language 

arts subtest, and mathematics subtest scores. 

The model for each dependent variable was created through an exploratory step-

up procedure.  First, a baseline model with no predictors was created and called Model 

1.  When the dependent variable is the total above-level scale score, this model was 

defined with the level-1 equation of 

Ὕέὸὥὰ Ὡ  

and the level-2 equation of 

  ό  

which combine to form 

Ὕέὸὥὰ ό Ὡ  

as a general equation in which   represents the grand mean of all measurements across 

all time points, ό  represents the deviation between the mean of a particular cluster of 

measurements (i.e., each person) from the grand mean, and Ὡ  represents the remaining 

level-1 error between the cluster mean and the individual measurement. 

Model 1 can also be used to calculate the intraclass correlation (ICC), which is a 

measure of the amount of total variance that is between level-2 units (Raudenbush & 

Bryk, 2002).  The ICC is calculated as 
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Ὅὅὅ
†

„ †
 

where †  is the between cluster (i.e., person) variance, „  is the within cluster variance, 

and „ †  is the total variance observed across all measurements in the study.  

Because it is a percentage of total variance that is attributable to cluster, ICC can range 

from 0 to 1.  Higher ICCs indicate that strong clustering effects and greater homogeneity 

within clusters.  Because clusters in longitudinal studies are persons and the 

measurements are relatively close together, ICC values were expected to be high. 

A second model with time (a level-1 variable) as the only predictor was built and 

called Model 2.  When the dependent variable is the total battery score, Model 2 is 

represented by the level-1 equation 

Ὕέὸὥὰ  ὝὭάὩ Ὡ  

and the level-2 equations of 

  ό  

and 

  ό   . 

The first level-2 equation is identical to the level-2 equation in the HLM model that 

consists of no predictors (i.e., Model 1).  The second level-2 equation produces a Beta 

coefficient for the time variable and represents the change in total battery scores for each 

time unit (i.e., six months) that passed. 

The level-1 equation and two level-2 equations can be expressed together as 

Ὕέὸὥὰ  ὝὭάὩ ό ό ὝὭάὩ Ὡ  
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in general form.  The  , ό , and Ὡ  terms are interpreted in Model 2 exactly as they 

were in Model 1 (as a grand mean, cluster mean deviation, and level-1 error, 

respectively).  The   term is interpreted as the average increase in score gain for each 

unit of time that passes (i.e., the slope of a line that would track a studentôs score gains).  

The ό  represents the deviation of each personôs slope coefficient from the overall 

average slope ( ). 

 It is important to distinguish between the  values and the ό terms, the Ὡ  term.  

The s represent an overall mean fixed effect that applies to the sample in general.  

However, each level-2 unit (i.e., person in a longitudinal study) has its own ό  and ό  

values.  Moreover, each individual level-1 measurement has its own Ὡ  term for which 

the HLM computer program estimates the variance.  These values can be used to 

examine the random effectsðthat is, the deviations from the average modelðpresent in 

the data.  Specifically, the variance of the Ὡ  is defined as the remaining level-1 

variance, symbolized by „ .  The variances and covariance of the ό terms can be used to 

create a matrix that represents the variability and relationship of the random effects.  

This is called the G matrix and is represented as 

Ὃ
† †
† †  

where †  represents the variance of ό  values, †  represents the variance of ό  

values, and †  and †  both represent the covariance between ό values because the G 

matrix is symmetrical (Ferron et al., 2008; Raudenbush & Bryk, 2002).  If G is 
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standardized to form a correlation matrix, then the diagonal terms are equal to 1.0 and 

the off-diagonal terms are converted into correlation values. 

Thereafter, a series of models were investigated with time and a single level-2 

variable as predictors.  These models were named Models 3, 4, 5, and 6, each 

corresponding to a single level-2 independent variable in the study.  For example, Model 

6ðwhich has only SES as a level-2 independent variableðconsists of the level-1 

equation of 

Ὕέὸὥὰ  ὝὭάὩ Ὡ  

and the level-2 equations: 

   ὛὉὛ ό  

and 

  ό  

which combine to form 

Ὕέὸὥὰ  ὝὭάὩ  ὛὉὛ ό ό ὝὭάὩ Ὡ  

as an equivalent general equation.  Models 4-6 were also interpreted with an HLM effect 

size that is analogous to Cohenôs d.  This effect size is calculated with the following 

formula: 




„ †
 

where   is the fixed effect for a dichotomous independent variable coded 0 and 1 

(Spybrook, 2008, p. 285). 
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Because there was an association between studentsô ethnicity and SES (r = -.354, 

p < .001), another model (Model 7) was investigated with time, ethnicity, and SES as 

predictors in order to investigate the relative strength of the two level-2 predictors when 

placed in the same model.  Thereafter, a model with all available independent variables 

was created: Model 8.  This model is very similar to the equations given above for 

Model 6 because both Model 6 and Model 8 have the same level-1 variable (time) and 

only differ in that Model 8 has three more level-2 independent variables than Model 6.  

Therefore, Model 8 is expressed with the level-1 equation of 

Ὕέὸὥὰ  ὝὭάὩ Ὡ  

and the level-2 equations of 

   ὅέὬέὶὸρ  ὅέὬέὶὸς  ὅέὬέὶὸτ  ὋὩὲὨὩὶ

 ὉὸᾬὟὲὨ  ὛὉὛ ό  

and 

  ό  

which combine to form 

Ὕέὸὥὰ  ὝὭάὩ  ὅέὬέὶὸρ  ὅέὬέὶὸς  ὅέὬέὶὸτ

 ὋὩὲὨὩὶ ὉὸᾬὟὲὨ  ὛὉὛ ό ό ὝὭάὩ

Ὡ  

in general form. 

After Models 1-8 were created and examined for all dependent variables, 

interactions between time and level-2 predictors were investigated.  Although many 

interactions among independent variables were possible, only one interaction was 
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investigated at a time because investigating a large number of interactions with such a 

small sample may carve the dependent variableôs variance into so many pieces that 

power is lost and statistical significance difficult to obtain (Raudenbush & Bryk, 2002).  

Any statistically significant interactions were then added to Model 8 to produce Model 

9.  Finally, a parsimonious model was created by eliminating any non-statistically 

significant fixed or random components from Model 9.  All models in this study were 

analyzed with restricted maximum likelihood estimation using the EM algorithm in the 

computer program HLM 6.08 (Raudenbush, Bryk, & Congdon, 2009). 

Research question 2 was answered by investigating the slope parameter (i.e., 

change over time) of the parsimonious modelsô equations and comparing the growth 

observed in cohorts 2 and 3 with the gain that would be expected from intellectual peers 

(i.e., older students), according to the norms published in the ITBS and ITED manuals 

(Forsyth et al., 2003; Hoover et al., 2003). 

 Research question 3 was answered through the same parsimonious HLM 

equations.  A criterion was set a priori that any independent variable that has a 

statistically significant relationship was deemed to have an impact on either the rate of 

student score gains or initial student score.  The importance of these independent 

variables was investigated with the change in level-2 Pseudo-R
2
 as they are added to the 

model. 

 Research question 4 was investigated in the G matrix through the †  term in the 

G matrix.  Because  †  is unstandardized in the G matrix, it was converted into a 

correlation coefficient. A positive †  between these two values would indicate that 
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students who had a higher above-level test score at Time 1 also made the greatest gains 

in learningðwhich would be in accordance with theory (e.g., Carroll, 1993; Dai, 2010; 

Eisner, 2002; Gagné, 2005; Ruf, 2005). 

 Research question 5 was investigated with Pseudo-R
2
 statistics that represented 

the proportional reduction in prediction error calculated for each level from the results of 

the HLM models described above.  Multilevel models do not permit the estimation of 

true R
2
 effect sizes that represent the proportion of variance explained by the 

independent variables for a variety of reasons.  First, the possible presence of random 

effects in the models, the proportion of explained variance may vary from cluster to 

cluster (or in the case of this study, from person to person).  Second, the partitioning of 

variance into two different levels prohibits the calculation of a single effect size that 

represents the proportion of explained variance.  Finally, R
2
 is an effect sized based upon 

ordinary least squares regression, whereas the HLM models are estimated through 

maximum likelihood or restricted maximum likelihood estimation algorithms (McCoach, 

2010a). 

The Pseudo-R
2
 used in this study is from Raudenbush and Bryk (2002) and 

examines the decrease in „  (for level 1 of the model) or †  (for level 2) that occurs 

when covariates are added to a model.  All Pseudo-R
2
 statistics in this study were 

calculated by comparing the models to the intercept-only model (Model 1), which had 

no predictors.  Therefore, all Pseudo-R
2
 statistics in this dissertation represent the 

decrease in the corresponding levelôs error variance when the covariate(s) are added to 
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the baseline model.  More details about the Pseudo-R
2
 can be found in Hox (2002), 

McCoach (2010a, 2010b), and Raudenbush and Bryk (2002).  
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CHAPTER IV  

RESULTS 

Descriptive Statistics 

 Descriptive statistics for all subtests and cohorts are displayed in Tables 1-3.  The 

tables also display the descriptive statistics for the corresponding test levelôs national 

norms, which are taken from Hoover et al. (2003, p. 73) and Forsyth et al. (2003, pp. 57-

58).  All means and standard deviations are displayed in the scale score metric that 

permits comparisons across grades. 

 Tables 1-3 also show the skewness and kurtosis statistics for all above-level test 

administrations in this study.  All skewness and the majority of kurtosis values are 

within the range of + 1, indicating distributions that are approximately normal.  Seven of 

the 66 kurtosis values (10.6%) are outside of the + 1 range, with five of these being 

distributions for Cohort 2.  However, only one kurtosis value is statistically different 

from 0 when Ŭ = .05 (the vocabulary subtest distribution for Cohort 2 at Time 0).  

Moreover, the cohortôs later skewness and kurtosis values for vocabulary subtests do not 

indicate a consistent pattern of kurtosis (-.775 at Time 1 and .824 at Time 3), which 

likely indicates that the extreme kurtosis value at Time 0 is likely due to random error. 
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Table 1 

Descriptive Statistics for Gifted Grade 6 Cohorts 3 and 4 and National Grade 8 Norms
a
 

 Reading Language Math Total 

Time 0, Gifted Grade 6: Cohort 3, Fall 2008
b
 

Mean 248.9 248.3 238.7 245.2 

SD 32.9 40.1 24.3 26.9 

Skewness -.060 -.059 .261 .480 

Kurtosis -.576 -.357 .006 -.449 

KR20 .865 .903 .776 .931 

SEM 12.09 12.49 11.5 7.07 

National Norms: Grade 8, Fall 

Mean 242.3 245.4 244.1 244.1 

SD 32.8 41.0 31.6 32.6 

KR20 .944 .957 .939 .980 

SEM 7.76 8.50 7.80 4.61 

Time 1, Gifted Grade 6: Cohort 3, Spring 2009
c
 

Mean 268.8 257.4 256.0 260.5 

SD 35.4 38.1 20.8 27.0 

Skewness -.190 -.310 .685 .019 

Kurtosis -.248 -.075 1.075 -.005 

KR20 .880 .891 .725 .930 

SEM 12.26 12.58 10.91 7.14 

Time 3, Gifted Grade 6: Cohort 4, Spring 2010
d
 

Mean 256.9 249.8 241.5 249.7 

SD 25.6 30.0 22.3 21.9 

Skewness -.315 -.280 -.997 -.571 

Kurtosis -.158 -.261 .981 .419 

KR20 .800 .829 .750 .902 

SEM 11.45 12.41 11.15 6.86 

National Norms: Grade 8, Spring 

Mean 248.8 251.6 251.0 251.0 

SD 34.1 42.6 33.2 33.6 

KR20 .950 .960 .949 .982 

SEM 7.62 8.52 7.50 4.51 
a
Bold indicates scores of students in the present study at each  time point.  National norm 

statistics are from Hoover et al., 2003, p. 73. 
b
n = 45. 

c
n = 41. 

c
n = 60. 

 

 



 

 

 

 

 

Table 2 

Descriptive Statistics for Gifted Grade 7 Cohorts 2 and 3 and National Grade 9 Normsa 

 Vocabulary 
Reading 

Comprehension 
Reading 

Total Spelling 

Revising 

Written 
Materials 

Math 

Concepts & 

Problem 
Solving 

Math 
Computation Math Total 

Total 
Battery 

Time 0, Gifted Grade 7: Cohort 2, Fall 2008a 

Mean 258.2 271.3 264.7 258.7 273.2 263.3 240.7 255.9 264.6 

SD 23.7 31.1 25.6 34.0 36.6 30.2 31.8 28.2 26.7 

Skewness -.057 -.055 -.029 .170 -.544 -.052 .238 .220 -.190 

Kurtosis 1.706 -.505 .161 -.334 -.078 1.112 .051 1.102 .557 

KR20 .858 .867 .921 .842 .878 .845 .786 .893 .960 

SEM 8.93 11.34 7.2 13.51 12.78 11.89 14.71 9.22 5.34 

National Norms: Grade 9, Fall 

Mean 251.9 252.4 252.2 254.7 254.7 254.2 254.5 254.3 253.7 
SD 31.1 42.4 34.7 35.9 43.0 36.7 37.4 33.8 34.0 

KR20 .908 .915 .950 .835 .911 .870 .853 .946 .972 

SEM 9.43 12.36 7.76 14.58 12.83 13.23 14.34 7.85 5.69 
Time 1, Gifted Grade 7: Cohort 2, Spring 2009b 

Mean 268.4 288.1 278.3 263.4 286.9 275.1 247.6 266.0 277.1 

SD 16.0 35.1 24.0 30.5 29.9 26.6 23.2 22.7 21.4 

Skewness -.176 .001 -.095 .282 -.251 -.669 -.029 -.416 -.348 

Kurtosis -.775 -.682 -1.052 -.570 -.771 -.273 -1.030 -.812 -.516 

KR20 .793 .882 .912 .808 .826 .831 .553 .829 .937 

SEM 7.28 12.06 7.12 13.36 12.47 10.94 15.51 9.39 5.37 

Time 3, Gifted Grade 7: Spring, 2010c 

Mean 264.1 274.4 269.2 263.7 274.5 282.3 242.8 269.4 271.5 

SD 20.6 35.7 26.8 33.0 41.8 27.4 33.6 26.0 27.3 

Skewness .065 .014 .147 .442 -.521 -.210 .539 .233 .004 

Kurtosis -.779 -.650 -.878 -.171 .146 -.500 .211 -.323 -.383 

KR20 .864 .900 .934 .833 .910 .860 .821 .897 .963 

SEM 7.60 11.29 6.89 13.49 12.54 10.25 14.22 8.34 5.25 

National Norms: Grade 9 Spring 

Mean 258.2 258.8 258.5 260.4 260.2 259.9 259.6 259.8 259.5 

SD 32.7 44.4 35.8 37.0 43.3 38.0 39.0 34.9 34.5 
KR20 .918 .921 .951 .864 .922 .902 .878 .958 .976 

SEM 9.36 12.48 7.92 13.64 12.09 11.90 13.62 7.15 5.34 

Note.  The reading test consists of the vocabulary and reading comprehension subtests combined.  The mathematics test consists of the match concepts and math computation subtests 

combined.  The total battery consists of all items from all subtests combined. 
aBold numbers indicate scores of students in the present study at each time point.  National norm statistics are from Forsyth et al., 2003, p. 57. 
bn = 53. 
cn = 50. 
dn = 49. 
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Table 3 

Descriptive Statistics for Gifted Grade 8 Cohorts 1 and 2 and National Grade 10 Normsa 

 

Vocabulary 
Reading 

Comprehension 
Reading 

Total Spelling 

Revising 

Written 
Materials 

Math 

Concepts & 

Problem 
Solving 

Math 
Computation Math Total 

Total 
Battery 

Time 0, Gifted Grade 8: Cohort 1, Fall 2008a 

Mean 265.0 275.8 270.3 265.3 275.8 272.0 248.3 265.0 271.1 

SD 31.7 45.9 36.1 43.2 41.7 40.9 34.8 35.4 33.1 

Skewness -.340 -.598 -.555 .364 -.115 -.270 -.552 -.132 -.141 

Kurtosis .262 -.365 -410 -.544 -.136 -.969 -.136 -1.212 -.918 

KR20 .894 .934 .951 .908 .911 .914 .835 .930 .973 

SEM 10.32 11.79 7.99 13.10 12.44 11.99 14.14 9.37 5.44 

National Norms: Grade 10, Fall 

Mean 260.1 261.8 261.3 263.4 263.0 262.8 262.7 262.8 262.3 
SD 33.0 44.9 36.0 37.3 44.0 38.5 39.3 35.4 35.1 

KR20 .915 .918 .950 .852 .920 .892 .868 .954 .975 

SEM 9.62 12.86 8.05 14.35 12.45 12.65 14.28 7.59 5.55 
Time 1, Gifted Grade 8: Spring 2009b 

Mean 271.7 292.1 283.2 277.8 293.3 285.9 256.0 257.9 285.6 

SD 35.9 50.1 40.2 34.8 48.3 45.6 34.0 38.9 37.7 

Skewness -.493 -.659 -.723 .028 -.435 -.589 .335 -.281 -.554 

Kurtosis -.096 -.619 -.138 -.221 -.791 -.571 -.355 -.780 -.506 

KR20 .916 .946 .982 .860 .936 .947 .825 .947 .981 

SEM 10.40 11.64 5.39 13.02 12.22 10.50 14.22 8.96 5.20 

Time 3, Gifted Grade 8: Spring, 2010c 

Mean 268.1 280.8 274.4 270.4 281.2 279.2 253.4 271.1 275.9 

SD 28.8 42.8 32.9 32.9 49.0 34.3 28.9 29.9 30.3 

Skewness -.541 -.019 -.152 -.576 -.471 -.606 .165 -.469 -.358 

Kurtosis .824 -.940 -.437 .682 -.235 -.545 -.279 -.328 -.245 

KR20 .882 .917 .940 .832 .899 .870 .766 .899 .964 

SEM 9.89 12.33 8.06 13.48 15.57 12.37 13.98 9.50 5.75 

National Norms: Grade 10, Spring 

Mean 265.9 266.5 266.2 267.8 267.7 267.3 266.9 267.2 267.0 

SD 34.1 46.2 36.9 38.5 45.1 39.5 40.5 36.5 36.0 
KR20 .918 .921 .951 .864 .922 .902 .878 .958 .976 

SEM 9.76 12.99 8.17 14.20 12.60 12.37 14.15 7.48 5.58 

Note.  The reading test consists of the vocabulary and reading comprehension subtests combined.  The mathematics test consists of the match concepts and math computation subtests 

combined.  The total battery consists of all items from all subtests combined. 
aBold numbers indicate scores of students in the present study at each time point.  National norm statistics are from Forsyth et al., 2003, p. 57. 
bn = 53. 
cn = 50. 
dn = 61, except for Revising Written Materials subtest descriptive statistics (n = 60). 
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Table 4 

Cohort Group Mean Changes 

Cohort Time 

Norm 

Mean 

Norm 

SD 

Above-Level 

Mean z Percentile 

Total Battery Score 

2 Baseline 253.7 4.0 264.6 .3206 62 

2 Followup 2 267.0 36.0 275.9 .2472 60 

3 Baseline 241.1 32.6 245.2 .0337 51 

3 Followup 2 259.5 34.5 271.5 .3483 65 

Reading Score 

2 Baseline 252.2 34.7 264.7 .3615 64 

2 Followup 2 266.2 36.8 274.4 .2235 59 

3 Baseline 242.3 32.8 248.9 .2012 58 

3 Followup 2 258.5 35.8 269.2 .2995 62 

Math Score 

2 Baseline 254.3 33.8 255.9 .0473 52 

2 Followup 2 273.7 37.8 271.1 .1068 54 

3 Baseline 244.1 31.6 238.7 -.1709 43 

3 Followup 2 259.8 34.9 269.4 .2747 61 

Note. Norm means and SDôs are from Hoover et al. (2003, p. 73) and Forsyth et al. 

(2003, pp. 57-58). 

 

 

The test score distribution was also closer to the middle range of the test level that 

students took than had they obtained the same ITBS/ITED scale scores on a grade-level 

test.  When these scores are converted to z-scores by dividing by the norm groupôs mean 

and standard deviation, the result is a standardized score that shows the number of 

standard deviations that the scores are from the norm groupôs mean.  Table 4 shows that 

the z-scores obtained from the above-level testings were all between -.25 and +.59, with 

the average above-level z-score being +.35 for reading scores, +.01 for math scores, and 

+.27 for total battery scores.  Assuming that the vertical equating of the ITBS and ITED 

test levels is of high enough quality that the students would have received the similar 

scale scores on a grade-level version of the ITBS and ITED, the mean grade-level z-
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scores of the gifted students would have been +1.04 for reading, +.70 for math, and +.94 

for the total battery.  Thus, the gifted studentsô scale scores were less extreme with the 

above-level testing than they would have been for a grade-level test.  If moving the gifted 

studentsô score distribution towards the middle of the test levelôs score range is a goal of 

above-level testing in order to improve score reliability, then above-level testing would 

seem to be successful. 

Given the concern about regression to the mean expressed in Chapter II , it was 

investigated separately.  The number of students who showed a score decline from one 

time point to another is displayed in Table 5.  The results are somewhat surprising.  

Almost half of students (40.3%) who were tested at least twice showed at least one 

decline in reading scores during the course of the study.  Math results were similar, with 

34.4% of students demonstrating a score decline.  Total battery score declines were not as 

common, with only 25.8% of students showing a total battery score decline during the 

study.  Because overall battery scores are a composite of the subtests, the lower rate of 

total battery score declines may be due to declines in one subtest (such as reading) being 

compensated for by gains or maintenance in another subtest (such as spelling or 

mathematics).  In total, 57.2% of the students showed at least one score decline on the 

reading, mathematics, or total battery during the study.  Interestingly, score declines were 

most common between Followup 1 and Followup 2, during which time students were 

advanced a grade, and therefore a test level.  The change in test level may have some 

impact on the common score declines observed in this study. 
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Table 5 

Number and Percentage of Students Who Showed a Score Decline 

 Test Score 

Time Period Reading Math Total Battery 

Baseline to Followup 1 16 (12.7%) 25 (20.0%) 13 (10.4%) 

Followup 1 to Followup 2 36 (42.9%) 21 (25.3%) 21 (25.3%) 

Baseline to Followup 2 14 (16.9%) 8 (9.8%) 11 (13.4%) 

Total  52 (40.3%) 44 (34.4%) 33 (25.8%) 

Note. 72 of 128 (57.2%) students who were tested at least twice showed at least one score 

decline. 

Note. n varies from 82 to 128. 

 

To investigate the possibility of regression toward the mean, an independent 

samples t-test was conducted for each pair of scores to determine if students who 

exhibited score declines had higher initial scores than students whose scores did not 

decline.  Of the nine pairs of t-tests that were conducted, only the students who showed a 

decline in reading scores between the first and second followups had higher initial (i.e., 

from Followup 1) scores than those who didnôt show a decline (d = .58, p = .012).  All 

other mean differences were not statistically significant (p > .360).  Therefore, the 

presence of score declines for most subtests and tests was not related to initial score. 

Research Question 1: Internal Consistency Reliability 

The first research question for this study was: What is the internal consistency 

reliability of the global battery, reading/language arts, and mathematics scores drawn 

from an above-level administration of an achievement test?  The internal consistency 

reliability coefficients for the ITBS/ITED above-level test administrations and from the 

test manuals are displayed in Tables 1-3.  KR20 values for the norm groups for the 
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eighth, ninth, and tenth grade levels are also displayed in Tables 1-3.  These data are 

taken from Hoover et al. (2003, p. 73) and Forsyth et al. (2003, pp. 57-58). 

Internal consistency reliability coefficients (KR20) ranged from .725 to .931 for 

sixth grade students, .553 to .963 for seventh grade students, and .766 to .982 for eighth-

grade students.  Of the 66 coefficients, one (1.51%) was below .700, six (9.09%) were 

between .700 and .799, 30 (45.45%) were between .800 and .899, and the remaining 29 

(43.93%) coefficients were .900 or higher.  The distribution of KR20 values had a 

skewness value of -1.645, which is in accordance with what is known about the 

distribution of internal consistency coefficients (Feldt, 1965; Rodriguez & Maeda, 2006; 

Warne, 2011).  The total battery scores had the highest reliability (all above .900), which 

is unsurprising, given the larger number of items in the total battery. 

As the tables show, the norm groupôs KR20 estimates were usually higher than 

the KR20 values generated by the above-level test scores.  In total, only eight above-level 

KR20 values exceeded the corresponding reliability coefficients for the norm groupsð

and all eight coefficients were from Cohort 1ôs scores. 

Cronbachôs alpha values were used to calculate the standard error of measurement 

(SEM) values in Tables 1-3.  For gifted students in the seventh and eighth grades, SEMs 

values were very similar to what is seen in the norm sample, which reflects the similar 

KR20 and standard deviations values of both groups.  However, for the gifted sixth 

graders, the SEM values were much higher than those seen in the eighth grade norm 

groups.  This means that gifted sixth grade studentsô scores are less precise than other 

studentsô scores in the study and is likely the result of the shorter test length for the eighth 
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grade ITBS test level and the resulting lower KR20 values for the sixth grade gifted 

students. 

Hierarchical L inear Models 

 HLM results examining the nature of score gains are displayed in Tables 7-9.  As 

stated in Chapter III , nine models are displayed in each table: one random intercept 

model with no predictors (Model 1);  one model with only time as a predictor (Model 2); 

four random-coefficients regression models with time and one additional level-2 

predictor (Models 3-6); a random-coefficients model with time, SES, and ethnicity as 

predictors (Model 7); a random-coefficients model with time and all four level-2 

predictors (Model 8); and a final intercepts- and slopes-as-outcomes model that is equal 

to Model 8 with an additional interaction (Model 9).  The tables also contain Pseudo-R
2
 

for both level-1 and level-2 variance, the fixed and random parameter estimates for all 

models, the deviance, and a statistical ɢ
2
 difference test of model improvement (based on 

the deviance). 

 As stated in the previous chapter, the independent variables are dummy coded so 

that Cohort 3 represents the reference group for the cohorts, males are the reference 

group for the gender variable, overrepresented ethnicities (i.e., White and Asian 

American students) are the reference group for the ethnicity variable, and middle- and 

high-SES students (defined as those not participating in a free or reduced lunch program) 

are the reference group for the SES variable.  Time is coded so that the baseline test 

administration in November 2008 is time 0, the first follow-up (May 2009) is coded as 1, 
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and the second follow-up (May 2010) is coded as 3.  The correlation table of the level-2 

independent and dependent variables for the HLM models are displayed in Table 6. 

 

Table 6 

Correlation of Dependent Variables and Level-2 Independent Variables 

 Total 

Score 

Reading 

Score 

Math 

Score Cohort Gender Eth_Und SES 

Total 

Score 

 1.000        

Reading  

Score 

 0.887**  1.000      

Math 

Score 

 0.838**  0.629**  1.000     

Cohort -0.313** -0.210** -0.293**  1.000    

Gender  0.038 -0.025 -0.046 -0.014 1.000   

Eth_Und -0.323** -0.396** -0.216* -0.033 0.063 1.000  

SES -0.103* -0.110* -0.034 -0.031 0.074 0.354** 1.000 
a
Negative correlation indicates that older children have higher scores.  

b
Negative 

correlation indicates that children from underrepresented ethnicities score lower than 

children from overrepresented ethnicities. 

* p < .05   ** p < .01 

 

  



 

 

 

 

 

Table 7 

HLM Analysis Results (Total Battery Score) 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 

Fixed Effect Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE) 

Intercept ( ) 264.56 

(1.91)***  

254.26 

(2.30)***  

248.77 

(3.61)***  

252.42 

(3.43)***  

263.15 

(2.89)***  

257.65 

(2.97)***  

263.36 

(3.19)***  

255.06 

(4.50)***  

253.36 

(4.64)***  

Time ( )  6.10 (0.66)*** 7.35  (0.68)*** 6.11  (0.66)*** 6.11  (0.66)*** 6.07  (0.66)*** 6.12  (0.66)***  7.47  (0.67)*** 8.47  (0.87)*** 

Cohort1 ( )   25.86 (6.64)***     24.36 (6.23)*** 24.71 (6.26)*** 

Cohort2 ( )   11.97 (4.69)**     12.53 (4.47)*** 12.88 (4.47)*** 

Cohort4 ( )   -21.15 

(4.61)***  

    -20.85 

(4.32)***  

-20.83 

(4.33)***  

Gender ( )    3.27  (4.21)    5.06  (3.39) 4.92  (3.41) 

Eth_Und ( )     -21.17 

(3.87)***  

 -20.95 

(4.13)***  

-20.25 

(3.55)***  

-16.19 

(4.17)***  

SES ( )      -7.28 (4.15)* -0.68 (4.17) -1.48 (3.47) -1.63 (3.49) 

Time x Eth_Und 

Interaction ( ) 

        -2.21 (1.26)* 

Random Effect Estimate Estimate Estimate Estimate Estimate Estimate Estimate Estimate Estimate 

Intercept Random 

effect (ό) 

25.19*** 28.66*** 25.42*** 28.77*** 27.35*** 28.51*** 27.42*** 24.23*** 24.21*** 

Time random 

effect (Ѝ† ) 

ð 3.59***  3.43***  3.57***  3.57***  3.56***  3.56***  3.46** 3.34** 

 Variance Components 

„ 280.95 145.12 141.94 145.23 146.40 145.45 146.40 142.82 140.80 

†  634.48 821.24 645.99 827.63 748.13 812.80 751.97 586.88 586.13 

 Effect Sizes (Pseudo-R2) 

Level-1 ð 48.34% 49.48% 48.31% 47.89% 48.23% 47.89% 49.16% 49.88% 

Level-2 ð ð 21.34% -0.78% 8.90% 1.03% 8.43% 28.54% 28.63% 

 Deviance 

 3994.97 3924.12 3843.19 3916.97 3891.04 3914.53 3888.17 3797.70 3790.62 

ȹDeviance (df) ð 70.85a (1)***  80.93b (3)***  7.15b (1)***  33.08b (1)***  9.59b (1)***  2.87c (1)* 126.42b (6)***  7.08d (1)***  
aComparison model is Model 1.  bComparison model is Model 2. cComparison model is Model 5.  dComparison model is Model 8. 

* p < .10,  ** p < .05,  *** p < .01. 
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Total Battery Score Results 

Table 7 shows the nine HLM models with the total scale score as a dependent 

variable.  Model 1ðthe random intercept model with no predictorsðhad a deviance of 

3994.97 and an ICC of .693.  Unsurprisingly, this was the highest deviance, because the 

addition of any level-1 or level-2 predictor caused the model to fit the data better than 

Model 1 does.  The addition of the time independent variable reduced level-1 variance 

(„  by 48.34%.  Because time was the only level-1 independent variable, the Pseudo-R
2
 

remained approximately constant for the following seven models.  In addition to the high 

Pseudo-R
2
, the importance of time as a level-1 variable is shown in a change of deviance 

of 70.85 (ȹɢ
2
 = 70.85, p < .001), indicating that Model 2 is a major improvement over 

Model 1.  For every six months of time that passed, total ITBS/ITED battery scores 

increased by an average of 6.10 points (as indicated by the   value in Model 2).  This 

increase in scores as time passes is unsurprising, given the longitudinal nature of the 

study and the presumption that student scores should increase as they spend more time in 

school.  The random effect for time was also statistically significant, with a ό value of 

3.59 (p < .001).  This indicates that the rate of total battery score growth varied across 

students.  Because  ό is interpreted as a standard deviation of slopes (and the square 

root of †  when there is only one level-1 variable), an estimate for the range of slopes in 

the sample can be calculated.  This is possible by assuming that the individual studentsô 

slopes are normally distributed around the   value.  Therefore, it is likely that 95% of 

student slopes are between -0.93 and 13.14 points (6.10 + 1.96*3.59 points) gained 
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every six months, which shows that studentsô rate of total score growth varies widely 

and a small number of studentsô scores even declined over the course of the study.   

 Models 3 through 6 each consist of one level-1 predictor (time) and one level-2 

predictor: cohort, gender, and ethnicity, and SES respectively.  The cohort dummy code 

variables explained the most level-2 variance: 21.34%.  This was expected, because it is 

assumed that students who have been in school longer (Cohort 1) would obtain higher 

scores on an academic test like the ITBS/ITED than students who had fewer years in 

formal schooling.  Members of Cohort 1ðwho had two years more of schooling than 

members of the baseline groupðhad above-level scores that were on average 25.86 

points higher at baseline than the scores of students in Cohort 3.  The   value was 

11.97, indicating that Cohort 2 students had ITBS/ITED scores that were almost 12 

points higher at the baseline measurement time than the scores from Cohort 3.  Finally, 

the   value indicates that Cohort 4 members had scores that were on average 21.15 

points lower than the scores from Cohort 3 at baseline.  However, it is important to note 

that Cohort 4 was not tested at the baseline because the students were still in the fifth 

grade at the time.  This value is imputed on the basis of the scores obtained from Cohort 

4 at the second followup. 

Of the demographic variables, ethnicity was the most powerful predictor, with a 

  value of -21.17 (ŭ = -.71, p < .001) and level-2 variance reduced († ) reduced by 

8.90%.  This indicates that students from underrepresented ethnicities (African 

Americans and Hispanics) had scores that were over twenty points lower than the scores 

of students from overrepresented ethnicities (Whites and Asian Americans).  The other 
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two independent variables were of little, if any, importance.  SES explained 1.03% of 

level-2 variance according to Model 6 and a   value of -7.28 (ŭ = -.22, p = .080).  

Gender had a small   (3.27 in Model 4, which corresponds to ŭ = .10; p = .438) and 

reduced the level-2 total ITBS/ITED score variance by a negligible amount:    -0.78%.  

This latter finding is an anomaly; variance theoretically can never be negative because it 

is a squared statistic.  However, negative variance values are sometimes mathematically 

possible (such as in Cronbachôs Ŭ or in commonality analysis) and it is generally 

accepted that if the values are close to zero, then they should be interpreted as being 

equal to zero (McBee, 2010; McCoach, 2010a; Thompson, 2003, 2006).  This 

information, combined with the weak statistical significance of gender as a level-2 

predictor (p = .438) means that in this student gender plays no detectable role in initial 

observed above-level test scores. 

 Models 7 and 8 show theoretically important combinations of covariates and 

their relative importance in explaining observed total above-level test score variance.  

Model 7 shows that although SES and ethnicity are statistically significant predictors 

when entered alone into the HLM models (see Models 5 and 6), but when they are both 

part of the model, SES explains almost no additional variance and has a very small   

value of -0.68 (p = .871).  In Model 8, it can be seen that both gender and SES are 

statistically insignificant predictors with large standard errors (p = .137 and 670, 

respectively). 
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 Finally, Model 9 shows all the level-2 predictors with the only statistically or 

practically significant cross-level interaction, which is a time x ethnicity interaction.  In 

total, Model 9 reduces level-1 variance by 49.88% and level-2 variance by 28.63%. 

 A more parsimonious model based on Model 9 can be generated by retaining 

only those independent variables that are statistically significant.  This results in a level-

1 equation of 

Ὕέὸὥὰ  ὝὭάὩ Ὡ  

and level-2 equations of 

   ὅέὬέὶὸρ  ὅέὬέὶὸς  ὅέὬέὶὸτ  ὉὸᾬὟὲὨ

ό  

and 

   ὉὸᾬὟὲὨ ό  

which combine to form 

Ὕέὸὥὰ  ὝὭάὩ  ὅέὬέὶὸρ  ὅέὬέὶὸς  ὅέὬέὶὸτ

 ὉὸᾬὟὲὨ  ὉὸᾬὟὲὨὝὭάὩ ό ό ὝὭάὩ

Ὡ  

as a general equation.  This model had a deviance of 3801.46, a level-1 Pseudo-R
2
 of 

49.86%, and a level-2 Pseudo-R
2
 of 29.96%.  The estimates and standard errors of each 

covariate for the parsimonious model are displayed in Table 8. 
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Interpreting Table 8 is relatively straightforward.  The   intercept term 

(254.89) represents the score at Time 0 for a male student in Cohort 3 from an 

overrepresented ethnicity.  Compared to a student in Cohort 3, a student in Cohort 2 

would have a score of   (14.06) points higher at the first test administration, which 

would be 268.95 points (254.89 + 14.06 = 268.95).  If the student in Cohort 2 were from 

an underrepresented ethnicity ( ), then the average score would be 252.37 (254.89 + 

14.06 ï 16.58 = 252.37). 

The fixed effect for time ( ) is used to calculate the rate of average growth for 

students in the study.  The   value of 8.46 indicates that for every six months that 

passed, students scores increased by an average of 8.46 points.  Therefore, a male 

student in Cohort 3 from an overrepresented ethnicity would be expected to have a score 

gain of 25.44 during the course of the study, which would lead him to have a score of 

280.27 (254.89 + 3*8.46 = 280.27) at the second followup.  In comparison, an average 

student in the norms group would be expected to have a score increase of 13.29 points 

(from fall of grade 9 to the spring of grade 10) or 15.43 points (from the fall of grade 8 

to the spring of grade 9; Forsyth et al., 2003, p. 73; Hoover et al., 2003, p. 57-58). 
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The interaction between time and ethnicity ( ) indicates that members of 

underrepresented ethnic groups have a slower rate of score growth than children in 

overrepresented groups.  Students in underrepresented groups would be expected to have 

an average score gain of 18.69 points (3*8.46 ï 3*2.23 = 18.69) for a final score of 

257.00 points (254.89 ï 16.58 + 3*8.46 + 3*-2.23 = 257.00) during the 18 months of the 

study.  It is interesting that in spite of the slower rate of score gains that students from 

underrepresented ethnicities had compared to their White and Asian American peers, 

they still demonstrated larger score gains than the average student in the norm group 

would over the course of 18 months. 

Figure 3 shows some of the results from the parsimonious model.  The figure 

reflects both the difference in initial starting scores between ethnicity groups (reflected 

in the different intercepts) and the interaction between time and ethnicity (shown in the 

different slopes).  Norm group scores and growth trends are also shown for comparison 

purposes. 
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Table 8 

HLM Parsimonious Models 

 Dependent Variable 

 Total Battery Score Reading Score Math Score 

Fixed Effect Estimate (SE) Estimate (SE) Estimate (SE) 

Intercept ( ) 254.89 (3.87)*** 266.76 (5.13)*** 247.03 (3.38)*** 

Time ( ) 8.46 (0.46)*** 4.70 (1.13)*** 9.45 (0.79)*** 

Cohort1 ( ) 25.00 (6.15)*** 19.15 (6.10)*** 21.98 (6.37)*** 

Cohort2 ( ) 14.06 (4.43)*** 10.63 (4.66)** 9.95 (4.12)** 

Cohort4 ( ) -19.92 (4.36)***  -13.49 (3.60)*** -25.41 (4.17)*** 

Gender ( )  -3.71 (4.30)  

Eth_Und ( ) -16.58 (4.01)*** -26.26 (3.60)*** -9.54 (4.13)** 

Time x Eth_Und 

Interaction ( ) 

-2.23 (1.26)*  -2.98 (1.39)** 

Time x Gender 

Interaction ( ) 

 2.45 (1.40)*  

Random Effect Estimate Estimate Estimate 

Intercept random 

effect (ό) 

23.98*** 23.09*** 23.16*** 

Time random effect 

(Ѝ† ) 

3.31**   

 Variance Components 

„  140.87 243.51 209.21 

†  575.18 533.32 536.40 

 Effect Sizes (Pseudo-R
2
) 

Level-1 49.86% 25.57% 40.43% 

Level-2 29.96% 35.31% 28.57% 

 Deviance 

 3801.46 3902.88 3862.33 

ȹDeviance (df)
a
 193.51 (7)*** 149.97 (7)*** 173.65 (6)*** 

ȹDeviance (df)
b
 10.84 (2)*** 3.32 (1)* 9.98 (2)*** 

a
Comparison model is Model 1.  

b
Comparison model is Model 9. 

* p < .10,  ** p < .05,  *** p < .01 

 

  



 

 

 

 

 

 

Figure 3 Average total battery score growth trends for above-level cohorts and norm groups.
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Table 9 

HLM Analysis Results (Reading Score) 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 

Fixed Effect Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE) 

Intercept ( ) 267.39 

(1.98)***  

258.89 

(2.42)***  

254.95 

(4.26)***  

259.20 

(3.50)***  

270.40 

(2.77)***  

263.01 

(2.94)***  

270.53 

(3.08)***  

264.53 

(4.91)***  

267.14 

(5.33)***  

Time ( )  4.91 (0.71)*** 6.07  (0.74)*** 4.92  (0.71)*** 4.91  (0.70)*** 4.87  (0.71)*** 4.91  (0.71)*** 6.16  (0.73)*** 4.71  (1.13)*** 

Cohort1 ( )   20.81 (6.19)***     19.45 (6.12)*** 19.18 (6.08)*** 

Cohort2 ( )   6.67  (6.65)     9.77  (4.71)** 9.82  (4.69)** 

Cohort4 ( )   -15.65 

(5.05)***  

    -13.77 

(4.52)***  

-13.84 

(4.52)***  

Gender ( )    -0.57 (4.20)    1.04  (3.50) 2.46  (1.40) 

Eth_Und ( )     -26.82 

(3.76)***  

 -26.68 

(3.98)***  

-26.00 

(3.81)***  

-25.68 

(3.78)***  

SES ( )      -8.85 (4.15)** -0.45 (3.98) -0.99 (3.59) -0.71 (3.58) 

Time x Gender 

Interaction ( ) 

        2.46  (1.40)* 

Random Effect Estimate Estimate Estimate Estimate Estimate Estimate Estimate Estimate Estimate 

Intercept Random 

effect (ό) 

25.85*** 28.71*** 27.21*** 28.76*** 25.72*** 28.56*** 25.79*** 24.34*** 24.16*** 

Time random 

effect (Ѝ† ) 

ð 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.12 

 Variance Components 

„ 325.84 248.78 243.07 248.71 248.39 249.11 248.71 242.14 242.73 

†  668.13 824.45 740.17 827.18 661.35 815.86 827.18 592.64 583.65 

 Effect Sizes (Pseudo-R2) 

Level-1 ð 23.65% 25.40% 23.67% 23.77% 23.55% 23.78% 25.69% 25.51% 

Level-2 ð ð 10.22% -0.33% 19.78% 1.04% 19.30% 28.12% 29.21% 

 Deviance 

 4052.85 4013.42 3966.65 4010.55 3965.50 4006.03 3959.05 3903.18 3899.56 

ȹDeviance (df) ð 39.43a (1)***  46.77b (3)***  2.87b (1)* 47.92b (1)***  7.39b (1)***  6.45c (1)***  109.82b (6)***  3.62d (1)* 
aComparison model is Model 1.  bComparison model is Model 2. cComparison model is Model 5.  dComparison model is Model 8. 

* p < .10,  ** p < .05,  *** p < .01. 
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Reading Score Results 

HLM models are displayed in Table 9 for the ITBS/ITED reading scores.  Model 

1ôs ICC for reading scores was found to be .672 and the deviance was 4052.85.  The 

addition of time as a level-1 predictor produced a statistically significant lower deviance 

(ȹɢ2 = 39.43, p < .001), indicating that time should be included in the model.  This 

model modification caused a 23.65% reduction in level-1 error variance, which was 

much lower than the Model 2 Pseudo-R
2
 observed for the total battery score dependent 

variable (48.34%), indicating that time had a lower impact on observed reading scores.  

This interpretation is reinforced by the   value of 4.91 points, which is much lower 

than the   of 6.10 points observed for total ITBS/ITED scores. The random effect for 

time, however, was small and statistically insignificant (ό = 1.09 for Models 2-8; ό = 

1.12 for Model 9; p > .500 for all models).  This indicates that the reading scores 

increased at approximately the same rate for all students in the sample.  The   value of 

4.91 indicates that during the course of the study, the average male student in Cohorts 2 

and 3 gained 14.73 points (4.91*3 = 14.73), which is similar to the score gains from the 

corresponding norm groups: 16.19 points for norm groups from fall of grade 8 to spring 

of grade 9 and 14.02 points for norm groups from fall of grade 9 to the spring of grade 

10 (Hoover, et al., 2003, p. 63; Forsyth et al., 2003; pp. 57-58). 

Models 3 through 6 examined the level-2 predictors individually.  Model 3 

showed that the addition of the cohort variables in the model caused level-2 variance to 

decrease by 10.22%.  Again, this is a much smaller impact than the reduction in level-2 

variance that was observed for the total score Model 3 (Pseudo-R
2
 = 21.34%).  Model 4 
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showed that gender had no statistically or practically significant impact on above-level 

reading scores (  = -0.57, p = .892, ŭ = -.02, level-2 Pseudo-R
2
 = -0.33%).  The 

strongest level-2 independent variable was that of ethnicity (  = -26.82, p < .001, ŭ = -

.89, level-2 Pseudo-R
2
 = 19.78%).  This indicates that students from underrepresented 

ethnicities had scores that were on average 26.82 points lower than the scores of students 

from overrepresented ethnicities.  This magnitude of this difference is indicated by the 

fact that in the norm samples the difference between reading scores of ninth grade 

students in the fall and twelfth grade students in the spring is 25.75 points (Forsyth et al., 

2003, pp. 57, 60).  In other words, the score gap between ethnic groups in this study is 

approximately the same as the gap between students who are just beginning their high 

school careers and those who are about to graduate.  Model 6 examined the impact of 

student SES on reading scores and found a practically and statistically significant effect 

(  = -8.85, p < .001, ŭ = -.27, Pseudo-R
2
 = 1.04%) that indicated that low-SES 

students had scores 8.85 points lower than students from middle- or high-SES homes.  

However, when SES and ethnicity were combined in Model 7, the SES had no unique 

predictive power above that of ethnicity. 

Model 8ðwhich consists of all independent variablesðlargely confirms the 

results of the previous models.  Individually testing the different level-2 variablesô 

interaction with time produced only one statistically significant interaction, which was 

with gender.  This model is displayed in Table 9 as Model 9.  The interaction   value 

is 2.46 (p = .09), indicating that female students had an additional gain of 2.46 points 

every six months compared to the male students. 
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 A more parsimonious model based on Model 9 can be generated by retaining the 

statistically significant independent variables.  The most parsimonious model for reading 

scores has a level-1 equation of 

ὙὩὥὨὭὲὫ  ὝὭάὩ Ὡ  

and level-2 equations of 

   ὅέὬέὶὸρ  ὅέὬέὶὸς  ὅέὬέὶὸτ  ὋὩὲὨὩὶ

 ὉὸᾬὟὲὨ ό  

and 

   ὋὩὲὨὩὶ 

which combine to form 

ὙὩὥὨὭὲὫ  ὝὭάὩ  ὅέὬέὶὸρ  ὅέὬέὶὸς  ὅέὬέὶὸτ

 ὋὩὲὨὩὶ ὉὸᾬὟὲὨ  ὋὩὲὨὩὶὝὭάὩ ό

Ὡ  

as a general equation.  It is important to note that even though a gender main effect is 

statistically insignificant in Models 5, 8, and 9, it is still included in the model because 

the interaction between time and gender is part of the model, and it is best practice to 

retain non-statistically significant predictors when they are part of a statistically 

significant interaction (Thompson, 2006).  This model had a deviance of 3902.88, a 

level-1 Pseudo-R
2
 of 25.57%, and a level-2 Pseudo-R

2
 of 35.31%.  The model estimates 

and standard errors of each covariate are displayed in Table 9. 
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 One important difference between the results in Tables 7 and 9 is that the HLM 

reading score models explain much less variance than the models for the total battery 

score do.  All reading models have a level-1 explained variance of less than 26%, while 

all models for the total battery scores have a level-1 explained variance of at least 47%.  

The difference in variance explained shows that high above-level reading scores are less 

influenced by the number of years of schooling (as represented by the cohort variable) 

and demographic variables.  Conversely, above-level reading scores may be more 

influenced by personal preference and individual psychological variables not included in 

the HLM models examined in this study.  

The important aspects of the parsimonious model for reading scores are shown in 

Figure 4.   In addition to showing the differences between ethnic groupsô baseline scores, 

it also shows gender differences in initial score and growth rates.  The figure also 

includes the norm group scores and growth trends, which shows that all groupsô scores 

and growth rates are comparable or higher than the older norm groupsô.  Similar to the 

results from Model 2, the parsimonious model indicated that the average male student 

from Cohorts 2 and 3 gained 14.1 points in their reading scores during the 18 months of 

the study.  Females gained an average of 21.45 points. 

  



 

 

 

 

 

 
Figure 4 Average reading score growth trends for above-level cohorts and norm groups.
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Table 10 

HLM Analysis Results (Math Score) 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 

Fixed Effect Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE) 

Intercept ( ) 257.77 

(1.88)***  

247.09 

(2.31)***  

243.99 

(2.98)***  

248.25 

(3.24)***  

253.49 

(2.93)***  

248.27 

(2.91)***  

252.57 

(3.13)***  

249.27 

(3.90)***  

246.95 

(3.96)***  

Time ( )  6.30 (0.72)*** 8.00  (0.74)*** 6.30  (0.72)*** 6.38  (0.72)*** 6.30  (0.72)*** 6.41  (0.72)*** 8.12  (0.74)*** 9.44  (0.79)*** 

Cohort1 ( )   22.24 
(6.59)***  

    21.14 
(6.38)***  

21.69 
(6.38)***  

Cohort2 ( )   7.76  (4.27)*     9.18  (4.22)** 9.60  (4.22)** 

Cohort4 ( )   -26.48 

(4.33)***  

    -25.62 

(4.24)***  

-25.58 

(4.25)***  

Gender ( )    -2.10 (4.11)    -0.65 (3.44) -0.79 (3.46) 

Eth_Und ( )     -15.61 

(3.94)***  

 -16.50 

(4.26)***  

-15.75 

(3.64)***  

-10.25 (4.40)** 

SES ( )      -2.56 (4.11) 2.71  (4.30) 2.37  (3.69) 2.14  (3.69) 

Time x Ethnicity 

Interaction ( ) 

        -2.92 (1.40)** 

Random Effect Estimate Estimate Estimate Estimate Estimate Estimate Estimate Estimate Estimate 

Intercept Random 

effect (ό) 

23.89*** 27.40*** 24.45*** 27.45*** 27.09*** 27.44*** 27.19*** 24.28*** 24.12*** 

Time random 

effect (Ѝ† ) 

ð 3.31 2.71 3.33 3.32 3.30 3.32 2.88 2.53 

 Variance Components 

„ 351.19 201.18 200.63 201.09 201.66 201.27 201.60 200.49 198.23 

†  570.97 750.95 597.87 753.60 733.76 753.11 739.19 589.66 581.66 

 Effect Sizes (Pseudo-R2) 

Level-1 ð 42.72% 42.87% 42.74% 42.58% 42.69% 42.59% 42.91% 43.56% 

Level-2 ð ð 30.39% -0.35% 2.29% -0.29% 1.57% 21.48% 22.54% 

 Deviance 

 4035.98 3974.80 3889.90 3968.03 3953.93 3967.91 3950.65 3860.97 3852.35 
ȹDeviance (df) ð 61.18a (1)***  84.9b (3)***  6.77b (1)***  20.87b (1)***  6.89b (1)***  3.28c (1)* 113.83b (6)***  8.62d (1)***  
aComparison model is Model 1.  bComparison model is Model 2. cComparison model is Model 5.  dComparison model is Model 8. 

* p < .10,  ** p < .05,  *** p < .01. 

7
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Math Score Results 

The results for the various HLM models that had ITBS/ITED math scores as a 

dependent variable are shown in Table 10.  Model 1, which contained no predictors, had 

a deviance of 4035.98 and an ICC of .619, which was the lowest ICC of any of the three 

dependent variables.  The addition of time as a level-1 independent variable improved 

model fit (ȹɢ2 = 61.18, p < .001, level-1 Pseudo-R
2
 = 42.72%).  Again, this was 

unsurprising, given the longitudinal nature of the study.  The fixed effect for time ( ) 

in Model 2 was 6.30 points (p < .001), indicating that students gained 18.9 points in 

math scores over the course of the 18 months of the study.  The random effect for time 

(ό) was notable, but not statistically significant (ό = 3.31, p = .232), indicating that 

there statistically the studentsô growth in math scores was statistically equal. 

 The individual impact of the four level-2 independent variables was examined in 

Models 3 through 6.  Model 3 produced similar results for math scores as it did when 

total ITBS/ITED scores or reading scores were the dependent variable, with a 30.39% 

reduction in level-2 variance („).  Similarly, Model 4 showed a small and statistically 

insignificant fixed effect for gender (  = -2.10, p = .610, ŭ = -0.07, level-2 Pseudo-R
2
 

= -0.35%), indicating that there were no real differences between males and females in 

above-level mathematics scores at the initial time point.  Like the previous two 

dependent variables, the impact of ethnicity as a level-2 predictor in Model 5 was large 

compared to the other demographic independent variables (  = -15.61, p < .001, ŭ =    

-0.51, Pseudo-R
2
 = 2.29%).  This negative   value indicates that students from 

underrepresented ethnicities obtain lower scores than students from overrepresented 
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ethnicities.  It is important to note, though, that both the ɔ values and ŭ effect size both 

show that the score difference between ethnic groups is not as great for mathematics as it 

is for reading or the overall battery. 

The impact of SES on above-level math scores was examined through Model 6.  

Unlike the other dependent variables, SES was found to have a small fixed effect value 

and no statistically significant impact on above-level math scores (  = -2.56, p = .533, 

ŭ = -0.08) in Model 6.  Moreover, the Pseudo-R
2
 value was negative (-0.29%), indicating 

that SES had no impact on above-level math scores in the sampleôs gifted students.  This 

finding of SES was consistent a consistent aspect of all models that included SES as a 

predictor (Models 6-9). 

Model 8, which included all of the independent variables considered in the 

previous models, produced results that were consistent with Models 1-7.  Afterwards, the 

interactions between time and the level-2 independent variables were examined.  The 

only interaction that was found to be statistically significant was an interaction between 

time and ethnicity (  = -2.92, p < .001).  Including this interaction led to a statistically 

improved model (ȹɢ
2
 = 8.62, p = .033) and means that students from underrepresented 

ethnicities had score increases that were 2.92 points lower every six months than the 

overrepresented studentsô 6.30 ( ) point gains. 

Based on these findings, the most parsimonious model for the above-level math 

reading scores consists of a level-1 equation of 

ὓὥὸὬ   ὝὭάὩ Ὡ  

and level-2 equations of 
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   ὅέὬέὶὸρ  ὅέὬέὶὸς  ὅέὬέὶὸτ  ὉὸᾬὟὲὨ

ό  

and 

   ὉὸᾬὟὲὨ 

which combine to form 

ὓὥὸὬ   ὝὭάὩ  ὅέὬέὶὸρ  ὅέὬέὶὸς  ὅέὬέὶὸτ

 ὉὸᾬὟὲὨ  ὉὸᾬὟὲὨὝὭάὩ ό Ὡ  

as a general equation.  This model had a deviance of 3862.33, a level-1 Pseudo-R
2
 of 

40.43%, and a level-2 Pseudo-R
2
 of 28.57%.  The model estimates and standard errors of 

each covariate are displayed in Table 10. Figure 5 shows some of the results from the 

parsimonious model.  The figure reflects both the difference in initial starting scores 

between ethnicity groups (reflected in the different intercepts) and the interaction 

between time and ethnicity (shown in the different slopes).  Norm group scores and 

growth trends are also shown for comparison purposes. 

 The rate of scores gains in the parsimonious models reveals that gifted students 

in the study made greater improvements in math than the corresponding norm groups.  

The average student from an overrepresented ethnicity gained 28.35 points (9.45*3 = 

28.35) between the baseline testing and second followup.  Due to the interaction effect in 

the parsimonious model, students from underrepresented ethnicities had an average gain 

of 19.41 points.  Nevertheless, the norm groups were expected to gain 15.72 points 

(between fall of grade 8 and spring of grade 9) and 12.89 points (between fall of grade 9 
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and spring of grade 10)ða score gain that is noticeably smaller than what was observed 

in this study. 

Research Question 2: Rate of Score Gains 

 The second research question for this study is: Do gifted children make larger 

achievement gains in overall, reading/language arts, and mathematics scores than 

average students in a more advanced grade?  This is calculated by multiplying the slope 

of the HLM equations by 3 and comparing the result to the difference in the normsô 

means for measurements 18 months apart (see Forsyth et al., 2003, pp. 57-58; Hoover et 

al., 2003, p. 73).  For gifted students, the total battery average score gain was 25.41 

points for students from overrepresented ethnicities and 18.78 points for students from 

underrepresented ethnicities.  The norm groups, in comparison, gained 15.38 points 

between the fall of grade 8 and the spring of grade 9 (which corresponds to Cohort 3) 

and 13.29 points between the fall of grade 9 and the spring of grade 10 (which 

corresponds to Cohort 2). 

 

  



 

 

 

 

 

 

Figure 5 Average math score growth trends for above-level cohorts and norm groups. 
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 Table 4 shows some cohort differences in the growth rate.  Comparing the z-

scores between from the cohorts at baseline and the second followup shows that Cohort 

2 had mean changes that were much smaller than the changes for Cohort 3.  Overall, 

Cohort 2ôs z-scores decreased between the baseline and the second followup in all three 

score areas: total battery, reading, and mathematics.  Cohort 3, on the other hand, 

showed gains in all three areas.   

Table 4 is illuminating in that it shows cohort differences in growth.  However, it 

should be remembered that both cohorts had a number of students enter and leave the 

study between the two time points.  Therefore, the results in Table 9 may not reflect 

actual growth, but rather shifts in cohort membership over time.  The HLM time 

parameter estimates are thus more interpretable as real measures of growth.  The 

differences between the norm groupsô scores and the HLM growth results are displayed 

in Figures 3-5. 

Figures 3-5 show a few illuminating aspects of the results.  First, even the groups 

with the lowest mean scores (e.g., underrepresented ethnicities andðin readingðmales) 

had higher rates of growth than the norm groups who were two grades more advanced in 

their education.  Second, despite the fact that these groups underperformed compared to 

the baseline groups, they still obtained scores that were competitive with the older norm 

groups (although the means scores did not always surpass those of the older norm 

groups. 
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Research Question 3: Demographic Variable Impact 

 The third research question for this study was: Do demographic variables 

(gender, ethnicity, and SES) influence the initial scores or rate of overall, 

reading/language arts, and mathematics score growth of gifted students?  The answer to 

this question, based on the parsimonious models in Table 8, is similar for total scores 

and mathematics scores, but not for reading scores. 

 For gifted students taking the ITBS/ITED above-level, ethnicity had a 

statistically and practically significant impact on their observed scores.  For total scores, 

students from underrepresented ethnicities had a score that was 16.58 points lower than 

other studentsô scores at the baseline testing.  Moreover, this score gap increased by an 

average of 2.23 points every six months.  For mathematics scores, the initial gap was 

smaller, with students from underrepresented ethnicities scoring 9.54 points lower at 

baseline.  Yet, the gaps in mathematics also continued to grow at a rate of 2.98 points 

every six months as students advanced through their schooling. 

 Ethnicity also had an association with initial score gaps for reading scores, with 

students from underrepresented ethnicities scoring 26.26 points lower than their 

classmates from overrepresented ethnicities.  However, there was no time x ethnicity 

interaction for reading scores, indicating that this score gap did not change throughout 

the course of the study.  Reading score results were also influenced by genderðan 

outcome not observed in mathematics and total battery scores.  Although there were no 

initial differences in male and female studentsô scores at the baseline assessment, the 
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female studentsô scores increased by 2.45 points more every six months than did the 

male studentsô scores. 

 SES had a statistically significant relationship between observed scores for 

reading and total battery scores, as indicated in Model 6 for Tables 7 and 8.  However, 

Model 7 in the same tables shows that after ethnicity is taken into account, SES has no 

additional influence on observed above-level test scores. 

For the reading scores, the male students in this study gained 14.13 points, while 

female students gained 21.51 points.  The corresponding norm groups gained only 16.19 

points between the fall of grade 8 and the spring of grade 9 and 14.02 points between the 

fall of grade 9 and the spring of grade 10. 

 Students from overrepresented ethnicities showed a gain of 28.32 points in math 

scores and students from underrepresented ethnicities showed an 18-month gain of 19.56 

points.  The corresponding norm groups gained only 15.72 points between the fall of 

grade 8 and the spring of grade 9 and 12.89 points between the fall of grade 9 and the 

spring of grade 10. 

Research Question 4: Intercept-Slope Correlations 

 The fourth research question for this study was: What is the relationship between 

initial above-level overall, reading/language arts, and mathematics scores and rate of 

score growth?  This question was answered through examination of the G matrix 

produced by the final parsimonious HLM models. 

 Because it would be impractical to report the matrices of all models examined in 

this dissertation, they will not be reported in full.  However, Table 11 displays the slope-
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intercept correlations for all models.  To produce the unstandardized G matrix, the 

interested reader may obtain the †  from Tables 7-9.  The †  value can be derived from 

information in Tables 7-9 by squaring the ό value.  To produce the covariance between 

the slope and intercept, the correlation reported in Table 11 should be multiplied by the 

corresponding †  and ό values. 

 

Table 11 

Slope-Intercept Correlations (Standardized †  Values) for HLM 

Models (n = 84) 

 ITBS/ITED Test 

Model Total Battery Reading Math 

1 ð ð ð 

2 -.006 -.305**  .040 

3 -.116 -.476***  -.184 

4 -.019 -.288**  .038 

5 -.128 -.431***  -.104 

6 -.008 -.379***   .043 

7 -.127 -.433***  -.112 

8 -.287** -.616***  -.362***  

9 -.252* -.613***  -.305** 

Parsimonious Model -.211 ð
a
 ð

a
 

a
Model does not produce a correlation, because the model does not 

include a ό term. 

* p < .05, ** p < .01, *** p < .001 

 

 

 For total battery above-level scores, Models 2-7 show no statistically significant 

relationship between initial student score and slope.  However, Models 8 and 9 show a 

statistically significant negative relationship between the intercept and slopes (r = -.287, 

-.252, respectively).  The parsimonious model for above-level total scores produces an 

intercept-slope r = -.211 (p = .057).  This negative relationship indicates that students 
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with lower initial scores had greater score gains than students with higher initial scores.  

This relationship is show in Figure 6, which displays the total battery score gains and 

decreases over time for the 221 students who were tested at least twice during this study.  

The negative relationship between initial score and slope is contrary to prevailing theory 

that high achieving (or high ability) students learn faster and make greater academic 

gains than lower achieving peers (e.g., Carroll, 1993; Dai, 2010; Eisner, 2002; Gagné, 

2005; Ruf, 2005).  These results may indicate a persistence of regression toward the 

mean in the above-level test scores. 

 

Figure 6  Total battery score changes over time (n = 221). 
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HLM models for above-level reading subtest scores also indicated a negative 

relationship between intercepts and slopes, although these inverse relationships were 

much stronger than those observed for the total battery scores.  Indeed, the relationship 

between intercept and slope for the reading score Model 9 is r = -.613.  Despite the 

strong relationship between initial scores and growth rate, the covariance between initial 

score and growth rate is not included in the parsimonious model because the studentsô 

growth rates (ό) were not found to be statistically different and were therefore 

constrained to be equal. 

 The slope-intercept relationship for above-level math scores was not statistically 

different from zero for Models 2-7.  However, for Models 8 and 9, the correlation 

between slope and intercept is r = -.362 and r = -.305, respectively.  Again, this 

demonstrates an inverse relationship between initial student score and the rate of score 

gains.  The above-level math scores also did not have an intercept-slope correlation for 

the parsimonious models, because the model lacked a ό term, which means that the 

model constrains all individual slopes to be equal. 

Research Question 5: Effect Sizes 

 The fifth research question was: What percentage of overall, reading/language 

arts, and mathematics score variance is explainable through time, demographic variables, 

and cohort membership?  As mentioned in Chapter III , the multilevel nature of HLM 

does not permit a true effect size to be calculated.  Instead, a Pseudo-R
2
 was calculated 

to represent the percentage of reduction in „  (for level-1) or †  (for level-2) compared 
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to Model 1, which has no predictors in either level.  Instead of a ñvariance accounted 

for,ò it is more properly understood as the percentage of reduction in the error variance. 

 Table 8 shows the Pseudo-R
2
 values for the parsimonious models.  For level-1 

variance, time had a larger impact on total battery scores (49.86%) and mathematics 

scores (40.43%) than it did on reading scores (25.57%).  However, demographic 

variables had a similarly strong magnitude of impact on the reduction in level-2 

variance.  The level-2 Pseudo-R
2
 was for 29.96%, 35.31%, and 28.57% for total, 

reading, and mathematics scores, respectively. 
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CHAPTER V  

DISCUSSION AND CONCLUSION  

 As described in Chapter I, the research questions for this study were: 

1. What is the internal consistency reliability of the global battery, reading/language 

arts, and mathematics scores drawn from an above-level administration of an 

achievement test? 

2. Do gifted children make larger achievement gains in overall, reading/language 

arts, and mathematics scores than average students in a more advanced grade? 

3. Do demographic variables (gender, ethnicity, and SES) influence the initial 

scores or rate of overall, reading/language arts, and mathematics score growth of 

gifted students? 

4. What is the relationship between initial above-level overall, reading/language 

arts, and mathematics scores and rate of score gains? 

5. What percentage of overall, reading/language arts, and mathematics score 

variance is explainable through time, demographic variables, and cohort 

membership? 

This chapter will examine each question, which will then be followed by a general 

discussion of findings. 

Research Question 1: Internal Consistency Reliability 

Tables 1-3 in Chapter IV  display the internal consistency reliability coefficients 

for the above-level test scores and comparison coefficients for the test level norms.  Of 

the 66 above-level KR20 values are reported in the tables, only eight (12.1%) were 
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higher than the corresponding KR20 value for the test levelôs norm group scores.  

Further, the vast majority of the KR20 coefficients, were in acceptable ranges for basic 

research (Cortina, 2002), although most (87.9%) were lower than their counterparts in 

the norm groups.  This is probably due to unique sample characteristics, including 

greater homogeneity than is likely observed in the norm groups. 

Research Question 2: Rate of Score Gains 

 Gifted students taking above-level tests demonstrated higher score gains than 

what would be expected for the average student who would normally take those test 

levels.  The HLM models indicated that on average, the gifted students in the study made 

statistically significantly greater score gains across the 18 months of the study than the 

typical student in the norm group.  For total battery scores, the average gifted student 

from an overrepresented ethnicity in this study gained 25.38 points, while the average 

student who was two yearsô more advanced in school would gain only 13.29 (from the 

fall of grade 9 to the spring of grade 10) or 15.43 points (from the fall of grade 8 to the 

spring of grade 9).  Even the students who would be expected to gain fewer standard 

score points due to the presence of interaction effects (e.g., male students in reading and 

students from underrepresented ethnicities for total battery and mathematics scores) 

made greater mathematics and total score gains than the average student in the norm 

groups.  This finding coincides with decades of previous findings on the rate of gifted 

studentsô learning and progress through the academic curriculum (e.g., Corno et al., 

2002; Gottfredson, 1997b; Gross, 2004; Stanley & Benbow, 1981-1982; Terman, 1926; 

van Wagenen, 1925).  Reading score gains were not as pronounced in the gifted group as 
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in the norm group.  The gifted males in the study gained an average of 14.1 points, 

which is approximately equal to the 16.19 and 14.02 point gains for the two 

corresponding norm groups.  Gifted females tested above-level, however, gained an 

average of 21.45 points, due to the presence of the time x gender interaction effect. 

Research Question 3: Demographic Variable Impact 

 Three demographic variables were examined to determine their influence on both 

initial scores and rate of growth.  Results indicated that ethnicity was the strongest 

predictor of initial above-level test scoresðabout three times more powerful than SES 

when predicting total battery and reading scores and six times more powerful when 

predicting above-level math scores.  Further, when SES and ethnicity were combined 

into the same HLM equations, the explanatory power of SES almost completely 

vanished.  To say that these results are disappointing would be an understatement 

because it implies that the observed differences in above-level scores are more due to 

cultural and/or developmental differences and not economic differences.  The relative 

strength of the impact of SES and ethnicity on intellectual ability or academic 

achievement is subject to much debate in the literature.  Some previous researchers find 

SES to be a more powerful determinant of group differences than ethnicity (e.g., Carman 

& Taylor, 2010).  On the other hand, other researchers (e.g., Konstantopoulous et al., 

2001) find the opposite to be trueðas I do in this study.  The issue is further clouded by 

the fact that low academic ability or intelligence often acts as a cause for many poor life 

outcomesðincluding poverty (Gottfredson, 1997a, 1997b, 1998)ðand that poverty and 
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a poor environment can depress intellectual and academic development (Brooks-Gunn & 

Duncan, 1997; Gottfredson, 1997a).   

Gender was not a statistically significant predictor of initial above-level test 

scores for total battery, reading, or mathematics ITBS/ITED tests.  However, gender and 

time interacted to produce different growth rates in reading for males and females.  For 

every six months that passed, females gained 2.92 points more than males on above-

level reading tests.  This interaction effect for gender is not completely unexpected.  

Gifted girls find reading to be more interesting than gifted boys do (Olszewski-Kubilius 

& Turner, 2002), a tendency that also manifests itself among the general school 

populations (Francis, 2000).  This interest in reading could easily translate into a higher 

above-level test score, whether the test is measuring aptitude or achievement (Corno et 

al., 2002). 

Similar interactions were found between ethnicity and time for the total battery 

and reading scores, indicating that ethnicity was a moderator variable for those 

outcomes.  Students from overrepresented ethnicities gained an additional 2.21 for total 

ITBS/ITED scores and 2.92 points for reading scores per half year, respectively. 

Research Question 4: Intercept-Slope Correlations 

Table 11 shows the correlations between initial score and the rate of score gains 

for all models considered in this study.  For the above-level reading scores, the 

correlation was negative in all models.  However, for total battery and mathematics 

scores, the correlation was close to 0 for Models 1-7, but then became negative in 

Models 8 and 9.  (In Model 9, r = -.252 for total battery scores, -.613 for reading scores, 
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and -.305 for mathematics scores.)  Therefore, the students with the lowest scores made 

the greatest score gains, which does not coincide with previous theory (e.g., Carroll, 

1993; Dai, 2010; Eisner, 2002; Gagné, 2005; Gottfredson, 1997b). 

The presence of regression toward the mean may account for some of the 

negative correlation, but likely not all of it.  Additional factors that may contribute to this 

finding include (a) a ceiling effect may still be present for the highest scoring students, 

(b) the gifted program is not serving the needs of the brightest students but is serving the 

needs of the moderately gifted, (c) the above-level test scores do not demonstrate 

sufficient test-retest reliability to track score gains, or (d) the above-level test scores do 

not perform as expected and the negative score-gain correlation is a manifestation of a 

unique psychometric phenomenon.  The data at hand cannot reveal which factor or 

combination of factors the cause of the negative correlation between initial score and 

rate of score change. 

Research Question 5: Effect Sizes 

 The level-2 Pseudo-R
2
 values in Tables 4-6 show the amount of reduced level-2 

variance of above-level scores from demographic variables.  For all the total battery and 

mathematics scores outcome variables, cohort membership explained the most level-2 

variance: 21.34% and 30.39%, respectively.  However, for the above-level reading 

scores, ethnicity was the most powerful predictor (19.78%). 

 Normally, one would expect that the cohort variables would be the most 

powerful demographic variable for all above-level outcomes in this study because 

cohorts differed in the number of years of schooling that children have received.  
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However, by the middle school years, a high reading level is largely a result of early 

success with reading, self-directed practice, and personal choices to engage in reading 

(Petersen, Kolen, & Hoover, 1989; Stanovich, 1986), especially among gifted students 

(J. R. Mills & Jackson, 1990).  Thus an additional year or two of schooling may translate 

into a much weaker score advantage (and therefore, a smaller Pseudo-R
2
) in reading than 

it would in mathematicsðwhere self-instruction is much more difficult.  Instead, the 

most independent variable that produced the largest level-2 Pseudo-R
2
 was ethnicity, 

with 19.78%.   

This study also shows a large advantage that students from overrepresented 

ethnicities (Whites and Asian Americans) have over students from ethnicities that are 

underrepresented in the gifted magnet program (Hispanics and African Americans), both 

in terms of initial scores and in the greater score gains that overrepresented students 

demonstrate in total scores and mathematics subtest scores.  The presence of score gaps 

between ethnicities on educational achievement or intellectual ability tests is widespread 

(e.g., Forsyth et al., 2003; Gottfredson, 1997a, 2000; Herrnstein & Murray, 1996; 

Hoover et al., 2003; J. Lee, 2002), including in gifted education research (e.g., S.-Y. Lee 

& Olszewski-Kubilius, 2006; McBee, 2006, 2010; Olszewski-Kubilius & S.-Y. Lee, 

2011; Yoon & Gentry, 2009).  This study merely joins the large body of research 

showing a substantial score difference between ethnic groups.  The existence of these 

score gaps is not controversial, but the cause(s) of such gaps are (Kaplan & Saccuzzo, 

2005).  Explanations range from genetic or biological factors (Plomin & Petril, 1997; 

Rowe, 1997) to mostly environmental causes (Scarr & Weinberg, 1976).  Other 
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researchers claim that the true causes of score gaps are unknown or ascribe score gaps to 

the product of a vague genetic-biological-environment interaction (e.g., Gottfredson, 

1997a; Herrnstein & Murray, 1996; J. Lee, 2002; Neisser et al., 1996).  The data from 

this study do not shed any light on the causes of these score gaps.  Indeed, the score gaps 

in this study may be merely due to local influencesðsuch as a differential selection in 

admission to the program or in the types of families in each group who choose to send 

their child to the program. 

Gender had little effect on explained level-2 variance.  For all models in which it 

was the only level-2 predictor (Model 4 in Tables 4-6), gender had a negative Pseudo-

R
2
.  Thus, as a main effect, gender holds no predictive power.  This is unsurprising 

because the educational and achievement gap that formerly existed between boys and 

girls has effectively closed (Francis, 2000), and in some areas females have surpassed 

males in educational achievement (Deary, Strand, Smith, & Fernandes, 2007).  

Moreover, in most studies of intellectual ability, males and females have equal group 

means or any differences are very small (Gottfredson, 2003; Olszewski-Kubilus & S.-Y. 

Lee, 2011).  The negligible effects of gender in this study coincide with such previous 

findings.  However, (as discussed in Chapter IV) gender provided a statistically 

significant interaction with time to produce differential levels of growth in reading 

scores, with females gaining 2.92 more points than males every six months.  Therefore, 

the initial equality between genders in reading may change over time, with females 

having higher observed scores than males. 
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General Discussion 

 In general, the ITBS and ITED above-level test scores ñbehaveò in much the 

same way as the SAT, ACT, and other previously researched above-level test scores do.  

As was expected, the test ceiling was higher in the above-level testing condition than it 

would be on a grade-level test.  This, in turn, led to the observed scores being more 

variable than would be expected on a grade-level test, which also improves 

discrimination and evaluation of each individual gifted child.  In addition to the test 

ceiling being raised, the tests scores usually demonstrated high levels of reliability.  The 

generally high reliability of above-level test scores is new empirical evidence that 

supports one of the most frequently cited reasons for conducting above-level testing. 

Because of theoretical claims of above-level testingôs capability of reducing 

regression toward the mean, the pattern, magnitude, and causes of score declines were 

investigated. In this study, a majority (57.2%) of the students who were tested at least 

twice showed a score decline in reading, math, or the total battery.  Thus, score declines 

are surprisingly commonðeven when gifted students are tested above-level.  However, 

in eight of nine comparisons, the score declines that occurred between two testings did 

not have a statistically significant relationship with the score at the first testing.  

Therefore, it is not possible to state the exact cause of score declines in this study.  

However, given the importance of regression toward the mean in the identification of 

giftedness (Lohman & Korb, 2006), these results show that relationship between 

regression toward the mean and above-level testing may be a fruitful area of 

investigation. 
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Implications 

This study has important psychometric implications.  Much of the descriptive 

data from this study is consistent with previous reports of above-level test data, 

including the existence of large ethnicity group differences, the lack of statistically 

significant gender differences, and the approximate normality of the above-level test 

score distributions.  The fact that much of this information on the ITBS and ITED 

corresponds to previous Talent Search findings on the SAT (Barnett & Gilheany, 1996; 

Keating & Stanley, 1972; Olszewski-Kubilius & S.-Y. Lee, 2011), ACT (S.-Y. Lee & 

Olszewski-Kubilius, 2006; Olszewski-Kubilius & S.-Y. Lee, 2011), SSAT (Lupkowski-

Shoplik & Assouline, 1993), and EXPLORE (Colangelo et al., 1994; Olszewski-

Kubilius & S.-Y. Lee, 2011) is encouraging and suggests that above-level achievement 

tests perform in similar ways, even when they are administered to a group that is not as 

selective as those who usually apply for Talent Search programs. 

Some findings are a unique contribution to the above-level testing literature, such 

as the level of KR20 reliability coefficients and the degree of regression toward the 

mean of above-level test scores.  This study provides the first psychometric evaluation of 

these issues and can lay the foundation for further examinations of the psychometric 

properties of above-level test scores. 

 Apart from psychometric issues, this study also has practical implications.  First, 

the study provides a possible outline for evaluating a gifted program.  Program 

evaluation has historically been a weak area of gifted education research and practice 

(Borland, 2003; Gallagher, 2006; VanTassel-Baska, 2006), partially due to a lack of 
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instruments that effectively measure high levels of educational progress.  This study is 

the first to show that above-level testing can be used to track individual progress and 

overcome the problems of using traditional measures of academic achievement in gifted 

program evaluation. 

 Another practical implication of this study is that it can provide some guidance to 

district personnel who wish to implement above-level testing.  The gifted education 

literature provides almost no guidance on when above-level testing should be 

implemented outside of a Talent Search or grade skipping context.  For most 

practitioners, this lack of guidance may be an impediment to using above-level testing in 

their gifted programs.  This studyôs example of a specific test, age-grade discrepancy, 

and results can give practitioners a starting point for making plans to implement above-

level testing in their districts for identification, evaluation, and educational planning.  

This study also provides guidance on how to use above-level test scores, which few 

districts currently do, even when scores are available (Swiatek & Lupkowski-Shoplik, 

2005). 

Limitations  

 Internal validity .  There are several threats to internal validity that arise from 

the fact that all sample members were enrolled at a single gifted magnet program in a 

single district.  These will be interpreted in the threat to internal validity framework 

provided by Cook and Campbellôs (1979).  First, this study may be threatened by history 

effects in which different events that happened in the school or district impacted the 

cohorts differently.  For example, as the program became better established, it is possible 
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that district personnel learned better which types of students were best suited for it.  This 

would lead to Cohort 4 and Cohort 2 (which had a large number of student admitted to 

the program after the first followup) to have a different composition compared to the 

other cohorts.  Similarly, the students in Cohort 1 could have been exceptionally bright 

and motivated compared to other gifted students in the district because many of them 

were willing to change schools during their final year of middle school and leave their 

home campuses and friends. 

Differential selection could also be a threat to internal validity.  This may 

partially explain the score differences between overrepresented and underrepresented 

ethnicities in the sample.  There is strong pressure from the school districtôs state office 

of education to have the composition of gifted programs reflect the ethnic makeup of the 

district as a whole, which may cause district personnel to admit children from 

underrepresented groups who are not as academically advanced as other students.  (See 

Lewis, DeCamp-Fritson, Ramage, McFarland, & Archwamety, 2007, for an example of 

the changes to program admissions criteria that could lead to different standards for 

underrepresented groups.  See Ford, 2003, and Warne, 2009, for suggestions to increase 

the diversity of a gifted program without lowering admissions standards.) 

The age of the students could have contributed to history and differential 

selection issues associated with this study.  Because the students were all at least aged 11 

years or more when they entered the program, they had several years of educational 

history which could have created (or magnified) group differences that were discovered 

in this study.  For example, the district policies on gifted identification have changed 
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multiple times during the studentsô educational careers, and children labeled as gifted 

under current policy may vary greatly from those children who were identified several 

years previously.  I requested data on how each child was identified and labeled as 

gifted, but the school district personnel said that the data were not available.  In the 

future, I hope to conduct this same study with younger children (perhaps as young as the 

first grade) who were all identified under a single policy in order to lessen these history 

and differential selection effects. 

Experimental mortality could also be a threat to the internal validity of this study.  

However, experiment mortality likely had a small impact on the internal validity of the 

study.  Figure 2 shows the reasons why students left the gifted program.  As can be 

clearly seen, most students who left did so for reasons that likely had nothing to do with 

their academic ability (i.e., moving out of the district, death, absent on test day, test form 

lost).  Nine students left the program during the course of the study.  Two of these left 

the study because they skipped a grade, and the other seven left for because they were 

struggling with the gifted curriculum or for social reasons.  However, these were a 

minority of study dropouts, and I do not believe that these seven students had a large 

impact on the analysis of above-level test scores. 

There is also the problem of a small sample size for some research questions.  

For example, conclusions about the rate of score gains were based on data from the 84 

students who were measured at all three time points.  Therefore, it is necessary to 

replicate this study with much larger sample sizes in the future. 
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External validity .  The possible threats to external validity are no less severe 

than the threats to internal validity.  Again, many of these threats arise from the presence 

of a single convenience sample in this study.  The threats to validity discussed here are 

also drawn from the Cook and Campbell (1979) framework. 

The convenience sample in this study severely limits the extent to which these 

findings can be generalized to other gifted student populations or programs.  Even if one 

limits the target population to gifted middle school students in this specific district, the 

results may not be completely generalizable because there are two gifted magnet 

programs in the district and a majority of gifted students attend neither program.  

However, the fact that some of the above-level testing results coincide with many 

previous studies using more selective Talent Search samples and different instruments 

(e.g., SAT, EXPLORE, ACT) is encouraging and may provide a logical basis for some 

tentative generalization to other samples.   

On the other hand, the fact that this study was conducted over the course of two 

school years in a typical gifted middle school magnet program may make the results 

more applicable to the real world.  Practitioners who encounter this study may likely 

recognize aspects of this study that are found in many gifted programs throughout the 

country.  Perhaps seeing above-level testing applied to a real school situation (instead of 

a Talent Search environment) could prompt practitioners to consider the practice for the 

gifted students in their districts.  

  Statistically, the final parsimonious models in the study were mostly exploratory 

in nature.  Like all exploratory statistical procedures, there exists the possibility that the 
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results here are overfitted to this specific sample and capitalize on chance.  I recommend 

that the parsimonious models from this study be used again with a separate sample in 

order to judge their applicability to other groups. 

Other study limitations.  Another limitation of this study is that the gifted 

children at this magnet program do not seem to be as elite as is often seen in gifted 

education research.  The childrenôs average scaled scores when expressed as grade-level 

percentile are quite low for gifted students: between the 80
th
 and 92

nd
 percentile for 

reading, the 58
th
 and 84

th
 percentile for math, and the 77

th
 and 87

th
 percentile for overall 

scale scores.  Although these percentiles may be depressed through the equipercentile 

equating procedure used in the development of the ITBS and ITED (Forsyth et al., 2003; 

Holland & Dorans, 2006; Hoover et al., 2003; Kolen, 1981), they still indicate that this 

sample is not as selective as what appears in most above-level testing studies. 

Also, some subgroups of interest (i.e., African Americans and Hispanics) were 

combined because individually the groups were too small for the statistical tests to have 

much power.  It is possible that Hispanics and African Americans have different above-

level score profiles (e.g., growth rates, score gains, and distributions).  Similarly, the 

small number of Asian American students (just 3 out of the 225) prevents in-depth 

analysis about a substantively interesting overrepresented group.  Other variables that 

could be potentially interesting, such as whether a student was bilingual, could also not 

be included in the analyses, because there were not enough students for powerful 

statistical tests to be conducted. 
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 Another limitation of this study is that it does not address whether the above-

level test scores or reliability coefficients obtained here were higher than the scores or 

coefficients that would be obtained from a grade-level test.  In order to make such a 

judgment, the same sample of gifted students would need to take a grade-level and an 

above-level testðwhich did not happen in this study.  A study in which counterbalanced 

grade-level and above-level test forms were administered to a sample would provide this 

information.  The current study is also limited by examining just one type of reliabilityð

internal consistency reliability.  Although internal consistency reliability is the most 

commonly examined reliability type (Hogan, Benjamin, & Brezinski, 2000; Thompson, 

2003), there are other sources of measurement error that could be investigated with other 

testing research designs.  Other measurements of reliability, such as the conditional 

standard error of measurement, may also prove to be valuable to investigate. 

 The findings on above-level score declines are also problematic the focus of this 

study was score growth.  However, score declines happened nonetheless, despite the 

passage of 6-12 months between testings, which is enough time for real learning to occur 

that could mask any regression toward the mean.  A study in which the testing intervals 

are much shorterðperhaps two weeks or lessðwould be more informative.  

Nevertheless, it is enlightening that over half of participants who were tested at least 

twice showed at least one score decline, which indicates that above-level testing may not 

solve the problem of regression toward the mean among gifted students. 

 Finally, this study may be limited by the linking and equating procedures that the 

ITBS and ITED creators used to create a scale score that permits comparisons across test 
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levels.  All equating procedures introduce some amount of error into score comparisons 

across different tests, test forms, or levels (Holland & Dorans, 2006; Skaggs & Lissitz, 

1986).  In general, the equipercentile equating method has performed well in many 

different contexts (e.g., Kolen, 1981; OôBrien & Tohn, 1984; Yin, Brennan & Kolen, 

2004), including in vertical equating across ITBS levels when the examinees have high 

levels of ability for their age (Harris & Hoover, 1987).  However, the impact of 

equipercentile grading on above-level test score interpretation is unknown. 

Further Research 

 Above-level testing has the potential to be a fruitful avenue of research, mostly 

because psychometric research on the practice has been directed almost exclusively 

towards basic issues.  One advanced psychometric issue would be to investigate how 

above-level testing scores are impacted by different scaling methods because cross-level 

score comparisons are very sensitive to the scaling method used to align test levels 

(Kolen, 2006).  A study like this would help disentangle the effects of actual student 

achievement and artifacts from the test construction and scaling process. 

 Another useful study would be to examine the factor structure of above-level 

scores and compare the factor structure for gifted adolescents with the factor structure 

for the older group for whom the test was designed.  Minor and Benbow (1996) 

conducted such a study with items from the SAT-M, but it is problematic because they 

(a) created item parcels in order to have more normal data distributions for their 

confirmatory factor analyses, and (b) they did not test item intercepts when examining 

measurement invariance across groups.  A study that corrects these flaws by taking into 
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account the dichotomous nature of the items and includes item intercepts in the test of 

invariance would be more likely to detect differences in factor structure and item 

properties across groups.  The data generated for this sample do not permit such a 

comparison because the sample sizes are too small and data do not include average 

ability students in the grades that correspond to the test levels. 

 The possibility of item bias in above-level testing has also been insufficiently 

examined.  Benbow and Wolins (1996) conducted a study investigating item bias among 

seventh- and eighth-graders taking the SAT and found no substantial levels of item bias 

between genders.  This study was important because Talent Search populations have 

always been majority male (e.g., Lubinski & Benbow, 1994; S.-Y. Lee & Olszewski-

Kubilius, 2006), and Benbow and Wolinôs findings indicated that SAT gender bias was 

not a cause of the gender imbalance in Talent Search populations.  However, other 

potential types of bias, such as bias against different ethnic groups, have not been subject 

to investigation.  Such tests of bias are needed because Talent Search populations have 

also been nonrepresentative of ethnicity of the general population from which they 

come, with Asian Americans and Whites usually overrepresented and other ethnic 

groups underrepresented (e.g., S.-Y. Lee & Olszewski-Kubilus, 2006; Olszewski-

Kubilius & S.-Y. Lee, 2011).  It would also be important to test different tests, such as 

the ITBS, ACT, and EXPLORE, for gender and ethnicity bias in items or tests.  I was 

not able to examine item gender or ethnicity bias in this study because of a small sample 

size for this type of study. 
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 Factor analysesðboth exploratory and confirmatoryðof above-level testing data 

should become standard practice in gifted education research.  Unfortunately, factor 

analysis was not possible with these data because the sample size was not large enough.  

I find it disappointing that only a single factor analysis has ever been performed on 

above-level testing data (Minor & Benbow, 1996), despite the fact that above-level 

testing has been a widely accepted practice in gifted education for at least 25 years.  

Factor analyses provide important information about test structure and interpretation that 

is not obtainable from any other analysis or practice.  With the myriad possible 

combinations of test, test level, type of giftedness, sample age, etc., I propose that any 

researcher who uses above-level tests should provide information of factor structure of 

their particular data, provided that the sample size is large enough.   These factor 

analyses should also be conducted and reported as part of the larger effort to assess the 

validity of above-level testing. 

 Another possible future research line would be to strengthen the external validity 

evidence of above-level test scores and the interpretations of those scores as provided by 

researchers like Swiatek (2007).  For example, a study that examines the correlation 

between above-level test scores and other criteria such as IQ tests, algebra readiness, and 

AP tests taken at a young age would be impressive. 

Future research could also examine the relationship between above-level test 

score and learning speed.  A set of regression equations that could predict the probability 

that a child could master advanced coursework in a limited amount of time would be 

helpful for educational planning.  Currently, no empirical investigations have been 
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performed to determine the relationship between above-level test scores and the rate of 

educational acceleration that a child could handle, although some researchers have 

produced educated guesses based on extensive experience (e.g., Olszewski-Kubilius, 

1998b; Rogers, 2002; Ruf, 2005; VanTassel-Baska, 1984). 

Finally, another interesting area of research would be to compare the 

psychometric research on above-level testing with the research on below-level testing 

(see Ayrer & McNamara, 1973, for an early example of below-level testing).  There are 

similarities in the measurement problems that special education and gifted education 

researchers grapple with when using grade-level tests, such as restriction of range 

problems and a high measurement error (e.g., Roberts, 1976), so it is likely that 

psychometric issues related to above-level testing have corollaries in below-level testing.  

However, below-level testing has largely fallen out of favor in special education because 

of interpretation difficulties and because some assumptions of below-level testing 

advocates have been strongly questioned by empirical research (e.g., Bielinski et al., 

2000; Minnema et al., 2000, 2001).  This is a stark contrast from gifted education, where 

above-level testing enjoys widespread support, and what little psychometric research 

there is on the practice is favorable.  Articles about the commonalities and differences 

between the above- and below-level testing and why the research supports the former 

practice but not the latter would be illuminating. 

Conclusion 

 In conclusion, this study provides evidence that administering ITBS or ITED test 

levels to a group of gifted students who are two years younger than the norm group 
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produces results that are similar to what has been reported in administering other 

achievement tests to more extreme groups of gifted children.  Specifically, above-level 

testing raised the test ceiling, test scores became more variable than would be expected 

with a gifted sample taking a grade-level test, and observed score reliability was high.  

Moreover, the test scores can be used to track individual progress, although there is 

some evidence that regression toward the mean may still be a problem for some 

examinees, even with above-level testing. 

 The study also found that some student demographic characteristics had an 

influence on both above-level test scores and the rate of score growth.  Ethnicity was 

found to be a powerful influence on the initial scores for the reading, mathematics, and 

total battery and to be a moderating variable for growth of mathematics and total scores.  

Gender also was a moderator variable for reading score growth, but did not produce any 

statistically significant main effects.  SES had a statistically significant relationship with 

above-level test scores, but SES provided little unique explained variance above and 

beyond what ethnicity provided. 

 Finally, the correlation between initial score and rate of score growth was 

negative.  This means that the highest scoring students were the ones who demonstrated 

the smallest gains over the course of the study.  The cause of this theoretically 

unexpected finding is unknown, but it may reflect local characteristics or the remnants of 

a ceiling effect. 

This study was designed to be a starting point for a future line of research, and 

this chapter provides just a few possibilities for future research.  There is so little in-
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depth, high quality psychometric research on above-level testing that no study could 

possibly be the last word on the subject.  Moreover, this study has raised new questions 

about when to test above-level outside of a Talent Search context, program evaluation, 

regression toward the mean, and other issues.  Answering new questions about above-

level testing will take more research and studies on a wide array of gifted populations. 

The field of gifted education is ready for more psychometric research.  I believe 

that the field is undergoing a revolution in methodology and statistics, as demonstrated 

by several recent works (e.g., Matthews, Gentry, McCoach, Worrell, Matthews, & 

Dixon, 2008; Shore, 2006; Thompson & Subotnik, 2010; VanTassel-Baska, 2006).  

Above-level testing is an ideal battlefront for this revolution because the practice is so 

widely accepted, yet poorly understood.  As understanding of psychometric issues and 

above-level testing grow, researchers and practitioners may become more thoughtful 

about all of their psychometric data, which may improve the quality of research and 

practice. 
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APPENDIX 

ITEM STATISTICS  

 The research questions in this dissertation were mostly concerned with the 

students in the study: their initial scores, their growth rates, the impact of demographic 

variables on their scores, etc.  Only one research questionðabout internal consistency 

reliabilityðwas directly concerned with a psychometric issue.  However, I recognize 

that above-level item properties may also be of interest to some readers.  Hence, in this 

appendix I will the item difficulty index (IDI) for the two different groups in order to 

examine how above-level testing impacts IDI values.  The IDI is merely the proportion 

of the sample that answered the item correctly, which means thatðcounterintuitivelyð

easier items have higher IDI values (Allen & Yen, 1979; Kaplan & Saccuzzo, 2005). 

 From a psychometric perspective, item statistics are important to examine when 

instruments and items are administered to a sample that differs from the population for 

which the test was developed (Crocker & Algina, 2002).  Moreover, item statistics can 

shed light on the validity of using the ITBS and ITED as above-level tests to evaluate the 

educational progress of gifted children.  Validation of above-level instruments is 

necessary because current testing standards dictate that test users who use an instrument 

for a purpose for which it was not originally designed and validated must conduct 

validation studies themselves (AERA et al., 1999). 

Methods 

 The data in this appendix are drawn from the above-level test administrations 

described in Chapter III  of this dissertation.  There were three test levels administered to 
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the students in this study.  The eighth-grade level of the ITBS contained a total of 142 

items on three subtests; the reading subtest contained 37 items, the writing subtest 

contained 59 items, and the math subtest contained 46 items.  All of these subtests are 

also used to generate a total battery score (Hoover et al., 2003). 

The ninth- and tenth- grade level of the ITED contained 240 items on six 

subtests; the vocabulary subtests contained 40 items, the reading comprehension subtest 

contained 44 items, the spelling subtest contained 30 items, the revising written 

materials subtest contained 56 items, the mathematics concepts & problem solving 

subtest contained 40 items, and the mathematics computation subtest contained 30 items.  

The vocabulary and reading comprehension subtests combine to generate a total reading 

subscore and the mathematics concepts & problem solving and mathematics 

computation subtests combine to generate a total mathematics subscore.  Like the eighth-

grade ITBS test level, all of the items on the ITED levels combine to generate a total 

battery subscore.  The spelling and revising written materials subtests do not contribute 

to any other scores besides the total battery score (Forsyth et al., 2003). 

As Chapter III  showed, each test level was administered three times as students 

during the course of the study.  The baseline administration was in fall 2008 and two 

followups were in spring 2009 and 2010.  Therefore, the item statistics from the baseline 

measurement were compared to only the ITBS and ITED test level fall norms, while the 

item statistics from the two followup administrations were compared to the test levelsô 

spring norms.  The IDI values come from the class item response records, which is one 

of the reports provided by the test publisher, Riverside Publishing. 
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Because of the small size of the cohorts (ranging from n = 37 to n = 61), I 

combined the cohorts that took the same test levels during the spring of different years.  

This led to a total of six sets of above-level item statistics: one for each test level in the 

fall and one for each test level in the spring.  For these comparisons n ranged from 39 to 

101. 

Analysis 

Item statistics were calculated for the above-level test to be comparable to the 

norm item statistics provided by the test publisher.  As stated above, IDI is merely a 

proportion of students who answered the item correctly.  This information is easily 

calculated for the gifted sample and is compared with IDIs on the score reports issued 

from the test publisher. 

Results 

 IDIs for the gifted students and the norm students are displayed in Tables A1-

A15.  The information from these tables is also displayed in Figures A1-A30.  The 

figures show a high correlation between gifted IDIs and norm group IDIs for the 

majority of the tests.  For 22 of the subtests, the correlation between the two sets of IDIs 

was quite high (r > .700, p < .001), indicating that the same items tended to be difficult 

for both the norm group and the younger gifted students.  Conversely, the same items 

were usually easy for both groups of test takers.  The major exceptions to this trend was 

in the spelling and revising written materials subtests.  For both levels (ninth and tenth 

grade ITED levels) and both administrations (fall and spring), the IDIs of the two set of 

IDIs did not have a statistically significant correlation (p > .101).   
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The mean and standard deviation IDIs for each subtest are reported in Table A16.  

The table also displays results from two-tailed t-tests between the gifted and norm IDIs 

and standardized effect sizes (Cohenôs d) indicating the size of the difference between 

group IDIs.  Because there are 30 t-tests in Table A16, a Bonferroni correction was use 

to adjust Ŭ and to lessen Type I error.  Six of the t-tests were shown to be statistically 

significant at the adjusted Ŭ (.002).  These were both administrations of both levels of 

the revising written materials subtests and both administrations of the ninth grade level 

of the reading comprehension subtest.  The effect size for all of these differences was 

quite large (d = .617 to .825), indicating large differences in IDIs between the younger 

gifted students and the students in the norm groups.  For five of the statistically 

significant difference, the subtests were easier for the younger gifted sample than it was 

for the students in the norm sample.  The only test that was easier for the norm group 

was the grade 10 revising written materials subtest that was administered in the spring (d 

= .761, p < .001). 

Discussion 

As the figures indicate, the majority of the IDIs did not change drastically when 

they were used in above-level testing.  This result suggests that these items do not 

function very differently for a younger gifted population than they do for a sample that 

the tests were designed for.  The similarity of IDIs also suggests that some academic 

achievement subtestsðparticularly in reading and mathematicsðmay be interpreted in a 

similarly, whether they are administered to a traditional population or in an above-level 

fashion.  However, this is just one piece of validity information for above-level testing 
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and more study is needed on above-level testing items to gather more validity evidence 

in order to make more sure interpretations of above-level test scores. 

For the spelling and revising written materials subtests, however, the correlations 

between the two sets of IDIs were very low (|r| < . 216).  This lack of relationship 

between IDIs for these subtests may indicate that either (a) the items function differently 

when administered to a younger gifted sample, or (b) local curriculum and education 

practices have altered which items are difficult and which are easy for the gifted students 

in the sample.  Until this study is duplicated with another gifted sample, it is impossible 

to say which of these two options is more likely.  However, in a discussion about this 

finding with the school district official who is in charge of the gifted program, we came 

to an agreement that (b) is more likely. 

I had hoped to also make similar comparisons of the item discrimination index 

values of the two groups.  Measured with a point-biserial correlation (rpbis), which is the 

correlation between the item score and the total scale score the item discrimination index 

measures the degree to which items distinguish between high and low scorers on a test 

(Crocker & Algina, 2002; Kaplan & Saccuzzo, 2005).  However, I contacted Riverside 

Publishing for rpbis values for every item individually, but that information was not 

available for Form C of the tests (L. Nawojski, personal communication, January 12, 

2011).  Therefore, it is not possible to examine how itemsô discriminatory properties 

change as they are used in above-level testing.  This is disappointing because item 

discrimination indexes are one of the most basic statistics used to evaluate items 

(Crocker & Algina, 2002; Kaplan & Saccuzzo, 2005). 
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As far as IDIs are concerned, though, it is interesting that the vast majority of 

IDIs were similar for both groups, whether that similarity was measured by mean 

difficulty for the entire test (Table A16) or by correlations between groups (Figures A1 

through A30).  Although further study is needed into the issue of above-level item 

statistics, this appendix provides some new information about item functioning in above-

level testing.
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Table A1 

ITBS Reading Subtest Item Difficulty Indexes, Gifted Grade 6 and National Grade 8 Norm Groups 

Item # Fall Gifted IDI Fall Norm IDI Spring Gifted IDI Spring Norm IDI 

1 .67 .71 .77 .74 

2 .60 .54 .47 .58 

3 .62 .59 .53 .62 

4 .78 .76 .81 .79 

5 .80 .76 .92 .79 

6 .82 .86 .96 .89 

7 .51 .41 .56 .45 

8 .44 .44 .49 .48 

9 .58 .73 .79 .76 

10 .84 .76 .78 .79 

11 .58 .57 .67 .61 

12 .33 .46 .48 .50 

13 .51 .53 .62 .57 

14 .33 .23 .26 .25 

15 .56 .38 .62 .41 

16 .69 .64 .75 .67 

17 .56 .63 .78 .66 

18 .33 .50 .47 .54 

19 .91 .72 .88 .75 

20 .82 .71 .79 .74 

21 .33 .36 .46 .39 

22 .82 .50 .73 .54 

23 .49 .48 .61 .52 

24 .78 .51 .83 .55 

25 .53 .48 .59 .52 

26 .60 .72 .86 .75 

27 .62 .54 .81 .58 

28 .76 .71 .89 .74 

29 .80 .69 .85 .72 

30 .53 .50 .56 .54 

31 .76 .63 .75 .66 

32 .53 .55 .63 .59 

33 .56 .54 .76 .58 

34 .64 .67 .72 .70 

35 .62 .52 .64 .56 

36 .51 .52 .71 .56 

37 .64 .71 .77 .74 

  



 

 

 

 

 
 

 
Figure A1 Scatterplot of reading subtest IDI values, Cohort 3 (Fall 2008) and Fall Norm Sample.  IDI values 
correlation is r = .748 (p < .001).
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Figure A2 Scatterplot of reading subtest IDI values, Cohorts 3 & 4 (Spring 2009 & 2010) and Spring Norm 
Sample.  IDI values correlation is r = .838 (p < .001). 
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Table A2 

ITBS Language Subtest Item Difficulty Indexes, Gifted Grade 6 and National Grade 8 Norm Groups 

Item # Fall Gifted IDI Fall Norm IDI  Spring Gifted IDI Spring Norm IDI 

1 .78 .82 .86 .85 

2 .67 .57 .63 .60 

3 .71 .60 .70 .63 

4 .71 .67 .64 .70 

5 .49 .65 .65 .68 

6 .71 .61 .70 .34 

7 .40 .34 .25 .37 

8 .40 .38 .42 .41 

9 .53 .51 .53 .54 

10 .60 .56 .55 .59 

11 .36 .50 .49 .53 

12 .29 .35 .19 .38 

13 .76 .65 .71 .68 

14 .38 .42 .42 .45 

15 .24 .32 .12 .35 

16 .69 .61 .77 .64 

17 .76 .77 .80 .80 

18 .71 .79 .89 .82 

19 .69 .71 .84 .74 

20 .47 .43 .42 .46 

21 .58 .51 .59 .54 

22 .67 .53 .59 .56 

23 .64 .52 .51 .54 

24 .42 .47 .33 .50 

25 .62 .56 .64 .59 

26 .31 .44 .32 .47 

27 .73 .49 .70 .52 

28 .62 .62 .55 .65 

29 .56 .41 .43 .44 

30 .73 .57 .66 .60 

31 .76 .72 .76 .75 

32 .51 .41 .39 .44 

33 .80 .78 .74 .81 

34 .58 .58 .69 .61 

35 .60 .52 .55 .54 

36 .42 .28 .29 .31 

37 .78 .58 .63 .61 

38 .82 .75 .82 .78 

39 .11 .23 .16 .25 

40 .69 .57 .72 .60 

41 .42 .47 .47 .50 

42 .60 .54 .63 .57 

43 .36 .36 .10 .39 

44 .78 .66 .83 .69 

45 .36 .26 .31 .28 

46 .56 .56 .66 .59 

47 .58 .68 .76 .71 

48 .60 .66 .72 .69 

49 .47 .47 .54 .50 

50 .20 .23 .28 .25 

51 .53 .57 .64 .60 

52 .38 .47 .49 .50 

53 .64 .64 .78 .67 
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54 .49 .52 .59 .54 

55 .27 .34 .28 .37 

56 .47 .63 .73 .66 

57 .18 .23 .32 .25 

58 .47 .61 .69 .64 

59 .24 .40 .50 .43 

 



 

 

 

 

 

 

Figure A3 Scatterplot of language subtest IDI values, Cohort 3 (Fall 2008) and Fall Norm Sample.  IDI values correlation 
is r = .846 (p < .001). 
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Figure A4 Scatterplot of language subtest IDI values, Cohorts 3 & 4 (Spring 2009 & 2010) and Spring Norm Sample.  IDI 
values correlation is r = .920 (p < .001). 
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Table A3 

ITBS Math Subtest Item Difficulty Indexes, Gifted Grade 6 and National Grade 8 Norm Groups 

Item # Fall Gifted IDI Fall Norm IDI Spring Gifted IDI Spring Norm IDI 

1 .60 .55 .54 .59 

2 .40 .30 .44 .33 

3 .96 .83 .96 .86 

4 .96 .67 .93 .70 

5 .71 .65 .83 .68 

6 .44 .44 .55 .47 

7 .56 .50 .70 .53 

8 .62 .53 .63 .56 

9 .49 .49 .49 .52 

10 .27 .40 .34 .43 

11 .84 .72 .92 .74 

12 .58 .76 .82 .78 

13 .71 .67 .83 .70 

14 .53 .59 .68 .63 

15 .29 .33 .48 .36 

16 .80 .68 .88 .71 

17 .42 .41 .50 .44 

18 .36 .49 .45 .52 

19 .49 .34 .56 .37 

20 .20 .38 .22 .41 

21 .42 .45 .45 .49 

22 .13 .29 .24 .32 

23 .44 .43 .37 .46 

24 .18 .35 .33 .38 

25 .36 .32 41 .35 

26 .20 .32 .30 .35 

27 .13 .32 .21 .35 

28 .20 .37 .26 .40 

29 .13 .30 .30 .35 

30 .47 .42 .45 .46 

31 .78 .51 .71 .55 

32 .67 .38 .60 .41 

33 .24 .31 .36 .34 

34 .60 .41 .47 .45 

35 .31 .49 .48 .53 

36 .33 .35 .15 .42 

37 .27 .56 .44 .62 

38 .76 .71 .76 .78 

39 .18 .30 .13 .37 

40 .49 .64 .62 .71 

41 .53 .53 .56 .67 

42 .38 .38 .47 .53 

43 .09 .09 .17 .48 

44 .31 .31 .27 .52 

45 .16 .16 .11 .50 

46 .07 .07 .04 .39 

 

  



 

 

 

 

 

 
Figure A5 Scatterplot of math subtest IDI values, Cohort 3 (Fall 2008) and Fall Norm Sample.  IDI values correlation is r = 
.786 (p < .001).  
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Figure A6 Scatterplot of math subtest IDI values, Cohorts 3 & 4 (Spring 2009 & 2010) and Spring Norm Sample.  IDI 
values correlation is r = .787 (p < .001). 
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Table A4 

ITED Vocabulary Subtest Item Difficulty Indexes, Gifted Grade 7 and National Grade 9 Norm Groups 

Item # Fall Gifted IDI Fall Norm IDI Spring Gifted IDI Spring Norm IDI 

1 .92 .79 .94 .83 

2 .72 .72 .84 .46 

3 .83 .53 .81 .58 

4 .68 .51 .73 .56 

5 .49 .55 .61 .60 

6 .57 .70 .80 .75 

7 .70 .56 .70 .61 

8 .40 .44 .55 .49 

9 .75 .68 .80 .73 

10 .51 .57 .66 .62 

11 .72 .66 .75 .71 

12 .64 .46 .67 .51 

13 .42 .49 .52 .65 

14 .38 .41 .46 .46 

15 .87 .65 .93 .70 

16 .66 .63 .78 .68 

17 .64 .3 .83 .68 

18 .79 .77 .84 .81 

19 .85 .63 .84 .68 

20 .53 .50 .69 .55 

21 .83 .73 .84 .77 

22 .87 .75 .86 .79 

23 .94 .75 .94 .79 

24 .28 .44 .36 .48 

25 .79 .57 .86 .62 

26 .68 .57 .66 .62 

27 .51 .57 .63 .62 

28 .49 .50 .50 .55 

29 .57 .43 .52 .47 

30 .17 .44 .26 .48 

31 .58 .46 .70 .51 

32 .47 .48 .58 .53 

33 .43 .49 .58 .54 

34 .55 .58 .79 .62 

35 .28 .38 .42 .42 

36 .42 .31 .37 .35 

37 .53 .34 .47 .38 

38 .34 .37 .36 .41 

39 .13 .32 .14 .36 

40 .40 .44 .44 .49 



 

 

 

 

 

 
Figure A7 Scatterplot of vocabulary subtest IDI values, Cohort 2 (Fall 2008) and Fall Norm Sample.  IDI values 
correlation is r = .806 (p < .001). 
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Figure A8 Scatterplot of vocabulary subtest IDI values, Cohorts 2 & 3 (Spring 2009 & 2010) and Spring Norm Sample.  
IDI values correlation is r = .832 (p < .001). 
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Table A5 

ITED Reading Comprehension Subtest Item Difficulty Indexes, Gifted Grade 7 and National Grade 9 Norm Groups 

Item # Fall Gifted IDI Fall Norm IDI Spring Gifted IDI Spring Norm IDI 

1 .83 .69 .82 .72 

2 .91 .69 .85 .72 

3 .81 .67 .90 .70 

4 .60 .58 .74 .61 

5 .77 .66 .75 .69 

6 .81 .65 .83 .68 

7 .91 .71 .88 .74 

8 .77 .63 .87 .67 

9 .83 .66 .86 .69 

10 .83 .71 .89 .74 

11 .85 .63 .87 .66 

12 .83 .72 .86 .75 

13 .96 .76 .96 .79 

14 .87 .70 .95 .73 

15 .60 .52 .71 .56 

16 .55 .51 .76 .54 

17 .75 .67 .82 .70 

18 .55 .60 .48 .63 

19 .47 .47 .59 .50 

20 .66 .60 .83 .63 

21 .81 .68 .87 .71 

22 .85 .64 .83 .67 

23 .64 .52 .62 .55 

24 .66 .47 .57 .50 

25 .91 .73 .99 .76 

26 .53 .41 .56 .44 

27 .64 .51 .71 .54 

28 .42 .46 .66 .49 

29 .71 .61 .80 .64 

30 .74 .56 .79 .59 

31 .66 .49 .70 .52 

32 .77 .61 .80 .64 

33 .45 .50 .59 .53 

34 .55 .52 .59 .55 

35 .38 .34 .45 .37 

36 .55 .49 .61 .3 

37 .40 .43 .54 .46 

38 .40 .35 .46 .38 

39 .60 .51 .56 .55 

40 .49 .42 .53 .45 

41 .49 .40 .50 .43 

42 .47 .45 .41 .48 

43 .42 .45 .48 .48 

44 .49 .35 .40 .38 

 

 



 

 

 

 

 

 
Figure A9 Scatterplot of reading comprehension subtest IDI values, Cohort 2 (Fall 2008) and Fall Norm Sample.  IDI 
values correlation is r = .923 (p < .001). 
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Figure A10 Scatterplot of reading comprehension subtest IDI values, Cohorts 2 & 3 (Spring 2002 & 2010) and Spring 
Norm Sample.  IDI values correlation is r = .906 (p < .001). 
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Table A6 

ITED Spelling Subtest Item Difficulty Indexes, Gifted Grade 7 and National Grade 9 Norm Groups 

Item # Fall Gifted IDI Fall Norm IDI Spring Gifted IDI Spring Norm IDI 

1 .81 .43 .84 .44 

2 .85 .38 .79 .39 

3 .70 .61 .77 .64 

4 .49 .46 .61 .49 

5 .55 .67 .66 .70 

6 .58 .66 .58 .69 

7 .81 .53 .85 .56 

8 .64 .58 .56 .61 

9 .83 .54 .87 .57 

10 .64 .60 .59 .63 

11 .64 .57 .81 .59 

12 .47 .56 .45 .59 

13 .36 .55 .33 .59 

14 .57 .39 .68 .42 

15 .74 .41 .67 .44 

16 .36 .68 .35 .71 

17 .15 .38 .29 .40 

18 .42 .34 .47 .36 

19 .45 .58 .56 .61 

20 .28 .40 .38 .42 

21 .28 .58 .27 .61 

22 .42 .69 .57 .71 

23 .49 .25 .44 .23 

24 .23 .33 .25 .35 

25 .49 .40 .48 .42 

26 .62 .49 .60 .52 

27 .57 .64 .57 .66 

28 .34 .55 .40 .57 

29 .38 .49 .32 .51 

30 .13 .43 .16 .45 

 

  



 

 

 

 

 

 
Figure A11 Scatterplot of spelling subtest IDI values, Cohort 2 (Fall 2008) and Fall Norm Sample.  IDI values correlation 
is r = .134 (p = .480).
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Figure A12 Scatterplot of spelling subtest IDI values, Cohorts 2 & 3 (Spring 2009 & 2010) and Spring Norm Sample.  IDI 
values correlation is r = .171 (p = .366).
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Table A7 

ITED Revising Written Materials Subtest Item Difficulty Indexes, Gifted Grade 7 and National Grade 9 Norm 

Groups 

Item # Fall Gifted IDI Fall Norm IDI Spring Gifted IDI Spring Norm IDI 

1 .75 .74 .76 .77 

2 .30 .75 .47 .78 

3 .64 .62 .62 .65 

4 .60 .45 .76 .48 

5 .72 .48 .70 .51 

6 .51 .56 .47 .59 

7 .32 .70 .48 .73 

8 .87 .50 .82 .53 

9 .25 .77 .35 .80 

10 .68 .50 .70 .53 

11 .62 .54 .54 .57 

12 .70 .41 .84 .44 

13 .70 .40 .79 .43 

14 .75 .42 .66 .45 

15 .57 .65 .63 .68 

16 .64 .38 .84 .41 

17 .74 .34 .71 .37 

18 .49 .43 .51 .46 

19 .66 .56 .75 .59 

20 .57 .40 .69 .43 

21 .62 .27 .70 .30 

22 .62 .57 65 .60 

23 .57 .44 .59 .47 

24 .47 .33 .49 .36 

25 .68 .51 .77 .54 

26 .36 .51 .57 .54 

27 .77 .54 .80 .57 

28 .49 .43 .43 .46 

29 .66 .31 .72 .34 

30 .51 .32 .63 .35 

31 .96 .60 .90 .63 

32 .87 .43 .87 .45 

33 .53 .44 .69 .46 

34 .77 .51 .86 .54 

35 .70 .53 .63 .56 

36 .77 .61 .72 .64 

37 .74 .40 .76 .41 

38 .70 .72 .77 .75 

39 .77 .61 .75 .64 

40 .43 .63 .53 .66 

41 .51 .43 .55 .46 

42 .85 .33 .86 .34 

43 .60 .51 .44 .54 

44 .40 .60 .29 .63 

45 .70 .48 .71 .50 

46 .57 .64 .44 .67 

47 .66 .57 .69 .60 

48 .75 .39 .72 .47 

49 .26 .54 .31 .58 

50 .32 .57 .47 .59 

51 .30 .54 .44 .56 

52 .55 .51 .60 .54 
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53 .34 .35 .39 .36 

54 .51 .43 .47 .44 

55 .58 .53 .50 .56 

56 .25 .44 .33 .47 

 

  



 

 

 

 

 

 
Figure A13 Scatterplot of revising written materials subtest IDI values, Cohort 2 (Fall 2008) and Fall Norm Sample.  IDI 
values correlation is r = -.182 (p = .179). 
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Figure A14 Scatterplot of revising written materials subtest IDI values, Cohorts 2 & 3 (Spring 2009 & 2010) and Spring 
Norm Sample.  IDI values correlation is r = -.216 (p = .101). 
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Table A8 

ITED Mathematics Concepts & Problem Solving Subtest Item Difficulty Indexes, Gifted Grade 7 and National 

Grade 9 Norm Groups 

Item # Fall Gifted IDI Fall Norm IDI Spring Gifted IDI Spring Norm IDI 

1 .83 .66 .90 .69 

2 .87 .66 .95 .69 

3 .72 .48 .80 .52 

4 .55 .53 .78 .57 

5 .72 .34 .61 .38 

6 .21 .29 .31 .33 

7 .81 .53 .87 .57 

8 .70 .54 .78 .58 

9 .66 .56 .71 .60 

10 .38 .41 .52 .45 

11 .40 .41 .44 .45 

12 .55 .42 .69 .46 

13 .58 .56 .69 .60 

14 .25 .30 .34 .34 

15 .28 .22 .38 .23 

16 .83 .63 .79 .67 

17 .83 .51 .89 .55 

18 .55 .52 .69 .56 

19 .38 .36 .57 .40 

20 .11 .41 .46 .45 

21 .43 .51 .64 .55 

22 .43 .26 .48 .29 

23 .64 .49 .81 .53 

24 .68 .63 .70 .66 

25 .42 .37 .49 .40 

26 .51 .56 .59 .59 

27 .23 .34 .42 .37 

28 .47 .49 .57 .53 

29 .43 .49 .72 .52 

30 .43 .55 .70 .58 

31 .28 .34 .40 .37 

32 .30 .39 .35 .42 

33 .15 .22 .11 .24 

34 .23 .22 .20 .23 

35 .15 .22 .17 .23 

36 .25 .36 .33 .39 

37 .43 .48 .51 .51 

38 .36 .38 .37 .41 

39 .42 .42 .60 .45 

40 .26 .23 .28 .25 

  



 

 

 

 

 

 
Figure A15 Scatterplot of mathematics concepts & problem solving subtest IDI values, Cohort 2 (Fall 2008) and Fall 
Norm Sample.  IDI values correlation is r = .792 (p < .001). 
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Figure A16 Scatterplot of mathematics concepts & problem solving subtest IDI values, Cohorts 2 & 3 (Spring 2009 & 
2010) and Spring Norm Sample.  IDI values correlation is r = .877 (p < .001).
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Table A9 

ITED Mathematics Computation Subtest Item Difficulty Indexes, Gifted Grade 7 and National Grade 9 Norm 

Groups 

Item # Fall Gifted IDI Fall Norm IDI Spring Gifted IDI Spring Norm IDI 

1 .92 .88 .89 .92 

2 .18 .75 .83 .78 

3 .60 .65 .67 .68 

4 .81 .66 .76 .69 

5 .68 .65 .58 .69 

6 .62 .50 .73 .53 

7 .79 .53 .74 .56 

8 .58 .45 .50 .48 

9 .34 .45 .44 .48 

10 .26 .39 .34 .42 

11 .26 .41 .34 .44 

12 .36 .64 .57 .68 

13 .60 .65 .66 .68 

14 .15 .25 .09 .25 

15 .49 .60 .32 .63 

16 .42 .57 .45 .60 

17 .13 .26 .20 .29 

18 .36 .53 .31 .56 

19 .19 .31 .16 .34 

20 .23 .32 .24 .35 

21 .30 .36 .36 .39 

22 .15 .40 .27 .43 

23 .11 .32 .16 .35 

24 .11 .26 .09 .29 

25 .28 .35 .20 .38 

26 .28 .34 .36 .37 

27 .06 .19 .09 .19 

28 .06 .20 .12 .20 

29 .06 .26 .07 .29 

30 .04 .18 .05 .15 

 

  



 

 

 

 

 

 
Figure A17 Scatterplot of mathematics computation subtest IDI values, Cohort 2 (Fall 2008) and Fall Norm Sample.  IDI 
values correlation is r = .904 (p < .001).
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Figure A18 Scatterplot of mathematics computation subtest IDI values, Cohorts 2 & 3 (Spring 2009 & 2010) and Spring 
Norm Sample.  IDI values correlation is r = .903 (p < .001). 
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Table A10 

ITED Vocabulary Subtest Item Difficulty Indexes, Gifted Grade 8 and National Grade 10 Norm Groups 

Item # Fall Gifted IDI Fall Norm IDI Spring Gifted IDI Spring Norm IDI 

1 .90 .78 .87 .81 

2 .92 .80 .95 .82 

3 .95 .80 .95 .82 

4 .38 .50 .44 .54 

5 .85 .63 .87 .65 

6 .72 .66 .69 .72 

7 .69 .67 .79 .74 

8 .74 .57 .69 .60 

9 .62 .59 .76 .67 

10 .85 .69 .85 .78 

11 .59 .57 .73 .66 

12 .56 .54 .61 .55 

13 .46 .51 .52 .59 

14 .44 .49 .42 .52 

15 .38 .45 .45 .51 

16 .36 .36 .54 .38 

17 .36 .39 .53 .41 

18 .49 .47 .47 .56 

19 .23 .37 .23 .40 

20 .56 .52 .57 .58 

21 .82 .80 .88 .82 

22 .59 .67 .66 .69 

23 .74 .60 .80 .62 

24 .77 .71 .86 .73 

25 .56 .55 .57 .57 

26 .62 .58 .63 .60 

27 .77 .63 .73 .65 

28 .74 .59 .66 .61 

29 .67 .65 .66 .67 

30 .72 .58 .67 .60 

31 .69 .48 .65 .50 

32 .46 .46 .50 .48 

33 .62 .63 .70 .65 

34 .49 .48 .62 .50 

35 .62 .57 .64 .59 

36 .44 .54 .58 .56 

37 .41 .54 .53 .56 

38 .51 .59 .47 .61 

39 .54 .59 .57 .61 

40 .41 .54 .51 .56 

  



 

 

 

 

 

 
Figure A19 Scatterplot of vocabulary subtest IDI values, Cohort 1 (Fall 2008) and Fall Norm Sample.  IDI values 
correlation is r = .867 (p < .001).
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Figure A20 Scatterplot of vocabulary subtest IDI values, Cohorts 1 & 2 (Spring 2009 & 2010) and Spring Norm Sample.  
IDI values correlation is r = .838 (p < .001).
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Table A11 

ITED Reading Comprehension Subtest Item Difficulty Indexes, Gifted Grade 8 and National Grade 10 Norm 

Groups 

Item # Fall Gifted IDI Fall Norm IDI Spring Gifted IDI Spring Norm IDI 

1 .82 .59 .61 .84 

2 .79 .64 .66 .76 

3 .87 .63 .65 .92 

4 .90 .64 .66 .96 

5 .64 .51 .53 .83 

6 .54 .40 .42 .55 

7 .77 .49 .51 .85 

8 .82 .57 .59 .84 

9 .72 .48 .50 .70 

10 .87 .76 .77 .88 

11 1.00 .82 .83 .92 

12 .79 .74 .75 .80 

13 .77 .63 .65 .76 

14 .74 .73 .74 .85 

15 .72 .56 .58 .63 

16 .69 .68 .69 .65 

17 .82 .75 .76 .81 

18 .72 .64 .66 .77 

19 .64 .73 .74 .71 

20 .77 .73 .74 .70 

21 .82 .71 .72 .79 

22 .74 .63 .66 .75 

23 .62 .70 .71 .63 

24 .62 .69 .70 .75 

25 .74 .75 .76 .80 

26 .69 .68 .69 .70 

27 .74 .70 .71 .71 

28 .77 .57 .63 .72 

29 .51 .48 .52 .63 

30 .44 .40 .43 .61 

31 .67 .58 .62 .76 

32 .69 .48 .55 .67 

33 .69 .47 .53 .71 

34 .41 .52 .57 .57 

35 .51 .51 .67 .56 

36 .51 .42 .56 .48 

37 .46 .50 .45 .52 

38 .46 .42 46 .44 

39 .46 .48 .54 .50 

40 .36 .41 .46 .43 

41 .18 .34 .29 .36 

42 .41 .46 .44 .48 

43 .38 .48 .44 .50 

44 .56 .53 .54 .55 

 

 



 

 

 

 

 

 
Figure A21 Scatterplot of reading comprehension subtest IDI values, Cohort 1 (Fall 2008) and Fall Norm Sample.  IDI 
values correlation is r = .750 (p < .001). 
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Figure A22 Scatterplot of reading comprehension subtest IDI values, Cohorts 1 & 2 (Spring 2009 & 2010) and Spring 
Norm Sample.  IDI values correlation is r = .713 (p < .001).

0.00

0.20

0.40

0.60

0.80

1.00

0 0.2 0.4 0.6 0.8 1

A
b

o
ve

-L
e

ve
l 
G

ra
d

e
 8

 I
D

I

Grade 10 Norm Group IDI

Scatterplot of Reading Comprehension IDI 
Values, Cohorts 1 & 2 (Spring 2009 & 2010) and 

Spring Norm Sample

1
6

4 



167 

 

 

 

 

Table A12 

ITED Spelling Subtest Item Difficulty Indexes, Gifted Grade 8 and National Grade 10 Norm Groups 

Item # Fall Gifted IDI Fall Norm IDI Spring Gifted IDI Spring Norm IDI 

1 .38 .59 .50 .61 

2 .38 .48 .43 .50 

3 .41 .63 .46 .65 

4 .56 .49 .63 .51 

5 .36 .51 .45 .53 

6 .44 .53 .42 .55 

7 .59 .67 .68 .69 

8 .56 .74 .52 .79 

9 .44 .69 .37 .71 

10 .49 .61 .59 .63 

11 .54 .62 .64 .64 

12 .62 .42 .71 .44 

13 .36 .61 .63 .63 

14 .44 .60 .48 .61 

15 38 .48 .32 .50 

16 .82 .43 .83 .44 

17 .64 .65 .64 .66 

18 .51 .51 .51 .55 

19 .59 .72 .77 .75 

20 .62 .71 .72 .74 

21 .67 .58 .61 .61 

22 .62 .63 .74 .67 

23 .67 .59 .72 .62 

24 .49 .65 .55 .68 

25 .62 .60 .58 .62 

26 .49 .61 .56 .64 

27 .49 .60 .43 .61 

28 .31 .43 .42 .45 

29 .28 .46 .26 .49 

30 .18 .72 .33 .73 

 

  



 

 

 

 

 

 
Figure A23 Scatterplot of spelling subtest IDI values, Cohort 1 (Fall 2008) and Fall Norm Sample.  IDI values correlation 
is r = .056 (p = .769). 
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Figure A24 Scatterplot of spelling subtest IDI values, Cohorts 1 & 2 (Spring 2009 & 2010) and Spring Norm Sample.  IDI 
values correlation is r = .156 (p = .410).
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Table A13 

ITED Revising Written Materials Subtest Item Difficulty Indexes, Gifted Grade 8 and National Grade 10 Norm 

Groups 

Item # Fall Gifted IDI Fall Norm IDI Spring Gifted IDI Spring Norm IDI 

1 .33 .47 .34 .48 

2 .92 .41 .93 .46 

3 .77 .43 .77 .47 

4 .92 .61 .96 .64 

5 .79 .44 .83 .45 

6 .41 .31 .40 .33 

7 .85 .62 .83 .65 

8 .85 .48 .81 .49 

9 .18 .37 .22 .38 

10 .59 .55 .70 .57 

11 .77 .55 .75 .56 

12 .79 .58 .86 .61 

13 .72 .48 .74 .51 

14 .62 .35 .68 .36 

15 .77 .37 .69 .41 

16 .56 .72 .72 .75 

17 .67 .55 .76 .58 

18 .77 .53 .86 .56 

19 .67 .70 .62 .73 

20 .82 .57 .84 .60 

21 .77 .57 .81 .60 

22 .38 .59 .55 .62 

23 .71 .63 .53 .66 

24 .72 .47 .68 .50 

25 .46 .46 .62 .50 

26 .44 .58 .41 .61 

27 .64 .39 .62 .42 

28 .44 .31 .33 .34 

29 .87 .32 .78 .35 

30 .49 .37 .54 .40 

31 .85 .37 .81 .39 

32 .69 .73 .76 .75 

33 .87 .60 .77 .62 

34 .62 .76 .62 .78 

35 .82 .38 .80 .70 

36 .67 .29 .57 .30 

37 .62 .63 .67 .65 

38 .59 .68 .49 .70 

39 .62 .28 73 .28 

40 .64 .52 .61 .54 

41 .54 .64 .63 .66 

42 .51 .68 .63 .70 

43 .67 .66 .75 .68 

44 .59 .52 .60 .54 

45 .69 .55 .82 .57 

46 .77 .59 .79 .61 

47 .49 .65 .60 .67 

48 .69 .73 .74 .75 

49 .59 .60 .65 .62 

50 .54 .66 .75 .68 

51 .67 .63 .73 .65 

52 .62 .50 .78 .52 
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53 .59 .42 .67 .44 

54 .49 .60 .50 .62 

55 .38 .42 .59 .44 

56 .64 .42 .73 .44 

 

  



 

 

 

 

 

 
Figure A25 Scatterplot of revising written materials subtest IDI values, Cohort 1(Fall 2008) and Fall Norm Sample.  IDI 
values correlation is r = .065 (p = .634). 
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Figure A26 Scatterplot of revising written materials subtest IDI values, Cohorts 1 & 2 (Spring 2009 & 2010) and Spring 
Norm Sample.  IDI values correlation is r = .179 (p = .187).
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Table A14 

ITED Mathematics Concepts & Problem Solving Subtest Item Difficulty Indexes, Gifted Grade 8 and National 

Grade 10 Norm Groups 

Item # Fall Gifted IDI Fall Norm IDI Spring Gifted IDI Spring Norm IDI 

1 .82 .70 .81 .74 

2 .77 .44 .73 47 

3 .67 .59 .67 .62 

4 .74 .43 .74 .45 

5 .62 .43 .67 .46 

6 .67 .62 .80 .65 

7 .31 .31 .31 .33 

8 .64 .40 .62 .41 

9 .67 .53 .76 .55 

10 .74 .60 .84 .61 

11 .46 .39 .62 .40 

12 .87 .59 .74 .63 

13 .54 .63 .73 .66 

14 .85 .69 .79 .71 

15 72 .61 .70 .63 

16 49 .48 .60 .54 

17 .15 .25 .14 .26 

18 .38 .37 .41 .39 

19 .72 .58 .75 .59 

20 .51 .47 .57 .50 

21 .56 .50 .57 .53 

22 .49 .45 .62 .48 

23 .62 .56 .62 .58 

24 .28 .40 .31 .43 

25 .54 .55 .66 .57 

26 .54 .55 .66 .58 

27 .36 .39 .36 .40 

28 .67 .54 .69 .58 

29 .33 .40 .38 .43 

30 .31 .25 .64 .27 

31 .46 .32 .33 .34 

32 .54 .59 .65 .60 

33 .33 .39 .40 .41 

34 .38 .43 .49 .45 

35 .38 .49 .56 .53 

36 .21 .25 .41 .26 

37 .56 .57 .65 .58 

38 .31 .37 .40 .39 

39 .38 .30 .29 .32 

40 .23 .35 .30 .37 

  



 

 

 

 

 

 
Figure A27 Scatterplot of mathematics concepts & problem solving subtest IDI values, Cohort 1 (Fall 2008) and Fall 
Norm Sample.  IDI values correlation is r = .798 (p < .001). 
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Figure A28 Scatterplot of mathematics concepts & problem solving subtest IDI values, Cohorts 1 & 2 (Spring 2009 & 
2010) and Spring Norm Sample.  IDI values correlation is r = .854 (p < .001). 
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Table A15 

ITED Mathematics Computation Subtest Item Difficulty Indexes, Gifted Grade 8 and National Grade 10 Norm 

Groups 

Item # Fall Gifted IDI Fall Norm IDI Spring Gifted IDI Spring Norm IDI 

1 .87 .81 .86 .83 

2 .72 .64 .73 .65 

3 .85 .71 .83 .73 

4 .51 .47 .50 .47 

5 .72 .59 .73 .61 

6 .69 .57 .79 .59 

7 .41 .28 .40 .29 

8 .59 .62 .62 .63 

9 .56 .69 .64 .76 

10 .77 .68 .74 .71 

11 .10 .28 .12 .29 

12 .15 .30 .19 .32 

13 .54 .45 .61 .58 

14 .23 .29 .27 .34 

15 .21 .41 .26 .46 

16 .74 .68 .67 .78 

17 62 .60 .55 .72 

18 .59 .65 .61 .67 

19 .56 .60 .58 .68 

20 .18 .37 .26 .40 

21 .18 .27 .27 .28 

22 .15 .37 .30 .43 

23 .03 .25 .11 .27 

24 .26 .43 .31 .46 

25 .26 .46 .23 .47 

26 .00 .25 .08 .26 

27 .18 .42 .22 .44 

28 .05 .40 .17 .43 

29 .05 .29 .04 .30 

30 .00 .24 .06 .25 

 

  



 

 

 

 

 

 
Figure A29 Scatterplot of mathematics computation subtest IDI values, Cohort 1 (Fall 2008) and Fall Norm 
Sample.  IDI values correlation is r = .798 (p < .001). 
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Figure A30 Scatterplot of mathematics computation subtest IDI values, Cohorts 1 & 2 (Spring 2009 & 2010) and 
Spring Norm Sample.  IDI values correlation is r = .854 (p < .001).
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Table A16 

Item Difficulty Mean Comparisons Across Gifted and Norm Groups 

 Fall    Spring    

Level and Subtest 

Gifted 

Mean 

(SD) 

Norms 

Mean 

(SD) t (df) p d 

Gifted 

Mean 

(SD) 

Norms 

Mean 

(SD) t (df) p d 

Grade 8 Reading .62 (.15) .58 (.14) 1.19 (72) .238 0.280 .69 (.16) .62 (.13) 2.07 (72) .042 0.487 

Grade 8 Language .54 (.18) .53 (.15) 0.33 (116) .742 0.061 .56 (.19) .56 (.15) 0.00 (116) 1.000 0.000 

Grade 8 Math .44 (.24) .47 (.14) -0.73 (90) .467 -0.154 .49 (.24) .51 (.14) -0.49 (90) .625 -0.103 

Grade 9 

Vocabulary 

.58 (.21) .55 (.13) 0.77 (78) .444 0.174 .58 (.13) .65 (.20) -1.86 (78) .067 -0.420 

Grade 9 Reading 

Comprehension 

.66 (.17) .56 (.12) 3.19 (86) .002 0.688 .71 (.17) .59 (.12) 3.83 (86) < .001 0.825 

Grade 9 Spelling .51 (.20) .51 (.12) 0.00 (58) 1.000 0.000 .54 (.20) .53 (.12) 0.23 (58) .819 0.062 

Grade 9 Revising 

Written Materials 

.59 (.17) .50 (.12) 3.24 (110) .002 0.617 .63 (.16) .53 (.12) 3.74 (110) < .001 0.714 

Grade 9 Math 

Concepts & 

Problem Solving 

.43 (.13) .47 (.21) -1.02 (78) .311 -0.232 .57 (.22) .47 (.13) 2.48 (78) .015 0.560 

Grade 9 Math 

Computation 

.37 (.26) .44 (.18) -1.21 (58) .231 -0.318 .39 (.25) .47 (.19) -1.40 (58) .167 -0.366 

Grade 10 

Vocabulary 

.61 (.18) .58 (.11) 0.90 (78) .371 0.204 .65 (.16) .61 (.11) 1.30 (78) .197 0.295 

Grade 10 Reading 

Comprehension 

.66 (.17) .58 (.12) 2.55 (86) .013 0.550 .69 (.15) .61 (.12) 2.76 (86) .007 0.545 

Grade 10 Spelling .50 (.14) .59 (.09) -2.96 (58) .005 -0.778 .55 (.14) .61 (.09) -1.97 (58) .054 -0.778 

Grade 10 

Revising Written 

Materials 

.64 (.16) .53 (.13) 3.99 (110) < .001 0.761 .55 (.13) .68 (.15) -4.90 (110) < .001 -0.761 

Grade 10 Math 

Concepts & 

Problem Solving 

.52 (.19) .47 (.12) 1.41 (78) .163 0.319 .57 (.18) .49 (.13) 2.28 (78) .025 0.319 

Grade 10 Math 

Computation 

.39 (.28) .47 (.17) -1.34 (58) .186 -0.351 .42 (.26) .50 (.18) -1.39 (58) .170 -0.351 
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