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Abstract 
 
In this study, the combined effects of erosion and corrosion on carbon steel were investigated 

in three environments containing crude oil, reservoir water, and a mixture of both solutions at 

a range of applied potentials, velocities and impact angle. The results indicate that the 

corrosion contribution was augmented with an increase in the percentage of reservoir water. 

Both the erosion and corrosion contributions increased with impact velocity for all three 

environments. Following exposure of the carbon steel in the crude oil, the extent of the 

erosion was greater than that of corrosion, whilst in the reservoir water, the erosion and 

corrosion contributions were similar.  Mechanisms of erosion-corrosion were proposed based 

on the change in erosion behaviour at various impact angles and applied potentials in the 

various environments.  Erosion-corrosion maps were constructed based on the results, 

showing the change in mechanisms and wastage rates as a function of impact velocity and  

applied potential at various impact angles. 

 
1. Introduction 

 
In oil production, the presence of sand, combined with various salts and gases results in 

erosion-corrosion of tubing in downstream and upstream oilfields [1--4]. Sand production 

from oil reservoir conditions can be controlled by design of a gravel pack which prevents it 

from combining with oil in the process of transportation from downstream to upstream 

conditions [2]. In such conditions, corrosion occurs due to H2S and CO2 [2, 3]. Prediction of 

the service life of the material in oil production activities under these conditions is 

approached with some difficulty [3].  Erosion-corrosion is thus a serious issue in oil fields, 

both in onshore and offshore conditions, because it can cause significant degradation to 

materials used in the transportation process and has led to development of various test rigs to 

simulate the process [5].    

 

In the literature on tribo-corrosion, there have been attempts to separate the erosion, corrosion 

and interaction between the processes using various techniques [6-9].  This is important, as 

the effects of corrosion on erosion and erosion on corrosion on material degradation can lead 

to different modes of degradation on the material surface.  Quantification of these 

components of the interaction can facilitate analysis of material loss mechanisms and 

development of predictive models of material lifetime [10-15].   



Progress in the understanding of erosion-corrosion of materials has been achieved by the 

development of erosion-corrosion diagrams showing mechanisms of damage as a function of 

the main erosion-corrosion variables [3, 4, 6, 13-15].  Such mechanistic maps provide an 

important tool for monitoring the mechanistic changes in erosion-corrosion as a function of a 

multi-parameter set. However, to date such maps have rarely been used for application to oil 

/water conditions.   

 

In this paper, the effects of impact velocity, impact angle and applied potential were assessed 

for carbon steel in a range of crude oil/water slurries. Erosion-corrosion maps were generated 

based on the results showing the variation in wastage and regime of degradation as a function 

of these variables. The potential applications of such maps to such materials issues in 

oil/water conditions are addressed in this paper.    

  

2. Experimental details  

 

2.1. Erosion-corrosion test methods 

 

The erosion–corrosion tests were carried out using an impinging jet apparatus, as shown in 

Fig.1 [5]. The apparatus consisted of a jet of particles in an aqueous flow enabling the effect 

of erosion variables to be evaluated independently of each other. The impact angle of the 

specimen could be varied by rotating the stationary specimen. The velocity was calibrated 

through knowledge of the geometry of the outlet jet. The slurry was composed of Al2O3 

between 600-710 µm Fig. 2(a-b), in a buffer solution of Na2CO3 + NaHCO3 .   The pH value 

was 8.3.   The test specimen was connected to an electrochemical cell as shown elsewhere (4) 

and the reference electrode was Saturated Calomel.   

 

Potentiodynamic polarization curves were measured through sweeping the potential in a 

positive direction from −800 to 800 mV at a sweep rate of 200 mV min-1. Erosion–corrosion 

tests were conducted at five applied potentials namely, -400 mV,-200 mV, 0 mV, 200 mV 

and 400mV (SCE) for 30 minutes using a computer controlled ACM potentiostatic to fix the 

potential at the required value.  The test material was carbon steel supplied by Kelvin Steel 

Glasgow with chemical composition as percentage: C: 0.18, Mn 1.6, Si 0.55, Cr 0.25, Cu: 

0.35, Ni: 0.3, S: 0.008. The chemical composition of crude oil in ppm (mass) was (Ca: 33.26, 

Na: 4.26, K: 1.07, H2S: 0.0007). The specific gravity was 0.7674 and density was   767 g l-1. 



The dimensions of the specimens were 25mm × 10mm × 4 mm. The area exposed to 

impingement jet was 0.19cm2, whilst the remaining area was covered by a coating in order to 

ensure that all corrosion measurements related to the erosion-corrosion process only.   

 

Mass change measurements were made of the samples post testing using a Metter electronic 

balance. The tests were carried out at two impact angles i.e. 15°, 90° and three velocities i.e. 

2.5, 3.5 and 4.5 m s−1, for 30 minutes.  The reproducibility of the experiments was estimated 

to be ± 5% calculated between two consecutive experiments. Following exposure, the 

samples were cleaned with distilled water to remove any deposited material, and were 

subsequently evaluated using Scanning Electron Microscopy.    

  

3. Results 
 
3.1 Electrochemical monitoring 

 

Electrochemical polarization was conducted under potentiodynamic conditions to observe the 

effects of erosion-corrosion on the carbon steel.   The effect of erosion-corrosion on carbon 

steel in water environment at an impact velocity and impact angle 2.5 m s−1 and 15°, Fig. 3(a) 

showed that the corrosion current densities were increased in a positive direction with higher 

water content in the slurry.  In the crude oil environment, it was clear that the free corrosion 

potential Ecorr had a higher value compared to that in the combined environments and the 

value of the cathodic current was greater than that of the anodic current.  At impact angles of  

90°, in the water environment, the anodic current density shifted to higher values with 

increases in the impact angle from 15° to 90°, Fig. 3(b). 

 

With an increase in the impact velocity to 3.5 m s−1 in the crude oil environment, there was an  

increase in the current densities recorded for all the test conditions, Fig.4 (a), with a similar 

increase at higher impact angles, Fig. 4(b), Figs. 3-4. At 4.5 m s−1, Fig.5 (a) and 15°, the 

current density values tended to shift to higher values and thus the values of corrosion 

contribution were higher at 4.5 m s−1 than at 3.5 m s−1.  A similar pattern of increase in 

corrosion current density was observed at higher impact angles, Fig. 5(b), at the higher 

velocities.    

 

 



 

3.2. Volume loss  

 

The weight change during erosion-corrosion can be given as follows;   

Kec= Ke + Kc                                          (1) 

Ke= Keo+ ∆Ke                        (2) 

Kc=Kco +∆Kc                    (3) 

 

where Kec is total erosion-corrosion rate, Keo is the erosion rate in absence of corrosion, Kco 

is the corrosion rate in the absence of erosion, ∆Ke is the effect of corrosion on the erosion 

rate and ∆Kc is the effect of erosion on the corrosion rate. 

 

The individual contributions are given in Tables 1-6 at the various impact velocities.   

The values of Kc were calculated from the Faradaic conversion of the corrosion current 

density to mass loss. From Figs. 6 (a)-11(a), for carbon steel in the reservoir water, it was 

clear that the values of the corrosion contribution Kc were lower than those of the erosion 

contribution Ke in the same environment. 

 

For carbon steel in the crude oil environment, Figs.6 (b)-11(b), the value of the corrosion  

contribution Kc in the crude oil was less than that in the reservoir water environment and the 

oil/water environment.   The value of Ke was greater in this environment than in the other 

conditions due to less corrosion occurring under these conditions, Fig. 3-5.  In the oil/water 

conditions, Figs. 6(c)-11(c), the overall value of Kec was lower than that in the water 

conditions, Fig. 6(a)-11(a), which was also attributed to the lower corrosion rates in such 

conditions.   

 
Scanning electron microscopy, Figs.12 -13, showed differences in the surfaces for exposure 

to the various environments.  The surface of the specimens in the water environment 

exhibited a rougher morphology, Fig. 12(a), compared to that in the crude oil environment, 

Fig. 12(b), and the oil/water water environment, Fig. 12(c).  Increases in velocity resulted in a 

significant increase in plastic deformation, with evidence of greater indentation of metal and 

corrosion film in such conditions, Fig. 13 (a-c).  

 
 
 



4. Discussion 
 
 
4.1. Effect of applied potential and impact velocity. 
            
For the carbon steel in the reservoir water, the general trend is for the corrosion current 

densities to increase with increase in impact velocity, Figs.3-5(a).  This is possibly due to the 

effects of repeated impacts removing the film and thus increasing the charge required for re-

passivation.  For the carbon steel in the crude oil and reservoir water/oil, a similar pattern of 

an increase in corrosion current density is observed, at 90°, Figs.3-5 (b). However, the extent 

of such increases is not as high compared to those for carbon steel in the reservoir water, 

probably due to the higher corrosion resistance of the oil film. 

 

It is interesting that the total erosion–corrosion mass losses Kec, Figs.6-11(b-c) are 

significantly lower for the carbon steel in crude oil and oil/water compared with the carbon 

steel in reservoir water.  For the carbon steel in reservoir water, there is evidence of an 

increase in Kc with increases in impact angle from 15° to 90° at all impact velocities 

consistent with observations from previous work [3-4].    

  

 

4.2. Erosion-corrosion maps 

 

The erosion-corrosion mechanism maps show transition regimes between erosion-corrosion, 

corrosion-erosion, and corrosion mechanism as a function of Ke/Kc [4, 6]:    

Ke/Kc  < 0.1  Corrosion-dominated   (4) 

1>Ke/Kc  ≥0.1  Corrosion-erosion   (5) 

10>Ke/Kc ≥1   Erosion-corrosion   (6) 

Ke/Kc ≥10  Erosion-dominated   (7) 

 

where Ke and Kc are  the erosion and corrosion contributions respectively.   

  

Tables 1 to 6 show the methodology for calculating the values of boundaries (Ke/Kc). 

The corrosion process can either be dissolution, passivation, transpassivation, or pitting [3, 4 

and 6].  Wear maps have also used in micro-abrasion to characterize the particle motion 

transitions in abrasive contacts [16].  



 

The erosion–corrosion mechanism maps, Figs.14-15, demonstrate   that the boundaries for 

carbon steel in the crude oil and water/oil environments are unlike to those of the reservoir 

water environment.  

 

In the reservoir water, at lower impact angles15°, the erosion –dissolution regime is observed 

at the low lower potential range, Fig.14 (a).  At higher potentials, there is the transition from 

erosion- passivation to passivation-erosion for carbon steel in the reservoir water, as velocity 

is increased in the low velocity range.  This may be attributed to the formation of oxide films 

on the surface of specimen in the anodic conditions, as increases in velocity are associated 

with increases in oxygen concentration to the surface [7]. The shift in the regime back to 

erosion-passivation behaviour, at further increases in velocity, indicates that the corrosion 

products tend to be removed at higher-impact velocities, in the anodic regime Fig.14 (a).   

 

In the crude oil conditions, the map is dominated by erosion-dominated behaviour, Fig. 14 

(b), indicating corrosion is low compared with erosion in such conditions, and consisting with 

the polarization and mass loss data, Figs, 3-11.. 

 

In the crude oil/water conditions, Fig, 14 (c ), the transitions between erosion dissolution and 

erosion passivation shift to higher potentials below 3.5 ms-1 and to lower potentials above 3.5 

ms-1.  This is possibly due to the competing effects of erosion, the increased oxygen 

concentration to the surface at higher velocities and the shielding presence of the oil film on 

the surface.   

 

At 90 ° impact angles, in reservoir water, Fig. 15(a), the passivation-erosion regime 

dominates in anodic conditions, unlike that observed at lower impact angles, Fig. 14(a). This 

may be due to a change in corrosion mechanism at the higher impact angles. For the crude 

oil, Fig. 15(b), erosion-dominated behaviour is the main material loss mechanism, similar to 

that observed at lower impact angles, Fig. 14(b).  There is no evidence of any corrosion 

regime, which is attributed to the role of oil film in reducing the mass loss due to corrosion.  

For the crude oil/water conditions, Fig. 15(c), the effect of velocity appears to increase the 

predominance of the erosion-passivation regime, as the potential is swept in a positive 

direction.  At these higher impact angles, the extent of erosion-dissolution is greater than at 

lower impact angles, Fig. 14(c).   



 

Erosion–corrosion wastage maps can be used to demonstrate the differences between levels 

of wastage as a function of velocity and electrochemical potential.  The low-wastage regime 

correspond to wastage between less or equal to 6 mg cm −2 h−1, the intermediate region 

between 6 and mg cm −2 h−1, and   50 mg cm −2 h−1 and the high-wastage region,  values 

greater than 50 mg cm −2 h−1.[3,4 and 6]. From the results of erosion–corrosion wastage maps 

Figs.16-17(a-c) it is interesting that the crude oil environments provide the optimum  

protection against corrosion and erosion at the impact angle, velocities and potentials 

considered in this study.  

 

The protective nature of the oil film is more evident at lower impact velocities   i.e. 2.5 ms− 1 

where the higher resistance of the oil film limits the extent of the medium wastage regime at 

anodic dissolution potentials, Figs. 16 (a-b), for impact at 15°. The map for the crude 

oil/water environment, Fig. 16(c), is intermediate between those for the reservoir water and 

crude oil, Figs. 16(a-b).  At 90°, the wastage maps show less evidence of the low regime for 

the reservoir water conditions, Fig. 17(a), compared to that observed at lower impact angles, 

Fig. 16 (a), in the cathodic region.  There is very little difference in the maps for the crude oil 

conditions at both impact angles, Fig. 16(b)-7(b).  However, in the crude oil/water conditions, 

at higher impact angles, Fig. 17(c), there is an increase in the medium wastage regime 

compared to that observed at lower impact angles, Fig. 16(c).   

    

Erosion-corrosion additive-synergism maps show the transition in the material degradation 

with change in the impact velocity and applied potentials.  Tables 1 to 6 show the values of 

ΔKe/ΔKc ratio for the carbon steel in three different environments.  

From the following regimes, erosion-corrosion additive-synergism maps can be constructed 

[3, 4, 6 and 9]  

 

∆Ke/∆Kc <0.1  Additive       (8)  

1>∆ Ke/∆Kc≥0.1 Additive-synergistic      (9) 

∆Ke/∆Kc>1  Synergistic      (10) 
 
 

Additive behaviour defines the situation where the enhancement of corrosion due to erosion 

∆Kc is greater than the effect of corrosion on the erosion ∆Ke (erosion due to corrosion) [3-



4]. In cases where corrosion may enhance the erosion ∆Ke, this interaction is defined as 

synergistic behaviour (∆Ke). On the other hand, where it reduces erosion i.e. where the 

passive film reduces erosion, then the reverse occurs and the mechanism is defined as 

antagonistic (-∆Ke) [4, 6].  Both synergistic and antagonistic behaviour are characteristics of 

erosion-corrosion processes [3, 4, 6].  

 

From the results, at impact angles of 15°, it is clear that in the additive region, is highest in 

water environment, Fig. 18(a).  Antagonistic regimes occupy the area at higher potentials 

possibly due to the protective effect of corrosion products on the surface of specimen Figs.18 

(a), at lower velocities.  The greater predominace of antagonistic regimes in the crude oil and 

oil/ water conditions is attributed to the presence of the oil film protecting the surface from 

erosion, Fig. 18 (b-c).  At higher impact angles, Fig. 19 (a-c), the level of antagonism is 

reduced in all environments, as the impact angle is increased.  The fact that the regimes of 

antagonism “sit” in various windows of conditions in the oil and oil/water slurries, Figs.19 

(b-c), possibly indicates different mechanisms of erosion as a function of the variables 

assessed above.  

 

Further analysis of the volume loss results, as a function of impact angle, Fig. 20 (a-c), Table 

7, indicates that that the peak in the value of Kec shifts to lower impact angles with increases 

in water content in the slurry mixture but that the value of Kc is significantly higher than Ke  

at 90o than at 15 o.  Fig. 21-22, illustrate schematically the change in mechanisms of erosion 

as a function of impact angle, with the highest erosion occurring at lower impact angles for 

the environments containing water and the reverse occurring for the crude oil conditions.  

The higher passive film formation at 90o compared to that 15 o, indicates different mechanism 

of material removal as a function of impact angle for the film formed in the water conditions.      

Clearly, the erosion-corrosion performance in such environments is a function of many 

variables, with the oil and hydrated films having many different effects on the dynamics of 

the particle impact.         

 

 

5.  Conclusions 
 

(i)The erosion-corrosion of carbon steel was evaluated in a range of slurry solutions 

containing oil and water and at various impact angles and applied potentials.  



(ii)The results indicated that the mass losses in the aqueous environment were highest in all 

cases, with the mechanism of erosion-corrosion changing as a function of impact angle and 

velocity for the oil/water solutions. 

(iii) Erosion-corrosion maps have been constructed showing the mechanistic changes and 

extent of synergy and antagonism as functions of applied potential, impact angle and 

oil/water content in the slurry solution.  
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Captions for figures 
 

Fig 1:  Schematic diagram of erosion-corrosion test rig 

Fig 2:  Optical microscopy of aluminium oxide particles used in the erosion-corrosion test rig 

:(a) oil (b) Water. 

Fig 3:  Polarization curves for carbon steel in three environments, at 2.5 m s−1: 
(a) 15° (b) 90° 
 
Fig 4:  Polarization curves for carbon steel in three environments, at 3.5 m s−1: 
(a) 15° (b) 90° 
 
Fig 5:  Polarization curves for carbon steel in three environments, at 4.5 m s−1:            (a) 15° 
(b) 90°   
3.5 m s−1 (a) 15° (b) 90° 
 
Fig.6:  Total  volume loss as  a function of applied potential  for carbon steel at 15° and 2.5 
m s−1 in (a) water (b) oil and   (c) oil / 20% water                        
 
Fig.7:  Total  volume loss as  a function of applied potential  for carbon steel at 15° and 3.5 
m s−1 in (a) water (b) oil and   (c) oil / 20% water                        
 
Fig.8:  Total  volume loss as  a function of applied potential  for carbon steel at 15°  and 4.5 
m s−1 in (a) water (b) oil and   (c) oil / 20% water 
 
Fig.9:  Total  volume loss as  a function of applied potential  for carbon steel at 90° and 2.5 
m s−1 in (a) water (b) oil and   (c) oil / 20% water                        
 
Fig .10: Total volume loss as a function of applied potential for carbon steel  
 at 90° and 3.5 m s−1 in (a) water (b) oil and   (c) oil / 20% water    
 
Fig .11: Total volume loss as a function of applied potential for carbon steel at 90° and 4.5 
m s−1 in (a) water (b) oil and   (c) oil / 20% water    
 
Fig. 12: Scanning electron micrographs of eroded carbon steel test specimen at 2.5 m s−1, -
400mV and 15°: (a) water (b) crude oil and (c) oil / 20% water.    

  
          Fig. 13: Scanning electron micrographs of eroded carbon steel test specimen at 4.5   
          m s−1  , 400mV and 90°:(a)  water (b) oil and (c) oil / 20% water  

                     
                      Fig. 14: Erosion-corrosion mechanism maps for carbon steel in (a) water (b)   

crude oil and   (c) oil / 20% water  at 15°. 
        
          Fig. 15: Erosion-corrosion mechanism maps for carbon steel in (a) in water 

(a) in crude oil (c) 20% of water / crude oil at 90°. 
 

         
 
 



 
       Fig. 16: Erosion-corrosion wastage maps for carbon steel in (a) water environment (b)   
        in crude oil (c) 20% of water / crude oil at 15°. 

 
       Fig. 17: Erosion-corrosion wastage maps for carbon steel in (a) water environment   
       (b) in crude oil (c) 20% of water / crude oil at 90°. 
 
       Fig. 18: Erosion-corrosion additive-synergism maps for carbon steel in (a) in water      
       (b) crude oil (c) 20% of water / crude oil at impact angle 15°. 
                
        Fig. 19: Erosion-corrosion additive-synergism maps for carbon steel in (a) in water   
       (b) in crude oil (c) 20% of water / crude oil at 90°.    
                

                Fig. 20: Volume loss as function of impact angle for carbon steel at 200 mV and               
                 2.5 m s−1  impact velocity in (a) water(b) crude oil  (c) oil/ 20% water   
                         

                        Fig. 21: Schematic diagram showing change in mechanism of erosion-corrosion for   
               carbon steel at impact angle 15° in (a) water (b) crude oil (c) oil/20% water.    
                        

                        Fig. 22: Schematic diagram showing change in mechanism of erosion-corrosion for   
               carbon steel at impact angle 15° in (a) water (b) crude oil (c) oil/20% water.    
 

  



Captions for Tables 

 
Table 1: Volume loss for carbon steel at various potentials and impact angle 15° at 2.5 m s−1 

(a) water (b) crude oil (c) oil/20% water.    
 

Table 2: Volume loss for carbon steel at various potentials and impact angle 15° at  3.5 m s−1  

(a)  water (b)  crude oil (c) oil/20% water.    
 
Table 3:Volume loss for carbon steel at various potentials and impact angle 15° at 4.5 
m s−1(a)  water (b)  crude oil (c) oil/20% water.    
  
Table 4: Volume loss for carbon steel at various potentials and impact angle of 90° at 2.5 
m s−1  (a)  water (b)  crude oil (c) oil/20% water.    

 
Table 5: Volume loss for carbon steel at various potentials and  impact angle of 90° at 3.5 
m s−1  (a)  water (b)  crude oil (c) oil/20% water.    
 
Table 6: Volume loss for carbon steel at various potentials and  impact angle of 90° at 4.5 
m s−1(a)  water (b)  crude oil (c) oil/20% water.   
  
Table 7: Volume loss as function of impact angle for carbon steel at applied potential 200mV 
and  impact velocity 2.5 m s−1 in (a) water (b) crude oil (c) oil/20% water.   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Tables 
 
 
Table 1: Volume loss for carbon steel at various potentials and impact angle 15° at  2.5 m s−1 

(a) water (b) oil and (c) oil / 20% water   
 

(a) 
 

  
mV Δke Δkc Δke/Δkc 

 
 

Ke/Kc Ke Kc Kec 
-400 8.90E-01 -2.10E-01 -4.2 1.5 2.59 1.72 4.31 
-200 7.50E-01 -1.40E-01 -5.4 1.4 2.45 1.78 4.23 

0 8.80E-01 -1.60E-01 -5.5 1.42 2.58 1.82 4.4 
200 7.30E-01 -5.00E-02 -14.6 1.3 2.43 1.95 4.38 
400 7.40E-01 -7.00E-02 -10.6 1.24 2.44 1.97 4.41 

 
 

(b) 
 

  
mV Δke Δkc Δke/Δkc 

 
 

Ke/Kc Ke Kc Kec 
-400 4.99E-01 1.10E-02 45.4 117.53 2.479 2.11E-02 2.5 
-200 6.04E-01 2.20E-03 274 158.5 2.584 1.63E-02 2.6 

0 1.403 -6.00E-04 -2337.5 182.8 3.383 1.85E-02 3.401 
200 1.781 5.00E-04 3561 193.8 3.761 1.94E-02 3.78 
400 1.779 2.90E-03 613 200 4.289 2.14E-02 4.31 

 
(c) 

 
 
 
 
 
 
 
 
 
 
 

  
mV Δke Δkc Δke/Δkc 

 
 

Ke/Kc Ke Kc Kec 
-400 3.30E-01 -1.20E-01 -2.8 2.9 2.31 0.8 3.11 
-200 3.58E-01 -4.00E-02 -9 2.87 2.338 0.812 3.15 

0 8.00E-02 -8.00E-02 -1 2.6 2.06 0.78 2.84 
200 1.20E-01 -3.00E-02 -4 3.08 2.1 0.68 2.78 
400 -9.00E-02 -9.00E-02 1 2.6 1.89 0.71 2.6 



 
 

Table 2: Volume loss for carbon steel at various potentials and impact angle 15° at 3.5 m s−1  

(a)  water (b)  oil and (c) oil / 20% water   
(a) 

 

  
mV Δke Δkc Δke/Δkc 

 
 

Ke/Kc Ke Kc Kec 
-400 -6.00E-01 1.1 -0.55 1.5 1.4 4.12 5.52 
-200 -2.30E-01 7.30E-01 -0.31 0.42 1.77 4.21 5.98 

0 -3.50E-01 8.60E-01 -0.40 0.38 1.65 4.38 6.03 
200 -2.70E-01 8.70E-01 -0.31 0.39 1.73 4.48 6.21 
400 1.49E+00 5.10E-01 2.92 0.77 3.49 4.51 8 

 
 

(b) 
 

  
mV Δke Δkc Δke/Δkc 

 
 

Ke/Kc Ke Kc Kec 
-400 2.26 -2.60E-03 -869 241 4.561 1.89E-02 4.58 
-200 2.8 -2.20E-03 -1272 244 5.099 2.09E-02 5.12 

0 2.77 5.80E-03 478 196 5.074 2.59E-02 5.1 
200 3.27 2.00E-03 1637 214 5.574 2.61E-02 5.6 
400 4.67 5.00E-04 9348 270 6.974 2.58E-02 7 

 
  

(c) 
 

  
mV Δke Δkc Δke/Δkc 

 
 

Ke/Kc Ke Kc Kec 
-400 1.86 -7.00E-02 -26.6 4.95 4.16 0.84 5 
-200 2.72 1.10E-01 24.7 5.12 5.02 0.98 6 

0 2.81 -3.00E-02 -94 5.74 5.11 0.89 6 
200 3.17 1.30E-01 24.4 5.9 5.47 0.93 6.4 
400 3.71 2.00E-01 18.6 5.01 6.01 1.2 7.21 

 
 
 
 
 
 
 
 
 
 
 



 
Table 3:Volume loss for carbon steel at various potentials and impact angle 15° at 4.5 
m s−1(a)  water (b)  oil and (c) oil / 20% water   

(a) 
 

  
mV Δke Δkc Δke/Δkc 

 
 

Ke/Kc Ke Kc Kec 
-400 -1.00E-02 1.22 E+00 -8.20E-03 5.23E-01 2.99 5.72 8.71 
-200 -6.10E-01 1.23 E+00 -4.95E-01 4.09E-01 2.39 5.84 8.23 

0 8.20E-01 1.1 E+00 7.45E-01 6.46E-01 3.82 5.91 9.73 
200 1.76E+00 2.60E-01 6.8 E+00 9.08E-01 4.76 5.24 10 
400 2.25E+00 1.20E-01 18.8 E+00 1.01E+00 5.25 5.2 10.45 

 
(b) 

 

  
mV Δke Δkc Δke/Δkc 

 
 

Ke/Kc Ke Kc Kec 
-400 3.88 1.00E-03 3871 259 7.471 2.88E-02 7.5 
-200 3.64 5.00E-03 728 192 7.242 3.78E-02 7.28 

0 4.36 1.80E-03 2421 186 7.957 4.28E-02 8 
200 4.83 7.00E-03 689 187 8.425 4.50E-02 8.47 
400 4.47 -2.00E-04 -22361 168.9 8.072 4.78E-02 8.12 

 
 

(c) 
 

  
mV Δke Δkc Δke/Δkc 

 
 

Ke/Kc Ke Kc Kec 
-400 2.9 -5.00E-02 -57 4.78 6.45 1.35 7.8 
-200 3.1 2.00E-01 15.5 5.15 6.7 1.3 8 

0 3.7 2.00E-01 18.4 4.85 7.28 1.5 8.78 
200 3.74 -2.00E-02 -187 4.4 7.34 1.68 9.02 
400 4.01 -1.00E-01 -40.1 4.01 7.61 1.9 9.51 

 
 
 
 
 
 
 
 
 
 
 
 
 



Table 4: Volume loss for carbon steel at various potentials and impact angle 90° at 2.5 m s−1  

(a)  water (b)  oil and (c) oil / 20% water   
 

(a) 
 

  
mV Δke Δkc Δke/Δkc 

 
 

Ke/Kc Ke Kc Kec 
-400 9.00E-01 -2.00E-01 -4.50E-01 1.42 E+01 2.5 1.71 4.21 
-200 3.00E-01 2.80E-01 1.07E+01 8.60E-01 1.9 2.21 4.1 

0 -3.00E-01 4.80E-01 -6.25E-02 5.70E-01 1.57 2.73 4.3 
200 -3.80E-01 5.00E-01 -7.60E-01 4.40E-01 1.22 2.78 4 
400 -1.20E-01 1.00E-01 -1.20E-01 5.90E-01 1.48 2.53 4 

 
(b) 

 

  
mV Δke Δkc Δke/Δkc 

 
 

Ke/Kc Ke Kc Kec 
-400 4.00E-01 -1.70E-04 -231 116 2.092 1.81E-02 2.11 
-200 1.43 7.00E-04 2043 159 3.13 1.97E-02 3.15 

0 1.68 5.00E-04 3360 169 3.38 2.00E-02 3.4 
200 2.27 5.20E-03 438 164 3.976 2.42E-02 4 
400 2.27 7.00E-03 325 150 4.084 2.65E-02 4.11 

 
(c) 

 
 
 
 
 
 
 
 
 
 
 
 
 

  
mV Δke Δkc Δke/Δkc 

 
 

Ke/Kc Ke Kc Kec 
-400 4.80E-01 2.30E-01 2.01 2.42 2.18 0.9 3.08 
-200 1.70E-01 3.00E-01 5.60E-01 2.05 1.87 0.91 2.78 

0 4.30E-01 -2.00E-02 -21.5 2.73 2.13 0.78 2.91 
200 5.70E-01 -6.00E-02 -9.5 3.11 2.27 0.73 3 
400 7.00E-01 2.00E-02 35 3 2.4 0.8 3.2 



Table 5: Volume loss for carbon steel at various potentials and impact angle 90° at 3.5 m s−1  

(a)  water (b)  oil and (c) oil / 20% water   
(a) 

 

  
mV Δke Δkc Δke/Δkc 

 
 

Ke/Kc Ke Kc Kec 
-400 -3.00E-01 2.10E-01 -1.43 4.40E-01 1.9 4.31 6.21 
-200 -2.30E-01 4.80E-01 -0.48 4.50E-01 1.97 4.38 6.35 

0 2.80E-01 9.90E-01 2.80E-01 4.90E-01 2.48 5 7.48 
200 3.00E-01 1.61 1.90E-01 4.50E-01 2.5 5.52 8.02 

400 -9.00E-02 1.49 -6.40E-02 3.60E-01 2.11 5.81 7.92 
 

(b) 
 

  
mV Δke Δkc Δke/Δkc 

 
 

Ke/Kc Ke Kc Kec 
-400 2.70 4.70E-03 575 181 4.754 2.62E-02 4.78 
-200 2.92 4.90E-03 596 181 4.973 2.74E-02 5 

0 3.31 6.90E-03 454 178 5.181 2.91E-02 5.21 
200 3.7 7.10E-03 521 191 5.75 3.01E-02 5.78 
400 4.42 7.80E-03 566 201 6.468 3.21E-02 6.5 

 
 

(c) 
 

  
mV Δke Δkc Δke/Δkc 

 
 

Ke/Kc Ke Kc Kec 
-400 2.95 3.20E-01 9.21 4.54 5 1.1 6.1 
-200 3.15 2.00E-02 158 5.2 5.2 1 6.2 

0 3.27 2.00E-01 16.35 5.43 5.32 0.98 6.3 
200 3.13 4.30E-01 7.28 4.21 5.18 1.23 6.41 
400 3.75 3.60E-01 10.4 4.83 5.8 1.2 7 

 
 
 
 
 
 
 
 
 
 
 
 



Table 6: Volume loss for carbon steel at various potentials and impact angle 90° at 4.5 
m s−1(a)  water (b)  oil and (c) oil / 20% water   

 
(a) 

 

  
mV Δke Δkc Δke/Δkc 

 
 

Ke/Kc Ke Kc Kec 
-400 1.79 -7.00E-02 -25.57 9.80E-01 4.69 4.78 9.47 
-200 2.58 -5.40E-01 -4.78 1.35 5.48 4.83 10.31 

0 0.57 8.30E-01 6.90E-01 5.80E-01 3.47 6.03 9.5 
200 1.29 6.3 2.05 6.80E-01 4.19 6.13 10.32 
400 1.39 1.03 1.35 6.40E-01 4.29 6.73 11.02 

 
(b) 

 

  
mV Δke Δkc Δke/Δkc 

 
 

Ke/Kc Ke Kc Kec 
-400 3.94 6.90E-03 571 173 7.139 4.12E-02 7.18 
-200 4.56 7.40E-03 616 195 7.76 3.99E-02 7.8 

0 4.20 1.04E-02 404 162 7.404 4.56E-02 7.45 
200 4.75 9.10E-03 522 166 7.952 4.78E-02 8 
400 4.98 1.00E-02 493 158 8.178 5.18E-02 8.23 

 
(c) 

 

  
mV Δke Δkc Δke/Δkc 

 
 

Ke/Kc Ke Kc Kec 
-400 3.55 2.50E-01 14.2 4.66 6.75 1.45 8.2 
-200 3.9 2.90E-01 13.4 4.73 7.1 1.5 8.6 

0 3.92 3.00E-01 13 4.5 7.12 1.6 8.72 
200 4.7 3.00E-01 16 4.65 7.9 1.7 9.6 
400 4.78 -1.10E-01 -43.45 4.22 7.98 1.89 9.87 

 
 
 
 
 
 
 
 
 

 
 

 



Table 7: Volume loss as function of impact angle for carbon steel at applied potential 200mV 
and  impact velocity 2.5 m s−1 in (a) water (b) crude oil (c) oil/20% water.   
                                                                             
                                                                                   (a) 

Impact angle Ke(mg cm −2 h−1) Kc(mg cm −2 h−1) Kec(mg cm −2 h−1) 
15° 2.43 1.95 4.38 
30° 2.56 1.94 4.5 
45° 2.58 2.03 4.6 
60° 1.5 2.71 4.2 
75° 2.26 1.34 3.6 
90° 1.22 2.78 4 

 
(b) 

Impact angle Ke(mg cm −2 h−1) Kc(mg cm −2 h−1) Kec(mg cm −2 h−1) 
15° 3.761 1.94E-02 3.78 
30° 3.485 1.49E-02 3.5 
45° 3.545 1.51E-02 3.56 
60°              3.1 2.00E-02 3.12 
75° 3.577 2.33E-02 3.6 
90° 3.976 2.42E-02 4 

 
(c) 

Impact angle Ke(mg cm −2 h−1) Kc(mg cm −2 h−1) Kec(mg cm −2 h−1) 
15° 2.1 0.68 2.78 
30° 2.35 0.9 3.25 
45° 2.89 0.81 3.7 
60° 2.64 0.96 3.6 
75° 2.42 0.45 2.87 
90° 2.27 0.73 3 
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Fig (1): Schematic diagram of erosion-corrosion test rig  
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Fig (2): Optical microscopy of aluminium oxide particles used in the erosion-corrosion 

test rig: (a) oil (b) Water.  

 

 

 

  

 

-600

-400

-200

0

200

400

600

800

O il / 20% w ater
  O il

   W ater 

Po
te

nt
ia

l (
m

V)

 



 
 
 
 
 
 
 
 
 
 
 
   (a)                                                                                                    (b) 
Fig (3): Polarization curves for carbon steel in three environments, at 2.5 m s−1:(a) 15° (b) 90°   
 
 
 
 
 
 
 
 
 
 
 
 
  
 
  (a)                                                                                                    (b) 
Fig (4): Polarization curves for carbon steel in three environments, at 3.5 m s−1:             (a) 
15° (b) 90°   
 
 
 
 
 
 
 
 
 
 
 
    
 
 
 
(a)                                                                                                    (b) 
Fig (5): Polarization curves for carbon steel in three environments, at 4.5 m s−1:(a) 15° (b) 90° 
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(a)                                                  (b)                                                                       (c) 
Fig.(6): Total  volume loss as  a function of applied potential  for carbon steel at impact angle 
15° and 2.5 m s−1 in (a) water (b) oil and   (c) oil / 20% water                        
 
 
 
 
 
 
  
  
 
 
 
 
 
 
(a)                                             (b)                                                                       (c) 
Fig.(7): Total  volume loss as  a function of applied potential  for carbon steel at impact angle 
15° and 3.5 m s−1 in (a) water (b) oil and   (c) oil / 20% water                        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(a)                                                    (b)                                                                       (c) 
Fig.(8): Total  volume loss as  a function of applied potential  for carbon steel at impact angle 
15°  and 4.5 m s−1 in (a) water (b) oil and   (c) oil / 20% water 
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(a)                                             (b)                                                                       (c) 
Fig.(9): Total  volume loss as  a function of applied potential  for carbon steel at impact angle 
90° and 2.5 m s−1 in (a) water (b) oil and   (c) oil / 20% water                        
 
 
 
 
 
 
 
  
  
 
 
 
 
 
 
(a)                                             (b)                                                                       (c) 
Fig (10): Total volume loss as a function of applied potential for carbon steel  
 at impact angle 90° and 3.5 m s−1 in (a) water (b) oil and   (c) oil / 20% water    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(a)                                             (b)                                                                       (c) 
Fig (11): Total volume loss as a function of applied potential for carbon steel at impact angle 
90° and 4.5 m s−1 in (a) water (b) oil and   (c) oil / 20% water    
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 (a)       
Fig (12)
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Fig (13)
400mV
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                          Fig (14): Erosion-corrosion mechanism maps for carbon steel in (a) water (b)   
                             crude oil and   (c) oil / 20% water  at impact angle 15°. 



                     

- 5 0 0 - 2 0 0- 4 0 0

-1

4 0 02 0 00

4 .5

3 .5

E ( m v )

2 .5

ve
lo

ci
ty

 m
 s

  

 

Dissolution-Erosion 

Passivation-Erosion 

 
(a) 

- 2 0 0- 4 0 0

-1

4 0 02 0 00

4 . 5

3 . 5

E ( m v )

2 . 5

ve
lo

ci
ty

 m
 s

  

 

- 5 0 0

Erosion  Dominated

 
(b) 

- 5 0 0 - 2 0 0- 4 0 0

-1

4 0 02 0 00

4 .5

3 .5

E ( m v )

2 .5

ve
lo

ci
ty

 m
 s

  

 

Erosion- Passivation

Erosion- Dissolution 

 
(c) 

 
                   Fig (15): Erosion-corrosion mechanism maps for carbon steel in (a) in water  
                    (b) oil and (c) oil / 20% water  at impact angle 90°. 
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Fig (16): Erosion-corrosion wastage maps for carbon steel in (a) water (b) oil and       (c) oil / 
20% water at impact angle 15°. 
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Fig (17): Erosion-corrosion wastage maps for carbon steel in (a) water (b) oil and     (c) oil / 
20% water at impact angle 90°. 
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Fig (18): Erosion-corrosion additive-synergism maps for carbon steel in (a) water   (b) oil and 
(c) oil / 20% water at impact angle 15° 
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Fig (19): Erosion-corrosion additive-synergism maps for carbon steel in (a) water     (b) oil 
and (c) oil / 20% water at impact angle 90°.   



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)                                                         (b)                                                              (c) 
 

Fig.20: Volume loss as function of impact angle for carbon steel at 200 mV and 2.5 m s−1  impact 
velocity in (a) water(b) crude oil  (c) oil/ 20% water   
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Fig. 21: Schematic diagram showing changes in mechanism of erosion-corrosion for carbon 
steel at impact angle 15° in (a) water (b) crude oil (c) oil/20% water.      
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Fig. 22: Schematic diagram showing changes in mechanism of erosion-corrosion for carbon 
steel at impact angle 90° in (a) water (b) crude oil (c) oil/20% water.    
 

  material removal  Particle 

 Passive film
  material removal oil film

  material  removal
 oil film


