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Abstract

Aims: To compare the molecular and biologic signatures of a balanced dual peroxisome proliferator-activated receptor
(PPAR)-a/c agonist, aleglitazar, with tesaglitazar (a dual PPAR-a/c agonist) or a combination of pioglitazone (Pio; PPAR-c
agonist) and fenofibrate (Feno; PPAR-a agonist) in human hepatocytes.

Methods and Results: Gene expression microarray profiles were obtained from primary human hepatocytes treated with
EC50-aligned low, medium and high concentrations of the three treatments. A systems biology approach, Causal Network
Modeling, was used to model the data to infer upstream molecular mechanisms that may explain the observed changes in
gene expression. Aleglitazar, tesaglitazar and Pio/Feno each induced unique transcriptional signatures, despite comparable
core PPAR signaling. Although all treatments inferred qualitatively similar PPAR-a signaling, aleglitazar was inferred to have
greater effects on high- and low-density lipoprotein cholesterol levels than tesaglitazar and Pio/Feno, due to a greater
number of gene expression changes in pathways related to high-density and low-density lipoprotein metabolism. Distinct
transcriptional and biologic signatures were also inferred for stress responses, which appeared to be less affected by
aleglitazar than the comparators. In particular, Pio/Feno was inferred to increase NFE2L2 activity, a key component of the
stress response pathway, while aleglitazar had no significant effect. All treatments were inferred to decrease proliferative
signaling.

Conclusions: Aleglitazar induces transcriptional signatures related to lipid parameters and stress responses that are unique
from other dual PPAR-a/c treatments. This may underlie observed favorable changes in lipid profiles in animal and clinical
studies with aleglitazar and suggests a differentiated gene profile compared with other dual PPAR-a/c agonist treatments.

Citation: Deehan R, Maerz-Weiss P, Catlett NL, Steiner G, Wong B, et al. (2012) Comparative Transcriptional Network Modeling of Three PPAR-a/c Co-Agonists
Reveals Distinct Metabolic Gene Signatures in Primary Human Hepatocytes. PLoS ONE 7(4): e35012. doi:10.1371/journal.pone.0035012

Editor: Zhi Xie, National Institutes of Health, United States of America

Received October 24, 2011; Accepted March 8, 2012; Published April 13, 2012

Copyright: � 2012 Deehan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by F. Hoffmann-La Roche AG (www.roche.com). The study design and conduct of the hepatocyte treatments, RNA isolation,
microarray hybridizations, and statistical analyses were performed in the laboratories of F. Hoffmann-La Roche, while data analysis was performed at Selventa
Laboratories (www.selventa.com). The decision to publish and manuscript preparation was made jointly by scientists and F. Hoffmann-La Roche and Selventa
Laboratories. Editorial assistance was funded by F. Hoffmann-La Roche AG.

Competing Interests: At the time of study design/implementation AE, CH, GS, JM, MBW and PM-W were employed by F. Hoffmann-La-Roche, Basel,
Switzerland, while BW, GB, KOE, NLC, RD and WL were employed by Selventa, Cambridge, United States of America. This work was supported by F. Hoffmann-La
Roche AG (www.roche.com). This does not alter the authors’ adherence to all the PLoS ONE policies on sharing data and materials.

* E-mail: matthew.wright@roche.com

¤a Current address: Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
¤b Current address: CHDI Foundation, Princeton, New Jersey, United States of America

{ Deceased.

Introduction

The peroxisome proliferator-activated receptors (PPARs) are

nuclear hormone receptors that function as transcription factors,

regulating the expression of genes involved in the metabolism of

fatty acids and carbohydrates. PPAR-a is highly expressed in the

liver, kidney and skeletal muscle. Fibrates, which are weak PPAR-

a agonists, alter hepatic energy metabolism that, in part, lowers

plasma triglyceride (TG) levels and slightly increases high-density

lipoprotein cholesterol (HDL-C) [1,2]. PPAR-c is highly expressed

in adipocytes and, to a lesser extent, in other tissues, including the

liver. PPAR-c agonists, such as pioglitazone and rosiglitazone,

improve insulin sensitivity, in part by reducing adipose TG

lipolysis [1]. PPAR-a and PPAR-c have also been shown to have

anti-inflammatory properties in insulin-resistant states, leading to

improvements in levels of cardiovascular (CV) risk markers [3–5].

Drugs that activate both PPAR-a and PPAR-c may be expected

to capture both the favorable changes in lipid profiles and the

glycemic benefits, and have been pursued for their therapeutic

potential to reduce CV risk associated with type 2 diabetes mellitus

(T2DM). However, several previous dual PPAR-a/c agonists were

discontinued due to compound-specific side effects: tesaglitazar
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due to data suggesting irreversible impairment of renal function

[6,7] and muraglitazar due to concerns regarding increased CV

risk [8]. The lessons emerging from these experiences are that each

PPAR-targeted drug is different and that agonist profile alone may

not reflect the underlying biology that defines the balance between

efficacy and safety of specific molecules. In support of this notion, a

recent report has shown that phosphorylation of PPAR-c by

cyclin-dependent kinase 5 is an important determinant of adipose

insulin sensitivity [9]. Selective recruitment of co-activators or co-

repressors may provide additional mechanisms whereby different

PPAR-targeted drugs can differentially activate target pathways.

Aleglitazar is a novel PPAR-a/c agonist that was designed to

provide balanced activity on both receptors. Preclinical studies

have shown that aleglitazar potently decreases blood glucose and

insulin resistance and improves plasma lipids in animal models

[10,11]. In a Phase II clinical trial in patients with T2DM,

aleglitazar provided effective glycemic control, improved lipid

parameters, blood pressure and markers of CV risk, and was well

tolerated [12]. Aleglitazar is currently under investigation in a

large Phase III outcomes trial (ALECARDIO) evaluating its effect

on CV mortality and morbidity in post-acute coronary syndrome

patients with T2DM [13].

Since emerging evidence suggests that each PPAR drug has a

unique efficacy and safety profile, we investigated the molecular

effects of two different dual PPAR-a/c agonists (aleglitazar and

tesaglitazar) and a combination of a PPAR-c and PPAR-a agonist

(pioglitazone plus fenofibrate [Pio/Feno]) in human hepatocytes

using whole-genome microarray studies in conjunction with a

systems biology approach, Causal Network Modeling (CNM).

Gene-expression profiling studies provide a broad, unbiased view

of the transcriptional response to drug treatment, but the large

amounts of data generated often require systems-based analytics

for comprehensive interpretation. One common approach is to

identify differentially expressed genes whose corresponding gene

products act in biologic pathways of interest and extrapolate the

biologic changes that may result from the changes in gene

expression. Enrichment statistics may also be used to determine

over-representation of genes involved in specific pathways in the

set of differentially expressed genes [14]. This approach relies on

the assumption that changes in gene expression directly correlate

with changes in protein activity and is thereby limited by the

validity of this assumption, as well as the inability to reason

downstream of genes of unknown function.

CNM is a complementary approach that uses reverse-

engineering principles to infer the activity states of signaling

mechanisms that lead to the observed changes in gene expression.

These inferences, called ‘‘hypotheses’’, are then evaluated

statistically and those that meet predefined statistical criteria are

assessed for biological integrity. Examples of this vetting process

include the following interrogations: determining whether an

inferred change in the activity state of a biological mechanism or

pathway is consistent with what would be expected in the context

of the experiment under investigation, and examining whether the

inferred mechanism is known to be expressed in the tissue under

study. Causal links between different signaling mechanisms are

also investigated and used to build models for disease states or

therapeutic responsiveness, discover mechanisms of action, assess

biomarkers for patient stratification or, as done here, differentiate

the molecular effects induced by multiple treatments. This data-

driven approach has been successfully applied to confirm or

propose novel hypotheses, to identify molecular mechanisms

involved in diverse biological processes in vitro [15–17] and in vivo

[18,19], and including discovery of potential biomarkers of clinical

response to therapeutic intervention [19]. Example applications of

CNM include models built that describe pulmonary proliferative

and cellular stress processes [16,17], hypoxia-induced hemangio-

sarcoma [20], the role of sirtuin-1 in human keratinocyte

differentiation [16] and response to drug treatment [15,18,19].

The aim of the present CNM study was to compare the effects

of aleglitazar with tesaglitazar and with Pio/Feno in a primary

human hepatocyte model system to elucidate the molecular

pathways modulated by aleglitazar and comparator treatments.

Our study revealed that aleglitazar has caused a distinct gene

signature profile compared with other dual PPAR-a/c agonist

treatments that likely underlies the observed favorable changes in

lipid profiles in animal and clinical studies [10–12].

Methods

Cell culture
Primary human hepatocytes (Hepacult GmbH, Regensburg,

Germany) were seeded at a density of 0.156106/cm2 in six-well

plates. They were then incubated for 6 hours at 37uC in a 5%

carbon dioxide-humidified atmosphere in 1.5 ml of William’s

Medium E + 2 mM L-glutamine (Sigma-Aldrich Corp., St Louis,

MO, USA) containing aleglitazar (0.013, 0.064 or 0.32 mM),

tesaglitazar (1.44, 7.2 or 36.0 mM), Pio/Feno (6.0/0.11, 30.0/0.56

or 150.0/2.8 mM) or vehicle (0.1% dimethyl sulfoxide). The

concentrations were chosen based on in vitro transactivation data

providing EC50-aligned low, medium and high concentrations of

each of the three treatments, such that there was similar receptor

activation across treatments at each concentration level.

RNA preparation
Total RNA was extracted with TRI ReagentH (Molecular

Research Center, Inc., Cincinnati, OH, USA) according to the

manufacturer’s instructions and RNA samples were stored at

280uC. Total RNA was quantified on a NanoDropTM spectro-

photometer (NanoDrop Technologies Inc., Wilmington, DE,

USA) and RNA integrity was determined on an Agilent 2100

Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA).

Gene-expression microarray analysis
Total RNA (1 mg/sample) was converted to complementary

DNA (cDNA) using the low-RNA input fluorescent linear

amplification kit (Agilent Technologies). cDNA was converted to

cRNA and biotinylated using biotin-LC vinyl CTP. Amplified and

biotinylated cRNA was quantified and quality checked by

formaldehyde agarose gel electrophoresis. After statistical ran-

domization of sample order, labeled cRNA (1.5 mg/sample) was

used for array hybridization using the Whole-Genome Gene

Expression Direct Hybridization Assay and Illumina Human-6

Expression BeadChips version 3 arrays (Illumina Inc., San Diego,

CA, USA). Staining and washing steps were performed as

suggested by the manufacturer. BeadChips were scanned using

an Illumina BeadArrayH reader (Illumina Inc.) and raw data were

extracted using BeadStudio� software (version 3.1.3.0) with Gene

Expression Module 3.4.0 (Illumina Inc.).

Gene-expression profiles were obtained using EC50-aligned low,

medium and high concentrations of the three treatments as

specified above, such that there was similar receptor activation

across treatments at each concentration level. Transcript data

were analyzed using five replicates of each treatment concentra-

tion in order to identify significant changes in gene expression

between the treatment and the vehicle control (RNA state

changes).

Unique Gene Signature Profile of PPAR-a/c Agonists
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Determination of significant RNA expression changes
RNA expression data were analyzed using the ‘‘affy’’ and

‘‘limma’’ packages of the Bioconductor suite of microarray analysis

tools available for the R statistical package [21,22]. Robust

microarray analysis background correction and quantile normal-

ization were used to generate microarray expression values. Prior

to analysis of changed genes, data were visualized using principal-

components analysis and hierarchical clustering to identify outlier

samples. An overall linear model was fitted to the data for all

sample groups and specific contrasts of interest were evaluated to

generate raw p-values for each probe set on the expression array

[23]. The Benjamini–Hochberg false discovery rate method [24]

was then used to correct for multiple testing effects. Probe sets

were considered to have changed qualitatively in a specific

comparison if an adjusted p-value of 0.05 was obtained, their

average expression intensity was .150 in any treatment group and

they had an absolute change .1.3-fold. Genes represented by

multiple probe sets were considered to have changed if at least one

probe set was observed to change. Gene-expression changes that

met these criteria were termed ‘‘statistically significant RNA state

changes’’ and had the directional qualities of ‘‘up’’ or ‘‘down’’ (i.e.

they can be upregulated or downregulated in response to

treatment). We confirm that the microarray data is MIAME

compliant and has been deposited in the GEO database

(#GSE33152) http://www.ncbi.nlm.nih.gov/geo/query/acc.

cgi?acc = GSE33152.

Evaluation of signaling networks using Causal Network
Modeling

The CNM platform uses a reverse engineering approach to

automatically generate hypotheses that are statistically significant

explanations of RNA state changes. The substrate for this

approach is a knowledgebase comprised of qualitative causal

relationships in a computable format, e.g. the transcriptional

activity of PPAR-c increases the RNA expression of insulin-

induced gene 1 (INSIG-1) [25]. These cause and effect relation-

ships are derived from the knowledgebase at the time of

completion/analysis of the present study. That version contained

biological interactions derived from 50,827 unique PubMed

entries encompassing studies in human, mouse and rat. The

human-specific assembly of this knowledgebase includes relation-

ships defined both in human and in rodent studies with gene and

proteins mapped to the human homologue. The current knowl-

edgebase contains more than 100,000 concepts and molecular

entities, and more than 400,000 causal relationships. Each

hypothesis is ranked according to two probabilistic scoring metrics,

richness and concordance, which examine distinct aspects of the

probability of a hypothetical cause explaining a given number of

RNA state changes. Richness is based on hypergeometric

distribution and represents the probability that the number of

observed RNA state changes connected to a given hypothesis

could have occurred by chance alone. Concordance is based on

binomial distribution and represents the probability that the

number of observed RNA state changes that match the

directionality of the hypothesis (e.g. increased or decreased kinase

activity for a kinase and increased or decreased transcriptional

activity for a transcription factor) could have occurred by chance

alone. Stronger concordance indicates high confidence in the

inferred directionality of the hypothesis. Those hypotheses with

concordance p,0.1 as well as richness p,0.1 were considered to

be statistically significant. Application of these significance values

to randomly generated data produces less than 5% of the number

of hypotheses meeting both significance criteria than are observed

for experimental data with similar numbers of RNA state changes.

Hypotheses were further investigated and prioritized by evaluation

of their biologic relevance to the experimental context, whether

they could be causally linked to phenotypes observed and

processes relevant to PPAR-a/c biology or metabolism, as

evidenced in the literature, and if they were causally downstream

of the experimental treatments. Hypotheses that were determined

to be biologically relevant for the model were assessed for their

relationship to other hypotheses of interest and then ordered

causally into small models based on causal relationships in the

knowledgebase or additional relevant knowledge identified in the

literature. Several examples of applications of this technology and

associated methodology have been published [15–19,26].

Explanation of hypothesis tables
As illustrated in Figure 1, green and red boxes indicate observed

increases or decreases in RNA expression of a given gene,

respectively. Gene expression is depicted as ‘‘exp’’ followed by the

National Center for Biotechnology Information gene symbol in

parentheses. Yellow and blue boxes indicate biologic processes or

protein activities that are inferred by reverse causal reasoning to

increase or decrease upon treatment, respectively. Darker shades

of yellow or blue indicate stronger concordance. Numbers in the

boxes indicate the number of gene-expression state changes that

support the inference. Negative numbers indicate an inferred

decrease, while positive numbers indicate an inferred increase.

Results

State change analysis
Aleglitazar, tesaglitazar and Pio/Feno treatment of primary

human hepatocytes resulted in both shared and distinct RNA

expression state changes (Figure 2). At the high drug dosage, only

82 out of 1,238 (6.6%) total state changes observed were induced

by all three agonist treatments (Figure 2B). There were only 29

(2.3%) and 36 (2.9%) state changes that were shared by

tesaglitazar and Pio/Feno or aleglitazar and tesaglitazar treat-

ments, respectively (Figure 2B). CNM was then used to generate

statistically significant inferences (i.e. those with both richness and

concordance p-values,0.1) of the molecular signaling networks

underlying these RNA expression changes, and to provide

explanations for the RNA expression changes in each treatment

group. Figure 3 shows the inferred biologic pathways affected by

each treatment. The 2,000 hypotheses/molecular predictions

represented in the knowledgebase were scored across all treatment

groups; 280 unique predictions were identified and 276 of these

met the criteria for statistical significance in at least one of the

three high drug dosage treatments (Figure 3) and since a consistent

direction of effect was inferred these were considered to be

hypotheses. The molecular pathways represented by these

hypotheses were then clustered under broader biologic processes,

e.g. PPAR signaling, metabolic pathways, inflammation and stress,

insulin signaling, cell proliferation and mitogen-activated protein

kinase pathways (Figure 4). The following sections detail the

biologic signatures that were inferred to be most robustly modified

by the three treatments.

PPAR-a signaling
In the liver, PPAR-a activation modulates lipid metabolism and

lipoprotein synthesis and secretion, affecting TGs, HDL-C

synthesis and regulation of bile acid synthesis and detoxification

[27]. CNM identified qualitatively similar PPAR-a signaling when

comparing the medium concentrations of all three treatments

(Figure 5A), with increased PPAR-a transcriptional activity

supported by broadly similar gene expression changes (94, 66

Unique Gene Signature Profile of PPAR-a/c Agonists
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and 75 for aleglitazar, tesaglitazar and Pio/Feno, respectively)

(Figure 5A).

Lipid metabolic pathways
All three treatments may promote activation of signaling

pathways related to a decrease in plasma TG levels (Figure 5).

Aleglitazar, tesaglitazar and Pio/Feno each upregulated RNA

expression of adipose differentiation-related protein (ADFP),

angiopoietin-like 4 (ANGPTL4) and apolipoprotein A-V (Apo-

AV) to similar degrees. In addition, CNM infers that the

abundance of ANGPTL4 itself is increased. Transcriptional

control of all three of these genes is coordinately modulated by

PPAR-a [28–30]. ADFP is a lipid droplet coat protein present in

non-adipose cells that do not express perilipin [28]. It is broadly

distributed in non-adipogenic liver and muscle tissues and plays a

surfactant role at the lipid droplet surface, mediating triacyl-

glycerol packaging [31]. ANGPTL4 and Apo-AV affect plasma

TG metabolism in part by either inhibiting or potentiating the

activity of lipoprotein lipase, which mediates TG hydrolysis [32–

35].

In contrast to the similar treatment effects observed in pathways

related to TG metabolism, CNM inferred that aleglitazar increases

expression of signaling pathways related to HDL-C metabolism to

a greater extent than tesaglitazar or Pio/Feno. In general,

aleglitazar treatment induced more changes in gene expression

related to HDL-C metabolism than tesaglitazar and Pio/Feno,

particularly at the high concentration (Figure 5A). ATP-binding

cassette transporter proteins A1 (ABCA1) and G1 (ABCG1)

promote HDL formation by increasing cholesterol efflux to pre-b
and a HDL particles [36]. Aleglitazar significantly increased

Figure 1. Key for figures and hypothesis tables. Green and red boxes = observed increases and decreases, respectively, in RNA expression of a
given gene. Gene expression is depicted as ‘‘exp’’ followed by the National Center for Biotechnology Information gene symbol in parentheses. Yellow
and blue boxes = biologic processes or protein activities that are inferred by the CNM approach to increase or decrease upon treatment, respectively.
Darker shades of yellow or blue = stronger concordance. Numbers in the blue or yellow boxes indicate the number of gene expression state changes
that support the inference: negative numbers indicate an inferred decrease and positive numbers indicate an inferred increase. Numbers in the green
or red boxes indicate the log fold change.
doi:10.1371/journal.pone.0035012.g001

Figure 2. Treatment-induced RNA and gene expression changes. (A) Total number of RNA state changes (up- or downregulation) in human
hepatocytes treated with aleglitazar, tesaglitazar or Pio/Feno. (B) Unique and shared gene expression following treatment with aleglitazar,
tesaglitazar or Pio/Feno.
doi:10.1371/journal.pone.0035012.g002
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ABCA1 expression at all concentrations and ABCG1 expression at

the medium and high concentrations (Figure 5A). In contrast,

tesaglitazar increased ABCA1 expression at all concentrations but

did not have a significant effect on ABCG1, while Pio/Feno

increased ABCA1 and ABCG1 expression only at the highest

concentrations. The greater effect of aleglitazar on ABCA1 and

ABCG1 versus tesaglitazar and Pio/Feno suggests that aleglitazar

may increase HDL-C to a greater extent, with a superior effect on

reverse cholesterol transport than tesaglitazar or Pio/Feno.

The three treatments used in this study were also inferred to

have differential effects on pathways related to low-density

lipoprotein (LDL) synthesis, as exemplified by their effects on

sterol regulatory element binding transcription factor 1A

(SREBF1A) activity and fatty acid desaturase 1 and 2 (FADS1/2)

mRNA expression [37]. Aleglitazar and Pio/Feno were inferred to

significantly decrease SREBF1A activity (at the medium and high

concentrations of aleglitazar and the low and high concentrations

of Pio/Feno), while tesaglitazar decreased SREBF1A activity at

the medium concentration and increased it at the high

concentration (Figure 5A). Aleglitazar also significantly decreased

the expression of both FADS1 and FADS2 at medium and high

concentrations, while Pio/Feno decreased FADS2 expression only

at the low concentration. Tesaglitazar had no effect. These data

suggest that aleglitazar treatment may more strongly decrease

LDL than tesaglitazar.

Based on the above inferences, it was possible to develop a

model that represents how aleglitazar may affect a number of

molecular signaling pathways involved in lipid metabolism

(Figure 5B).

Cellular stress response
CNM inferred a relatively weak cellular stress response

following aleglitazar treatment compared with tesaglitazar and

Pio/Feno (Figure 6). The activity of nuclear factor (erythroid-

derived 2)-like 2 (NFE2L2), a transcription factor activated by, and

involved in, mediating oxidative and xenobiotic stresses [38], was

inferred to increase for the medium and high concentrations of

tesaglitazar and Pio/Feno (Figure 6A). These increases are

supported by 22 and 23 (tesaglitazar) and 38 and 40 (Pio/Feno)

gene expression changes, respectively. In contrast, statistically

significant changes in NFE2L2 activity were inferred only for the

low concentration of aleglitazar, while medium or high concen-

trations of aleglitazar had no effect. This weaker stress response to

aleglitazar was further supported by the absence of an inferred

effect of aleglitazar on nelfinavir-responsive genes (a proxy for

unfolded protein response and cellular stress) [39] at any

concentration, which was evident with the high concentrations

of both tesaglitazar and Pio/Feno. In addition, only aleglitazar was

inferred to decrease dimethylnitrosamine-responsive genes (a

proxy for liver damage) [40], consistent with the notion that

aleglitazar induces a minimal stress response. These inferences

allowed the modeling of molecular signaling pathways that could

lead to stress response, and of the potential effects of aleglitazar

treatment on these molecular mechanisms (Figure 6B).

Insulin signaling and cellular proliferation pathways
CNM inferred that aleglitazar would decrease expression of

insulin-responsive genes at all three concentrations (Figure 7A),

while tesaglitazar would have differing effects at the medium and

high concentrations (decreasing and increasing insulin-responsive

genes/pathways, respectively) and Pio/Feno would have no

significant effect at any concentration. In addition, CNM inferred

that all three treatments would affect multiple pathways involved

in decreased cell proliferation and survival signaling. All three

concentrations of aleglitazar were inferred to decrease the activity

of phosphoinositide-3-kinase (PI3K) and Yin-Yang 1 (YY1)

proteins, which leads to proliferation and survival [41,42], while

tesaglitazar had no significant inferred effect on PI3K at any

concentration and Pio/Feno decreased PI3K at the low and

medium concentrations. Similarly, only the low and medium

concentrations of tesaglitazar and Pio/Feno had inferred effects on

YY1 activity. All three treatments were also inferred to increase

the activities of signaling that lead to inhibition of proliferation,

namely phosphatase activity of phosphatase and tensin homolog

(PTEN) and transcriptional activity of forkhead box protein

(FOXO1) and tumor protein 53 (p53) [43]. Consistent with the

inferred changes in insulin signaling, there was also an inferred

increase in cyclic AMP and cAMP-responsive element-binding

protein 1 with all treatments, although the high concentration of

tesaglitazar failed to have any effect. Additionally, both aleglitazar

and Pio/Feno increased cyclin-dependent kinase inhibitor 1A

(CDKN1A) expression, which leads to cell cycle arrest [44], while

tesaglitazar had no significant effect at any concentration. The

molecular signaling pathway that could result in inhibition of

proliferation by these treatments is shown in Figure 7B and is

colored for measurements and inferences from the medium

concentration of aleglitazar.

Discussion

Analysis of gene transcript data from human hepatocytes using

CNM revealed that the balanced dual PPAR-a/c agonist

aleglitazar exerts molecular effects that are distinct from the

effects of tesaglitazar (a dual PPAR-a/c agonist) or combination

Pio/Feno (a PPAR-c agonist/PPAR-a agonist treatment), partic-

ularly with regard to lipid metabolism and the cellular stress

response.

All three treatments led to qualitatively similar PPAR-a
signaling, and to increases in genes related to decreases in TG

levels. The observed increase in ADFP mRNA expression is

consistent with published literature, which has demonstrated that

PPAR agonists can upregulate ADFP mRNA in vitro and in vivo

[28,45]. Although the exact function of ADFP is unclear, it is

Figure 3. Molecular pathways modulated in response to
treatment with aleglitazar, tesaglitazar or Pio/Feno. Number of
RNA expression changes observed following treatment with aleglitazar,
tesaglitazar or Pio/Feno. Of the 2,000 unique mechanisms represented
in the knowledgebase, 280 were considered statistically significant in at
least one treatment condition and are designated as ‘‘hypotheses’’.
doi:10.1371/journal.pone.0035012.g003
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hypothesized that it may play a crucial role in sequestering TGs in

cytosolic lipid droplets for storage [28]. The observed increases in

ANGPTL4 and Apo-AV mRNA are consistent with previous studies,

which have shown that PPAR-a agonists increase ANGPTL4 and

Apo-AV expression [1,2,45]. ANGPTL4 and Apo-AV collectively

regulate metabolism by inhibiting and potentiating the activity of

lipoprotein lipase (which mediates TG hydrolysis) [32–35], and it is

the composite interplay between these regulators that contributes to

the decrease in plasma TGs. Furthermore, mutations in ANGPTL4

have been shown to be significantly related to TG levels and, in

some cases, to altered CV risk [46]. The observed changes in the

expression of genes related to decreased TGs are also consistent with

clinical results showing that all treatments effectively decrease TG

levels in patients with T2DM [6,7,12,47,48].

CNM inferred differences between the three treatments with

regard to effects on HDL-C biosynthetic and metabolic pathways

and with regard to expression of genes related to HDL synthesis.

Aleglitazar was associated with greater increases in expression of

genes related to HDL synthesis (ABCA1 and ABCG1) than either

tesaglitazar or Pio/Feno, which suggests that aleglitazar may

increase HDL-C levels to a greater extent than tesaglitazar or Pio/

Feno. This is consistent with the between-study comparison of

clinical trial results in patients with T2DM for aleglitazar and

tesaglitazar, which shows both treatments increase HDL-C, but

tentatively suggests aleglitazar has a greater HDL-C effect (,25%

increase [12]) than tesaglitazar (,17.9% increase [6]) from

baseline. In addition, fibrates and glitazones have both shown

more modest HDL-C effects in clinical trials [49,50]. In the Phase

Figure 4. Clustering of the hypotheses into broader biologic processes/pathways. Numbers (in the boxes) indicate the number of genes/
hypotheses in molecular pathway clusters.
doi:10.1371/journal.pone.0035012.g004
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Figure 5. PPAR-a signaling, lipid metabolism-associated RNA changes and inferred signaling pathways. (A) Observed RNA state
changes and Causal Network Modeling–based predictions of PPAR-a signaling and lipid metabolism upon treatment with aleglitazar, tesaglitazar or
Pio/Feno. See Figure 2A for treatment dosages. ‘‘Bile duct ligation’’ is known as a ‘‘proxy’’ hypothesis and describes the finding that changes in gene
expression observed in the current experiments are consistent with gene expression modulations in other experiments where bile duct ligation was
the perturbation. Similarly ‘‘Response to osmotic stress’’, ‘‘Reponse to shear stress’’, ‘‘Corticotropin’’, ‘‘Response to DNA damage stimulus’’, ‘‘shear
stress’’ and ‘‘Response to stress-inducing agents’’ (e.g. nelfinavir) are also proxy hypotheses. (B) Molecular signaling pathways, predicted by RNA state
changes shown in panel A, that could lead to changes in lipid parameters. Depiction is based on data derived from treatment with the medium
concentration of aleglitazar. Numbers in the blue or yellow boxes indicate the number of gene expression state changes that support the inference:
negative numbers indicate an inferred decrease and positive numbers indicate an inferred increase. Numbers in the green or red boxes indicate the
log fold change. HDL, high-density lipoprotein; LDL, low-density lipoprotein; Med, medium; TG, triglycerides.
doi:10.1371/journal.pone.0035012.g005
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Figure 6. Cellular stress response-associated RNA changes and inferred signaling pathways. (A) Biologic processes associated with the
cellular stress response inferred to increase or decrease upon treatment with aleglitazar, tesaglitazar or Pio/Feno. See Figure 2A for treatment dosages.
As in Figure 5A, proxy hypotheses are shown. (B) Molecular signaling pathway, predicted by RNA state changes shown in panel A, that could lead to
changes in the stress response. Numbers in the blue or yellow boxes indicate the number of gene expression state changes that support the
inference: negative numbers indicate an inferred decrease and positive numbers indicate an inferred increase. Numbers in the green or red boxes
indicate the log fold change. * Denotes genes/pathways responsive to the agent cited. ER, endoplasmic reticulum; Med, medium; ROS, reactive
oxygen species.
doi:10.1371/journal.pone.0035012.g006

Unique Gene Signature Profile of PPAR-a/c Agonists

PLoS ONE | www.plosone.org 8 April 2012 | Volume 7 | Issue 4 | e35012



II SYNCHRONY trial, aleglitazar exerted a greater effect on

HDL-C compared with open-label Pio (,25% vs ,16%,

respectively) [12]. Elucidation of the specific pathways that may

underlie the differences between aleglitazar, tesaglitazar and Pio/

Feno requires further investigation.

CNM also showed that aleglitazar is associated with greater

inferred decreases in SREBF1A activity compared with tesaglita-

zar, supported by decreased mRNA expression of genes related to

LDL synthesis (FADS1/2). These results suggest that aleglitazar

may more effectively decrease LDL than tesaglitazar. Indeed, a

previous study demonstrated mild to moderate induction of

Figure 7. Insulin signaling and biologic response-associated RNA changes and inferred signaling pathways. (A) Observed RNA state
changes related to insulin signaling and biologic processes inferred to increase or decrease upon treatment with aleglitazar, tesaglitazar or Pio/Feno.
See Figure 2A for treatment dosages. (B) Molecular signaling pathway that could lead to changes in insulin signaling to decrease cellular proliferation.
Depiction is based on data derived from treatment with the medium concentration of aleglitazar. Numbers in the blue or yellow boxes indicate the
number of gene expression state changes that support the inference: negative numbers indicate an inferred decrease and positive numbers indicate
an inferred increase. Numbers in the green or red boxes indicate the log fold change. AMP, adenosine monophosphate; CDK, cyclin-dependent
kinase; Med, medium.
doi:10.1371/journal.pone.0035012.g007
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FADS1 with the PPAR agonists tesaglitazar and muraglitazar,

respectively [45]. The greater relative magnitude of the changes in

LDL inferred for aleglitazar in this study are also consistent with

results from clinical studies, which have found that aleglitazar

significantly decreases LDL levels in patients with T2DM [12].

Tesaglitazar was reported to decrease LDL in several studies

[6,47,48], with one exception, in which tesaglitazar, in combina-

tion with insulin, increased LDL [7]. The greater magnitude of

effect of aleglitazar versus Pio/Feno on LDL is also consistent with

results from clinical studies, which have shown that both Pio and

fibrates affect LDL particle size and density but have minimal

effects on LDL levels [51,52].

When cells are exposed to oxidative stress, electrophiles or other

exogenous agents, a complex cascade of stress-inducible enzymes

and related transcription factors is initiated. The cellular stress

response induced by therapeutic intervention may have implica-

tions for drug safety. Deregulation of genes involved in the

oxidative stress response (HMOX1, POR) has previously been

shown in response to both PPAR-c and dual PPAR-a/c agonists

[45]. In the present study, inferred changes in pathways

contributing to the cellular stress response (NFE2L2, nelfinavir-

responsive genes and dimethylnitrosamine-responsive genes) were

less strongly induced by aleglitazar than by tesaglitazar or Pio/

Feno. NFE2L2 may lead to the induction of other genes that may,

in turn, lead to changes in the stress response, such as heme

catabolism gene expression, glutathione metabolism gene expres-

sion, xenobiotic metabolism, chaperones and the ubiquitin-

proteasome pathway. Since tesaglitazar and Pio/Feno were

inferred to more strongly induce NFE2L2 than aleglitazar,

aleglitazar may have less potential for toxic effects than tesaglitazar

or Pio/Feno.

All three treatments exerted similar effects on mechanisms

related to proliferative signaling, decreasing activity related to

proliferation and survival (PI3K and YY1) and increasing activity

related to apoptosis and decreased proliferation (PTEN, FOXO1

and p53). FOXO1 and p53 activity inhibit cell cycle progression

and proliferation, in part through the increased expression of the

cyclin-dependent kinase inhibitor p21 (CIP1/WAF1/CDKN1A). In

addition to these components, changes in E2F family, RB1 and

CDKN1A activity are usually inferred in association with

experimentally observed inhibition or activation of the cell cycle

[53]. Such supporting mechanisms were not inferred for any

treatment in this study. Inferred changes in MYC or MYCN

activity, which, in our experience, are also generally strongly

associated with changes in proliferation, were also not observed in

this study. Thus, interpretation of the effect of treatment on cell

cycle progression must be made with caution in the absence of

these supporting observations or direct studies. Similarly, inference

of changes in glucose handling as a consequence of purported

reductions in PI3K and increased PTEN activities must be made

with caution.

Several limitations in interpretation of the results of this study

should be acknowledged. The inferences of change in activity of

genes/pathways, while drawn from a curated knowledgebase of

previously published wet-laboratory experiments, are in silico

predictions and must be independently validated in further

investigations. A recent study by Rogue et al. revealed interindi-

vidual variability in the response of different human primary

hepatocyte populations to different PPAR agonists [45]. However,

that investigation employed very high concentrations of PPAR

ligands (e.g. for tesaglitazar, 300 mM, .400-fold human thera-

peutic exposure [54]), much higher than the concentrations

employed in our study (1.4 to 36 mM). Furthermore, Rogue et al.

did not correct for multiple testing. The high concentrations of

tesaglitazar in the study by Rogue et al. induced between 2,111 and

3,277 differentially expressed genes, representing .10% of all

genes represented on the arrays. In contrast, we found only 189,

326 and 359 gene state changes at the low (1.4 mM), medium

(7.2 mM) and high (36 mM) concentrations of tesaglitazar,

respectively. We believe that use of pharmacologically relevant

concentrations of ligands, a uniform cell population, short

incubation times, sufficient biological replicates and rigorous data

analysis (e.g. correction for multiple testing) is critical to ensure

detection of specific gene signatures that allow rigorous compar-

ative evaluation of differential effects of the different ligands.

However, it is worth noting that despite the differences between

the two studies Rogue et al. also concluded that individual PPAR

agonists exhibit unique yet overlapping gene-expression profiles

[45].

Based on the data presented here, distinct dual PPAR-a/c
agonist treatments induce unique transcriptional signatures,

despite comparable core PPAR signaling. Using CNM, aleglitazar,

a balanced dual PPAR-a/c agonist, was shown to have a distinct

gene activation profile compared with the dual PPAR-a/c agonist

tesaglitazar and concomitant Pio/Feno treatment. These obser-

vations may translate into benefits in dyslipidemia, as well as a

differentiated safety profile for aleglitazar compared with other

dual PPAR-a/c agonists. Aleglitazar is currently under investiga-

tion in a large outcomes-driven Phase III study (ALECARDIO),

evaluating its ability to reduce CV morbidity and mortality in post-

acute coronary syndrome patients with T2DM [13].
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