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We use the lubrication approximation to obtain a complete description of the
energetics of the breakup both of a fluid sheet of uniform thickness into a periodic
array of infinitely many identical thin rivulets and of a single thin rivulet into one
or more identical sub-rivulets on a vertical substrate in the presence of a prescribed
uniform longitudinal shear stress at the free surface of the fluid by comparing the
total energies of the different states. For both problems the situation when the
volume flux is positive is relatively straightforward (and, in particular, qualitatively
the same as that in the case of no prescribed shear stress), but when the volume flux is
negative it is more complicated. However, whatever the value of the prescribed shear
stress, there is always a critical thickness below which it is energetically favourable
for a sheet to break up into rivulets and a critical semi-width below which it is
energetically favourable for a rivulet to remain as a single rivulet, and a critical
thickness above which it is energetically favourable for a sheet to remain as a sheet
and a critical semi-width above which it is energetically favourable for a rivulet to
break up into sub-rivulets.
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1. Introduction

There are many physical situations that involve sheets and/or rivulets of fluid
subject to significant pressure and/or shear forces due to an external airflow; examples
include various coating flows, flows of condensate within heat exchangers and even
the flow of rainwater on the cables of cable-stayed bridges, which is believed to play
a key role in the so-called rain-wind-induced vibrations that such cables can undergo
on wet and windy days (see, for example, Robertson et al. 2010). As a consequence
there 15 an enduring theoretical and experimental interest in the possible breakup of
a sheet of fluid into rivulets and the possible breakup of a rivulet into sub-rivulets in
the presence of an external airflow.

The energetics of the breakup of a sheet of fluid into rivulets and the breakup of
a rivulet into sub-rivulets have been studied by many previous authors, including
Hartley & Murgatroyd {1964), Holber (1964), Bankoff (1971), Mikielewicz &
Moszynski (1976, 1978), Chung & Bankoff (1980), Doniec (1988, 1991), Schmuki
& Laso (1990), Hughes & Bott {1998), El-Genk & Saber (2001, 2002), Saber &
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El-Genk (2004), Myers, Liang & Wetton (2004), Wilson & Dufty (2005a,b), and
Sullivan, Wilson & Dufly (2008). In particular, in their landmark study building on
the pioneering work by Hobler (1964) and Bankoff (1971), Mikielewicz & Moszynski
(1976) analysed the critical condition for the breakup of a sheet of uniform thickness
draining under gravity down a vertical substrate into a periodic array of identical
rivulets. In particular, by equating the energies of the two states and minimizing the
energy of the rivulet state per unit width of the sheet, they determined the critical
thickness above which it is energetically favourable for the sheet to remain as a sheet
but below which it is energetically favourable for it to break up into rivulets. Adopting
a similar approach, Schmuki & Laso (1990) analysed the breakup of a rivulet draining
under gravity down a vertical or an inclined substrate into several identical sub-rivulets
by comparing the energies of the two states. El-Genk & Saber (2001) minimized the
energy of a rivulet draining under gravity down a vertical substrate and hence obtained
an expression for the critical thickness of a uniform sheet. Subsequently, the same
approach was used by El-Genk & Saber (2002) to analyse flow of an evaporating fluid
on a uniformly heated vertical substrate and by Saber & Fl-Genk {2004} to analyse
flow on an inclined substrate in the presence of a prescribed non-uniform shear stress.
Myers, Liang & Wetton (2004) investigated the breakup of a rivulet on an inclined
substrate in the presence of a prescribed uniform longitudinal shear stress at its free
surface into two sub-rivulets both numerically and asymptotically in the thin-film
limit. Specifically, by comparing the energies of states with one rivulet and two (in
general, non-identical) sub-rivulets, they calculated some examples of the critical width
below which it is energetically favourable for a purely gravity-driven rivulet to remain
as a single rivulet but above which it is energeticaily favourable for it to break up into
two sub-rivulets. In addition, they conjectured that it is never energetically favourable
for a purely shear-stress-driven rivulet to break up into two sub-rivulets. Wilson &
Duffy (2005b) calculated when it is energetically favourable for a thin rivulet on a
vertical substrate in the presence of a prescribed uniform longitudinal shear stress
to break up into two (again, in general, unequal) sub-rivulets. In particular, they
found that when breakup occurs the most energetically favourable state is that of two
identical sub-rivulets and disproved the conjecture of Myers et al. (2004) by showing
that 1t can be energeticaily favourable for a purely shear-stress-driven rivulet to break
up into two identical sub-rivulets. An analysis of the breakup of a thin rivulet of
perfectly wetting fluid (i.e. a rivulet with zero contact angle) on an inclined substrate
into several identical sub-rivulets was performed by Wilson & Duffy (2005a) (for
purely gravity-driven rivulets) and by Sullivan, Wilson & Duffy {2008) (for rivulets
in the presence of a prescribed uniform longitudinal shear stress).

In the present work, we use the lubrication approximation to obtain a complete
description of the energetics of the breakup both of a sheet of uniform thickness into
a periodic array of infinitely many identical thin rivulets and of a single thin rivulet
into one or motre identical sub-rivulets of a non-perfectly wetting fluid on a vertical
substrate in the presence of a prescribed uniform longitudinal shear stress at the free
surface of the fluid by comparing the total energies of the different states.

2. Solution for a rivulet and for a uniform sheet
2.1. Solution for a rivulet

Wilson & Duffy (2005b) obtained the solution for the steady unidirectional fiow of a
thin symmetric rivulet of Newtonian fluid with constant semi-width a and constant
volume flux @ on a vertical substrate subject to a prescribed uniform longitudinal
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shear stress T at its free surface, where positive values of ¢ correspond to the shear
stress acting downwards (i.e. gravity and shear-stress effects co-operate)} and negative
values to it acting upwards (i.e. gravity and shear-stress effects compete). We employ
Cartesian axes Oxyz with the x axis vertically downwards, the y axis horizontal and
the z axis perpendicular to the substrate z =0 and non-dimensionalize in the natural
way using the capillary length £=(y/pg)"/* to non-dimensionalize length in the y
direction, the characteristic rivulet thickness 8¢ to non-dimensionalize length in the
z direction, the characteristic velocity U = pgf*f?/1 1o non-dimensionalize velocity
in the x direction, the characteristic pressure pgf{ to non-dimensionalize variations
in pressure and the characteristic stress pgBe to non-dimensionalize the prescribed
shear stress, where the constants y, p and p denote the surface tension, density and
viscosity of the fluid, respectively, the constant g denotes acceleration due to gravity,
and the constant 8 (0<f < 1) is the (non-zero) static contact angle. The velocity
u=u(y, z)i, pressure p(y, z) and free surface profile z = h(y} then satisfy 0=1 4+ u,,,
O=p, and 0= p, subjectto p=—h"andu, =t onz=h u=00nz=0, and h =0 and
h'= F1 at y= +a {(where a prime denotes differentiation with respect to argument),
and hence are given by

(2h —z)z 1 a* —y?
T e—— \ = -, h‘ — .
5 Tt P=g 2a

The volume flux down the rivulet (which may be positive or negative depending on
the relative strengths of gravity and shear-stress effects) is therefore given by

(2.1)

i

2a°
105
and satisfies Q 2 Qn, Where Qi (<0) is given by

308714
Qmin T 5120

Note that 0 =0 whena =ay=—77/2, and Q= Q,,;,, when g = i, = 217 /8. Figure 2
of Wilson & Duffy (2005b) shows a sketch of Q as a function of « for 1 >0, 7=0
and 7 < 0. Wilson & Duffy (2005b) also categorized and analysed all of the possible
flow patterns and showed that when 7 20 the flow is always downwards, but when
v <0 the flow is always upwards near the contact line but, depending on the size of
a, can be either upwards or downwards elsewhere.

+a  phiy)
0 = / u(y,z)dzdy = (2a + 71), (2.2}
J—a SO

(2.3)

2.1.1. Rivulet with prescribed semi-width

The present solution can be interpreted as a rivulet of prescribed semi-width @, in
which case the corresponding flux Q is given explicitly by (2.2) with a =a. Figure |
shows @) plotted as a function of t for a range of values of @, and shows how the
straight lines for different values of a envelope to the curve Q= 0,,, for r <0 and
o Q=0forr=0

2.1.2. Rivulet with prescribed flux

The present solution can also be interpreted as a rivulet with prescribed flux 0,
in which case the corresponding semi-width(s) a is/are determined by solving Q = (Q,
where @ is given by (2.2). Figure 2 shows a plotted as a function of r for a range of
values of Q and shows that when @ > 0, there is a single rivulet solution for all vaiues
of v which 1s a monotonically decreasing function of T and satisfies @ > 0 when 7 =0

and a >ap when t < 0. In the special case Q0 =0, there is a single solution a = ay for
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Ficure 1. Plot of the rivulet flux O given by (2.2) with a =a as a function of t for a range of
values of the prescribed semi-width @. The envelope curve Q = @, = —30871%/5120 for T <0
is indicated with a dashed line, and the region in which there is no solution is shaded.

v < 0. Figure 2 also shows that when Q < 0, there are two solutions (the narrower one
of which is a monotonically increasing function of t satisfying 0 < a < a,;, and the
wider one of which is 2 monotonically decreasing function of r satisfying a,, <a <ay)
when 1 < Ty, One solution given by a =a,;, when 7= 1,., and no solution when
Tmax < T < 0, where 1. (<0} is the maximum value of t corresponding to QO = Qo

given by
<\ 1/4
51200
= — 2
Tmax ( 3087 ) . (.,.4)

In the limit of small positive ﬂume — 07 for 7 > 0 and for the narrower solution in
the limit of small negative flux Q0 — 0~ for <0, the rivulet becomes narrow and

shallow according to
A 173 ma 13
150 Q-
- 2
a (21’) %O(ﬁ) , (2.5)
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Figure 2. Plot of the rivulet semi-width a given by solving Q = 0, where Q is given by {2.2),
as a function of r for a range of values of the prescribed flux Q. Note that in the special case
(=0 then a=ay=—T7/2. The straight line a =a,,, = —211/8 for v <0 is indicated with a
dashed line.

whereas in the limit of small positive flux Q0 — 0% for 7 < 0 and for the wider solution
n the limit of small negative ux Q — 0~ for r <0, the rivulet semi-widih approaches
the finite value @ =ay according to

) 2
QZ_E_E{QJFO(Q_), (2.6)

In the limit of large positive flux O — oo, the rivulet always becomes wide and deep

according to
1050\ 70 r2
a == (Tﬂ) —"“S“W“I*O<—"Q“?a . (27)

Since there is no solution when 0 < Q,,, there is no corresponding expression in
the opposite limit of large negative flux Q — —o0. In the limit of small shear stress
T —0, the rivulet semi-width is a regular perturbation about the finite value in the
case T =0, namely a = (1050/4)"/%, and is given by (2.7). In the limit of large positive
shear stress r - o0, the effect of the shear stress overwhelms that of gravity, and
the rivulet becomes narrow and shallow according to {2.5). In the Hmit of large
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negative shear stress T — —oo, the situation i1s more complicated: for the narrower
rivalet when @ <0, the effect of the shear stress again overwhelms that of gravity,
and the rivulet becomes narrow and shallow according to {2.5), whereas when O >0
and for the wider rivulet when Q <0, the effects of shear stress and gravity balance
each other at leading order and the rivulet becomes wide and deep according to (2.6).

2.2. Solution for a uniform sheet
The corresponding solution for the unidirectional flow of a fluid sheet of uniform
thickness H simply has velocity u=u(z)i, where u=(2H —z)z/2 + 7z, constant
pressure p =1{ and constant free surface profile A= H, and hence the volume flux
down a width 24 is

2

+A H
0 - f w(z)dzdy = M 0g 130, (2.8)
J-A JO

Note that @ =0 when H = Hy=-31/2 for 1 < Q.

3. Energy of a rivulet and of a sheet
3.1. Kinetic energy

Non-dimensionalizing energy per unit length with the characteristic kinetic energy per
unit length, pBI*U?%, the non-dimensional kinetic energy per unit length of a rivulet
of semi-width a, denoted by K, 1s given by

K —1/Hfh 2y, 2)dzdy = 2a” (8a® + 557a + 9972 (3.1)
T2 Ly YT T 10395 T '
and the corresponding expression for the non-dimensional kinetic energy per unit
length of a width 2A of a sheet with uniform thickness H, denoted by K., is given
by

1 +4 pH AHZ%
Kpoer = 3 / / w(z)dzdy = 5 (8H? +25vH + 207°). (32)
J A 0

3.2. Surface energy

Reverting momentarily for clarity to dimensionali variables, the dimensional surface

energy per unit length of a rivulet of semi-width @ on a substrate of width 2A, where
necessarily A = a, is given by

p | v 2aps + 208 — s (3.3
where 15 and yyvs denote the surface tensions associated with the liquid-substrate
and vapour—substrate interfaces, respectively, which are related to y and 8 by the
Young-Dupres equation yys=1yps -+ y cos 8. Using the Young-Duprés equation to
eliminate y; s and recalling that the rivulet 1s thin, the dimensional surface energy per
unit lfength of a rivulet is given by

o '
Y {5/ W dy +a52} + 2Apvs. {34)

—i

Thus the non-dimensional surface energy per unit length of the rivulet, denoted by

S, 15 given by
11 j* 2A 4a  2A
Spy = = | = h*d o T e b e 3.
riv W {2/ y+a:L -+ W 3W“'f‘ W, (.) 5)

—
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and the corresponding expression for the surface energy per unit length of a width
2A of a sheet with uniform thickness #, denoted by Sgeer, 1s given by
A 24

Smeeﬂ""““ L .
o = (3.6)

where W= plU?/yf is a non-dimensional Weher number and I/AmeEEW/yvgz
pBIU?/vys is a modified non-dimensional Weber number. Note that when we consider
differences between the surface energies of comparable states, the term due to the
surface energy of the dry substrate in (3.5) and (3.6), namely 2A/W, will cancel out,
and thus W will be removed from the problem.

3.3. Total energy

Following previous authors we take the total energy of each state, denoted by
E. and Eg.., respectively, to be the sum of their respective kinetic and surface
energies, 18, Evy = Koy + Siy and Egee = Koo + Ssheer- These expressions for E,;, and
Epeer coincide with the appropriate limits and/or special cases of the corresponding
expressions obtained by previous authors, including Mikielewicz & Moszynski (1976).
However, there are two differences worth noting, Specifically, because Schmuki &
Laso (1990), who studied the special case of purely gravity-driven flow, used only
an approximate expression for the kinetic energy, they have a slightly different
numerical coefficient of a® (namely, 4/3675 ~ 0.001088 instead of 16/10395 ~
0.001539) in the thin-film limit of their expression for K. Similarly, because Myers
et al. {2004) erroneously omitted the contribution due to the surface energy of the
free surface represented by the integral term in (3.5), they have the wrong numerical
coeflicient for a (namely, 1 instead of 4/3) in the thin-film limit of their expression
for Sr,:v.

In order to simplify the subsequent numerical calculations, we can remove W
explicitly from the problem by rescaling the variables as follows:

a=W"Pa" t=WTPr" H=WIH A WoliS4" (37
Q = W~4/5Q*1 Eriu = W_WSE* Esheez = WMWSE* ‘ )

rip sheer *

which simply corresponds to replacing the original variables with rescaled variables
and setting W =1 in the original problem. Hence we will, without loss of generality,
take W=1 in all of the subsequent numerical calculations, but for clarity retain W
in all of the subsequent analytical results.

4. The breakup of a sheet into rivulets

In this section we determine whether or not it is energetically favourable for a
sheet to break up into a periodic array of infinitely many identical rivulets, and,
when rivulets are the energetically favourable state, determine which is the most
energetically favourable rivulet state. In order to do this, we consider the difference
between the energy per unit length of a section of a sheet of uniform thickness H of
width 24 and the energy per unit length of a rivulet of semi-width a on a section
of the substrate of width 24 with the same flux as that of the section of the sheet.
denoted by AE. Note that the possibility of a sheet breaking up into a periodic array
of non-identical rivulets remains an open question.
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Equating the appropriate expressions for the {non-zero} fiux in the rivulet and in
the sheet, given by (2.2) and (2.8}, respectively, yields

B 2a*(2a + 71)
T TO3SH2(2H 4+ 31)

while using the appropriate expressions [or the energy of the rivulet and of the sheet,
given by (3.1) and (3.5) and (3.2) and (3.6), respectively, yields

AH? oA 2at 4q
= H* H e : 49973y £ — |,
AE = — (SH*+25TH +201%) + [10395(&@ + 557a +9977) + W

Clearly for this situation to be physically realizable, we require that the width of each
rivulet does not exceed the width of the section of the sheet from which it came, t.e. that
A = a, and this requirement means that not all positive values of the rivulet semi-width
a correspond to physically realizable rivulets. When @ = 0 (i.e. when 720 and when
H > Hy for v <0), then A = a only for a = dyee, Where a = a,y, (satisfying d...; > 0 when
v =0 and a,,, > ao when 1 < 0) 18 the unique positive root of the cubic equation A =a.
However, when Q <0 (ie. when O < H < Hy for v <0), then AZ>a is possible only
when 0 < H < —H;t or when —H,t < H < Hy, where H; ={.6556 and H,~1.2776
are the two positive roots of the cubic equation 270H> —405H?* + 98 = 0 which arises
from the critical conditions A =a and dA /da =1, and then only for a,,,; < a < @,
where a = a0 and a = a0 (5atisfying O < @upen < —77/3 < dyon < ag) are the two
positive roots of the cubic equation A =a. In particular, this means that when 1 <0,
a sheet whose thickness lies in the interval —Hj7 < H < —H,t is the energetically
favourable state by default since there are no physically realizable rivulets into which
it can break up.

(4.1)

(42)

4 1. The energetically favourable state

In order to determine if it is energetically favourable for the sheet to break up into
rivulets, we have to determine the sign of AE for all physically realizabie values of a:
if AE <0 for all physically realizable values of a, then the sheet is the energeticaliy
favourable state, but if there are any physically realizable values of a for which
AE >0, then rivulets are the energetically favourable state.

In the special case of zero flux, Q =0, in which H = Hy= —3r/2 and a=ag= —71/2
for T < 0, it is straightforward to show that AE > 0 for all v < 0, and hence that rivulets
are always the energetically favourabie state,

In the general case of non-zero flux, @ # 0, substituting the expression for A given
by (4.1} into the expression for AE given by (4.2} reveals that AE ~ —4a/3W <0
as a— 0" and AE ~ —16a%/10385 <0 as a — oo, and hence if AE becomes positive,
then it must do so via the critical condition

JAE
da

In practice, the critical condition (4.3) almost always occurs at a physically realizable
value of ¢; when it does not, the appropriate critical condition 1s

AE =0 and

0. (4.3)

AE =0 and A =a. (4.4)

The only critical sotution that simulfaneously satisfies both (4.3} and (4.4) (1e. that
satisfies AE =0, 0AE/da=0and A=a} 1s

T~ =23049W 0 H ~3.0622W Y0 g~ 5.4136W 15, (4.3)
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Ficure 3. Plot of the r~H parameter plane showing how it is divided by the critical curves
{denoted by solid lines) into regions in which either the sheet is or rivulets are the energetically
favourable state, denoted by ‘5" and ‘R’, respectively. The straight lines H = —Hit, H=—Hr
and H = Hy=—37 /2 for v < 0 are shown with dashed lines, while the leading-order asymptotic
solutions for large || given by (4.8) and (4.9) are shown with dotted lines. The region
—Hyt < H <—H,t for T <0 in which the sheet is the energetically favourable state by default
since there are no physically realisable rivulets is shaded.

The task of determining the critical solutions from (4.3) and (4.4) was accomplished
numerically and analytically in various asymptotic limits and special cases. The results
of these calcuiations are plotted in figure 3, which shows how the r—H parameter
plane is divided by the critical curves into regions in which either the sheet is or
rivulets are the energetically favourable state, denoted by ‘S’ and ‘R, respectively.

In the special case of purely gravity-driven flow, t =0, it is straightforward to show
that rivulets are the energetically favourable state for H < H; and the sheet is the
energetically favourable state for H > Hg, where H. and the associated value of a are
given by

H=H;~11834W'7 4 ~41951w15, (4.6)
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in agreement with the appropriate limit of the corresponding results obtained by
Mikielewicz & Moszynski {1976).

As figure 3 shows, the situation when r >0 and when H> H; for 7 <0 is
qualitatively the same as that when r =0, namely there is a critical value of H below
which rivulets are the energetically favourable state and above which the sheet is the
energetically favourable state. However, as figure 3 also shows, the situation when
H < H; for 7 < 01s more complicated, with a region of parameter space (including the
region —H 7 < H < —H,1 for T <0 in which the sheet is the energetically favourable
state by default) in which an arbitrarily thin sheet will remain as a sheet, and
another in which an arbitrarily thick sheet will break up into rivulets. Nevertheless,
whatever the value of r, sufficiently thin sheets will always break up into rivulets,
while sufficiently thick sheets will always remain as sheets.

Almost all of the critical curves shown in figure 3 correspond to the critical condition
(4.3}, but there is a short section of critical curve between the point (—2.3949, 3.0622)
corresponding to the critical solution (4.5) and the nearby point (—2.4103, 3.0798)
corresponding to the critical solution satisfying (4.4) and lying on the straight line
H = —H,1, namely

T = Ty > —24105W 15, H = —Hy ey ~ 30798W 17, }

_Tran s 6246w, @.7)

o =
In order to see this and several other features of the narrow region of parameter space
lying just above H = —H,t for v <0 which are difficult to discern in figure 3, figure 4
shows a sketch of the key features of figure 3 exaggerating this region and indicating
which critical condition is satisfied on the different parts of the critical curves.

In order to understand fully all of the features shown in fgures 3 and 4, it is
enlightening to examine various asymptotic limits and special cases analytically.

In the limits of large positive and negative shear stress {r| — oo, the asymptotic
behaviour of the critical curves that approach H =0 is

H o L1787 23 W13 5 07, a ~ 5.1925c 23 w13 s o, (4.8)

the former of which 1s included i figure 3 and shows good agreement with the critical
curves even for relatively small values of [7|. In the limit of large negative shear stress
r — —oo, the asymptotic behaviour of the critical curve that extends to infinity is

H ~ —1.56687 (= Hy) — o, a~—4.13437 (>ap) - o, (4.9)

the former of which is also included in figure 3 and also shows good agreement
with the critical curve even for relatively small values of —t. In the limit of small
shear stress v —» 0, the critical curve passing through the crifical value in the
special case T =0 given by (4.6) is given by H = 1.1834W 1/ —0.5157r + O(r*) and
a~4.1951W~°> — 12708t + O(r*), while in the Hmit of small negative shear stress
- (O~ the two critical curves going into the origin are given by H ~ ~Hgr — 07
and H ~ —Hgt — 07, where Hey ~0.5297 (< Hy) and Hgy ~1.3508 (> H,) are the two
positive roots of the cubic equation 180H* —270H? +49=0, and a ~ —71t/3 — 01,
In particular, these latter results show that the critical curves going into the origin lie
strictly within the regions 0 < H < ~H;r and —H,1 < H < Hy as 7 - 07, as sketched
in figure 4.

On the straight line H = —H,t for t <0, the only physically realizable rivulet has
semi-width @ = 4011 = Gyoerz = —77/3, and so it is straightforward to show that AE <0
for all T <0 (re. the sheet is always the energetically favourable state). On the other




The energetics of sheet and rivulet breakup 291

H= Hy=—31/2
N He-yr | H
— 1 '
| =6 . L R
b H 7o -1 56687
N (F2.4105, 3.0798)
: e AE=0,A=a p
s :
L (~2.3949, 3.0622)"
H=—il1 =
o - 0.65567 N '
LS‘ ‘ﬁ“’~ “\~‘ t
(-2.1622, 0.9746) .
e S AE =0, DA/ =0
I RN R
AE =0, 3AE/Ba =0 R N NE
T

FIGURE 4. Sketch of the key features of figure 3 exaggerating the narrow region of parameter
space lying just above H = —Hst for v <0 and indicating which critical condition is satisfied
on the different parts of the criticai curves.

hand, on the straight line H = —H,1 for r <0, it can readily be shown that AE <0 for
Terie < T <0 (Le. the sheet is the energetically favourable state) and AE >0 for © < 1.,
(Le. rivalets are the energetically favourable state), where 7., ~ —2.4105W~"/5 is the
critical value of t satisfying (4.4) and lying on the straight line H = —H,t given by
(4.7). Similar arguments show that rivulets are always the energetically favourable
state In the imit H — Hp for <0 and on the straight line H ~—1.5668t for v < 0.

4.2. The most energetically favourable rivulet state

In situations in which it is energetically favourable for the sheet to break up into
rivulets, we can find the most energetically favourable rivulet state by determining the
physically realizable rivulet state with the largest (positive] value of AE. This will
occur either when 8AFE/da =0 or when A =a. In what follows, it is convenient to
consider the regions of v—H parameter space in which rivulets are the energetically
favourable state (ie. the regions labelled ‘R’ in figures 3 and 4) in three separate parts,

Figures 5 and 6 show a contour plot of the semi-width of the most energetically
favourable rivulet state and a plot of the same quantity as a function of H for
various values of r, respectively, in the region lying within H >0 for >0 and
H > Hy for = < 0 in which rivulets (with Q > 0) are the energetically favourable state.
In particular, figure 6 shows that within this region the semi-width of the most
energetically favourable rivulet state is a monotonically decreasing function of H.
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Figure 5. Contour plot of the semi-width of the most energetically favourable rivulet state in
the region lying within H >0 for 720 and H > Hy for r <0 in which rivulets (with 0 > 0}
are the energetically favourable state.

Specifically, it satisfies

33 172
a~ (2H21W> — 00 (4.10)
as H— 0" for r >0,

99 172
a~ <4H3W) — o0 {4.11)

as H—- 07" for t =0 and

9(—z) 1 1 e

as H — Hy for v <0, and decreases monotonically to its appropriate critical value on
the critical curve.

Figures 7 and 8 and figures 9 and 10 give the corresponding results in the regions
lying within —Hyr < H < Hy for <0 and 0 < H <—H;7 for 1 <0, respectively, in
which rivalets {with Q < 0} are the energetically favourable state.

Figures 7 and & show that within —H,t < H < Hy for v <0, the semi-width of
the most energetically favourable rivulet state is a monotonically increasing function
of H. Specifically, it increases monotonically from either its appropriate critical
value for ry <7 <0 or a=~7t/3 for T < 1, and satisfies a —a_, =—217/8" (not

min

a-»ag=-—T7t/2, as naively might have been expected) as H — Hy". To illustrate this




The energetics of sheet and rivulet breakup 293

T=-1 T=-2 T o= -3 T=-4 T =5

T =20
T =100

H

FiGurg 6. Plot of the semi-width of the most energetically favourable rivulet state as a function
of H for various values of t in the region lying within H > 0 for r =0 and H > Hy for v <0
in which rivulets (with Q = 0) are the energetically favourable state. The vertical asymptotes
H = Hy of the curves corresponding to 7 < 0 are shown with dashed lines,

latter result, the straight line @ =7H /4 obtained by eliminating t between g = a,,,
and H = Hy is also included in figure 8.

In the special case H = Hj corresponding to Q =0, the rivulet state with semi-width
a = ag 18 the only physically possible rivulet state and is therefore by default also the
most energeticaily favourable one.

Figures 9 and 10 show that within 0 < H < —H,z for 7 < 0, the semi-width of the
most energetically favourable rivulet state is a monotonically decreasing function of
H with a discontinuous jump downwards if the location of the global maximum of
AE jumps between two local maxima. Specifically, it satisfies a-»ap as H—0"
and decreases monotonically to its appropriate critical value on the critical curve,
A discontinuous jump is possible only if AE has two local maxima, and this can
occur only when v < ~2.8170W '/, where the critical value corresponds to the critical
solution satisfying (4.4) and 8*AE /34’ =0, namely

t e~ =28170W B ~0.7326W0 4~ 4.7408 WV, (4.13)

at which AE evaluated on the critical curve has a point of inflection. In particular,
this explains why there are no jumps in the curves corresponding to T = — W15 = —{
and 7= —2W~¥° =2 in figure 10.

5. The breakup of a rivulet into sub-rivulets

In this section we determine whether or not it is energetically favourable for a
single rivulet to break up into n (n=1,2,3,...) identical sub-rivulets, and, when
more than one sub-rivulet state is energetically favourable, determine which is the
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FIGURE 7. Contour plot of the semi-width of the most energetically favourabie rivulet state
in the region lying within —Hyr < H < Hp for 7 <0 in which rivulets (with Q <0) are the
energetically favourable state.

most energetically favourable sub-rivulet state. In order to do this, we consider the
difference between the energy of a rivulet with semi-width a and the total energy
of n identical sub-rivulets each with semi-width @, with the same total flux as the
original rivulet, denoted by AE,. Note that, apart from the special case of a rivulet
breaking up into two sub-rivulets (in which Wilson & Duffy 2005 showed that the
most energetically favourable state is always that of two identical sub-rivulets), the
possibility of a rivulet breaking up into non-identical sub-rivulets remains an open
question.

Equating the appropriate expressions for the flux in the original rivulet and in the
n(n=1,2,3,...) sub-rivulets, both given by (2.2), yields

a*(2a + Tty =na’(2a, + 1), {5.1)

while using the appropriate expressions for the energy of the original rivulet and of n
sub-rivulets, both given by (3.1) and (3.5), yields

2a*

10395

dg [ 24}

o 4ay,
3w " | 10395

3w
(5.2)
The special case n = 1, corresponding to the possibility of the ‘breakup’ of a rivulet
into a single rivulet with the same flux but a different semi-width first discussed
by Wilson & Duffy (2005b), can be readily understood. As described in §2, when
T <0 and a < aq (ie. when Q< Q <0), there are always two rivulets with the same

AE, = qgyg5 807 + S5ta + 997%) + (842 + S5t +997%) +
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HGURE 8. Plot of the semi-width of the most energetically favourable rivulet state as a
function of A for various values of T <0 in the region lying within —Hyr < H < Hy for 7 <0
in which rivulets (with Q <0) are the energetically favourabie state. The straight line o =7H /4
corresponding 10 a == gy, = —217/8 and H = Hy = —31/2 is shown with a dashed Hne.

(negative) flux but different semi-widths, namely a ‘wider’ one whose semi-width
satisfies @wm <a <ag and a ‘narrower’ one whose semi-width satisfies 0 <a < a,,,.
Hence, since E,;, is a monotonically increasing function of g, it is always energetically
favourable for a ‘wider’ rivulet to break up’ into the corresponding ‘narrower’ rivulet,
but it is never energetically favourable for a ‘narrower rivulet to ‘break up’ into the
corresponding ‘wider’ rivulet.

5.1. The energetically favourable state

In order to determine if it is energetically favourable for the original rivalet to break
up into n sub-rivulets, we have to determine the sign of AE, for n=2,3,4,...:if
AE, <0 then the oniginal rivulet is the energetically favourable state, but if AE, >0
then n sub-rivulets is the energetically favourable state.

In the special case of zero flux, 0 =0, in which a=a, =ay=—71/2 for 7 <0, it
1s straightforward to show that AE, <0 for all n=2,3.4, ..., and hence that the
original rivulet is always the energetically favourable state.

In the general case of non-zero flux, @ = 0, (5.1) and (5.2) reveal that AE, ~
4a(l —n*?)/3W <0 as a—0" and AE, ~ 16a%(1 —n~1%)/10395 > 0 as a — oo, and
hence that the critical condition for AE, to become positive is simply AE, =0.

Asin §4, the task of determining the critical solutions was accomplished numerically
and analytically in various asymptotic limits and special cases. In order to do this it
is, in general, convenient to write a, in terms of @ by introducing the parameter £,
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FIGURE 9. Contour plot of the semi-width of the most energetically favourable rivulet state
in the region lying within 0 < H < —H;t for v <0 in which rivulets (with Q <0} are the
energetically favourable state.

(>0) according to a, =k,a, in which case (5.1} yields an explicit expression for a in
terms of 7, n and k,, namely

Tt (1 wnki}
2(1—nk?)’

@ = (5.3)
and so substituting for a and a, = k,a 1nto (5.2) yields an expression for AE, in terms
of T, n, W and k, (not given here for brevity). The procedure is then to use this
expression to solve the critical condition AE, =0 for k,, and then to calculate the
corresponding values of a and a, =k,a from (5.3). The results of these calculations
are plotted in figure 11, which shows how the 7-a parameter plane is divided by the
critical curves on which AE, =0 for n=2,3,4, ..., denoted by a =ag,, into regions
in which either the original rivulet or n sub-rivulets is the energetically favourable
state,

In the special case of purely gravity-driven flow, t==0, the original rivulet
is the energetically favourable state for a < ac, and »n sub-rivulets is the energetically
favourable state for a > ac,, where ac, and the associated value of k, are given by

| T3465(n¥ — 1)
Ao = A0 — W

in agreement with the corresponding result given by (8) of Wilson & Duffy (20055h)
in the special case n==2. Evidently a¢, given by (5.4} is a monotonically increasing
function of n, and so states with more sub-rivulets progressively become energetically
favourable compared to the original rivulet as a increases. Specifically, the original

1/5
} . ky =R (5.4)
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FiGURE 10. Plot of the semi-width of the most energetically favourable rivulet state as a
function of H for various values of 7 <0 in the region lying within 0 < H < —H;7 for v <0
in which rivelets (with Q <0) are the energetically favourable state. Note that discontinuous
downward jumps in a (marked with a dotted line} are possible only when 7 < —2.8170W 1/,
and hence there are no jumps in the curves corresponding to t=—W 1 =_1 and
T=-2W =2

rivulet is the energetically favourable state for 0 < a < acy, the two-sub-rivulet state is
energetically favourable compared to the original rivulet for dgy < @ < dga, both the
two- and the three-sub-rivulet states are energetically favourable compared to the
original rivulet for ac; < a < acs, and so on.

As figure 11 shows, the situations when 7>0 and when a>ay for T <0 are
qualitatively the same as that when r =0, with the critical curves on which AE, | =0
always lying above those on which AE, =0forn=2,3.4, .. , and so states with more
sub-rivulets progressively become energetically favourable compared to the original
rivulet as a increases for a given value of 1. As figure 11 also shows, the situation
when a <ag for v <0 is complicated by the presence of the region a,;, <a < ag
in which it is always energetically favourable for the original rivulet to ‘break up’
into a narrower rivulet with the same flux. Nevertheless, whatever the value of 7, a
sufficiently narrow rivulet will always remain as a single rivulet, while a sufficiently
wide rivulet will always break up into sub-rivulets. Note that the resuits shown in
figure 11 confirm the corresponding results given by figure 4 of Wilson & Dufty
(20056) in the special case n=2. Specifically, the critical curves on which AE, =0
outwith the region a,;, < a < ay agree with those given by Wilson & Duffy (20055).
Moreover, since the critical curves on which AE, =0 for n = 3,4,5,... (obtained here
for the first time) lie above that on which AE; =0, the region that Wilson & Duffy
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FIGURE 11. Plot of the t-a parameter plane divided by the critical curves on which AE, =0
for n=2,3,4,... into regions in which either the original rivulet or »n sub-rivulets is the
energetically favourable state. Note that when any, <a <ag for T <0 it is always energetically
favourable for the original rivulet to “break up’ into a narrower rivalet with the same flux. For

clarity, the regions in which it is energetically unfavourable for the original rivulet to break up
are shaded.

(2005b) identified as ‘unfavourable to split’ is indeed the region in which the original
rivulet is the energetically favourable state.

As with figure 3 in §4.1, in order to understand fully all of the features shown in
figure 11, it is enlightening to examine various asymptotic limits and special cases
analytically.

Interestingly, when O = 0, the behaviour of the critical curves in the Hmit 1 — oo
depends on the sign of r: for r>0 then ac, = O0(n"") > w and k, = O(n~¥7} — 0+
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FiGure 12. Plot showing the approach of the critical curves on which AE, =0 when Q>0
and 7 >0 for n =10, 107, 10%, ..., 10" (shown with solid curves) to the limiting curve given
by (5.5} (shown with a dashed curve) as r — o0

according to

Te (3960 NP ] 3960\,
o3 \wtew) " B Gerew) T 69

for T==0 then ag, = O(n**)— o0 and k, =n~1¥ — 0* according to the leading order
version of (5.4), while for 7 <0 then ac, =0®"%)—c0 and k,=0(n V%) -0+
according to

Tr [9(4973W — 1760)71"° 960475 W
op ~ —— a8k, ~
o 960415 W " 9(4975W — 1760

2
On the other hand, when Q <0, the behaviour of the critical curves in the limit n — oo
18 simply

1/6
)jl n e (56)

5
Ao — dy, Ky ~ 1760176?}ZT id — O (5.7)
for v < 0. Figures 12, 13 and 14 show the approach of the critical curves on which
AE, =0 to the limiting curves given by (5.5), (5.6) and (5.7) for ¢ >0 and 7 >0,
Q>0and r <0 and Q <0, respectively, as n — .
In the limits of large positive and negative shear stress || — co, the asymptotic

behaviour of the critical curves that approach a =0 is

70(n%3 —1y 17 B
fon ™ [(1 wn—z/s)rzW} =0y~ (5.8)
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Figurr 13. Plot showinig the approach of the critical curves on which AE, =0 when ¢ >0
and 1 <0 for n=10, 10%, 10°, ..., 10'° {(shown with solid curves) to the limiting curve given
by (5.6) {(shown with a dashed curve) as n — co.

in agreement with the corresponding result given by (9) of Wilson & Duffy (2005b) in
the special case n = 2. In the limit of large negative shear stress v - —o0, the asymptotic
behaviour of the critical curves that extend to infinity is ag, ~ —ay(n)t, where a,(n)
is a monotonically increasing function of n, and %, 18 a monotonically decreasing
function of n satisfying a,(2) ~4.3014 (>7/2) and k; =0.9296, a,(3)~4.4158 and
ky~0.8905, and a,(n)= On"")—ow and k, =0n V% — 0" according to (5.6) as
n — oo. In the limit of small negative shear stress v - 07, the critical curves going
into the origin are given by

Tn{n* — 1 ‘
dop ~ ———2(15—3m1)—) -0,k ~nt, (59
showing that they lie strictly within the region a,;, <a < ay, as shown in figure 11,
On the straight hne a =au, for v <0, 1t 1s straightforward to show that AE, <0
for T4 <t <0 (ie. the original rivulet 1s the energetically favourable state) and that
AE, >0 for 1 <1,y {ie. n sub-rivulets is the energetically favourable state), where
Toi = Tin W% is the critical value of © satisfying AE, =0, where t.,(n) {<0) is a
monotonically decreasing function of n satisfying 7,,;,(2) =~ —2.5038, 1,,,,(3) ~ —2.6718
and Tp(n) =~ —1.8999n%1* — —c0 as n —» oc. Similar arguments show that the original
rivulet is always the energetically favourable state in the limit a — gy for v < 0.
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FIGURE 14, Plot showing the approach of the critical curves on which AE, =0 when Q <0
for n=10, 10%, 10°, ..., 10'® (shown with solid curves) to the limiting curve g =ay given by
(5.7) (shown with a dashed curve) as n - oo.

5.2, The most energetically favourable sub-rivulet state

In situations in which it is energetically favourable for the original rivulet to break
up into sub-rivulets we can find the most energetically favourable sub-rivulet state by
determining the sub-rivulet state with the largest {positive) value of AE,. The critical
condition for the most favourable sub-rivulet state to jump from one state to another
is when two states with different numbers of sub-rivulets share the largest value of
AE,, and it is found that this always occurs when ‘neighbouring’ sub-rivulet states
with n and n + 1 rivulets have the same energy, i.e. when the difference between the
energies of the two states, denoted by AE, ,1=AE, 1 — AE,, is zero. The situation
is therefore rather similar to that described in §5.1, which involved comparing the
energy of one rivulet with that of n sub-rivulets, except that now it involves comparing
the energy of n sub-rivulets with that of n + 1 sub-rivulets. We therefore proceed
in the same manner as described in §5.1 with the appropriate modifications. For
example, it is now convenient to write both a, and a,., in terms of ¢ by introducing
the parameters k, (>0} and k,.; {>0) according to a, = k,a and @y1 =k, 1a, in which
case (5.1} yields {5.3) and

T =+ Dk ) Trln+ Dk, —nkd)
21— (n+ DI, 2{n -+ Dk | —nk®)’
and so substituting for a, a, =k,a and a,.; =k,.1a into (5.2) yields an expression
for AE,,  which is used to solve the critical condition AE, ;1 =0 for either &k, or

k.11 {they are related via {5.10)) and hence obtain a, a, = k,a and Ay =k, a from
{5.10). The results of these calculations are plotted in figure 15, which shows how

(5.10)
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FiGure 15. Plot of the 7—a parameter plane divided by the critical curves on which AE,, =0
for n=2, 3,4, ... info regions in which either the original rivulet or » sub-rivulets is the most
energetically favourable state. Note that when a,u, < a <ag for 7 <0 it is always energetically
favourable for the original rivulet to ‘break up’ into a narrower rivulet with the same flux. For
clarity, the regions in which 1t is energetically unfavourable for the original rivulet to break up
are shaded.

the T-a parameter plane is divided by the critical curves on which AE, ., =0 for
n=1,2,3,..., denoted by a = ag, ,4i, info regions in which either the original rivulet
or n sub-rivulets 1s the most energetically favourable state.

In the special case of purely gravity-driven flow, r =0, the original rivulet is
the most energetically favourable state for 0 < a < agy ,, the two-sub-rivulet state is the
most energetically favourable for aci2<a <ae s, the three-sub-rivulet state is
the most energetically favourable for acy3 <a < a4, and so on, where ac, ,-; and
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the associated values of k, and k,., are given by

3465 {(n + 1)%% — 113/4} e
4{n+ )12 —p-12 W

ey el = k=" = (17 (501
As in §5.1, it is enlightening to examine various asymptotic limits and special cases

analytically.

Unlike in § 5.1, the behaviour of the critical curves in the limit n — oo is independent
of the sign of 7, but the calculation to determine it is more complicated. In order to
calculate the leading order behaviour of the critical curves AE, .11 =0 it i3 necessary
to expand both &, and &,;: up to and including O(n~>*) according to

ky = coun” "t epn ™ epan ™ b et 4 egsn S 4 0N, (5.12)
koir = con ™ o ean V2 4 cgn ¥4 & caunh 4 epen ™ O(n %, {5.13}

and substituting these expansions into (5.10) we deduce that ¢ = €21, Cr2 = €12, €13 = €13
and ¢;4 =y but that
1l
€25 = €15 — —— (3£ ¢y5) . 5.14
25 15 &3 (s c1s) (5.14)
Substituting the expansions for k, and k.., into the eritical condition AE, =0
reveals that ¢y is the unique real and positive solution of

A9eit* (9eif — 27¢; — 1765, — 198) — 15840(cty +2)(cf, — 1)° =0, (5.15)

and hence that the critical curves become large like O{n'#) — o0 as n — oo according
to
Tres
fen -t ™ w“““”l"zlf'nl/d’a ky, ~ kﬂ-é—}. ~ CllnMIM‘ (516)
Figure 16 shows the approach of the critical curves on which AE, ,v1=0 to the

limiting curve given by (5.16) as n — oo,
In the limits of large positive and negative shear stress |7|-»oo the asymptotic
behaviour of the critical curves that approach g =0 is

0 1
70 {(?’L -+ 1)2/3 . n2/g} /3
Ao nel ™ {(n T 1)_*1/3 — f’l—l/B} W »

by ~ 07k ~ 1Y, (5T

while in the limit of large negative shear stress r — —u we have Qcp it ~ —ae(n)T,
where a.(n) is a monotonically increasing function of n, and k, and k., 1 are
monotonically decreasing functions of n satisfying a.,(1) ~4.3014 (=7/2), ky =1 and
ko > 0.9296, a,,(2) >~ 4.6175, ky ~0.9156 and ky~0.8774, and do(n) = O(nY*} — oo and
key ~ ki1 = O{n1"*} - 0 according to (5.16) as n — .

Note that since AFE;,=0 is exactly the same as AE, =0, then acy » coincides with
aey, and so, for example, setting n =1 in (5.11) is the same as setting n =2 in (5.4).

6. Purely shear-stress-driven flow

Although somewhat obscured by the choice of non-dimensionalisation, the present
results include those for the special case of purely shear-stress-driven flow. Specifically,
if we neglect gravity {ie. set g=0) and non-dimensionalise with a characteristic
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FiGgure 16. Plot showing the approach of the critical curves on which AE, ) =0 when 0 >0
for n=10, 10%, 103, ..., 10% {shown with solid curves) to the limiting curve given by (5.16),
where ¢;; 1s the unique real and positive solution of (5.15) (shown with a dashed curve) as
o> OO,

transverse length scale L (rather than the capiliary length £) and the characteristic
vertical velocity U = t8L/u {rather than U= pgf?£*/u) then u and Q are given by
u=z and O =24/15 for a rivulet and QO =AH?* for a sheet. For the breakup of
a sheet into rivulets, from (4.8) rivulets are the energetically favourable state for
H < H and the sheet is the energetically favourable state for H > H;, where H. and
the associated value of a are given by Ho~1.1787W~Y* and a ~5.1925W 3, For
the breakup of a rivulet into n (n=2,3.4,...) sub-rivulets, from (5.8), the original
rivulet is the energetically favourable state for 0 < a < ag, the two-sub-rivulet state is
energetically favourable compared to the original rivulet for acy < a < acs, both the
two- and the three-sub-rivulet states are energetically favourable compared to the
original rivulet for acy < a < acy, and so on, where g, and the associated value of k,
are given by

700 — 1) 1 )
“:[m} = (6.1)

and, from (5.17), the original rivulet 1s the most energetically favourable state
for 0 <a <ac;,, the two-sub-rivulet state is the most energetically favourable for
dein < a < g3, the three-sub-rivulet state i3 the most energetically favourable for
aers < d < dcy 4, and so on, where ae, .01 and the associated values of k, and k,., are
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given by

70 {(n + 1)** —n** i

dop pal = '
Ch,ntl {(i’l 4 1)—]/3 — ”—1/3} W

ke =07 ke =17 (62)

7. Congclusions

We used the lubrication approximation to obtain a complete description of the
energetics of the breakup both of a fluid sheet of uniform thickness into a periodic
array of infinitely many identical thin rivulets and of a single thin rivulet into one
or more identical sub-rivulets on a vertical substrate in the presence of a prescribed
uniform longitudinal shear stress at the free surface of the fluid by comparing the
total energies of the different states,

Figure 3 (and the accompanying sketch in figure 4) shows when it is energetically
favourable for a sheet to break up into rivulets, while figures 5-10 show the most
cnergetically favourable rivulet state in the appropriate regions of - H parameter
space. Correspondingly, figure 11 shows when it is cnergetically favourable for a rivalet
to break up into sub-rivulets, while figure 15 shows the most energetically favourable
sub-rivulet state in the appropriate regions of —g parameter space. For both problems
the situation when @ = 0 is relatively straightforward (and, in particular, qualitatively
the same as that in the case v =0), but when Q <0 it is more complicated. However,
as figures 3 and 11 show, whatever the value of 7, there is always a critical thickness
below which it is energetically favourable for a sheet to break up nto rivulets and a
critical semi-width below which it is energetically favourable for a rivulet to remain
as a single rivulet (although both the critical thickness and the critical semi-width
approach zero like O(-1) in the limit of small negative shear stress T —s 07), and a
critical thickness above which it is energetically favourable for a sheet to remain as a
sheet and a critical semi-width above which it is energetically favourable for a rivulet
to break up into sub-rivulets.

While previous authors have demonstrated good agreement between predictions
based on the approach used in the present work {i.e. based on comparing the energies
of the different states) and experimental results for the minimum thickness of a
uniform film, we are not aware of any experimental results against which the present
theoretical predictions can be directly compared. Hopefully such results will become
available in the future, especially in the most interesting case when Q < 0.
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